

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System

54th CIRP Conference on Manufacturing Systems

Simultaneous Production and AGV Scheduling using Multi-Agent Deep

Reinforcement Learning

 Jens Poppera,*, Vassilios Yfantisb, Martin Ruskowskia,b

aGerman Research Centre for Artificial Intelligence, Trippstadter Straße 122, 67663 Kaiserslautern, Germany

bTU Kaiserslautern, Chair of Machine Tools and Control Systems, Gottlieb Daimler Straße 42, 67663 Kaiserslautern, Germany

* Corresponding author. Tel.: +49-631-205753421; E-mail address: jens.popper@dfki.de

Abstract

Increasing demand for customized products in the wake of the 4th Industrial Revolution is placing ever increasing demands on

the flexibility of manufacturing systems. Furthermore, the increasing usage of automated guided vehicles (AGV) adds another

layer of flexibility and also complexity to the overall production system. The resulting Flexible Job Shop Scheduling Problem

(FJSSP), including the coordination of the AGVs, is NP-hard and therefore hard to optimize. To address this problem, a

Reinforcement Learning Multi Agent (MARL) system is proposed, in which job scheduling and vehicle planning is done

cooperatively. This concept is described and prototypically implemented.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System

 Keywords: Flexible Job Shop Scheduling, Deep Reinforcement Learning, Multi Agent System, Flexible Manufacturing System

1. Introduction

The continuing trend toward customized products described

by Industry 4.0 confronts manufacturing companies with major

challenges. To be able to meet customer demand, the principle

of flexible production systems is becoming increasingly

popular. These flexible production systems enable the

production of a greater number of variants, without

necessitating an increase in the number of available machines.

This is particularly evident with the introduction of matrix

production systems. Here, a great deal of emphasis is placed on

coordinating the transportation system between manufacturing

cells.

The planning of such complex production systems, as well

as the increasingly important planning of autonomous transport

systems, is a time-consuming and cost-intensive process.

Usually these planning problems are NP-hard, i.e. they cannot

be planned optimally in practice. To cope with this, heuristics

and metaheuristics are often used, which forgo an exact solution

of the planning problem in favor of faster computation times.

However, even heuristic and metaheuristic methods often

pose problems in practice. For example, the planning problem,

as well as the relationships of the elements within the planning

problem, must be well known. Alternatively, these are

simplified approximately. In addition, production scheduling

and transportation planning are usually performed sequentially.

Inclusion of the location of the transportation means is mostly

omitted in planning and is a new trend in production planning

research [6].

To address this problems, a Multiagent Reinforcement

Learning (MARL) based method is created and prototypically

implemented in a Unity3D environment in this contribution. In

this method, machines with their (production) capacities, as

well as transport units, are modeled as independent agents that

communicate with each other. This implementation solves a

http://www.sciencedirect.com/science/journal/22128271
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Author name / Procedia CIRP 00 (2021) 000–000

series of planning instances, which are compared to common

heuristics used in production.

2. State of the art and related work

In Deep Reinforcement Learning research, many

breakthroughs have been achieved in recent years. Arguably,

Deep-Q Learning has received the most attention due to the

work of Deep Mind in the game Go [8]. Further developments

in Deep Reinforcement Learning include the Trust Region

Policy Optimization (TRPO) algorithm presented in [9]. This

algorithm updates policies by taking the largest step possible to

improve performance, while satisfying a special constraint on

how close the new and old policies are allowed to be based on

the KL-divergence. OpenAI introduced the Proximal Policy

Optimization (PPO) algorithm in [2]. This algorithm introduces

an adaptive KL-penalty and is especially characterized by its

robustness to hyperparameters and to actions in the continuous

domain. Also adapted to action spaces in the continuous

domain is the Deep Deterministic Policy Gradient (DDPG)

presented in [10]. This represents an actor-critic, model-free

algorithm with a deterministic policy gradient.

Other well-known algorithms that are widely used in Deep

Reinforcement learning and were considered in this research

are the Soft Actor-Critic (SAC) [11], the Twin Delayed DDPG

(TD3) [12] and Advantage Actor-Critic (A2C) [13].

