
Multi-scale Iterative Residuals for Fast and Scalable Stereo
Matching
Kumail Raza
René Schuster
Didier Stricker

kumail.raza@dfki.de
rene.schuster@dfki.de
didier.stricker@dfki.de

German Research Center for Artificial Intelligence – DFKI
Kaiserslautern, Germany

ABSTRACT
Despite the remarkable progress of deep learning in stereo match-
ing, there exists a gap in accuracy between real-time models and
slower state-of-the-art models which are suitable for practical appli-
cations. This paper presents an iterative multi-scale coarse-to-fine
refinement (iCFR) framework to bridge this gap by allowing it to
adopt any stereo matching network to make it fast, more efficient
and scalable while keeping comparable accuracy. To reduce the
computational cost of matching, we use multi-scale warped fea-
tures to estimate disparity residuals and push the disparity search
range in the cost volume to a minimum limit. Finally, we apply a
refinement network to recover the loss of precision which is in-
herent in multi-scale approaches. We test our iCFR framework by
adopting the matching networks from state-of-the art GANet and
AANet. The result is 49× faster inference time compared to GANet-
deep and 4× less memory consumption, with comparable error. Our
best performing network, which we call FRSNet is scalable even
up to an input resolution of 6K on a GTX 1080Ti, with inference
time still below one second and comparable accuracy to AANet+. It
out-performs all real-time stereo methods and achieves competitive
accuracy on the KITTI benchmark.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Machine learn-
ing algorithms; Scene understanding; Vision for robotics; Matching.

KEYWORDS
stereo, efficiency, coarse-to-fine, cost volume, matching

1 INTRODUCTION
Stereomatching is one of the top research areas inmodern computer
vision, with enormous applications in the industry particularly in
autonomous driving and robotics. The idea is to reconstruct dense
3D geometry by estimating the disparity between image pixels in
a rectified stereo image pair. To this end, dense matching pixel
correspondences are used. Since, this is one of the major classi-
cal problems in computer vision, it has been studied substantially
for more than half a century [30] and has been matured. A huge
amount of literature is available proposing various architectures
both classical and modern, which aim to solve the problem of stereo
matching successfully. A large part of these are deep neural net-
works. Althoughmost of these networks provide sub-pixel accuracy

with a state-of-the-art pixel outlier rate, a small number of them
concentrate on the execution time and model growth, especially
in the case of end-to-end trainable networks. The architectures
with a design focus on run-time have much worse end point er-
rors (EPE) and pixel error rates (ER) and are not comparable to the
state-of-the-art models at all [6, 14, 29].

The problem of stereo matching is solved traditionally with
some key steps namely: 1) Extracting features, 2) Cost volume
construction, 3) Cost aggregation for matching, 4) Regressing the
final disparity. Two types of approaches exist in the literature in-
corporating some or all of these steps. These are direct disparity
regression without building a cost volume and by using cost vol-
ume filtering. The first category disregards geometric variations
by calculating disparity on dense matching pixel correspondences.
These approaches although being relatively fast lead to large EPE
and ER [10]. The latter namely volumetric methods, construct and
refine a cost volume. The idea is to build a higher dimensional
feature volume containing all the candidate disparity values up
to a maximum disparity range. These approaches are slower in
classical processing as they incorporate some customized versions
of dynamic programming algorithms for finding the best matching
features over the cost volume. Neural networks built on volumetric
matching often use two sub-networks in an end-to-end architecture.
The first sub-net extracts features from the stereo image pairs which
are used to build a 3D or 4D cost volume. The second network then
uses 3D convolutions to compute matching costs in the cost volume
before finally regressing the final disparity values. The run-time for
these models is also nowhere comparable to real-time as these have
to employ heavy operations on the high dimensional cost volume.

There exists a gap in the literature between real-timemodels with
higher EPE and ER and slower state-of-the-art models with lower
EPE and ER. We aim to bridge this gap by proposing a novel multi-
scale coarse-to-fine refinement framework to estimate disparity
by leveraging the already produced features usually at different
resolutions by the feature extraction backbone and using much
shallower cost volumes. These lower resolution disparity maps
are then iteratively refined using the notion of disparity residuals.
The idea being that these lower resolution operations on smaller
disparity search ranges will be computationally more efficient and
much more scalable in terms of memory while keeping the EPE and
ER comparable. As shown in Figure 6 and Table 2, our approach
bridges the accuracy gap between the real-time and state-of-the-art

Kumail Raza, René Schuster, and Didier Stricker

stereo matching models such as GANet [29] and AANet [23], while
staying as close as possible to real-time performance.

We introduce the notion of a prediction head, which can be
adopted from any stereo matching architecture and is used in our
iterative coarse-to-fine refinement algorithm (iCFR). Separate heads
are produced for each scale and their parameters are learned in
an end-to-end fashion. We also propose a final refinement layer to
recover the loss of precision that is inherent in down and upsam-
pling operations. The resulting final network which we call FRSNet
(Fast iterative Residual Stereo Network), using the iCFR, outper-
forms all available real-time architectures for stereo matching such
as StereoNet [14], DispNet [17], Toast [27] and other deeper net-
works like GC-Net [12] while producing comparable EPE and ER
to modern state-of-the-art networks such as AANet [23], PSMNet
[2] and GANet [29], on the Sceneflow dataset [17] and the KITTI
benchmark [8].

