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Abstract

We present TICaM, a Time-of-flight In-car Cabin Monitoring dataset for vehicle in-
terior monitoring using a single wide-angle depth camera. Our dataset goes beyond cur-
rently available in-car cabin datasets in terms of the ambit of labeled classes, recorded
scenarios and annotations provided; all at the same time. We recorded an exhaustive
list of actions performed while driving and provide for them multi-modal labeled im-
ages (depth, RGB and IR), with complete annotations for 2D and 3D object detection,
instance and semantic segmentation as well as activity annotations for RGB frames. In
addition to real recordings, we provide a synthetic dataset of in-car cabin images with
the same multi-modality of images and annotations, contributing a unique and extremely
beneficial combination of synthetic and real data for effectively training cabin monitoring
systems and also evaluating domain adaptation approaches. We provide baseline evalu-
ation for object detection, segmentation and transfer learning tasks on our dataset. The
dataset is available here.

1 Introduction
With the advent of autonomous and driver-less vehicles, it is imperative to monitor the entire
in-car cabin scene in order to realize active and passive safety functions, as well as comfort
functions and advanced human-vehicle interfaces. Such car cabin monitoring systems typ-
ically involve a camera fitted in the overhead module of a car and a suite of algorithms to
monitor the environment within a vehicle [7, 9]. Ever growing performance of deep learning
based computer vision methods has made it possible to monitor dynamic scenarios inside
a car with high accuracy. To aid these monitoring systems, several in-car datasets exist to
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Dataset TICaM (Ours) SVIRO[13] AUC[10] Brain4Cars[20] HEH[25] Drive&Act[23]
Year 2021 2020 2018 2016 2014 2019

#Frames >118K 25K 17K 2M 11K >9.6M
#Subjects 13 N/A 31 10 8 15

#Views 1 1 1 2 2 6
Synthetic/Real Both Synthetic Real Real Real Real

Data Depth/RGB/IR Depth/RGB/IR RGB RGB RGB/Depth Depth/RGB/IR

Annotation

2D+3D box,
3D segmentation

mask, activity,
2D keypoints

classification labels,
2D box and mask

2D keypoints
activity activity activity activity, 3D skeleton

#Activity classes 19 N/A 10 5 3 83

Scenarios

Driver
Driver+Passenger

Driver+Object
Driver+Child seat

Driver
Driver+Passenger

Driver+Object
Driver+Child seat

Driver Driver Driver Driver

Table 1: Overview of existing in-car cabin monitoring datasets.

train deep learning methods for solving problems like driver distraction monitoring, occu-
pant detection or activity recognition [10, 20, 23, 25]. In the same vein, we present TICaM,
an in-car cabin dataset of 6.7K real time-of-flight depth images and 3.3k synthetic images
with ground truth annotations for 2D and 3D object detection, and semantic and instance
segmentation. In addition, we provide RGB video stream of driver and passenger activity
along with activity annotations, totalling 118K RGB frames. Our intention is to provide a
comprehensive in-car cabin depth image dataset that addresses the deficiencies of currently
available such datasets in terms of the ambit of labeled classes, recorded scenarios and pro-
vided annotations; all at the same time.

Figure 1: From left to right Real IR image, real depth image with 2D bounding box anno-
tation, real image segmentation mask, synthetic RGB image, synthetic depth image with 2D
bounding box annotation, synthetic image segmentation mask.

An immediately apparent limitation of contemporary car cabin datasets is the lack of
representation of some commonly occurring driving scenarios. For example, scenarios in-
volving passengers, everyday objects, and children and infants in forward facing and rear-
ward facing child seats respectively are missing in these datasets. We take care to record a
wide range of driving scenarios that occur in everyday life so that our dataset can be used for
critical automotive safety applications like airbag adjustment. Using the same airbag setting
for a child as for an adult can be fatal for the child. Therefore, it is important to know the
occupant class (person, child, infant, object or empty) of each car seat and to determine the
configuration of child seat (forward facing FF or rearward facing RF) [18]. Our dataset also
contains annotations of both driver and passenger activities. Activity recognition is not only
crucial for innovative contact-less human machine interfaces but can moreover be fused with
other modalities like driver gaze monitoring to obtain a robust estimation of the driver state,
activity, awareness and distraction, which is crucial for hand-over maneuvers in conditional
or highly automated driving [12, 17].