The use of Deep Reinforcement Learning in multiagent

systems is also an active field of research. For example, in [14],

a mixed competitive and cooperative physics-based

environment was presented in which agents compete in a

simple game of hide-and-seek. Particularly noteworthy is the

emergent behavior of the agents, which use the environment

itself to their advantage.

The distributed solving of JSSP by the means of

reinforcement learning has been shown in [15]. Here, the

combination of shallow neural networks with a multiagent

architecture – called neurodynamic programming – has been

used to solve a generic JSSP. The authors highlight the ability

of this approach to achieve a good solution far faster than

algorithms such as branch and bound, which asymptotically

needs more time when the problem grows.

MARL systems with Deep Reinforcement Learning have

also been used in the area of production planning. [4]

formulates a MARL approach for online reactive scheduling of

flexible job shops. Here, unpredictable events, such as machine

breakdowns and reconfigurations, are included. In this

approach, one or multiple jobs are assigned to an agent, which

directs them through the process flow. This point distinguishes

this approach from many others in which agents are assigned

to machines.

Such an approach was explored in [5], which also considers

FJSP. The problems studied consist of jobs in different batch

sizes and producing units, where each unit consists of a

collection of identical machines. Moreover, to account for

setup times, the machines within a production unit have

different settings that can be changed with time. For scheduling

of randomized lot sizes of a range of diverse jobs, [5] was able

to train a MARL such that the results do not outperform

heuristic methods, but correspond to expert knowledge.

In another publication, see [3], a MARL architecture is

proposed to solve classical JSP. In this approach, agents decide

which jobs to process next on their assigned machines based on

the local state. Local sensing of the state, on the one hand,

increases the difficulty of solving the problem optimally, and

on the other hand leads to decentralized control. This is an

approach that, based on the results, is also pursued in the

methodology proposed in this research work.

[3] was able to show that this approach achieves reactive

scheduling, where the agents adjust their behavior to a global

goal. After the agents generalized their strategies, results were

obtained that outperformed simple priority rules and, in some

cases, more complex procedures.

The integration of other planning problems in a production

system in the context of job scheduling was already identified

as a research topic in [6], but there is still little practical work

on this topic in the area of multiagent or machine learning

research. The basic approach of reinforcement learning, that

the explicit objective function does not have to be known a-

priori, is used in the proposed method to address this open

research question.

3. Proposed method

To solve the unknown objective function problem in this

optimization problem, a MARL algorithm is proposed. This

decentralized approach is intended to make the planning more

resilient to disturbances. Two basic types of agents are defined.

The first type of agent is assigned to production machines.

These are able to request orders from a job registry in order to

process them. Likewise, these agents have an overview of other

agents in the production plant, including requested products,

feasible production operations and the current progress in the

production of the current product. In addition, they receive

information about available transport units, their loading and

current location.

The second type of agent is assigned to transport units.

These transport the requested products to the respective

machines. For this purpose, they observe all requested

products, the machines, the current processing progress and the

current position of all other transport units.

In addition to the agents assigned to the machines and

transport units, there is a central coordination layer. This layer

contains an overview of all orders and the production steps to

be completed on them. The agents request information from

this layer about all jobs that they can process according to the

operations assigned to them. In doing so, the coordination layer

ensures that the agents' decisions do not overlap due to

messages arriving too late. The components of the scheduling

system are shown in Figure 1. Here, jobs requested by the

AGVs, i.e. the transport units, represent a subset of jobs that

are requested by a machine agent. The internal time

specification is process-oriented. This means that the system

behavior is represented by processes, which can be understood

 Author name / Procedia CIRP 00 (2021) 000–000 3

as a sequence of events with the associated sequence of

activities [7].

A major problem in using reinforcement learning for

scheduling problems is the variable number of products to be

manufactured. When modeling as an observation space, the

number of orders is reflected in the size of the input vector. This

can be chosen as large as possible to allow a wide range of

possible planning problems. However, this also leads to a large

number of possible actions, which in turn leads to poorer

convergence and longer training times.