2 RELATEDWORK
Traditional algorithms for stereo matching [7, 10, 18, 21, 24] yield
discontinuous disparity maps with higher pixel outlier rates. This
is because they usually use feature-based matching which does not
take the geometric variations in images into account. Thus, the
matching is ambiguous, due to occlusions, reflections, texture-less
surfaces and repetitive patterns. Volumetric methods with cost vol-
ume construction and cost aggregation strategies were developed to
achieve better matching [11, 16, 24]. Then with the advent of deep
learning, these strategies transformed into learnable layers in terms
of convolution and other operations. The first deep learning archi-
tecture for stereo matching was proposed in MC-CNN [28], which
used a feature extraction network instead of handcrafted features.
Then, DispNet [17] provided a real-time end-to-end disparity esti-
mation approach by using an encoder-decoder to directly regress
the final disparity map. Since this network does not use prior in-
formation, it is completely data-driven and requires a huge dataset
to train on. To this end, the authors of DispNet also presented the
synthetic Sceneflow dataset [17] to train such kind of end-to-end
networks, which we also partially use to train our network. Then a
two-stage convolutional neural network was presented by Pang et
al. [20], which separates the workflow for feature extraction and
disparity refinement. The first approach with a 4D cost volume
was proposed in GC-Net [12]. It applies 3D convolutions to aggre-
gate the matching costs. GC-Net presents a three stage end-to-end
trainable network for stereo estimation following the key steps of
stereo matching i.e. feature extraction, cost aggregation and dispar-
ity regression. It achieved state-of-the-art accuracy, however the
inference times are much higher compared to the real-time models.

PSMNet [2] uses a feature pyramid network and stacked hour-
glass network along with twenty-five convolution layers to achieve
state-of-the-art EPE and ER. However, higher number of convolu-
tional layers deteriorate the run-time quite considerably and puts it
far from the real-time category. GANet [29] proposes to incorporate
geometric optimization algorithms like SGM [10] in deep learning
pipelines as learnable layers. To this end, it presents the concept of
guided aggregation layers in the end-to-end pipeline. These layers
aim to leverage the local neighbourhood information as well as the

global image context into guiding convolutions in the cost aggrega-
tion network. These layers push the sub-pixel accuracy even further
and replace a large number of computationally complex 3D convo-
lutions. LEAStereo [5] applies neural architecture search to choose
the best possible parameters for a set of operations performed in the
network for stereo matching. It achieves state-of-the-art accuracy
on KITTI benchmark as well as close to real-time performance. This
however, requires enormous amounts of computational resources
to compute the best neural architecture for the job. To cater for
this, the authors applied task-specific human knowledge to come
up with a three step stereo matching architecture and refined the
parameters with the neural architecture search, e.g. convolution
filters sizes, strides, etc. Other faster techniques use coarse-to-fine
matching with hierarchical upsampling [3, 6, 9, 22, 25, 26]. Among
them, DeepPruner achieves great performance. However, they ig-
nore recovering details lost by lower resolution matching. Despite
considerable research for the last half-century, a stereo matching
architecture with a focus on practical implications is still an open
question in the computer vision community, where a state-of-the-
art algorithm can be applied to real-time applications. Our approach
takes a step in this direction.

3 FRSNET: A MULTI-SCALE IMPROVEMENT
In this section, we describe the details of our proposed multi-scale
iterative coarse-to-fine refinement framework for stereo matching
(iCFR) and a proposed best performing network called FRSNet
which uses this iCFR. The overall architecture is shown in Figure 1.

3.1 Feature Extraction
As a feature extraction backbone, we employ a stacked hourglass
network with skip connections between corresponding layers of the
encoder and decoder [23, 29]. This densely connected network is
shared by the input stereo image pair. We use the already calculated
features at multiple scales from the decoder part (i.e. 13 ,

1
6 ,

1
12 ,

1
24 ,

1
48),

as input to the prediction heads at the corresponding scales. Fig-
ure 1 shows the feature extraction network with dense connections.
These features are then either concatenated or correlated to form
the cost volume which is then processed in the prediction head.

3.2 Prediction Head
We combine the three latter parts of the stereo matching pipeline
namely cost volume construction, cost aggregation and disparity re-
gression into a prediction head, for modularity. Modern volumetric
end-to-end stereo matching architectures such as GC-Net [12] and
GANet [29] employ a 4D cost volume. This cost volume is built by
either concatenating or correlating the features from the stereo im-
age pair, extracted from the feature extraction backbone, typically a
stacked hourglass network [19] or a Feature Pyramid [15]. Depend-
ing on the adaptation from any stereo matching network, the cost
volume can have different dimensions. Typically a correlation cost
volume requires much less memory and a lower number of learn-
able parameters. The cost volume is then filtered by the adapted
strategy of the corresponding stereo matching architecture. Finally,
the disparity regression layer estimates the output disparity map.
Note that the prediction head is designed to be adopted from any
stereo matching architecture. As shown in Figure 3, the prediction

Multi-scale Iterative Residuals for Fast and Scalable Stereo Matching

Figure 1. Overview of the architecture of our proposed FRSNet. Given a rectified stereo image pair, a stacked hourglass network with residual
connections extracts the features. As the decoder in the stacked hourglass produces features at different scales, we employ them directly in
the proposed iCFR algorithm, instead of down-sampling them. In the first iteration, the smallest resolution features are used i.e. at 1

48 of the
original resolution to calculate a dense but very coarse disparity map 𝑑𝑖𝑠𝑝𝑖 . This full disparity map is then used to warp the target image
features 𝑓 𝑖+1𝑟 of the next scale i.e. 1

24 . Using these warped features, the prediction head produces a residual disparity map 𝑟𝑒𝑠𝑖+1 this time. This
is then added to the upsampled 𝑑𝑖𝑠𝑝𝑖

′
to get 𝑑𝑖𝑠𝑝𝑖+1. The process is continued for all the remaining scales until passing the final disparity

𝑑𝑖𝑠𝑝𝑖+4 through the refinement block to get the final disparity map 𝑑𝑖𝑠𝑝𝑚𝑎𝑥 at input resolution.

head can also produce multiple disparity maps from different stages
of cost aggregation for intermediate supervision during training.
The ground truth is down-sampled accordingly to calculate the
loss for each of these predictions. Sections 3.6 and 3.7 describe the
working of the overall multi-scale architecture using prediction
heads from two state-of-the-art networks GANet [29] and AANet
[23].