Another key feature missing from popular in-car cabin datasets is multi-modality [10,
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20]. We provide depth, RGB and infrared images with focus on 3D data annotations. The
images have been captured inside a driving simulator using a Kinect Azure [1] fixed in the
front near the rear-view mirror, providing a more practical viewpoint compared to other
datasets [10] and a mounting position that can be realistically replicated inside cars and
which allows to monitor the entire front space of the vehicle cabin including driver and
passenger seat.

We use time-of-flight depth modality because it is associated with some unique benefits.
Depth images preserve privacy as subjects cannot be identified, they are more robust to
illumination and color variations, and allow natural background removal. Additionally, it is
easier to generate realistic synthetic depth data for training machine learning systems than it
is to generate synthetic RGB data, which is also something we provide as part of our dataset.
For depth and infrared images we provide 2D and 3D bounding boxes, and class and instance
masks. These masks and 2D boxes can be used as they are for training on infrared images
and can also be mapped to RGB images since the relative pose between depth and RGB
cameras is known and provided. Lastly, we also provide annotations for activity recognition
task making our dataset truly comprehensive in terms of input modalities and ground truth
annotations. Such multi-modal data and annotations can be of interest for holistic driver
monitoring methods like [14] for autonomous driving handover cases and monitoring driver
attention.

Synthetic datasets are extremely useful for training systems that generalize well in prac-
tice when sufficient real training data is not available. Recognizing this fact has led us to
also create a synthetic front in-car cabin dataset of over 3.3K depth, RGB and infrared im-
ages with annotations for detection, segmentation and keypoint estimation tasks. We believe
this addition makes our dataset uniquely useful for training and testing domain adaptation
methods.

To summarize, the main contributions of this paper are:

• TICaM, a comprehensive ToF dataset for in-car cabin monitoring, consisting of a total
of 6668 images annotated with 2D and 3D bounding boxes, segmentation masks, and
over 118K RGB images with activity labels.

• Additional to real images, TICaM contains 3306 synthetic images (Depth, RGB and
IR imitation) with annotations for 2D and 3D object detection, instance segmentation
as well as 2D keypoints, allowing for evaluation of domain adaptation methods.

• TICaM provides a new public benchmark opportunity for in-car cabin monitoring
with high quality annotations, larger amounts of data and novel, more practical sce-
narios compared to existing datasets.

• The data in TICaM are recorded with a wide-angle RGB-D camera monitoring the
entire front space of the cabin, capturing both driver and passenger seats.

2 Related Work
Surveying existing car and driving datasets indicates that the most common application of
such datasets is driver monitoring. Many datasets exist for tasks like driver distraction recog-
nition [10], driver behavior recognition [23], driver gaze detection [28, 29], driver activity
recognition [25] and driver intention prediction [20]. All these datasets provide color images
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of driver from front view for predicting driver activity or intention, with the exception of
HEH [25] and Drive&Act [23] which provide depth images as well. Brain4Cars [20] dataset
is used to classify driver intention into 5 categories for maneuver prediction. HEH [25]
captures additionally images of drivers’ hands for predicting driver activity. The AUC Dis-
tracted Driver dataset [10] offers color images of drivers from side-view and can be used for
detecting when the driver is distracted. All these datasets are limited in the number of image
modalities they provide, with only one dataset providing depth images and none providing
IR images. Moreover they are limited in the number of activity classes and image view-
points they provide. Drive&Act [23] contributed a large-scale driver activity dataset with 6
views and multi-modal image data (RGB, Depth and IR) with 83 activity classes. However,
their dataset provides only activity and 3D skeleton annotations and is limited in terms of
recorded scenarios. In contrast, TICaM provides multi-modal images and annotations for a
wider range of driving scenarios with a single wide-angle front view that effectively captures
the entire car cabin.

As mentioned in section 1, occupant classification is a safety-critical task for safe deploy-
ment of airbags. Many past works have addressed this problem but no dataset has been made
publicly available [15, 19, 22, 26]. Nowruzi et al. [24] released a dataset of thermal images
for occupant classification, however, their dataset lacks images captured with child seats and
children/infants in the scene. SVIRO [13] released a dataset of exclusively synthetic RGB,
IR and depth images of the rear bench interior of ten different vehicles for occupant clas-
sification into four classes: person (also including child and infant), child seat, infant seat
and object. We borrow methods and materials from SVIRO to build the synthetic imageset
of our dataset. To the best of our knowledge, no publicly released real dataset for occupant
classification provides scenes with passengers, children and child seats. We refer readers
to Table 1 for a summary of the differences between TICaM and other popular in-car cabin
datasets.

