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Abstract19

Recent studies have indicated changes in the light climate of the North Sea. An over-20

all reduction of water clarity over the 20th century could be observed in measurements,21

and more recent analysis suggests that these trends continue. Inorganic sediment is of-22

ten named one of the driving factors in these changes and it has been shown to locally23

increase. With 20 years’ worth of satellite-derived sediment data, we were able to con-24

duct basin wide investigations of the temporal dynamics of the biogeochemical state of25

the North Sea. To identify the impact of inter-annual and seasonal changes in sediment,26

we fed from two different remote sensing sources (GlobColour & IFREMER) into a 3D27

coupled hydrodynamic and biological model. The light scheme in the Carbon Silicon Ni-28

trogen Ecosystem model (CoSiNE) was modified to account for sediment specific atten-29

uation. We performed a total of five numerical experiments for the period of 2000 to 2017.30

The main two experiments were conducted using monthly averaged data. Additionally,31

as controls, one experiment with annually averaged and one with a 20 year average of32

sediment, as well as a fifth one without sediment were performed. Our model showed a33

clear relation between changes in sediment and water clarity. Phytoplankton biomass34

was reduced only in areas with high nutrient availability.35

Plain Language Summary36

Studies using satellite or field data have shown that the North Sea has undergone37

decreases in water clarity and increases in sediment content, while simultaneously show-38

ing decreases in phytoplankton biomass over the past century. Declining water clarity39

would imply inhibited photosynthesis and phytoplankton growth. Phytoplankton itself40

reduces water clarity. Therefore, the coupling between the three quantities is complex.41

In this study, we used satellite-derived sediment data of the years 2000-2017 from42

two different sources in a three-dimensional model to account for sediment specific ef-43

fects on underwater light. This way, we were able to determine how changes in sediment44

content affect water clarity and phytoplankton biomass. The two data sets show differ-45

ent long-term behaviour, with one showing increases and the other decreases. Changes46

in sediment directly corresponded to trends in water clarity. Long-term changes in the47

light climate led to changes in biomass in areas of high nutrient availability.48

1 Introduction49

The light climate in coastal areas is influenced by multiple factors, among them plank-50

ton biomass, and dissolved and suspended matter. Although these factors influence each51

other, they are still independent from each other to a certain degree, as they have dif-52

ferent origins. Over the past decades, there have been many successful attempts to model53

links between phytoplankton growth and other optically active water constituents (e.g.54

Cahill et al., 2008; Xiu & Chai, 2014; Mobley et al., 2015). However, most attempts are55

challenging for long-term analysis, due to their immense complexity and computational56

resource constraints. There may be not enough information about all involved processes57

and state variables, or the model might be too cumbersome to handle over multi-year58

computations.59

Several studies indicate a decrease in water clarity over the 20th century. These60

decreases have been linked to colored dissolved organic matter (CDOM) (Dupont & Ak-61

snes, 2013; Opdal et al., 2019) and suspended particulate matter (SPM) (Capuzzo et al.,62

2015; Wilson & Heath, 2019). It is widely known that bed shear stress is an important63

control for deposition and resuspension of SPM, and bed shear stress is itself induced64

mainly by currents and wind waves (Stanev et al., 2009). Wilson & Heath (2019) show65

that changes in the wind field over the North Sea, English Channel and Irish Sea have66

led to increased bed shear stress and subsequently to increases in SPM content in sev-67

eral areas. Specifically, with ongoing climate change, strengthened winds have caused68
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stronger re-suspension of sediments through wind-waves. Wilson & Heath (2019) attribute69

inter-annual variability in SPM content to variations in bed shear stress. With over 2070

years’ worth of satellite-derived (non-living) SPM data available, long-term trends within71

the data are identifiable over large ocean areas. In-situ data is also available for long pe-72

riods of time, however, the areal coverage is often sparse. It is well known that SPM is73

one of the major contributors to light attenuation (e.g. Capuzzo et al., 2015; Opdal et74

al., 2019). This may, of course, lead to the assumption that trends in water clarity would75

correlate well with trends in SPM. However, due to the insufficient coverage and spar-76

sity of in-situ data, causality remains to be proven.77

Darkening of coastal waters may have significant impacts on the entire ecosystem78

(Capuzzo et al., 2018). Opdal et al. (2019) performed a sensitivity analysis of the effects79

of non-algal specific attenuation, showing that darkening can lead to belated spring blooms,80

when the non-algal fraction increases. Schartau et al. (2019) have shown that areas in81

the North Sea that are rich in total suspended matter (TSM) are associated with inor-82

ganic SPM while those that are low in TSM are comparably rich in freshly produced or-83

ganic SPM. This can be used to classify transition zones from coastal to the outer North84

Sea, e.g., tidal fronts (Schartau et al., 2019). Significant trends in chlorophyll are not al-85

ways identifiable over the 20th century (Capuzzo et al., 2015). Some studies even sug-86

gest increasing water clarity in some regions in and around the North Sea (e.g. Wiltshire87

et al., 2008; Gohin et al., 2019). It is obvious that increased light limitation causes in-88

hibited growth. Yet again, it is not clear whether trends in water clarity immediately89

cause trends in phytoplankton growth, i.e. changes in magnitude or timing.90

The seasonality of non-living SPM affects phytoplankton growth, as there is a clear91

seasonal cycle in SPM concentrations in the North Sea (e.g. Gohin et al., 2005; Stanev92

et al., 2009; Gohin, 2011; van der Molen et al., 2017). Stronger winds in winter cause93

increased resuspension of sediments, so that non-living, particularly inorganic SPM typ-94

ically has seasonal maxima in winter months, which ends when the winds calm in spring.95

Later in the year, especially where density stratification occurs, sediment concentrations96

in upper layers are much lower. Phytoplankton undergoes a seasonal cycle as well, which97

is usually triggered by increasing light availability and temperature in spring. When nu-98

trients become scarce, the spring bloom comes to a halt and is eventually grazed off by99

zooplankton. The seasonal maxima of non-living SPM and phytoplankton thus do not100

occur at the same time of the year. For some experiments regarding primary produc-101

tion, these effects might be negligible, but since we focus on long-term changes of non-102

living SPM, we need to take seasonality into account as to not bias our trend analysis103

of water clarity.104

This study aims to answer, in whole or in part, some of the questions posed by pre-105

vious works. Specifically, (I) do significant trends exist in the available (satellite-derived)106

non-living SPM data in the North Sea over the past two decades? (II) Do changes in non-107

living SPM directly cause changes in water clarity? (III) Is there a noticeable trend in108

the response of phytoplankton biomass if there are long-term changes in non-living SPM?109

(IV) Is there a noticeable change in bottom illumination? (V) How do our findings com-110

pare to those in literature?111

We used a three-dimensional (3D) coupled biological (Carbon, Silicon and Nitrogen112

Ecosystem model, CoSiNE Chai et al., 2002; Xiu & Chai, 2011) and hydrodynamic (Regional113

Ocean Modelling System, ROMS Haidvogel et al., 2000) model and made minor mod-114

ifications to it, to incorporate offline, satellite-derived non-living SPM as an optically ac-115

tive water constituent. This way, we can simulate attenuation of light due to sediment116

over a multi-year period. We bypassed the need to set up a sediment and wind wave model117

alongside ROMS-CoSiNE, which makes the model more cost efficient than the alterna-118

tive. The usage of offline, satellite-derived data enables us to analyze the impact of ob-119

served changes in non-living SPM on the North Sea ecosystem. The method is similar120

to that used e.g. by Wakelin et al. (2012) and Wakelin et al. (2015), who made use of121

satellite products to account for non-biotic light attenuation, however, they did not spec-122
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ify between CDOM- and SPM-specific attenuation. Instead of on light climate, their work123

focussed on modelling carbon fluxes of the north eastern Atlantic and the European shelf.124