3.2.1 Symmetric Cost Volume. The disparity map produced at the
smallest scale i.e. 1

48 is a very coarse estimate, usually consisting of
just blobs of information. These blobs when up-sampled, produce
large erroneous estimates of disparity initially. If these are not
corrected in the next subsequent scale, the error keeps accumulating
and amplifying much like a drift error. Negative disparity residuals
are required to correct such coarse estimates. These residuals will
help reduce the disparity values if they are initially too high. To
this end, we change the way the cost volume is build to allow
negative disparity hypotheses. Figure 2 illustrates the construction
of such a cost volume. The shape of the cost volume will remain
the same [𝐹, 𝐷𝑐𝑣, 𝐻,𝑊], however the way it is filled along the
disparity dimension, will be different. The idea is to fill the disparity
dimension of length 𝐷𝑐𝑣 , with disparity hypotheses symmetrically
in both directions, i.e. positive and negative. This means that in
position 𝐷𝑐𝑣

2 , the candidate with zero displacement will be placed.
From here in both directions, the cost volume will be filled for the

Dcv

d = - Dcv
 2

d = Dcv
 2

Figure 2. Illustration of the proposed symmetric cost volume to al-
low for negative disparity hypotheses. It ensures that initially too
high estimates can be corrected by the residual disparities on finer
scales.

range (−𝐷𝑐𝑣

2 ,
𝐷𝑐𝑣

2) respectively, leaving out one disparity candidate
at the negative search space if required due to rounding. It is worth
noting here that after this change the effective search space for
disparity is 𝐷𝑐𝑣

2 .

3.2.2 Disparity Regression. For calculating the final disparity map
we use disparity regression as proposed by Kendall et al. [13]. This

Kumail Raza, René Schuster, and Didier Stricker

yields a much more continuous and consistent disparity map than
just using classification based operations. The disparity prediction
𝑑 is given by:

𝑑 =

𝐷𝑐𝑣
2∑

𝑑=
−𝐷𝑐𝑣

2

𝑑 · 𝜎 (−𝐶𝐴 (𝑑)) (1)

Pseudo-probabilities for each disparity candidate 𝑑 are calculated
from the filtered cost volume𝐶𝐴 by applying the softmax operation
𝜎 . Note that the summation bounds in the equation above are
consistent with the cost volume construction for negative disparity
candidates.

3.3 iCFR: Iterative Coarse-to-Fine Refinement
As shown in Figure 1, the overall network architecture works in a
coarse-to-fine refinement fashion using features at multiple scales
from the feature extractor. The initial coarse disparity map 𝑑𝑖𝑠𝑝𝑖 is
calculated at 1

48 of the original resolution, with the prediction head
for the corresponding scale. This 𝑑𝑖𝑠𝑝𝑖 is then up-sampled to the
next finer scale i.e. 1

24 . Then the right image features at 1
24 th scale

(𝑓 𝑖+1𝑟) are warped towards this up-sampled 𝑑𝑖𝑠𝑝𝑖
′
. The idea is that

these warped features 𝑓 𝑖+1
𝑟,𝑤𝑎𝑟𝑝𝑒𝑑

will only represent the remaining
disparity to be calculated. These 𝑓 𝑖+1

𝑟,𝑤𝑎𝑟𝑝𝑒𝑑
are then passed to the

prediction head for 1
24 𝑡ℎ scale. Since the target image features are

now warped, the prediction head will only produce a residual of the
full disparity map 𝑟𝑒𝑠𝑖+1. Finally the up-sampled coarse disparity
map at 𝑑𝑖𝑠𝑝𝑖

′
is added to this residual map 𝑟𝑒𝑠𝑖+1 to get a refined

disparity map at this scale, i.e. 𝑑𝑖𝑠𝑝𝑖+1. This process is iterated for
all scales i.e. { 112 ,

1
6 ,

1
3 } to get the fine grained disparity map 𝑑𝑖𝑠𝑝𝑖+4

at 1
3 resolution. The 𝑑𝑖𝑠𝑝𝑖+4 is then passed through the refinement

network to get a final refined disparity map 𝑑𝑖𝑠𝑝𝑚𝑎𝑥 at input resolu-
tion. A simplified pseudo-code of the iCFR is shown in Algorithm 1.
Although the iterations at multiple resolutions introduce additional
computational effort for calculating the final refined disparity, these
computations follow a geometric series applying the sub-sampling
factor (usually 2). This means the computational cost can only be
twice w.r.t. the highest resolution for infinitely many sub-scales of

Algorithm 1 iCFR

1: [𝑓 𝑒𝑎𝑡𝑙] = FeatureExtractor(𝑙𝑒 𝑓 𝑡)
2: [𝑓 𝑒𝑎𝑡𝑟] = FeatureExtractor(𝑟𝑖𝑔ℎ𝑡)
3: for (𝑓𝑙 , 𝑓𝑟) in each scale do
4: if smallest scale then
5: 𝑑𝑖𝑠𝑝 = PredictionHead(𝑓𝑙 , 𝑓𝑟)
6: else
7: 𝑑𝑖𝑠𝑝 = upSample(𝑑𝑖𝑠𝑝)
8: 𝑓𝑟,𝑤𝑎𝑟𝑝𝑒𝑑 = Warp(𝑓𝑟 , 𝑑𝑖𝑠𝑝)
9: 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = PredictionHead(𝑓𝑙 , 𝑓𝑟,𝑤𝑎𝑟𝑝𝑒𝑑)
10: 𝑑𝑖𝑠𝑝 = 𝑑𝑖𝑠𝑝 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

11: end if
12: end for
13: 𝑑𝑖𝑠𝑝𝑚𝑎𝑥 = Refinement(𝑑𝑖𝑠𝑝, 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡)
14: return 𝑑𝑖𝑠𝑝𝑚𝑎𝑥

iCFR. This is worth investing, considering the saved computations
due to the smaller cost volumes at every scale.