To circumvent this problem, the observation space is

constantly limited to one possible order, and thus one possible

action as output vector. For each machine, the agent iterates

through all orders that this machine can process at this moment

and assigns a continuous value v between [0,1] to each order.

Once all possible orders have been evaluated, each order with

the highest value is assigned to the corresponding machine. In

case several machines have the same value, the order is

assigned in sequence of the requesting machines. This avoids

the problem of different sized order lists for a production

system.

The AGVs have a different observation space. They observe

their current distance to all machines, their current loading

state, the destination of their current loading, the current

location of all products, the products requested by machines

and the current processing state of all machines. They can also

observe the current destination of other transport systems. The

transport systems select the order they will transport next. The

local path finding itself is planned by means of an A* algorithm

based on the plant topology.

In order to establish a reference between already made

decisions, the previously made observation, including the made

action, is fed to the agents as a stacked vector.

In the concept, the production machines as well as the

transport units receive Deep Learning based reinforcement

learning agents. Due to the actions in the continuous domain, a

proximal policy optimization algorithm was chosen [1]. This is

particularly characterized by its adaptive KL penalty, to control

the change of the policy at each iteration. It is characterized by

its objective function (1).

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸̂𝑡[min(𝑟𝑡(𝜃)𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴̂𝑡)] (1)

Here, 𝜃 represents the policy parameter, 𝐸̂𝑡 notes the

empirical expected value over a time series, and 𝑟𝑡 indicates the

rate of probability under the respective new and old policies.

𝐴̂𝑡 is the expected advantage at a time 𝑡 and 𝜀 represents a

hyperparameter to be adjusted.

4. Experiment setup

The experiments were conducted in a simulation

environment created using Unity. The production units, in the

form of 4 production cells, and 2 AGVs had to solve a

randomly generated production planning problem. This plan

always consisted of 13 jobs, which were composed of the job

types 1-3. The theoretical minimum production time, including

final transport to the outgoing warehouse, is 554 time units.

This production time assumes that all products are immediately

transported to the next machine or the buffer store, i.e. that

transport capacities are unlimited. Furthermore, changeover

times are set to a constant value. This theoretical value is not

practically achievable due to the restrictions on transport

capacities and compliance with all due dates, but it provides a

starting point for evaluating the performance of the used

heuristics and reinforcement learning techniques.

Target values of the evaluation are met deadlines and total

completion time. In order to reduce the possible bias due to

randomly generated orders, a test series of 100 runs is created.

The average total completion time and the average negative

latency are compared.

The optimization objectives according to which the agents'

rewards were designed are listed in Table 1. At the end of a

planning run, all agesnts receive a positive reward based on the

achieved 𝑚𝑎𝑥𝑗(𝐶𝑗)/554 and negative rewards for all products

arriving after the deadline.

Table 1: Optimization objectives considered in the setup for the experiments

of the MARL in the proposed method

Notation Description Meaning

𝐶𝑚𝑎𝑥 max𝑗 ⁡(𝐶𝑗) Makespan/Max.

completion time

𝐿̅⁡ 1

𝑛
∑L𝑗

Mean Lateness

𝐿𝑚𝑎𝑥 max⁡(𝐿𝑗) Max. Lateness

The agents consist of identically constructed networks with

5 deep layers and 512 completely connected neurons per layer.

As learning rate 3 ∙ 10−4 was chosen. The agents were first

trained sequentially over 8 million steps in isolation. In a

second step the pre-trained networks were trained together in a

multi-agent system for another 7 million steps. The training

took 8 hours on the machine described in section 0.

4.1. Production plant setup

The problem can be described as a FJSSP. In a FJSSP an

operation requires certain functions that one or more machines

provide. That is, an operation can be processed on multiple

machines if they meet the requirements. Thus, FJSSPs are a

generalization of JSSPs, where the 𝑖th operation of job 𝑗 𝑂𝑗𝑖
can be assigned to a set of machines 𝑀𝑗𝑖 ⊆ 𝑀. Here, the process

Figure 1 Proposed MARL decision architecture for integrated machine and

transport unit scheduling.