3 TICaM

We describe here in detail the dataset recording and annotation process for TICaM. The
data capturing setup is described in section 3.1, the acquisition and rendering process of real
and synthetic data is elaborated on in sections 3.2 and 3.3 respectively, the data format and
the ground truth annotation format are described in sections 3.4 and 3.5 respectively, and a
summary of training and testing splits is provided in section 3.6.

3.1 Data Capturing Setup

For data recording, we use an in-car cabin test platform developed by Feld et al.[16], shown
in Figure 2. It consists of a realistic in-car cabin mock-up located in our indoor lab, equipped
with a wide-angle projection system for a realistic driving experience. A Kinect Azure cam-
era with a wide field of view is mounted at the rear-view mirror position for 2D and 3D data
recording. The camera is set to record at 30fps with 2×2 binning. The captured data consists
of RGB, depth and IR amplitude images. To ensure a wide range of variability in the dataset,
we adjust the seat positioning of the driver and passenger seats in the driving simulator via a
CAN bus system for every recorded sequence.
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Figure 2: Our data capturing setup equipped with a wide-angle projection system, car front
seats and a Kinect Azure camera in the front.

3.2 Data Acquisition

Figure 3: Example human dolls and child seats used for recording scenarios with children
and infants on the passenger seat.

Figure 4: Different scenarios in the synthetic dataset.

We record following scenarios with 13 participants, 4 female and 9 male: 1) only driver
in scene, 2) driver and passenger in scene, 3) driver and an object in scene, 4) driver and an
empty Forward Facing Child Seat (FF) in scene, 5) driver and an empty Rearward Facing
Infant Seat (RF) in scene, 6) driver and an occupied Forward Facing Child Seat (FF) in scene,
7) driver and an occupied Rearward Facing Infant Seat (RF) in scene, and 8) only an object
in scene (please see supplementary material for illustration). We define a choreography each
for the driver and the passenger which we share with the participants before recording of
a driving sequence. For example, drivers performed actions like sitting, driving normally,
looking left while turning wheel, turning right and so on. On the other hand, passengers
performed actions like talking to the driver, grabbing something from the dashboard, etc. In
total we have 19 actions for both driver and passenger (see Table 3). For each participant or
pair of participants (in case of both driver and passenger), we record several sequences with
varying positions of car seats. We also vary the appearance of the people through different
clothing accessories like jackets and hats. Example images from the dataset are provided in
the supplementary material.
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For practical reasons we use human dolls as substitute for children and infants to record
scenarios where one person is driving with an FF or RF seat securely placed on the passenger
seat. Along with the dolls, we use 3 FF and 3 RF seats in different orientations like sun shade
up/down or handle up/down. The human dolls and example RF and FF seats are shown in
Figure 3.

3.3 Synthetic Data Generation

We refer to the materials and methods described in SVIRO [13] and vary the body poses
of human models to adapt them for realistic driving scenarios to create our synthetic in-car
cabin dataset. The difference between SVIRO and TICaM being that SVIRO provides car
rear-cabin data while we provide front-cabin data. We render synthetic images using Blender
2.81 [2]. The 3D model of Mercedes A Class vehicle is from Hum3D [4], the everyday
objects were downloaded from Sketchfab [6] and the human models were generated via
MakeHuman [5]. In addition, High Dynamic Range Images (HDRI) [3] was used to get
different environmental backgrounds and illumination, and finally, in order to define the
reflection properties and colors for the 3D objects, textures from Textures.com [8] were
obtained for each object.

Since our goal was to generate simulated driving scenarios, we had the class occupying
the driving seat to always be an adult driver in a driving pose while for the passenger seat,
we have randomly selected the occupant between the rest of the classes, that is child seat
(empty and child-occupied), everyday objects, and adult passengers. We selected some of
the same objects as the everyday objects in real driving scenarios like handbag, backpack,
bottle, etc. but we group them under the same class ’object’. We recreated the actions the
participants were asked to perform during the recording of the real dataset. Since the driver
poses are always restricted by the car elements they are interacting with, and in order to
avoid intersection, we created some fixed poses for the hand positions that are possible in real
driving scenarios, while allowing movement of other body parts up to some threshold. On
the other hand, there were no such restrictions for the passenger poses, and thus we replicated
the poses used in SVIRO by randomly selecting body poses within the physical constraints
of the car seats. Figure 4 shows a few images from the synthetic dataset showcasing the
different scenarios present in this imageset.