We performed several numerical experiments, utilising two different sources of non-125

living SPM, to investigate the mechanistical link between sediment, water clarity and126

biomass, over a time period of 20 years from the 1st of January 1998 to 31st of Decem-127

ber 2017, using the first two years as spin-up. As a measure for water clarity, we calcu-128

lated the 1%- and 10%-depths (z1 and z10, respectively) at all horizontal grid points for129

every day in the entire period. The days at which z1 was not defined, i.e. bottom irra-130

diance was above 1% of the surface value, are defined as bottom illumination days Nd.131

Note that due to the assumption that SPM was distributed vertically homogeneous, Nd132

as derived from the model is not to be understood as equivalent to a related quantity133

that was measured in-situ (see section 4.2 for details). Linear regression analysis was per-134

formed on z10, as well as the satellite-derived SPM data (averaged monthly and inter-135

polated onto our 7km×7km grid), the depth integrated phytoplankton biomass above136

z10, and Nd.137

2 Methods138

2.1 The Physical Model139

The hydrodynamic model we used is ROMS. A full description of the general set-140

up can be found in Thewes et al. (2020). The lateral domain extends from 5◦W to 13◦E141

and 48◦N to 60◦N with a resolution of 7km. The vertical domain is divided into 35 s-142

layers (Song & Haidvogel, 1994), stretched to increase the resolution at the surface. Ver-143

tical turbulence closure was achieved by utilising the generic length scale (GLS) approach144

in a k-kl configuration (Umlauf & Burchard, 2003; Warner et al., 2005). Figure 1a shows145

the model bathymetry. The horizontal grid is taken from the Atlantic Margin Model at146

7km×7km resolution (AMM7 O’Dea et al., 2012, 2017). It ranges from 4.5◦W to 13◦E147

and from 48◦N to 59.5◦N .148

The initial and boundary conditions (IC and BC) were also taken from AMM7. We149

utilised a Chapman type BC for daily means of sea surface height (SSH), superposed with150

tidal forcing from the finite element solution model (FES, the 2014 model as provided151

by AVISO). The two-dimensional (2D) momentum BC was introduced via a Schchep-152

etkin BC (Mason et al., 2010). Temperature, salinity, nutrients (see 2.2) and 3D momen-153

tum are introduced via a radiation BC with nudging (Orlanski, 1976; Marchesiello et al.,154

2001). The atmospheric BC was taken from NCEP/NCAR and is of quarter daily and155

21km lateral resolution. The river input is climatological daily means, taken from the156

pan-European Hydrological Predictions for the Environment (E-HYPE) model of the Swedish157

Meteorological and Hydrological Institute (SMHI).158

2.2 The Biological Model159

The biological model that was used is the CoSiNE model, developed by Chai et al.160

(2002) and further developed by Xiu & Chai (2011). In the version we used, it consists161

of 11 state variables: four nutrients (NO3, NH4, SiOH4 and PO4), four plankton groups162

(small phytoplankton (P1), diatoms (P2), microzooplankton (Z1) and mesozooplankton163

(Z2)), detrital nitrogen (dN) and silicate (dS), as well as oxygen. The details and equa-164

tions are found in Chai et al. (2002) and Liu et al. (2018). The biological BC and IC are165

taken from AMM7, coupled to the European Regional Sea Ecosystem Model (ERSEM166

Baretta et al., 1995; Blackford et al., 2004). The nutrients are introduced via a radia-167

tion BC with nudging. Plankton and detritus were treated via a radiation BC without168

external nudging (Orlanski, 1976; Marchesiello et al., 2001). Riverine nutrients are taken169

from E-HYPE. The variables that are unavailable either at the open boundaries or at170

rivers are assumed by using typical ratios, e.g., NH4 is assumed to be a tenth of the amount171

of NO3. All model parameters are listed in table A1.172
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Figure 1. a: model Bathymetry. The black isoline denotes the 40m-isobath. b: 20-year av-

erage of IFREMER (non-living) SPM as it is fed into IF20Y. Contour intervals are at 2, 4, 6, 8

and 10gm−3. Note that the color map is saturated above 20gm−3. White areas in both panels

are outside of the model grid.

2.3 Incorporating Sediment173

Note that going forward, whenever we write ’SPM’, we refer only to the non-living174

fraction. We use SPM data obtained from satellite imaging and provided by IFREMER175

(IFREMER, 2017), as well as data from GlobColour (http://globcolour.info). Both176

data sets were generated using the algorithm defined by Gohin et al. (2005) and Gohin177

(2011), known as OC-5. The original algorithm was designed for case 1 waters (Gohin178

et al., 2005). SPM is calculated using water leaving radiance nLw, which, after atmo-179

spheric correction, is the quantity provided by the sensor. The sensors employed in the180

respective datasets are SeaWIFS, MODIS/AQUA and MERIS for IFREMER, merged181

following Saulquin et al. (2011), and for GlobColour, the same as for IFREMER, and182

additionally, VIIRS NPP, VIIRS JPSS-1 and OLCI-A. The GlobColour data was merged183

via weighted averaging (see IOCCG Report Number 4, 2004). nLw is linearly related184

to reflectance R∗. Data pairs of chlorophyll-a and non-living SPM from in situ measure-185

ments are used to obtain R∗. With theoretical estimates of absorption a and backscat-186

ter bb, corresponding to said data pairs, R∗ is regressed at 555nm via the relation187

R∗(555) = α0 + α1nLw(555) =
bb(555)

a(555) + bb(555)
. (1)

The relation between R∗ and nLw(555) is then inverted to optain SPM, yielding188

SPM =
R∗(555) [aw + aP+Y (CHL)]− [bb,w + bb,CHL(CHL)]

b∗b,SPM − a∗SPMR∗(555)
, (2)

where aw, aP+Y and a∗SPM are the absorption coefficients specific to pure water, chlorophyll-189

a and yellow substances (i.e. CDOM), and sediment, respectively. bb,w, bb,CHL and b∗b,SPM190

are the backscatter coefficients for pure water, chlorophyll-a and sediment, again, respec-191

tively. The absorption by yellow substances can be neglected under the assumption that192

they do not contribute to absorption at wavelengths larger than 550nm. Phytoplankton193

specific absorption and backscatter are known, having been measured with the same sen-194

sor.195

The algorithm tended to underestimate SPM in turbid near shore waters, which196

is why it was refined in Gohin (2011) to include a second channel at 661nm wavelength.197

If for both wavelengths (555nm and 661nm), SPM is lower than 4gm−3, the 555nm-channel198

is conserved. Otherwise, SPM is taken from the 661nm-channel. The algorithm was cal-199

ibrated between 0.5gm−3 and 40gm−3. For higher values, saturation may occur.200

The data are provided as daily means, which are averaged monthly. Due to cloud201

coverage, there may be data gaps for sometimes longer than a week. For this reason, the202
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monthly means consist of a variant number of data points. However, this number is par-203

ticularly low in winter months, when there is little to no primary production, hence the204

error in the bio-model is negligible.205

The monthly SPM means are then interpolated bilinearly onto the model grid, and206

read into ROMS as a 2D-array, where it is treated in a similar fashion as for instance207

atmospheric forcing is, i.e. it is interpolated linearly in time between two time frames,208

to match the current model time. The 20-year average of SPM from 1998-2017 is dis-209

played in figure 1b.210

The measured SPM is defined as above the penetration depth. Therefore, we have211

no information about the SPM concentration near the bottom. However, we assume the212

portion of SPM most important to light attenuation to be mainly in the upper water col-213

umn and approximately vertically homogeneous. Consequently, we assume the distribu-214

tion of SPM to be constant throughout the entire water column. Given that SPM tends215

to accumulate at the bottom of a water column, we thus likely underestimate SPM spe-216

cific attenuation below the photic depth, and particularly in the 5−10m above the bed.217