3.3.1 Disparity Search Range: 𝐷𝑐𝑣 . Due to the use of prediction
heads at different scales and because each subsequent disparity
map is up-sampled for the next scale, the disparity values are also
scaled appropriately. This means the 𝐷𝑐𝑣 for the cost volume can
be considerably reduced leading to a much shallower cost volume.
For example a 𝐷𝑐𝑣 of 12 at scale 1

24 is scaled to 96 at the scale 1
3 .

The 𝐷𝑐𝑣 can be chosen so that at the highest scale, this value can
estimate a 𝐷𝑚𝑎𝑥 of typically 192 pixels, which is usually seen in
the state-of-the-art models. For any prediction head, the number of
scales 𝑆 and the 𝐷𝑐𝑣 is to be chosen correctly. The 𝐷𝑚𝑎𝑥 is given
by:

𝐷𝑚𝑎𝑥 =

𝑆∑
𝑖=0

𝐷𝑐𝑣

2
· 1
𝑠𝑖

(2)

where 𝑠𝑖 ∈ { 148 ,
1
24 ,

1
12 ,

1
6 ,

1
3 } in the presented case. The drastic effect

of reduction in 𝐷𝑐𝑣 on inference time is shown in Table 2.

3.4 Refinement Network
As discussed in Section 3.3, the 𝑑𝑖𝑠𝑝𝑖+4 is produced at scale 1

3 . It
typically has some edge gradient effects due to the multi-scale
approach. These effects are especially visible on object boundaries
and on areas where there is occlusion. To get rid of these artefacts,
a final refinement block is applied. We use a stacked hourglass
refinement layer as proposed by AANet+ [23]. We calculate the
photometric consistency error [1] and use that as an additional
input to the refinement network, along with the left and right
images. The refinement network then hierarchically up-samples
the prediction at 1

3 to input resolution and produces geometrically
consistent and continuous disparity maps covering thin areas.

3.5 Loss Function
The loss function that is typically used with the disparity regression
layer is smooth 𝐿1 loss which we adopt in our pipeline too. This is
because smooth 𝐿1 loss is quite robust against outliers and noise,
and therefore helps against disparity discontinuities. We define our
loss as:

�̂�(𝑑,𝑑) = 1
𝑁

𝑁∑
𝑖=1

𝐿1(|𝑑𝑖 − 𝑑𝑖 |) (3)

𝐿1(𝑥) =
{
𝑥 − 0.5, 𝑖 𝑓 𝑥 ≥ 1
𝑥 · 0.5, 𝑖 𝑓 𝑥 < 1

(4)

Here, |𝑑𝑖 − 𝑑𝑖 | is the absolute error in the predicted disparities and
𝑁 is the number of ground truth label pixels. The final loss function
is the weighted sum of losses over all predictions:

𝐿 =

𝑀∑
𝑖=1

𝜆𝑖 · 𝐿𝑖 (5)

where 𝜆𝑖 is a scalar weight and𝑀 is the total number of predictions
for intermediate supervision.

Multi-scale Iterative Residuals for Fast and Scalable Stereo Matching

GAHead

left feat.

right feat.

CostVolume
(concat)

Cost Aggregation

...

Guidance Subnet

res1 res2

res3Regr.

Intermediate Supervision

Regr. Regr.

guidance weights

i
L
G
A

(a) The prediction head adapted from GANet [29].

AAHead

left feat.

right feat.

Correlation

res1

res2

res3

Regr.

Intermediate Supervision

left
feat.

right
feat.

ISA

ISA

ISA

CSA

Disparity Regression

Adaptive Aggregation

Cost Volume Pyramid

Feature Pyramids

(b) The prediction head adapted from AANet [23].

Figure 3. A more detailed view of the prediction heads as used in our iCFR. They can optionally contain a guidance subnet as in GANet [29]
(a) and support additional supervision with intermediate disparity regression. The inputs are the left and (warped) right image features at the
corresponding scale from the feature extractor. These are used to build either a concatenation or correlation cost volume. The cost volume
and the guidance weights are then passed to the cost aggregation or any kind of matching network. In our best performing network, ISA and
CSA from AANet [23] (b) are used for aggregation. Finally, a softmax regression layer estimates the final disparity or the residual disparity
based on the refined cost volume.

3.6 GAHead
We apply the iCFR algorithm as described in Section 3.3 on state-
of-the-art GANet [29] to significantly reduce its memory footprint
and inference time. To this end we replace the prediction head
in our network with the GANet matching network i.e. the pre-
diction head now consists of concatenation based 4D symmetric
cost-volume, guidance subnet, cost aggregation network (SGA and
LGA layers) and disparity regression network. We call it GAHead
and it is visualized in Figure 3a. The guidance weights are calculated
by the multi-scale guidance subnet on top of the feature extrac-
tion network which are reshaped and normalized for use in cost
aggregation.