3.4 Data Format

Both the real and synthetic data are delivered in the same format for image data and annota-
tions with a few differences explained below. The camera information is as follows:

• Depth Z-image. The depth image is undistorted with a pixel resolution of 512×512
pixels and captures a 105◦ × 105◦ FOV. The depth values are normalized to [1mm]
resolution and clipped to a range of [0,2550mm]. Invalid depth values are coded as
‘0’. Images are stored in 16bit PNG-format.

• IR amplitude Image. Undistorted IR images from the depth sensor are provided in
the same format as the depth image above.

• RGB image. Undistorted color images are saved in PNG-format in 24bit depth. While
the synthetic RGB images have the same resolution and field of view as the cor-
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responding depth images (512× 512), the real recorded RGB images have a higher
resolution of 1280×720 pixels, but a lower field of view of 90◦×59◦ FOV.

• RGB video. The color video is provided as is recorded by the camera for sequences
where a person is present in the scene.

• Camera intrinsics. Along with the images, the camera intrinsics are also provided
for both RGB and depth sensors in Kinect Azure as well as their relative rotation and
translation. The camera intrinsics of the virtual camera in Blender are also provided.

• Camera pose. The different camera poses used for real recorded sequences are also
provided as .yml files.

3.5 Data Annotation

The data annotation is done using the SALT 3D-annotation tool [30]. We annotate every
twentieth frame of the recorded sequences. For synthetic data, the ground truth is generated
using scripts provided by authors of SVIRO [13]. We provide the following annotations:

• 2D bounding boxes. For each real depth image, the 2D boxes are defined by the
top-left and bottom-right corners of the box, its class label and a flag ’low remission’
which is set to 1 for objects which are either black or very reflective or both, and
therefore are barely visible in the depth image. Each 2D box in the synthetic dataset
is represented by its class ID, the top-left and the bottom-right corners.

• 3D bounding boxes. Each 3D box in the real dataset is represented by the coordinates
(cx, cy, cz) of the box center, its dimensions (width, height, depth), its orientation along
x-, y- and z- axes with respect to the world coordinate system, its class label and the
’low remission’ flag. Whereas, each 3D box for the synthetic images is represented
by the coordinates (cx, cy, cz) of the box center in camera coordinate system, its
dimensions (width, height, depth) and its class ID.

• Pixel segmentation masks. For each real depth image two corresponding masks are
generated: instance mask and class mask. The pixel intensities in these masks corre-
spond to the class ID in the class mask and the instance ID for a certain class in the
instance mask. For synthetic images we provide a single mask in the format used by
SVIRO [13].

• Activity annotations. For all sequences with people in the scene, we provide a .csv
file describing the activities performed throughout the sequence. Each .csv contains
the activity ID, activity name, person ID, a label either ’Driver’ or ’Passenger’ to
specify if the action is performed by the driver or the passenger, the starting frame
number of the action, the ending frame and the duration of that action in number of
frames.

• Skeleton annotations. We provide 2D keypoints for all persons including children
and infants in the synthetic images in the same format as in SVIRO [13].
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Table 2: Number of frames in real and synthetic imagesets for training and testing for differ-
ent tasks.

Activity
recognition

2D detection
3D detection
Segmentation

real real synthetic
train 86K 4.7K 3.3K
test 32K 2.0K -

3.6 Data Statistics
TICaM is a combined dataset of 6.7K real time-of-flight depth and IR images, video record-
ings equivalent to over 118K real RGB frames, and 3.3K synthetic depth, IR and RGB im-
ages. We use synthetic dataset only for training purpose in order to evaluate domain adapta-
tion benefits when evaluating on the real dataset. We split the real dataset into training and
testing sets such that a participant, RF, FF or an object instance belongs to either training or
testing set. Table 2 summarizes the number of images present in each imageset. An overview
of the object and the activity classes annotated in the dataset for detection, segmentation and
activity recognition tasks is provided Table 3.