In shallow coastal waters with high sediment content, such as in the southern North Sea,218

the water column is only weakly, if at all, thermally stratified. Generally speaking, the219

North Sea can be assumed to be thermally stratified only in deeper regions and only at220

times where there is little wind induced mixing, i.e. in summer, where there is generally221

low phytoplankton growth due to nutrient limitation. Thus we assume the water column222

is well mixed when SPM content is highest. We admit that this need not be the case at223

all times. Furthermore, there is no sound method to extrapolate SPM downwards with-224

out adding additional uncertainty.225

The equation for irradiance with depth is then226

I(z) = I0 exp(−kwz −
∫ ζ

z

kP (P1(z′) + P2(z′))dz′ − kSPMSPM · z), (3)

where kw, kP and kSPM are the respective attenuation coefficients for pure water, phy-227

toplankton and SPM, and I0 is the surface level irradiance. The individual contributions228

to attenuation in the exponential of equation 3 will forthgoing be denoted by a capital229

letter K, e.g., KP =
∫ ζ
z
kP (P1(z′) + P2(z′))dz′.230

2.4 Experiment Design231

We computed 20-year simulations from 1998 to 2017, using the years 1998 and 1999232

as spin-up. A total of 5 different long-term runs with different SPM configurations were233

performed: a control run without SPM (NOSPM), two runs using monthly means, once234

of GlobColour (GCMON) and once of IFREMER data (IFMON), and two more using235

IFREMER data, but with annual (IFANN) or 20-year averages (IF20Y). Here, IF20Y,236

like NOSPM serves as a negative control.237

2.5 Methods of Analysis238

To have quantities that are directly related to water clarity, we computed z1 and239

z10 for every horizontal grid point and every time step. Both are defined positive upwards240

and are thus always negative. Lower magnitudes mean lower water clarity. It is obvi-241

ous that z1 or z10 cannot be calculated if bottom irradiance in the model is above 1%242

or 10% of surface irradiance, respectively. Therefore, z10 is more often available than z1,243

which makes it a more reliable measure for water clarity. To calculate Nd, we counted244

the days within a year during which the average modelled bottom irradiance was larger245

than 1%. To quantify the biomass that is affecting z10, we integrated the phytoplank-246

ton biomass over depth from z10 to the surface ζ, i.e.247

P110 =

∫ ζ

z10

P1dz, (4)
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and accordingly for P2. The total biomass above z10 will be denoted as P10 = P110+248

P210. Note also that the total biomass above z1 is only marginally larger than P10.249

For validation purposes, we make use of in situ chlorophyll data, provided by the250

International Council for the Exploration of the Sea (ICES). To compare our model re-251

sults to the data, we interpolated P10 and z10 bilinearly between the four nearest grid252

points to a singular data point, and divide them by each other to obtain the vertically253

averaged nitrogenous phytoplankton biomass above z10,254

P̃10 = P10/z10. (5)

We performed linear regression analysis on z10, P10, Nd and the input SPM data255

to quantify trends in water clarity (note that when we write SPM , italic, we refer to the256

input data specifically and otherwise to SPM in general). To increase the goodness of257

the fit, we perform the regression on annual means of the respective variables. This way,258

we remove seasonal variability, which does not affect long-term trends. However, because259

the SPM data’s error margins are particularly high in winter months, due to cloud cov-260

erage, yet, there is no significant phytoplankton growth during this time, we also per-261

formed the regression analysis on March to September means for z10, P10 and SPM . For262

a more detailed discussion on this method, see section 4.2. For all regression models, we263

calculated the goodness of fit (also known as the coefficient of determination)264

R2 = 1−
∑Nt

t (xt − x̃t)2∑Nt

t (xt − µx)2
, (6)265

where xt is the model output for phytoplankton, or the model input of SPM , x̃t = at+266

b is the linear regression model with a being the slope and b being the y-intercept, and267

µx being the long-term mean of a variable x over the period of Nt days. To further de-268

termine statistical significance of the linear regression, we perform a t-test, where the269

null-hypothesis is that there is no linear relationship between t and xt, i.e. R2 = 0. If270

the probability p of the null-hypothesis being true is less then 5%, it is rejected, i.e. the271

linear trend is significant.272

3 Results273

3.1 Comparison between satellite and in-situ SPM274

To demonstrate the validity of the data sets used in this study, we compare both275

to in-situ data, provided by Rijkswaterstaat (Netherlands, locations in figure 2a, names276

and coordinates in tab. 1). Note that the in-situ data is actually TSM, i.e., containing277

organic SPM. For this reason, we apply a method described by Schartau et al. (2019, their278

eqn. 10, table 2, seasonal fit), to obtain the organic fraction as a function of TSM, to279

inversely compute inorganic SPM. Linear regression of satellite-derived SPM as a func-280

tion of in-situ data yields281

SPMIFREMER = (−0.006± 0.043)mg−3 + (0.908± 0.017)·SPMin−situ (7)

and282

SPMGlobColour = (−0.013± 0.021)mg−3 + (0.743± 0.014)·SPMin−situ. (8)

As this comparison shows, the satellite products tend to underestimate SPM, GlobColour283

data more so than that of IFREMER. This is partially explained by the nature of the284

products compared. While an in-situ measurement is an instantaneous sample at a very285

specific point in time, a single pixel of a satellite image is in orders of square kilometers286

in size and often averaged from multiple images per day. Thus, in-situ measurements tend287

to be scattered much more strongly and may reach higher magnitudes. Note also that288

the in-situ data was not necessarily collected using the method described by Röttgers289

et al. (2014) and was not corrected accordingly, and therefore is likely biased positively.290

Lastly, the conversion from TSM to SPM following Schartau et al. (2019) is empirical291

and therefore inherently error prone.292
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Figure 2. a: Locations of all used in-situ stations. b: Comparison of satellite vs. in-situ SPM

for IFREMER (blue) and GlobColour (red).

Table 1. Names and coordinates of in-situ stations for SPM comparison against satellite prod-

ucts.

Name Longitude [◦E] Latitude [◦N ]

Noordwijk 2km offshore 4.4061 52.2614
Noordwijk 10km offshore 4.3025 52.3022
Noordwijk 70km offshore 3.5314 52.5861
Rottumerplaat 3km offshore 6.5642 53.5661
Rottumerplaat 50km offshore 6.31 53.9539
Rottumerplaat 70km offshore 6.2142 54.1181
Terschelling 4km offshore 5.1506 53.4153
Terschelling 10km offshore 5.1008 53.4611
Terschelling 100km offshore 4.3419 54.1494
Terschelling 135km offshore 4.0411 54.4156
Terschelling 175km offshore 3.6917 54.7192
Terschelling 235km offshore 3.1575 55.1722
Walcheren 2km offshore 3.4108 51.5489
Walcheren 20km offshore 3.2206 51.6586
Walcheren 70km offshore 2.6792 51.9569
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Figure 3. in-situ chlorophyll bottle data from ICES (blue axis) and P̃10 (red axis) over the

period of 2000-2017 for NOSPM (a), IFMON (b) and GCMON (c).