4 Author name / Procedia CIRP 00 (2021) 000–000

duration 𝑝𝑗𝑖𝑘 ∈ ℝ+ depends on the machine 𝜇𝑘 ∈ 𝑀𝑗𝑖 on which

the operation is processed.

In the test setup, there are 𝑀 = {𝑀1, 𝑀2, 𝑀3, 𝑀4} machines

to which the operations 𝑂𝑖 , with process durations 𝑝𝑗𝑖𝑘 as listed

in Table 2, are assigned.

There are 3 basic types of products that need to be

manufactured in the test scenarios. These have different

operations that must be performed on them. The final

production on machine 𝜇4 , which forms a bottleneck for

comparison purposes, is always uniform.

In addition, changeover times are incurred during

changeover (the switch between feasible operations 𝑂𝑗𝑖). In this

experiment, the changeover times were set to a constant value

of 20.

Besides the machines, there are also transport units 𝑇𝑛 ⊆ T

with transport capacities 𝜅𝑛 ∈ ℕ. However, the transport times

𝛾𝑛(𝑠𝑡) ∈ ℝ+ result dynamically from the current position 𝑠 of

the transport unit 𝑇𝑛⁡at time 𝑡, and thus cannot be determined

in advance. For the test setup, the transport units 𝑇 = (𝑇1, 𝑇2)
with capacities 𝜅1, 𝜅2 = 1 were chosen.

Table 2 Exemplary FSJP instance for three jobs in the experimentation setup

4.2. Technical setup

The described system was programmed in C# and Python.

In the RL problem, the environment, i.e. the production plant

and the transport system, is programmed in C# in Unity. An

implementation of the PPO algorithm is used as the learning

algorithm. Academy was used as the basis of the agent's

communication with the environment in Unity based on the

work described in [2]. Through this, the observations, actions

and rewards are passed between the learning algorithm and the

environment. The hardware used was a desktop PC with an

AMD Ryzen 3600 and an Nvidia RTX2070.

5. Experiment results and discussion

5.1. Experiment results

As a reference to the multiagent system, according to the

two target variables of the evaluation, the Shortest-Job-Next

(SJN) and Earliest Due Date (EDD) heuristics are taken for the

machines. For the transport units, a First Come First Serve

(FCFS) heuristic and an RL agent were taken. This is noted as

MDecision⁡rule for the machines and TDecision⁡rule for the

transport units. The setup for the experiments are 𝑀𝑆𝐽𝑁 ×⁡𝑇𝐹𝐶𝐹𝑆,

𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆 ,⁡𝑀𝑅𝐿 × 𝑇𝑅𝐿. Results of the experiments are shown in

Figure 2. Also integrated in the diagram is the theoretical

minimum of 554, if leaving out transport capacities.

It can be seen that the RL based agent system performs up

to 100 time units better than the heuristics. The average values

of the different decision rules are shown in Figure 3.

In a second experiment, all decision algorithms were cross

paired with another agent for the transport units, respectively

the combinations 𝑀𝑆𝐽𝑁 ×⁡𝑇𝑅𝐿 , 𝑀𝐸𝐷𝐷 × 𝑇𝑅𝐿 ,⁡𝑀𝑅𝐿 × 𝑇𝐹𝐶𝐹𝑆 .While it

did not change the results for 𝑀𝐸𝐷𝐷 and 𝑀𝑆𝐽𝑁 by a significant

amount, the RL based machine realized longer completion

times, as shown in Figure 4.

Table 3 shows an overview of all measured targets for the

described experiments.

Table 3: Overall experimentation results for the agent pairs 𝑀𝑆𝐽𝑁 ×⁡𝑇𝐹𝐶𝐹𝑆,

𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆 ,⁡𝑀𝑅𝐿 × 𝑇𝑅𝐿, 𝑀𝑅𝐿 × 𝑇𝐹𝐶𝐹𝑆 with the achieved mean total

makespan 𝐶𝑚̅𝑎𝑥, mean lateness L̅ and maximum lateness Lmax.