3.6.1 Improvements to the GAHead. To push the GAHead perfor-
mance even further we propose some improvements. Firstly, we
replace a 3D convolution layer with an additional SGA layer, with
additional guidance weights. This is because SGA layers are much
faster than convolution layers and capture the disparity directly
[10, 29]. Secondly, several LGA layers can be applied before and
after passing it to the disparity regression layer to refine smaller
details and fine structures in the final disparity map. However, in-
stead of using multiple local guidance weights for each layer, we
propose cost filtering using the same weights multiple times i.e. in
an iterative manner. This is inspired by the idea of CSPN [4]. The
filters are shared between iterations, thus keeping the number of
learnable parameters constant. With each iteration, more details of

Kumail Raza, René Schuster, and Didier Stricker

Table 1. Evaluations of FRSNet with different design settings using the GAHead and the AAHead on the Sceneflow dataset. Evaluationmetrics
are average end point error (EPE) and 1 px threshold outlier rate (ER).

with GAHead
Sym-CV Improvements HG-Ref EPE [px] ER [%]

- - - 7.06 51.9
✓ - - 3.34 22.1
✓ ✓ - 1.01 18.2
✓ ✓ ✓ 0.93 17.5

with AAHead
Sym-CV HG-Ref EPE (px) ER (%)

- - 4.91 43.1
✓ - 2.08 23.2
✓ ✓ 0.98 16.9

the image are revealed which in turn improve the per-pixel depth
estimation results. The number of iterations is experimentally de-
termined with the best EPE obtained for 𝑖 = 3, without introducing
too much overhead in run-time.

3.7 AAHead
We also apply the iCFR algorithm on state-of-the-art AANet [23]
to reduce FLOPs and increase its scalability. To this end, we re-
place the prediction head with the adaptive aggregation module as
described in AANet [23], which consists of intra/cross-scale aggre-
gation operations. So the prediction head (AAHead, see Figure 3b),
now consists of a correlation-based 3D symmetric cost volume, an
adaptive aggregation network and disparity regression. Since the
AAHead works with feature pyramids, for each scale of the iCFR
algorithm a nested feature pyramid at { 13 ,

1
6 ,

1
12 } sub-resolutions is

constructed. The coarsest scale 1
48 is omitted in this case because of

the bottleneck in the adaptive aggregation module. To compensate
for this reduction, the 𝐷𝑐𝑣 is set to 24 according to Eq. 2 to keep
the 𝐷𝑚𝑎𝑥 close to 192. The adaptive aggregation network employs
several modulated deformable convolution layers to aggregate the
cost at different scales which has a higher receptive field than nor-
mal convolution operation [31]. Reduction in FLOPs due to lower
resolutions and a much shallower cost volume results in a scalable
and much more efficient overall model with even better sub-pixel
accuracy and pixel outlier rate than the original AANet as shown
in Table 2.

4 EXPERIMENTS
We perform exhaustive experiments on our FRSNet using the Scene-
flow and KITTI 2015 datasets. The first proposed by Mayer et al.
[17], is a large dataset of synthetic images with dense ground truth.
The KITTI dataset [8] contains real-world outdoor images but with
sparse ground truth. We report end-point-error (EPE) and 1-pixel
outlier rate (ER) on the Sceneflow dataset and EPE and D1 rate on
KITTI datasets. The network is implemented in PyTorch. Our final
model uses Adam (𝛽1 = 0.9, 𝛽2 = 0.999) as optimizer. We employ a
three-stage training strategy for all our experiments. 1) Training
on Sceneflow dataset, 2) Fine-tuning on KITTI dataset, 3) Option-
ally, fine-tuning on the (dense) pseudo-ground truth as proposed in
AANet [23]. This third step is required to produce visually consis-
tent disparity maps for upper regions of KITTI images where there
is no ground truth disparity available (c.f . Figure 4). We set the
𝐷𝑐𝑣 value to 12 and 24 for experiments with GAHead and AAHead,
respectively. Training is done for 30 epochs with a batch size of 32
on two NVIDIA V100 32GB GPUs, with the crop-size of 240 × 576
on Sceneflow dataset and for 1000 epochs with a batch size of 16

Figure 4. Visual comparison of the results when training with (bot-
tom) and without (middle) pseudo-GT. Using the pseudo-GT pro-
duces much more consistent results, i.e. without extraneous dispar-
ity values on the areas where there is no GT especially in the sky
regions. The quantitative effect of this training strategy is shown
in Table 3.

on the KITTI datasets with the crop size of 384 × 1248. The third
fine-tuning stage is carried out for a maximum of 8 epochs. The
learning rate begins at 0.001 with a schedule for halving at 400th,
600th and 800th epoch in the fine-tuning phase. All the input image
channels are normalized by subtracting their means and dividing
their standard deviations. The loss weights 𝜆𝑖 in Eq. 5 for multiple
predictions are set to [0.2, 0.4, 0.6, 1.0] for the three (two intermedi-
ate + final) predictions of the finest pyramid scale and the ultimate
prediction at input resolution of the refinement network, in this
order.