3.2 Comparison between model and in-situ data293

Our model is capable of simulating the seasonal plankton dynamics of the North294

Sea. A comparison to in situ bottle data of chlorophyll from ICES reveals that the model295

reproduces the chlorophyll cycle reasonably well, as is shown for NOSPM, as well as for296

IFMON and GCMON in figure 3. Note that we are comparing chlorophyll data to ni-297

trogenous biomass, so the ranges of magnitude do not match. However, the peak to crest298

relations are very similar for the in-situ chlorophyll data, compared to the models.299

3.3 Effects of SPM on attenuation300

The effect of SPM on attenuation is visualized in figure 4, which in panel b shows301

vertical profiles of irradiance, normalized to the surface level for NOSPM and IFMON.302

Specifically, these profiles are taken from a station at the Oyster grounds (4.33◦E and303

53.43◦N , marked by a red cross in figure 4a) at times t1 (31st of January 2000, as a typ-304

ical winter situation) and t2 (1st of May 2000, the spring bloom peak day in NOSPM),305

and t3 (14th of May 2000, the spring bloom peak day in IFMON). Note that the irra-306
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Figure 4. a: location of the shown station within the North Sea. b: normalized irradiance

for NOSPM (blue) and IFMON (red) at times t1, t2 and t3 (31st of January, 1st of May and 14th

of May 2000), respectively. c and e: phytoplankton biomass [mmolNm−3] for NOSPM (c) and

IFMON (e) in the year 2000. d and f: normalized irradiance for NOSPM (d) and IFMON (f).

Solid white line in d and f denotes z10 and dashed white line in f denotes z1. The vertical lines in

c-f denote t1 (solid), t2 (dashed) and t3 (dotted dashed).

diance profiles for IFMON all decay significantly faster with depth than those in NOSPM.307

Particularly in the winter situation at t1, NOSPM decays the slowest of all three exam-308

ple times, while IFMON decays the fastest.309

The right-hand panels (c-f) show phytoplankton biomass (c and d) and irradiance310

at depth (e and f) for the two runs over the year 2000. SPM influence furthermore causes311

a slight delay in spring bloom peak time, as can be seen in figure 4c and d. The inclu-312

sion of SPM leads to shallower z1 and z10, as it is to be expected (figure 4e & f, dashed313

and solid white contour lines, respectively). In fact, there is no occurrence of z1 at this314

station at any time for NOSPM. It becomes clear that SPM strongly reduces light avail-315

ability, but mostly so in winter months. It is also apparent from figure 4c and d that NOSPM316

exhibits several small, early phytoplankton blooms before the onset of the actual spring317

bloom, peaking at t2. These are completely suppressed in IFMON. The period of pri-318

mary production in IFMON also ends earlier than in NOSPM by almost two months.319

Figure 5 shows the individual contributions of SPM and phytoplankton to atten-320

uation (see section 2.3) for IFMON (panels a & c) and GCMON (b & d). The contri-321

bution of phytoplankton is an order of magnitude lower than that of SPM . Note that322

in GCMON, KSPM peaks higher and the trail of the peak prolongs well into June (b),323

while in IFMON, there is a much faster decline in KSPM (a). Accordingly, KP peaks324

later in GCMON by about two weeks, relative to IFMON, yet more strongly. For the325

months July to September, KP is almost identical between the two runs. Figure 5e shows326
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Figure 5. KSPM (a & b) and KP (c & d) for IFMON (a & c) and GCMON (b & d), and KP

for NOSPM (e) for the year 2000 at the position marked by the red cross in figure 4a.

the contribution of phytoplankton to attenuation in NOSPM, which is, absent of SPM ,327

is the only contributor. Unlike the other runs, the earliest bloom occurs in March. The328

September bloom is of slightly higher magnitude, and it prolongs until November, but329

otherwise, it is similar to that of IFMON and GCMON. Noteworthy is also that in NOSPM,330

the phytoplankton maximum is consistently at mid water column.331

To gain an understanding of horizontal patterns, figure 6 shows long-term means332

of z10 for 2000-2017. On average, z10 in IFMON is about 33% of that in NOSPM. The333

other SPM runs show similar reductions, pattern wise, but larger in magnitude, with av-334

erage z10 of 30% of NOSPM’s z10 (not shown). The differences in z10 between the SPM335

runs are most pronounced in shallow regions with large variability in SPM , where IF-336

MON’s z10 is about 10% deeper than in IFANN or IF20Y. For large areas in NOSPM,337

the bottom irradiance is above 10% of the surface level at all times. This is nowhere the338

case in any of the SPM runs.339
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Figure 6. Long-term average of z10 over 2000-2017 for NOSPM (a) and IFMON (b). Blank

areas are grid points at which the bottom layer irradiance is higher than 10% of the surface

irradiance at all times.

3.4 Long-term trends340

The results of the linear regression of SPM for averages over the spring and sum-341

mer show differences between the input data sets. As figure 7 shows, the areas where the342

trends are found to be significant (p < 0.05) rarely overlap, yet when they do, the slopes343

typically have the same sign (e.g. north of Norfolk, England, or in small regions along344

the french coast). Opposing signs in the slopes of SPM are nowhere to be found in re-345

gions where p < 0.05 for both runs. The only strong disagreement is found at the Thames346

plume, 52◦N and 2◦E, where IFREMER shows strong increases and GlobColour strong347

decreases in SPM , yet, in both cases, with low R2. Overall, trends in GlobColour are348

more negative (decreasing SPM) than in IFREMER, where the significant trends tend349

to be positive (increasing SPM). The analysis over annual means show disagreement350

in overlapping regions (see figure B4), suggesting that data uncertainties in winter cause351

spurious trends (see sec. 4.2 for details).352

The slopes and R2 of the regression of z10 are shown in figure 8. At first glance,353

it is obvious that for many regions where there is a significant trend in SPM (demarked354

by the red contour line), there is also a significant trend in z10, which is true for both355

data sets. Accordingly, the slopes in z10 tend to differ between the two runs. This is par-356

ticularly the case above 55◦N , where IFMON shows predominantly positive slopes, i.e.357

a shallowing of z10 (a negative quantity), and GCMON shows a deepening. In several358

areas, the slopes overlap and where they do, they are of the same sign and often com-359

parable magnitude (grey ellipses in figure 8). Opposing trends are hardly ever signifi-360

cant (p < 0.05) in both IFMON and GCMON. Note also that in the region south of361

the Dogger Bank (around 54◦N and approximately between 2◦E and 4◦E), the GCMON362

run shows a shallowing of z10, while there is no significant trend in GlobColour SPM363

there. There is, however, a similar shallowing trend in z10 in IFMON. Also note that there364

are exceptions from the rule that z10 slopes tend to follow SPM slopes. It stands to be365

noted that the two data sets - while exhibiting differences - do not fundamentally con-366

tradict each other when applying the regression analysis only on spring and summer. See367

figure B4 in the supplemental material to see the results of the analysis on annual means,368

which do contradict each other.369

By division of the regression slopes of z10 by the 20-year averaged SPM for the370

months March to September, we obtain relative changes, which are displayed in figure371

9. Note that the relative change refers to the magnitude, i.e. the absolute of z10. Thus,372

a negative relative change means a shallowing and a positive change means a deepen-373

ing of z10. The two runs, IFMON and GCMON, share several similarities, but GCMON374

seems to be shifted positively relative to IFMON by 0.01 − 0.03, non-uniformly. GC-375