Decision rule 𝐶𝑚̅𝑎𝑥 𝐿̅⁡ L𝑚𝑎𝑥

𝑀𝑆𝐽𝑁 × 𝑇𝐹𝐶𝐹𝑆 658,2 5,24 25,19

𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆 672,09 0 0

𝑀𝑅𝐿 ⁡× 𝑇𝐹𝐶𝐹𝑆 658 0 0

𝑀𝑅𝐿 × 𝑇𝑅𝐿 634,03 0 0

 Machine

Job Operation 𝑀1 𝑀2 𝑀3 𝑀4

𝐽1 𝑂1,1 10 15 - -

𝑂1,2 15 10 - -

𝑂1,3 - - 20 -

𝑂1,4 - - - 30

𝐽2 𝑂2,1 15 10 - -

𝑂2,2 - - 20 -

𝑂2,3 15 10 - -

𝑂2,4 - - - 30

𝐽3 𝑂3,1 10 15 - -

𝑂3,2 - - 20 -

𝑂3,3 10 15 - -

𝑂3,4 - - - 30

Figure 3 Visualization of the experimentation results for the agent pairs SJN

[𝑀𝑆𝐽𝑁 ×⁡𝑇𝐹𝐶𝐹𝑆] in blue, EDD[𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆] in orange and RL[𝑀𝑅𝐿 × 𝑇𝑅𝐿]

with their respective mean total makespan C̅max in red.

Figure 2 Overall view of the experimentation results for the agent pairs

SJN [𝑀𝑆𝐽𝑁 ×⁡𝑇𝐹𝐶𝐹𝑆] in blue, EDD[𝑀𝐸𝐷𝐷 × 𝑇𝐹𝐶𝐹𝑆] in orange and

RL[𝑀𝑅𝐿 × 𝑇𝑅𝐿]. The theoretical minimum Min is added in red.

 Author name / Procedia CIRP 00 (2021) 000–000 5

Over the 100 test planning instances, it was found that the

MARL system consisting of agents for the machines and the

transport units can achieve shorter total completion times than

other heuristics and can match the EDD heuristic in terms of

lateness. It is particularly interesting that the combination of a

RL controlled machines in the multiagent system in

combination with RL controlled transport units achieves better

results than a combination with a FCFS controlled transport

system. The heuristics EDD and SJN, on the other hand, did

not perform significantly worse or better in this case.

5.2. Discussion

The results achieved are well above the minimum of 554

time units for all the processes used. However, since this value

does not take into account constraints such as transport capacity

limits and the physical location of the transport units, the

limiting factor here is the coordination between the machines

and the logistics. Here, a simultaneous planning of the machine

scheduling and the transport units could show that such a multi-

agent system, based on deep reinforcement learning, is able to

optimize such problems under multiple objectives. In terms of

total completion time, the system was even able to undercut

heuristics specifically designed for this purpose. It is

particularly interesting that the RL logistics system achieves

better results than an FCFS heuristic only when paired with an

RL controlled machine.

These results indicate that simultaneous planning of the

machines and transport units offers further potential for other

optimization criteria due to the interactions between them.

The simple modeling of an optimization problem with such

an approach is also interesting for practice. No formalized

relationships between the components of a production system

have to be derived. Thus, an explicit objective function does

not have to be formulated. Only restrictions, like deadlines, and

optimization variables, like the minimization of the completion

time, must be manually set up. However, due to the

implementation, this can be done by non-experts. Furthermore,

additional event-driven optimization targets, like minimizing

collisions between transport units, can be included. The main

question here is the design of the positive and negative rewards.

6. Summary and conclusion

In this paper, a concept for simultaneous machine job

scheduling with transport planning in a flexible job shop using

a MARL algorithm was presented. The results obtained with it

showed that MARL systems are able to optimize scheduling

problems considering multiple objectives. In particular, the

actual inclusion of the location of transport units, as it occurs

with autonomous transport units, increases the transferability

of such generated problems to real production systems.

Future research will investigate how the integration of

further planning areas affects the quality of the planning. The

goal is thus a holistically planned production plant.