4.1 Ablation Study
To validate the performance of the proposed iCFR algorithm on the
proposed FRSNet, we perform several experiments on the Sceneflow
test set and on our KITTI validation set of 15 image pairs, which
are obtained by splitting the training set for KITTI 2015 dataset
randomly. The ablation experiments involve using the GAHead and
AAHead in FRSNet and evaluating the effectiveness of different
improvements proposed in Section 3. Table 1 shows the overall
results of the ablation study for both predictions heads on the
Sceneflow test set. In both cases, it highlights the importance of

Multi-scale Iterative Residuals for Fast and Scalable Stereo Matching

Table 2. Comparison of the state-of-the-art GANet [29] and AANet [23] to the proposed FRSNet with corresponding prediction heads. Our
proposed network is muchmore scalable in terms of GPUmemory, FLOPs and the number of parameters. The inference time is also consider-
ably reduced i.e. 49× faster than the GANet, making it real-time, without a drastic increase in the EPE and D1. Compared to the AANet [23] it
actually performs better by 0.05 px in EPE and 31% better D1 on our validation set for KITTI 2015. All values are the mean results of running
these models for an inference of 100 image pairs, on a GTX 1080Ti. For each model, the comparison stops at the highest resolution that fits
into GPU memory.

Method Resolution 𝐷𝑐𝑣 𝐷𝑚𝑎𝑥 Params Mem FLOPS EPE [px] D1 [%] Time [ms]
GANet [29] KITTI 48 192 6.5M 6.2G 2.2T 0.54 1.80 7402

FRSNet-GA
KITTI 4 186 6.5M 1.4G 373G 0.74 2.80 150
HD 4 186 6.5M 5.7G 718G - - 452
4K 4 186 6.5M 10G 1.14T - - 991

AANet [23] KITTI 64 192 8.4M 4.4G 575G 0.55 2.03 62
HD 64 192 8.4M 7.8G 793G - - 191

FRSNet-AA
KITTI 8 180 3.1M 1.4G 245G 0.50 1.40 61
HD 8 180 3.1M 3.8G 457G - - 173
4K 8 180 3.1M 9.9G 981G - - 692

Figure 5. Visual comparison on the Sceneflow test set, showing the
impact of the refinement block. From top-left to bottom-right: In-
put reference images, prediction without refinement, GT disparity
map, and refined prediction. Fine details are effectively recovered.

having a symmetric cost volume (Sym-CV) with negative disparity
hypotheses which decreases the EPE and ER by almost half. With
GAHead, the introduction of the proposed improvements lower
the error metrics even further. It was noted that replacing a higher
resolution 3D convolution layer in cost aggregation with a SGA
layer not only reduces the EPE and ER but also reduces the inference
time by 70 ms.

Using the AAHead, without the final refinement layer yields
relatively worse predictions than with GAHead. However, with a
final hourglass refinement block (HG-Ref) as proposed in AANet+
[23] both variants of our model reach sub-pixel accuracy in EPE
with the best ER. Similar improvements are seen while evaluating
on the KITTI 2015 validation dataset. The positive impact of the
refinement block is illustrated in Figure 5. A quantitative evaluation
is given in Table 3 in which the hourglass refinement block (HG-
Ref) is also compared against an alternative refinement module of
SDRNet [1].

Table 3. Evaluation of our FRSNet for different training datasets and
different refinement modules. Evaluation metrics EPE and D1 rate
calculated on our KITTI 2015 validation set.

KITTI
2015

KITTI
2012

Pseudo-
GT

SDRNet
[1]-Ref

HG-
Ref

EPE
(px)

D1 (%)

✓ - - - - 1.3 5.7
✓ - - ✓ - 0.78 2.9
✓ - - - ✓ 0.66 2.3
- ✓ - - ✓ 0.66 2.7
✓ ✓ - ✓ - 0.56 2.0
✓ ✓ ✓ ✓ - 0.54 1.7
✓ ✓ ✓ - ✓ 0.50 1.4

4.2 Performance Comparison
Table 2 shows a comprehensive comparison between our network
with GAHead and AAHead and the corresponding original net-
works on our KITTI 2015 validation set. There is a significant de-
crease in the number of parameters, memory consumption, FLOPs
and inference time. Our model only requires 16% of the FLOPs
required for the GANet-deep [29], while consuming 6× less mem-
ory. Similar improvement is seen compared to AANet [23] where
the memory requirement is less than half while D1 being 31% bet-
ter, with a comparable run-time. As also shown in Figure 6, our
model can scale up to even close to 6K resolution while keeping the
run-time below one second. These performance improvements are
made possible because of the lower 𝐷𝑐𝑣 value, which in turn means
a shallower cost volume. Moreover, the iterative computations at
smaller resolutions are bounded by at most twice the time required
for the common operations at the highest resolution.

4.3 Benchmark Results
For benchmarking, we use our best performing network which is
equipped with the AAHead and final hourglass refinement layer to
evaluate on the KITTI 2015 test set on the official website. Table 4
shows the result of the evaluation in comparison to other models
on the leader board. Compared to single-scale models our model

Kumail Raza, René Schuster, and Didier Stricker

10

100

1000

10000

5 7 6 X
2 4 0

7 6 8 X
4 8 0

1 5 3 6 X
8 6 4

1 9 2 0 X
1 0 5 6 (H D)

2 3 0 4 X
1 2 4 8

2 6 8 8 X
1 4 4 0 (2 K)

4 1 7 6 X
2 1 6 0 (4 K)

4 5 6 0 X
2 5 4 4

T
IM

E
 (M

S)

RESOLUTION

Ours AANet+ DeepPruner-Fast GANet-deep DSMNet PSMNet

Figure 6. Run-time of different stereo matching models for vary-
ing input resolutions. For all measurements, a GTX 1080Ti GPU (12
GB) is used. Each curve ends where the correspondingmodel can no
longer fit into theGPUmemory. Our FRSNet is around 120× and 15×
faster than the GANet [29] and PSMNet [2], respectively. AANet+
[23] although having almost comparable run-time to ours, becomes
too large to fit into the available GPUmemory at just above HD res-
olution. DeepPruner [6], is 2.5× slower than our model, is less scal-
able in terms of memory footprint, and performs less accurately.