Table 3: Overview of the object and activity classes present in TICaM.
Data type Annotation type Class names No. of Classes

Real
Object classes

Person, Backpack, WinterJacket,
Box, WaterBottle, MobilePhone, Blanket,

Accessory, Book, Laptop, LaptopBag,
Infant, Handbag, FF, RF, Child

16

Activity Classes

drive, look left while turning wheel ,
look right while turning wheel,

touch screen, open glove compartment,
touch head or face, lean forward, turn left,
turn right, turn backwards while reversing,

adjust sun visor, turn backwards, talk,
take something from dashboard,

sitting normally, read paper or book,
bending down, using phone, using laptop

19

Synthetic Object Classes Person, FF, RF, Object, Child, Infant 6

4 Baseline Evaluation
In this section we provide baselines for different tasks in TICaM using CNN-based methods.
Detailed results, training hyperparameter settings and architecture details for all experiments
are provided in the supplementary material.

4.1 Semantic Segmentation
We choose YOLACT [11] for object detection and segmentation due to its light-weight ar-
chitecture that is suitable for real-time car cabin monitoring applications. We train YOLACT
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Table 4: Detection and segmentation performance (in terms of Average Precision AP at
IoU=0.5) of YOLACT for each class, when trained on train_real imageset for all 16 classes
and evaluated on test_real imageset.

Class Person Backpack Jacket Box Bottle Phone Blanket Accessory Book Laptop Laptop bag Handbag Infant FF RF Child
Box AP 98.90 95.21 92.49 20.92 54.45 15.04 2.09 3.82 26.72 6.92 55.46 14.72 34.44 99.75 91.61 100.0

Mask AP 99.0 95.21 97.49 31.37 54.45 0.0 0.0 3.82 26.72 5.54 54.37 16.07 34.44 67.26 91.61 100.0

on train_real imageset on all 16 classes labelled in TICaM. As noted in Table 4, YOLACT
has great difficulty in detecting highly reflective objects like ’Laptop’ and ’MobilePhone’.
Beside these, class ’Blanket’ and ’Accessory’ also perform poorly.

We then combine all object classes (for example laptop, box, bottle, etc.) into a single
’object’ class and train YOLACT again on train_real and train_syn imagesets for resulting
6 object classes. We do this because in most occupant classification systems only a broad
classification of objects is required. For all further experiments, only these 6 object classes
are used. Table 5 (first three rows) shows the mean Average Precision mAP of the predicted
masks and boxes on test_real dataset for each of the three training strategies.

Table 5: Detection and segmentation performance (in terms of mean Average Precision mAP
at IoU=0.5) of YOLACT with different training strategies.

Method Training Split Box
mAP

Mask
mAP

YOLACT [11]

train_real with 16 classes 50.79 48.59
train_real 91.11 85.78
train_syn 27.67 18.99
train_syn; finetuned on train_real 87.12 86.25

Faster R-CNN [27]
train_real 87.1 na
train_syn 16.4 na
train_syn; finetuned on train_real 84.8 na

4.2 Object Detection

We train and evaluate a Faster R-CNN [27] network on our dataset for object detection. We
train on both train_real and train_syn imagesets before evaluating on test_real. Detection
mean Average Precision is presented in Table 5 (rows five and six) and qualitative results
are presented in the supplementary. We can note that Faster R-CNN performs slightly worse
than YOLACT for both experiments.

4.3 Transfer Learning from Synthetic to Real Data

The results in table 5 (rows three and five) show that training on synthetic data without any
adaptation results in rather poor results on real test data, therefore some form of domain
adaptation is clearly required and methods therefore can be evaluated with our dataset. As
one possible approach we train both YOLACT and Faster R-CNN on train_syn imageset and
then further finetune later layers of these networks on train_real imageset. Thus, we are able
to also analyze the benefit of transfer learning from synthetic to real data. Table 5 (rows four
and seven) presents the mean Average Precision achieved by YOLACT and Faster R-CNN
in these experiments. We can see that the performance obtained in this manner is slightly
below than when trained on only real images for both the networks. We can attribute this loss
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of performance to mainly two classes, namely ’object’ and ’FF’ (please see supplementary
material for more discussion). We have also observed in our experiments, that using a smaller
subset of the synthetic imageset for pretraining leads to slightly higher performance than
when the entire imageset is used. We believe this is due to the pretrained classifier overfitting
to the synthetic imageset. Nevertheless, we believe TICaM offers a possibility to test more
sophisticated domain adaptation approaches on an interesting and challenging domain.