MON shows predominantly deepening trends, while IFMON shows more shallowing trends.376

The shallowing in IFMON is most pronounced in the English Channel, which is also the377
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Figure 7. Linear regression slopes (a&c) and R2 (b&d) for IFREMER (top row) and Glob-

Colour (bottom) SPM data, averaged over spring and summer. Black contours demark the

p = 0.05 significance threshold for linear regressions of SPM .

region from which the calibration of the IFREMER data set was taken (Gohin, 2011).378

379

The changes in P10 (March to September) are shown in figure 10. It is obvious that380

changes in GCMON are almost entirely negligible (figure 10c). The inclusion of SPM381

does not appear to play a role there. On the other hand, IFMON shows very clear de-382

creases in the southern North Sea and in the English Channel, which are aligned with383

increases in SPM (compare figure 7 and red contour in figure 10a&b). This indicates384

that decreases in SPM seem to affect P10 less than increases.385

Looking at the average annual number of days with bottom illumination Nd is help-386

ful to illustrate crucial differences between the five experiments (figure 11). IFMON and387

GCMON look very alike, with only minor differences. However, IFANN shows several388

notable differences to the former two, in that there are significantly lower values of Nd389

(< 50d) along most of the coasts, while some areas (e.g. near the mouth of the Rhine,390

at ≈ 53◦N and ≈ 4.5◦E) show values above > 300d. Also, the Dogger Bank (around391

55◦N and between 1◦E and 5◦E) shows higher numbers of Nd as well. There is a ten-392

dency for values of Nd ' 200 in IFMON or GCMON, the corresponding value in IFANN393

is higher, and lower for Nd / 200, respectively. This is even more so the case for IF20Y,394

where the same general behaviour can be observed, but there is hardly any middle ground395

between Nd > 300 and Nd < 30. Lastly, the NOSPM experiment shows entirely un-396

realistic values of Nd. Here, all areas that are shallower than 100m are fully illuminated397

throughout the entire year. This emphasizes the necessity of seasonality in SPM , par-398

ticularly when considering benthic dynamics.399

The long-term changes of Nd are shown for IFMON and GCMON in figure 12, for400

months March to May and June to August. From March to May, the two runs show rather401

little agreement, although showing little overlap or contradiction. This, again, hints to402
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Figure 8. Slopes (a&c) and R2 (b&d) of z10 for IFMON (top row) and GCMON (bottom

row). Dotted black demark the p = 0.05 contour line of the respective SPM data set’s linear

regression slopes (compare figure 7). Solid black contours demark the p = 0.05 significance

threshold for linear regressions of z10. Grey ellipses mark areas of significant trends overlapping

between the two data sets.

Figure 9. Slopes of z10 for IFMON (left) and GCMON (right), relative to the 20-year aver-

aged z10 means from March to September. Solid black contours demark the p = 0.05 contour line

of the respective z10 linear regression slopes (compare figure 8). Dashed black contours demark 0.
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Figure 10. Slopes (a&c) and R2 (b&d) of P10 for IFMON (top row) and GCMON (bottom

row). Dotted contours demark the p = 0.05 contour line of the respective SPM data set’s lin-

ear regression slopes (compare figure 7). Solid black contours demark the p = 0.05 significance

threshold for linear regressions of z10.
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Figure 11. Nd for IFMON (a), GCMON (b), IFANN (c), IF20Y(d) and NOSPM(e). The red

contour lines denote isobaths, specifically 40m (dashed) and 100m (solid).

a potential bias between the long-term trends of the two runs, like for SPM or z10 (fig-403

ure 7 & 9). However, for the summer months, there are many regions of agreement, par-404

ticularly west of 4◦W , where both GCMON and IFMON show decreases of Nd, except405

along the eastern shore of England and Scotland, north of 53◦N . IFMON shows weaker406

increases and stronger decreases in Nd than GCMON, which also hints at the previously407

implied bias. Still, particularly in the area from 51◦N to 55◦N and 0◦ to 3◦E, the mag-408

nitudes match well. Note that a change of 5dy−1 corresponds to a decrease of 100d over409

twenty years. However, the seasons are only about 90d long, so in essence, the regions410

where there are changes of ≈ ±5dy−1, the region changes from completely light to com-411

pletely dark, or the inverse, respectively. Discussion on the applicability of linear regres-412

sion is found in section 4.2.413

4 Discussion414

4.1 Addressing the Research Questions415

In section 1, several research questions were introduced. The first (I) was whether416

significant trends existed in the available (satellite-derived, non-algal) SPM data in the417

North Sea over the past two decades. Indeed, using the method of linear regression, we418

found that there were several areas showing a significant long-term change in SPM . How-419

ever, the two data sets hardly showed any overlap in those areas. As previously men-420

tioned, this might indicate a drift, i.e., a bias in the long-term trend in either data set,421

relative to the others. Focussing only on spring and summer, those trends that were found422

were rarely much more than moderately significant (0.4 < R2 < 0.6). The IFREMER423

data showed increases in SPM along the southern shore of the English Channel and North424
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Figure 12. Slopes of Nd for IFMON (left column) and GCMON (right column) for the sea-

sons of spring (top row) and summer (bottom row). Blanked out areas are where the slope has

been found insignificant via the t-test (p > 0.05). The black contour line denotes R2 > 0.2.

Sea, up until about a latitude of 53◦N , west of the island of Texel in the Netherlands.425

The IFREMER data set was calibrated for the English Channel and is therefore likely426

to be accurate there. The GlobColour data on the other hand, although showing slight427

but weakly significant increases in SPM in the English Channel as well, showed predom-428

inantly decreases most everywhere else. Particularly of note is an area to the east of Eng-429

land, where the IFREMER data also shows a slight decrease. As is shown in Appendix430

B and figure 2, GlobColour tends to estimate SPM lower than IFREMER. In summary,431

question (I) is answered positively, yet we advise against claiming that this constitutes432

evidence of actual changes. Further investigation, incorporating in-situ measurements433

is strongly recommended.434

Secondly, we asked whether trends in SPM directly caused trends in water clarity435

(II). It was shown that in many, yet not in all cases, statistically significant changes in436

z10 occured often where trends in SPM were found. Generally speaking, where there437

were increases in SPM , there was a shallowing (i.e., a positive change) in z10, and a deep-438

ening for decreases. IFMON showed almost exclusively shallowing, except for mainly the439

aforementioned region east of England, where GCMON shows shallowing as well, yet stronger.440

Furthermore, GCMON showed a statistically highly significant deepening north of 55◦N441

and west of 2◦E, which is to be looked at with caution due to its location in the far North442

and the already large magnitudes of z10 in this area. Still, the 20-year slope there is −0.5m/y,443

i.e., ≈ 10m over the entire timespan. In several regions, e.g., south of the Dogger Bank444

(around 54◦N), there was a shallowing in both IFMON and GCMON, although only the445

IFREMER data showed increases in SPM , and rather on the Dogger Bank than to the446

south of it. This, again, hints at a drift between the two SPM data sets. In conclusion,447

there are changes in z10 that can be linked directly to changes in SPM , as well as oth-448

ers where the causal link is very likely.449

–17–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Geophysical Research

Thirdly, we asked whether there was a significant change in phytoplankton biomass.450

For GCMON, this was not the case. For IFMON, there were statistically significant de-451

clines, particularly for the southern North Sea and the English Channel, where SPM452

had declined and z10 had shoaled. The amount of the decline in P10 was in orders of 10%453