Table 4. Benchmark results of the D1 metric (in %) on the KITTI
2015 test set. Best numbers are given in bold, second-best are under-
lined. It is worth mentioning that the reported run-times are not
measured in uniform settings, therefore a better comparison of run-
time is provided by Table 2 and Figure 6.

D1-Noc D1-All Time
Model bg fg all bg fg all [ms]

GCNet [12] 2.02 3.12 2.45 2.21 6.16 2.87 900
PSMNet [2] 1.71 4.31 2.14 1.86 4.62 2.32 410
GANet [29] 1.34 3.11 1.63 1.48 3.46 1.81 1800

StereoNet [14] - - - 4.30 7.45 4.83 15
DispNetC [17] 4.11 3.72 4.05 4.32 4.41 4.34 60

DeepPruner-fast [6] 2.13 3.43 2.35 2.32 3.91 2.59 60
AANet+ [23] 1.49 3.66 1.85 1.65 3.96 2.03 60

FRSNet (Ours) 1.58 3.45 1.88 1.73 3.87 2.09 60

achieves comparable results while reducing the complexity and run-
time significantly. Compared to real-time models with inference
time less than 100 milliseconds, our model achieves state-of-the-art
results standing right beside the AANet+ (the improved variant of
the original AANet) in D1 metric while having a lower memory
and computational footprint and better scalability at the same in-
ference time. The results in Tables 4 and 5 for both the KITTI 2015
and Sceneflow datasets demonstrate that our method maintains a
balance between accuracy and speed. The iCFR algorithm thus can
be applied to any state-of-the-art stereo matching architecture to
make it more efficient and scalable while retaining its accuracy.

Figure 7 shows a comparison of D1 error maps produced by the
KITTI 2015 benchmark on the test set. Our best performing model
exhibits lower errors overall, especially at occluded areas and image
boundaries. The error maps reveal even smaller errors on smooth

Table 5. Comparison of models on the Sceneflow dataset on our ma-
chine with a GTX 1080Ti GPU and using official code repositories.
All the metrics are recorded after CUDA warm-up iterations, aver-
aged on 100 inferences.

Models EPE [px] ≥ 3px [%] Time [ms]
GCNet [12] 2.51 9.34 950
PSMNet [2] 1.09 4.14 640
GANet [29] 0.78 - 7402

StereoNet [14] 1.10 - 15
DispNetC [17] 1.68 9.31 60
DeepPruner [6] 0.97 - 120
AANet [23] 0.87 3.44 62

FRSNet (Ours) 0.93 6.01 60

regions. The maps also show that our model produces state-of-the-
art results and outperforms other real-time models with visually
consistent and continuous disparity maps.

5 CONCLUSION
In this paper, a novel multi-scale stereo matching architecture is
proposed using the iCFR algorithm with disparity residuals. We
show that our architecture can be applied to any state-of-the-art
model to boost its efficiency in terms of run-time, memory, and
scalability.We validate this on two state-of-the-art networks namely
GANet [29] and AANet [23]. Our best performing model performs
120x faster than the GANet and uses 5x less memory, using just 16%
of FLOPs, while keeping the EPE and ER comparable. Our model
scales until close to even 6K resolution on a GTX 1080Ti GPU,
while keeping the inference time still below one second. The results
show that by using iCFR, the trade-off between run-time and EPE
can be optimized. Our best performing model produces state-of-
the-art results on the Sceneflow test set as well as the KITTI 2015
benchmark while outperforming all the other real-time models in
terms of accuracy.

Depending on the used prediction head and to keep the 𝐷𝑐𝑣 low,
the proposed architecture has a limitation on the number of scales
(or the maximum down-sampling factor) to use. This is because of
the relation between the cost aggregation technique, the 𝐷𝑚𝑎𝑥 and
scales 𝑠𝑖 as shown in Eq. 2.

An interesting future work would be extending our architecture
with already fast prediction heads to see how much further the
performance improvement can be pushed. We also hope that the
considerable reduction in the number of FLOPs will make our model
suitable for edge computing devices with real-time performance
requirements.

ACKNOWLEDGMENTS
This workwas partially funded by the Federal Ministry of Education
and Research Germany under the project DECODE (01IW21001).

REFERENCES
[1] Rohan Chabra, Julian Straub, Christopher Sweeney, Richard Newcombe, and

Henry Fuchs. 2019. Stereodrnet: Dilated residual stereonet. In Conference on
Computer Vision and Pattern Recognition (CVPR).

[2] Jia-Ren Chang and Yong-Sheng Chen. 2018. Pyramid stereo matching network.
In Conference on Computer Vision and Pattern Recognition (CVPR).

Multi-scale Iterative Residuals for Fast and Scalable Stereo Matching

EPE:

Figure 7. Comparison of the D1 error maps on KITTI 2015 test set from top to bottom: DispNetC [17], GANet [29] and our FRSNet. Our model
shows much smaller errors especially in occluded areas and at object boundaries as compared to the DispNetC. Compared to state-of-the-art
GANet [29] our model has even lower errors in smooth areas while being significantly more efficient.

[3] Rui Chen, Songfang Han, Jing Xu, and Hao Su. 2019. Point-based multi-view
stereo network. In International Conference on Computer Vision (ICCV).

[4] Xinjing Cheng, Peng Wang, and Ruigang Yang. 2019. Learning depth with
convolutional spatial propagation network. Transactions on Pattern Analysis and
Machine Intelligence (T-PAMI) (2019).

[5] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao Dai, Xiaojun Chang,
Hongdong Li, Tom Drummond, and Zongyuan Ge. 2020. Hierarchical Neural
Architecture Search for Deep Stereo Matching. Advances in Neural Information
Processing Systems (NeurIPS) (2020).