We can also observe in table 5 that the box mAP of YOLACT is consistently better than
the mask mAP for every training strategy. This is in accordance with the results reported
in the YOLACT paper [11] and we refer readers to the same for a detailed discussion on
the mAP gap between boxes and masks. According to the authors their novel Fast NMS
version of the usual NMS method removes slightly too many boxes, and since YOLACT
uses predicted boxes to crop the masks, this affects the segmentation performance.

We note that although SVIRO in itself presents a synthetic source domain dataset that
could have been used to test the transfer learning approach, we do not demonstrate it here
because SVIRO is a dataset of car rear bench that contains images from a different viewpoint.
We refer readers to our previous work [21] where we showed usage of unsupervised image
translation using CycleGAN for domain adaptation from SVIRO to real in-car cabin depth
images.

5 Conclusion
We present TICaM, a unique time-of-flight in-car cabin monitoring dataset consisting multi-
modal images and multi-purpose annotations. We capture the entire front car cabin space
with a single camera and record a comprehensive set of real life driving scenarios that are
missing from contemporary driving datasets. We provide both real and synthetic imagesets,
and annotate them for 2D and 3D detection, instance segmentation and activity recognition
tasks. Our dataset can be used for training cabin monitoring systems to provide both safety-
critical functionalities like safe deployment of airbags, driver behaviour monitoring as well
as comfort functions. Furthermore, the similarity of the real and the synthetic image sets
renders TICaM suitable for the testing of domain adaptation approaches. We show through
baseline evaluation that TICaM is a challenging dataset to test in-car cabin monitoring sys-
tems and domain adaptation methods.

Acknowledgement. This work was partially funded within the Electronic Components
and Systems for European Leadership (ECSEL) Joint Undertaking in collaboration with the
European Union’s H2020 Framework Program and Federal Ministry of Education and Re-
search of the Federal Republic of Germany (BMBF), under grant agreement 16ESE0424 /
GA826600 (VIZTA).

The authors would also like to thank Steve Dias Da Cruz from IEE S.A. for providing
the source code used in the creation of the synthetic imageset and IEE S.A. for providing the
child seats and dolls used while recording.

References
[1] Azure kinect. https://azure.microsoft.com/en-us/services/

kinect-dk/.

[2] Blender. https://www.blender.org.

Citation
Citation
{Bolya, Zhou, Xiao, and Lee} 2019

Citation
Citation
{Katrolia, Krämer, Rambach, Mirbach, and Stricker} 2021

https://azure.microsoft.com/en-us/services/kinect-dk/
https://azure.microsoft.com/en-us/services/kinect-dk/
https://www.blender.org


TICAM: A TIME-OF-FLIGHT IN-CAR CABIN MONITORING DATASET 11

[3] Hdri haven. http://www.hdrihaven.com.

[4] Hum3d haven. http://www.hum3d.com.

[5] Makehuman. http://www.makehumancommunity.org.

[6] Sketchfab. http://www.sketchfab.com.

[7] Driver monitoring system interior sensing for vehicleintegration. https://
smarteye.se/automotive-solutions/.

[8] Textures.com. http://www.textures.com.

[9] Valeo driver monitoring. https://www.valeo.com/en/
driver-monitoring/.

[10] Yehya Abouelnaga, Hesham M. Eraqi, and Mohamed N. Moustafa. Real-time dis-
tracted driver posture classification, 2018.

[11] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time in-
stance segmentation. In 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9156–9165, 2019. doi: 10.1109/ICCV.2019.00925.

[12] C. Braunagel, W. Rosenstiel, and E. Kasneci. Ready for take-over? a new driver
assistance system for an automated classification of driver take-over readiness. IEEE
Intelligent Transportation Systems Magazine, 9(4):10–22, 2017. doi: 10.1109/MITS.
2017.2743165.

[13] Steve Dias Da Cruz, Oliver Wasenmuller, Hans-Peter Beise, Thomas Stifter, and Didier
Stricker. Sviro: Synthetic vehicle interior rear seat occupancy dataset and benchmark.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vi-
sion, pages 973–982, 2020.

[14] Isha Dua, Akshay Uttama Nambi, C.V. Jawahar, and Venkat Padmanabhan. Au-
torate: How attentive is the driver? In 2019 14th IEEE International Confer-
ence on Automatic Face Gesture Recognition (FG 2019), pages 1–8, 2019. doi:
10.1109/FG.2019.8756620.