(not shown). It is noticeable that increasing SPM and shoaling z10 appear to be linked454

with decreases in P10, yet, as the GCMON results show, the opposite is not the case. Fur-455

thermore, it is not true everywhere. A likely hypothesis is that the impact of light lim-456

itation is strongest where nutrient limitation is lowest. Further investigations into the457

causes of these declines are thus advisable. Nevertheless, the answer to question (III) is458

that for regions of high nutrient availability, a darkening of the light climate could cause459

declines in phytoplankton biomass.460

Whether there was a noticeable change in bottom illumination was the subject of461

question (IV). It was indeed the case that several regions showed significant changes in462

bottom illumination in both IFMON and GCMON. We analyzed only the seasons of spring463

and summer, for the previously mentioned reasons of low data availability and poten-464

tially high errors in winter and autumn. In the season of spring, the two experiments465

showed little to no agreement. By tendency, GCMON showed increases and IFMON de-466

creases. However, in summer, the agreement was much better, particularly in the west-467

ern and southern North Sea, although decreases were still stronger for the most part in468

IFMON. GCMON on the other hand showed increases along the eastern shore of Great469

Britain, which were present but weaker in IFMON. On the other hand, IFMON showed470

strong decreases in the English Channel, which were also there in GCMON, albeit at lower471

intensity. Note that overall, the largest possible increase or decrease over the studied 18472

years would be 5dy−1, assuming a length of 90d per season. In this case, the bottom il-473

lumination would have gone from no illumination at all to full illumination, or vice versa,474

respectively. This was indeed the case in both runs, particularly for the area between475

0◦E and 3◦E, and 53◦N and 55◦N .476

The fifth research question concerns itself with consistency in regard to other re-477

search. Capuzzo et al. (2015) carried out statistical analysis on SPM and chlorophyll in-478

situ data over the period of 1988 to 2011. They found increases in SPM for several re-479

gions, while chlorophyll on the other hand was found to not change significantly for the480

most part (their figure 4 - note that only the columns representing spring/autumn and481

summer are comparable). They divided the North Sea into regions of hydrodynamical482

likeness, i.e., there was a region defined as seasonally stratified, one was named fresh-483

water influence (the Rhine plume), another the East Anglia plume, a permanently mixed484

region along the south western shores and intermediate waters, which was every other485

region of the North Sea between 51◦N and 57◦N . The increases in the in-situ SPM were486

particularly strong in the East Anglia plume, where our results show only few signifi-487

cant trends. Only the IFREMER data showed increases there, albeit of low statistical488

significance. In fact, the GlobColour data shows decreases only, which would be in con-489

tradiction to the results of Capuzzo et al. (2015).490

Dupont & Aksnes (2013) corrected for topographic effects of bottom depth and dis-491

tance to shore via a two-variable linear regression to derive centennial trends (1903-1998)492

in Secchi-depth. They found a decrease in residual Secchi-depth (i.e., observed minus mod-493

elled Secchi-depth) by 3.1±0.2m, and a decrease of 4.6±0.02my−1 for the uncorrected494

data. This corresponds to an annual decrease of 0.33±0.02my−1, or 0.058±0.02my−1,495

respectively. Following Lee et al. (2015), Secchi-depth is proportional to |z10| by a fac-496

tor of ≈ 0.43. The average change in z10 (not filtering the trends for significance, for497

better comparability) was 0.278±0.186my−1 for IFMON and −0.018±0.086my−1 for498

GCMON, which corresponds to a change in Secchi-depth of 0.12±0.08my−1 and −0.008±499

0.037m−1. Therefore, assuming the numbers of Dupont & Aksnes (2013) are accurate,500

IFMON exhibits a trend that is about four times as large as their data, while GCMON501

exhibits no significant change at all when averaged over the entire basin. It is therefore502

negligent to assume that either run is an accurate simulation of reality. Instead, this serves503

to emphasize the importance of cross-referencing the SPM data to other sources. How-504
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ever, directionally speaking, the changes in IFMON appear to match those in Dupont505

& Aksnes (2013) better. Both Dupont & Aksnes (2013) and Capuzzo et al. (2015) found506

an overall decrease in clarity in the North Sea. On the other hand, Alvarez-Fernandez507

& Riegman (2014) found increasing trends in photosynthetically available radiation (PAR)508

in the Dutch North Sea over the period of 1990-2010, hinting at changes in optically ac-509

tive constituents, on the causes of which, they do not make a claim. Their findings would,510

however, contradict the shallowing trends of z10 in IFMON, while not contradicting be-511

haviour in GCMON. The findings of Dupont & Aksnes (2013) and Capuzzo et al. (2015)512

appear to indicate the validity of the results for IFMON. We therefore must leave ques-513

tion (V) with an ambiguous answer. While some results may agree with some findings514

in literature, there is no generality and no certain answer to the overarching question whether515

the North Sea is getting more turbid. We therefore do not claim to contribute to the an-516

swer of this particular question in either direction.517

4.2 Validity of the Method518

By using offline non-living SPM data, we simplify what otherwise would potentially519

be very costly, because we do not need to run a sediment and wind wave model coupled520

alongside ROMS-CoSiNE. We instead make use of satellite-derived data that has been521

shown to be reliable for both case 1 waters (Gohin et al., 2005) and case 2 waters (Go-522

hin, 2011). This ensures well represented long-term sediment dynamics, and consistency523

between long-term sediment dynamics and trends in the model. The employment of two524

data sets serves to demonstrate the validity of the method, showing that trends in z10525

in the model are indeed caused by trends in the SPM data. Furthermore, it expands526

the benefits and use of remotely sensed data in modelling. Sediment models are not al-527

ways reliable and a 20-year simulation poses an exceptional challenge.528

The algorithm that is used to generate the satellite data utilises in-situ data, which529

in itself may be of varying quality. Röttgers et al. (2014) provide an overview over is-530

sues which frequently arise with in-situ SPM data and measurement uncertainties, such531

as salt aggregation at filter margins or filter material loss. The impact that systematic532

errors in-situ SPM data have on the satellite product is hard to determine. See Appendix533

B for a comparison of the two satellite products employed against in-situ data, collected534

by Rijkswaterstaat in the Netherlands. Both data sets tend to underestimate SPM rel-535

ative to the in-situ measurements, and more so for the GlobColour data, however, as is536

elaborated on in the same section, there are explanations for these discrepancies.537

Even when the in-situ data is guaranteed to be consistently of high quality, the prop-538

erties of the suspended matter, such as particle size, composition or density may vary539

over time, which will affect the validity of the satellite algorithm’s calibration (Twardowski540

et al., 2001; Gallegos et al., 2011; Bowers et al., 2017). Remote sensing reflectance is pri-541

marily a function of SPM floc cross-sectional area, rather than mass. The floc cross-sectional542

area, however, is itself dependent on the concentration of organic matter. Balasubrama-543

nian et al. (2020) have derived an algorithm which distinguishes between three differ-544

ent water types (blue, green and brown), which may help to adapt to changing SPM prop-545

erties over time, yet it still requires in-situ data for calibration and refinement. Such ef-546

fects of systematic changes are common in coastal waters, particularly, and are likely to547

have occurred over the 20th century (comapare e.g. Capuzzo et al., 2015). Furthermore,548

as Gallegos et al. (2011) point out, even if the remote sensing reflectance remains con-549

stant at one location for a particular amount of time, the ratio of scattering to absorp-550

tion may still change. In fact, they concluded that over the period of 1987-2009, Secchi551

depth had declined, due to decreasing backscattering ratios, while measured remote sens-552

ing reflectance remained effectively constant. The changes in Secchi depth and backscat-553

tering were associated with organic particles, particularly with small organic detritus.554