Furthermore, the MARL system will be examined for reactive

aspects, such as the failure of a machine. It is interesting to

consider whether such systems reflect patterns known from

lean manufacturing or whether new patterns in the scheduling

of production systems are emerging.

Acknowledgements

This work has been partially funded by the European

Commission through the H2020 ICT-38 Project MAS4AI -

Multi-Agent Systems for Pervasive Artificial Intelligence for

assisting Humans in Modular Production (No. 957204).

References

[1] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal Policy

Optimization Algorithms. 2018, available online:

https://arxiv.org/abs/1707.06347, last visited 23.12.2020.

[2] Juliani A, Berges VP, Teng E, Cohen A, Harper J, Elion C, Goy C, Gao Y,

Henry H, Mattar M, Lange D. Unity: A General Platform for Intelligent

Agents. 2018, available online: https://arxiv.org/abs/1809.02627, last

visited 18.11.2020.

[3] Gabel T, Riedmiller M. Scaling adaptive agent-based reactive job-shop

scheduling to large-scale problems. 2007 IEEE Symposium on

Computational Intelligence in Scheduling, pp. 259–266.

[4] Baer S, Bakakeu J, Meyes R, Meisen T. Multi-agent reinforcement learning

for job shop scheduling in flexible manufacturing systems. 2019 IEEE

Second International Conference on Artificial Intelligence for Industries

(AI4I), pp. 22–25.

[5] Waschneck B, Reichstaller A, Belzner L, Altenmüller T, Bauernhansl T,

Knapp A, Kyek A. Optimization of global production scheduling with deep

reinforcement learning.2018 Procedia CIRP, vol. 72, pp. 1264–1269.

[6] Li X, Xie J, Peng, K, Li H, Gao L.. Review on flexible job shop scheduling.

2019 IET Collaborative Intelligent Manufacturing. 1. 10.1049/iet-

cim.2018.0009.

[7] VDI 3633. Simulation von Logistik-,Materialfluss- und

Produktionssystemen - Begriffe. 2018.

[8] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G,

Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S,

Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap TP, Leach M,

Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of Go with

deep neural networks and tree search. 2016 Nature, 529 (7587), pp. 484–

489.

[9] Schulman J, Levine S, Moritz M, Jordan M, Abbeel P. Trust region policy

optimization. 2015 Proceedings of the 32nd International Conference on

Figure 4 Experimentation results for the agent pairs 𝑀𝑅𝐿 × 𝑇𝑅𝐿 in green

𝑀𝑅𝐿 × 𝑇𝐹𝐶𝐹𝑆 in brown with their respective mean total makespan C̅max in

red.

6 Author name / Procedia CIRP 00 (2021) 000–000

International Conference on Machine Learning - Volume 37 (ICML'15).

JMLR.org, 1889–1897..

[10] Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D,

Wierstra D. Continous Control with Deep Reinforcement learning. 2015

Available online: https://arxiv.org/abs/1509.02971. Last visited:

05.01.2021.

[11] Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft Actor-Critic:

Off-Policy Maximum Entropy Deep Reinforcement Learning with a

Stochastic Actor. 2018 Proceedings of the 35th International Conference

on Machine Learning, 80:1861-1870.

[12] Fujimoto S, van Hoof H, Meger D. Addressing Function Approximation

Error in Actor-Critic Methods. 2018 Proceedings of the 35th International

Conference on Machine learning, 80:1587:1596.

[13] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T, Silver D,

Kavukcuoglu K. Asynchronous Methods for Deep Reinforcement

Learning. 2016 Proceedings of the 33rd International Conference on

Machine Learning, 48:1928-1937..

[14] Baker B, Kanitscheider I, Markov T, Wu Y, Powell G, McGrew B,

Mordatch I. Emergent Tool Use From Multi-Agent Autocurricula. 2020.

Available online: https://arxiv.org/abs/1909.07528, last visited:

05.01.2021.

[15] Monostori L., Csáji B.Cs., Kádár B., Adaptation and Learning in

Distributed Production Control, CIRP Annals, Volume 53, Issue 1, 2004,

Pages 349-352, ISSN 0007-8506, https://doi.org/10.1016/S0007-

8506(07)60714-8.