[15] M. E. Farmer and A. K. Jain. Occupant classification system for automotive airbag
suppression. In 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003. Proceedings., volume 1, pages I–I, 2003. doi: 10.1109/
CVPR.2003.1211429.

[16] Hartmut Feld, Bruno Mirbach, Jigyasa Singh Katrolia, Mohamed Selim, Oliver Wasen-
müller, and Didier Stricker. Dfki cabin simulator: A test platform for visual in-cabin
monitoring functions. In Proceedings of the 6th Commercial Vehicle Technology Sym-
posium - CVT, 2020.

[17] Lex Fridman, Philipp Langhans, Joonbum Lee, and Bryan Reimer. Driver gaze estima-
tion without using eye movement. 07 2015.

[18] John D Graham, Sue J Goldie, Maria Segui-Gomez, Kimberly M Thompson, Toben
Nelson, Roberta Glass, Ashley Simpson, and Leo G Woerner. Reducing risks to chil-
dren in vehicles with passenger airbags. Pediatrics, 102(1):e3–e3, 1998.

http://www.hdrihaven.com
http://www.hum3d.com
http://www.makehumancommunity.org
http://www.sketchfab.com
https://smarteye.se/automotive-solutions/
https://smarteye.se/automotive-solutions/
http://www.textures.com
https://www.valeo.com/en/driver-monitoring/
https://www.valeo.com/en/driver-monitoring/


12 TICAM: A TIME-OF-FLIGHT IN-CAR CABIN MONITORING DATASET

[19] Shih-Shinh Huang and Pei-Yung Hsiao. Occupant classification for smart airbag using
bayesian filtering. pages 660 – 665, 07 2010. doi: 10.1109/ICGCS.2010.5542979.

[20] Ashesh Jain, Hema S. Koppula, Bharad Raghavan, Shane Soh, and Ashutosh Saxena.
Car that knows before you do: Anticipating maneuvers via learning temporal driving
models. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), December 2015.

[21] Jigyasa Katrolia, Lars Krämer, Jason Rambach, B. Mirbach, and Didier Stricker. An
adversarial training based framework for depth domain adaptation. In VISAPP 2021 -
16th International Conference on Computer Vision Theory and Applications, 2021.

[22] Jooyoung Lee, Jihye Byun, Jaedeok Lim, and Jaeyun Lee. A framework for detecting
vehicle occupancy based on the occupant labeling method. pages 660 – 665, 12 2020.
doi: 10.1155/2020/8870211.

[23] Manuel Martin, Alina Roitberg, Monica Haurilet, Matthias Horne, Simon Reiß,
Michael Voit, and Rainer Stiefelhagen. Drive&act: A multi-modal dataset for fine-
grained driver behavior recognition in autonomous vehicles. In The IEEE International
Conference on Computer Vision (ICCV), Oct 2019.

[24] Farzan Erlik Nowruzi, Wassim El Ahmar, Robert Laganiere, and Amir Ghods. In-
vehicle occupancy detection with convolutional networks on thermal images. 06 2019.
doi: 10.1109/CVPRW.2019.00124.

[25] E. Ohn-Bar, S. Martin, A. Tawari, and M. M. Trivedi. Head, eye, and hand patterns for
driver activity recognition. In 2014 22nd International Conference on Pattern Recog-
nition, pages 660–665, 2014. doi: 10.1109/ICPR.2014.124.

[26] Toby Perrett, Majid Mirmehdi, and Eduardo Dias. Cost-based feature transfer for ve-
hicle occupant classification. 12 2015.

[27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper/2015/file/
14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

[28] R. F. Ribeiro and P. Costa. Driver gaze zone dataset with depth data. 2019 14th IEEE
International Conference on Automatic Face & Gesture Recognition (FG 2019), pages
1–5, 2019.

[29] Mohamed Selim, Ahmet Firintepe, Alain Pagani, and Didier Stricker. Autopose:
Large-scale automotive driver head pose and gaze dataset with deep head orientation
baseline. In VISIGRAPP (4: VISAPP), pages 599–606, 2020.

[30] Dennis Stumpf, Stephan Krauß, Gerd Reis, Oliver Wasenmüller, and Didier Stricker.
Salt: A semi-automatic labeling tool for rgb-d video sequences. In VISAPP 2021 - 16th
International Conference on Computer Vision Theory and Applications, 2021.

https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