Contributions of mineral particles were ruled out. This also indicates that the optical555

penetration depth (which is related to Secchi depth) may change, even though remote556

sensing reflectance may remain constant.557
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Our model does not consider CDOM specific attenuation. Although there is a ver-558

sion of CoSiNE that does compute CDOM as a state variable (Xiu & Chai, 2014), the559

version used in this study does not. However, since we focus on the effects of sediment560

changes, we neglect CDOM at this point for the same reason that we use climatologi-561

cal river forcing, for introducing further complexity. Inclusion of CDOM is an obvious562

next step to take. While there are many possible ways of achieving this, e.g., through563

modelling (e.g. Kerimoglu et al., 2020, most recently) or via an inverse relation with salin-564

ity (e.g. Wollschläger et al., 2020), it is worth noting that the same method by which we565

introduce SPM in this study is in theory applicable for satellite-derived CDOM data as566

well. Such is available e.g. from GlobColour (http://www.globcolour.info/). Wake-567

lin et al. (2012) used a comparable method of introducing non-algal light attenuation,568

by combining both SPM and CDOM specific attenuation into a standalone model vari-569

able, adet. It is then relaxed against observational data from SeaWiFS, and transported570

along like all other properties. An obvious upside to this approach is that it allows for571

higher temporal resolution (they use 7-day intervals).572

Making use of two data sets, which are generated via the same principal algorithm573

(Gohin et al., 2005; Gohin, 2011), we found that they differ in a number of places. As574

was shown in figure 5, there may be differences in magnitude and seasonal behaviour.575

The linear regression of annual means showed significant increases in SPM for the IFRE-576

MER data set particularly in regions deeper than 40m and scarcely any trends in the577

southern North Sea, while the GlobColour data set showed no significant trends only in578

a number of regions of the shallower, southern North Sea (figure B4). Note here that the579

IFREMER data set shows highly linear trends in time, particularly in the northern re-580

gions withR2 > 0.7 in some cases. Thus, one might be tempted to assume a strong in-581

crease in SPM. This is however entirely absent in the GlobColour data set and is likely582

caused by errors due to low data coverage and, subsequently, spurious interpolation. In583

the few occurrences of overlapping areas, i.e. areas that show trends in both data sets,584

they may be in opposite directions, e.g., around 55◦N and 0.5◦E.585

Using annual means is not appropriate for long-term simulations such as the here586

presented, as the SPM rich winter months bias SPM upwards in the growing season, where587

it is usually much lower. This leads to z10 being much shallower, i.e., the water being588

much more turbid in IFANN than in IFMON. Due to the affordability of this method,589

it is generally unadvisable to use any lower frequency than monthly means. Ideally, the590

SPM input should come in at least at a synoptic frequency, i.e. 3-7 days. However, the591

sparsity of data due to cloud coverage would then require sophisticated interpolation.592

The method used by Wakelin et al. (2012) can bridge data gaps and is potentially prefer-593

able to our method when aiming for high frequency response in SPM. However, for long-594

term analyses, this takes away the benefit of efficiency that employing offline forcing has.595

As a potential consequence of using too low of a temporal resolution, errors in spring bloom596

timing may occur. Recently, Opdal et al. (2019) have demonstrated the role that light597

limitation plays in the timing and triggering the spring bloom. If for any hypothetical598

year the temperature and nutrient conditions were favorable for an early spring bloom,599

yet because of a storm event several weeks earlier, the monthly averaged SPM in our model600

would, erroneously, be very high, it might delay the spring bloom due to light limitation.601

Thus, when focussing on spring bloom timing, high frequency SPM input, e.g., from a602

model is preferable. A combined approach, e.g. the one described by Wakelin et al. (2012),603

or any other viable combination of model, satellite and in-situ data will undoubtedly be604

preferable in some cases. This work may serve as a stepstone towards such approaches.605

We performed the linear regression on the spring and summer seasons, thereby ex-606

cluding those months where data scarcity would bias the analysis. Furthermore, the spring607

bloom in any of our runs occurs earliest in March. There seldomly is growth after Septem-608

ber. The bulk of all phytoplankton growth is therefore captured inside this time win-609

dow. Due to higher data coverage of SPM, we consider the given data to be reliable within610

the same window and thus it is possible to investigate links between SPM, water clar-611

ity, and phytoplankton growth during this time.612
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In section 2.3, we made several simplifying assumptions. One was that SPM was613

vertically homogeneous. As was also stated there, this likely leads to an underestima-614

tion of SPM, which, due to its sinking, tends to accumulate near the bottom. We fur-615

thermore made the assumption that at times when SPM was the highest, the water col-616

umn was likely well mixed. This does not need to be the case at all times. However, the617

resulting error in the photosynthetic rate are assumed to be small, as these higher con-618

centrations of SPM will likely be below the photic depth. Furthermore, there is no sound619

method to extrapolate SPM downwards without adding additional uncertainty.620

The SPM data has been used to validate sediment models in the past, for which621

purpose it has proven its worth. In Sykes & Barciela (2012), a 3D operational model (the622

Medium Resolution Continental Shelf, MRCS), consisting of a hydrodynamic and sed-623

iment component (Proudman Oceanographic Laboratory Coastal Ocean Modelling Sys-624

tem, POLCOMS), and ERSEM as the biological module was validated using the same625

satellite product, as well as CEFAS (Centre for Environment, Fisheries and Aquaculture626

Science) SmartBuoy data. The satellite data was found to be in good agreement with627

the SmartBuoy turbidity data (their figures 2 and 3), and served to improve the model.628

The MRCS is the precursor to AMM7-ERSEM. The data was also used for validation629

of a 3D ROMS application in the English Channel (Guillou et al., 2015). Our approach630

is a relatively novel one. Thus, these aforementioned studies are not directly compara-631

ble to ours. However, they serve to show how the data can be used to improve models.632

Furthermore, while this does not imply that satellite data are equivalent to in-situ data,633

qualitatively speaking, they are comparable to the output of sediment models.634

The analysis error of the satellite data undergoes a clear seasonal cycle, particu-635

larly in the south of the domain, which is shown in figure B2, where monthly climatolo-636

gies of data errors are shown. figure B3 shows the same, except divided by the monthly637

climatology of SPM, yielding a relative error, which reveals that due to the generally low638

levels of SPM in the northern North Sea, the analysis error is consistently in the same639

orders as the actual monthly climatology. Those are the very regions in which the most640

significant trends in SPM and z10 were found, when analysing trends in annual averages641

(see figure B4 and B5). However, the absolute errors are consistently highest in winter642

months, i.e. outside the growing season. Using offline SPM enables us to perform a long-643

term analysis in the first place, as we can be sure that trends in the SPM data are not644

due to intrinsic modelling errors or biases. Note that there are modelling approaches that645

are more affordable than common sediment models (van der Molen et al., 2017). How-646

ever, as being able to achieve consistent SPM data over 20 years is paramount, the use647

of satellite data is simpler in set-up and application. Biological models that use neither648

offline nor online SPM data for sediment specific attenuation are in any case unrealis-649

tic. It has been shown that horizontal variability of water clarity is easy to achieve in650

modelling and can also be very affordable (Thewes et al., 2020).651

In section 1, we defined Nd as the number of days in which the irradiance at the652

bottom was larger than 1% of the surface irradiance. Owing to our assumption that SPM653

was vertically homogeneous, we neglect effects of increased attenuation that is bound to654

occur near the bottom. As e.g. (Sanford & Lien, 1999) show, for tidally impacted ar-655

eas, turbulent kinetic energy dissipation rates are highest in regions lower than 10m above656

the bottom, causing fast sinking sediments to seldomly be re-suspended much higher.657