[6] Shivam Duggal, ShenlongWang, Wei-Chiu Ma, Rui Hu, and Raquel Urtasun. 2019.
DeepPruner: Learning efficient stereo matching via differentiable patchmatch. In
International Conference on Computer Vision (ICCV).

[7] Lutz Falkenhagen. 1997. Hierarchical block-based disparity estimation consid-
ering neighbourhood constraints. In International Workshop on SNHC and 3D
Imaging.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Conference on Computer
Vision and Pattern Recognition (CVPR).

[9] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan.
2020. Cascade cost volume for high-resolution multi-view stereo and stereo
matching. In Conference on Computer Vision and Pattern Recognition (CVPR).

[10] Heiko Hirschmuller. 2005. Accurate and efficient stereo processing by semi-global
matching and mutual information. In Conference on Computer Vision and Pattern
Recognition (CVPR).

[11] Michal Jancosek and Tomás Pajdla. 2009. Segmentation based multi-view stereo.
Citeseer.

[12] Alex Kendall, HaykMartirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy,
Abraham Bachrach, and Adam Bry. 2017. End-to-end learning of geometry and
context for deep stereo regression. In International Conference on Computer Vision
(ICCV).

[13] Alex Kendall, HaykMartirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy,
Abraham Bachrach, and Adam Bry. 2017. End-to-end learning of geometry and
context for deep stereo regression. In International Conference on Computer Vision
(ICCV).

[14] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh Kowdle, Julien
Valentin, and Shahram Izadi. 2018. StereoNet: Guided hierarchical refinement
for real-time edge-aware depth prediction. In European Conference on Computer
Vision (ECCV).

[15] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature pyramid networks for object detection. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR).

[16] Yebin Liu, Xun Cao, Qionghai Dai, and Wenli Xu. 2009. Continuous depth
estimation for multi-view stereo. In Conference on Computer Vision and Pattern
Recognition (CVPR).

[17] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey
Dosovitskiy, and Thomas Brox. 2016. A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estimation. In Conference on
Computer Vision and Pattern Recognition (CVPR).

[18] Dongbo Min, Jiangbo Lu, and Minh N Do. 2011. A revisit to cost aggregation
in stereo matching: How far can we reduce its computational redundancy?. In
International Conference on Computer Vision (ICCV).

Kumail Raza, René Schuster, and Didier Stricker

[19] Alejandro Newell, Kaiyu Yang, and Jia Deng. 2016. Stacked hourglass networks
for human pose estimation. In European Conference on Computer Vision (ECCV).

[20] Jiahao Pang, Wenxiu Sun, Jimmy SJ Ren, Chengxi Yang, and Qiong Yan. 2017.
Cascade residual learning: A two-stage convolutional neural network for stereo
matching. In International Conference on Computer Vision Workshops (ICCVW).

[21] Johannes L Schonberger, Sudipta N Sinha, and Marc Pollefeys. 2018. Learning to
fuse proposals from multiple scanline optimizations in semi-global matching. In
European Conference on Computer Vision (ECCV).

[22] Vladimir Tankovich, Christian Hane, Yinda Zhang, Adarsh Kowdle, Sean Fanello,
and Sofien Bouaziz. 2021. HITNet: Hierarchical iterative tile refinement network
for real-time stereo matching. In Conference on Computer Vision and Pattern
Recognition (CVPR).

[23] Haofei Xu and Juyong Zhang. 2020. AANet: Adaptive aggregation network for ef-
ficient stereo matching. In Conference on Computer Vision and Pattern Recognition
(CVPR).

[24] Qingxiong Yang. 2012. A non-local cost aggregation method for stereo matching.
In Conference on Computer Vision and Pattern Recognition (CVPR).

[25] Zhichao Yin, Trevor Darrell, and Fisher Yu. 2019. Hierarchical discrete distribution
decomposition for match density estimation. In Conference on Computer Vision

and Pattern Recognition (CVPR).
[26] Zehao Yu and Shenghua Gao. 2020. Fast-MVSnet: Sparse-to-dense multi-view

stereo with learned propagation and gauss-newton refinement. In Conference on
Computer Vision and Pattern Recognition (CVPR).

[27] Jure Zbontar and Yann LeCun. 2015. Computing the stereo matching cost with
a convolutional neural network. In Conference on Computer Vision and Pattern
Recognition (CVPR).

[28] Jure Zbontar and Yann LeCun. 2015. Computing the stereo matching cost with
a convolutional neural network. In Conference on Computer Vision and Pattern
Recognition (CVPR).

[29] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. 2019. GA-
Net: Guided aggregation net for end-to-end stereo matching. In Conference on
Computer Vision and Pattern Recognition (CVPR).

[30] Xiaoxue Zhang and Zhigang Liu. 2014. A survey on stereo vision matching
algorithms. In World Congress on Intelligent Control and Automation (WCICA).

[31] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. 2019. Deformable convnets v2:
More deformable, better results. In Conference on Computer Vision and Pattern
Recognition (CVPR).

	Abstract
	1 Introduction
	2 Related Work
	3 FRSNet: A Multi-scale Improvement
	3.1 Feature Extraction
	3.2 Prediction Head
	3.3 iCFR: Iterative Coarse-to-Fine Refinement
	3.4 Refinement Network
	3.5 Loss Function
	3.6 GAHead
	3.7 AAHead

	4 Experiments
	4.1 Ablation Study
	4.2 Performance Comparison
	4.3 Benchmark Results

	5 Conclusion
	Acknowledgments
	References