A quantity that might be called ”near-bottom illumination”, which is the number of days658

when |z1| > |H−10m|, where H is the bottom depth, would be more realistic and com-659

parable with in-situ measurements of bottom illumination. This would not drastically660

change the results of the long-term analysis, qualitatively speaking. Yet, as the condi-661

tion for near-bottom illumination is obviously more likely to be true, it might make lin-662

ear regression less applicable, because the natural upper limits of Nd = 366d, or ≈ 90d663

for separate seasons, may be reached more quickly, at which point Nd remains constant.664

For purposes of ecological modelling, however, particularly when there is a benthic mod-665

ule, Nd, as it is defined in this study, is the more relevant number. In essence, it can be666
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understood as a theoretical upper limit to the number of days where bottom illumina-667

tion can occur.668

5 Conclusions669

In this study, we made use of two data sets of satellite-derived non-algal SPM , to670

analyze the effect of long-term changes in SPM on water clarity and phytoplankton biomass.671

While intuitively, one might have presumed that the more SPM there is, the more tur-672

bid the water and the lower the phytoplankton growth is, we have shown that this need673

not always be the case. While we do not go into definitive detail as to why this is, we674

deem interplay between light and nutrient limitation a likely factor.675

We could not identify clear trends for both data sets, which emphasizes the need676

for further investigation into this topic. Particularly, since the two data sets used the same677

principal algorithm, it needs to be noted that satellite-derived SPM is not to be under-678

stood as equivalent to in-situ or modelled SPM. Particularly in coastal regions, there have679

been advances made in the past decade, which will likely improve the quality of satel-680

lite products (e.g. Balasubramanian et al., 2020; Vanhellemont & Ruddick, 2021). Fol-681

low up studies to ours may therefore lay their focus on the changes such improvements682

bring about, and perhaps form a clearer picture of whether or not the North Sea actu-683

ally is getting more turbid. Of course, similar studies might be prudent for other regions684

of the world as well. Nevertheless, our work provides a starting point with establishing685

that long-term changes in sediment do bring about long-term changes in the light cli-686

mate and to the ecosystem in general.687

Bottom illumination changed noticeably in summer in both IFMON and GCMON.688

While along the British East Coast, the number of illuminated days increased, there were689

strong decreases in the English Channel and south of the Dogger Bank. Our results sug-690

gest that it is possible for a region to change from the bottom being fully illuminated691

for an entire season to not illuminated at all within the time span of two decades. This692

could have severe consequences for the benthic ecosystem. While our results cannot be693

seen as conclusive, they do motivate a thorough investigation, incorporating of field data.694
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Appendix A Model parameters695
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Table A1. CoSiNE Parameters

Parameter Symbol Value Unit

Light attenuation of pure water kW 0.36 m−1

Light attenuation due to phytoplankton kP 0.03 m−1(mmolm−3)−1

Light attenuation due to SPM kSPM 0.066 m−1(gm−3)−1

Initial slope of P-I curve for P1 αP1 0.05 d−1(Wm−2)−1

Initial slope of P-I curve for P2 αP2 0.1 d−1(Wm−2)−1

Photo-inhibition slope for P1 betaP1 80 Wm−2

Photo-inhibition slope for P2 betaP2 100 Wm−2

Nitrification rate γ7 0.25 d−1

Max. specific growth of P1 µ1,max 2.0 d−1

Max. specific growth of P2 µ2,max 3.0 d−1

Ammonium inhibition parameter ψ 4.0 (mmolNH4m−3)−1

Half-saturation for NO3 uptake by P1 Kno3p1 1.0 mmolNO3m−3

Half-saturation for NO3 uptake by P2 Kno3p2 3.0 mmolNO3m−3

Half-saturation for NH4 uptake by P1 Knh4p1 0.1 mmolNH4m−3

Half-saturation for NH4 uptake by P2 Knh4p2 0.3 mmolNH4m−3

Half-saturation for PO4 uptake by P1 Kpo4p1 0.1 mmolPO4m−3

Half-saturation for PO4 uptake by P2 Kpo4p2 0.2 mmolPO4m−3

Half-saturation for SiOH4 uptake by P2 Ksioh4p2 4.5 mmolSiOH4m−3

Half-saturation for oxidation KO 30 mmolOm−3

P1 specific mortality rate γ3 0.2 d−1

P2 specific mortality rate γ4 0.1 d−1

Max. grazing rate of Z1 G1,max 1.6 d−1

Max. grazing rate of Z2 G2,max 0.75 d−1

Half-saturation for Z1 grazing K1,max 0.3 mmolNm−3

Half-saturation for Z2 grazing K2,max 0.2 mmolNm−3

Z2 specific mortality rate γ0 0.1 d−1

Z1 excretion rate reg1 0.2 d−1

Z2 excretion rate reg2 0.1 d−1

Z1 grazing efficiency γ1 0.75 1
Z2 grazing efficiency γ2 0.75 1
Z2 grazing preference for P1 ρ5 0.7 1
Z2 grazing preference for Z1 ρ6 0.2 1
Z2 grazing preference for detritus ρ7 0.1 1
Decay rate of silicic detritus γ5 0.2 d−1

Dissolution rate for nitrogeneous detritus γ6 2.0 d−1

Sinking velocity for nitrogeneous detritus ws,dN 15 md−1

Sinking velocity for silicic detritus ws,dS 25 md−1

Sinking velocity for P2 ws,P2 1.0 md−1
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Appendix B SPM uncertainties696

Along with the SPM data, the IFREMER data set provides an analysis error, and697

we averaged it to a monthly frequency, the same way we did with the actual SPM data.698

figure B1 shows a monthly climatology of SPM for 1998-2017. Figure B2 shows clima-699

tological monthly means for the analysis error, and figure B3 shows the same, divided700

by climatological monthly means of SPM. Note the high values in the northern North701

Sea for all three quantities, which are due to data sparsity, caused by cloud cover.702

For demonstrational purposes in relation to figure 7, figure B4 shows the same, i.e.,703

regression slopes of SPM data, but averaged annually instead of over spring and sum-704

mer months. This helps to visualize the necessity for seasonal filtering, because the win-705

ter months contribute heavily to the long-term trends, even though they have little rel-706

evant effects on phytoplankton growth, and they are known to be error prone. Likewise,707

figure B5 shows the same as figure 8, except averaged annually.708
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Figure B1. Monthly climatology of SPM for 1998-2017.
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Figure B2. Monthly climatology of SPM analysis error for 1998-2017. The white contour line

denotes an error of 1gm−3. Black contour lines denote values of 5, 10, 20 and 30gm−3.
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Figure B3. Monthly climatology of relative SPM analysis error for 1998-2017. The white

contour line denotes a relative error of 1.
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Figure B4. Linear regression slopes (a&c) and R2 (b&d) for IFREMER (top row) and

GlobColour (bottom) SPM data, annually averaged. The solid black contour lines mark where

p < 0.05.
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Figure B5. Linear regression slopes (a&c) and R2 (b&d) for IFMON (top row) and GCMON

(bottom) z10, annually averaged. The solid black contour lines mark where p < 0.05.The dotted

black contour lines denote where the respective SPM data showed significant trends (compare

fig. B4).
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