
University of Saarland
Faculty of Mathematics and Computer Science

Department of Computer Science

Master Thesis

Automatic Assignment of Semantic
Frames in Dialogue

submitted by

Natalia Skachkova

Supervisor: Prof. Dr. Josef van Genabith
Co-Supervisor: Ing. Ivana Kruijff-Korbayová, Ph.D.

January 24, 2021

ii

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis .

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum/Date) (Unterschrift/Signature)

natalia
Stamp

natalia
Stamp

Abstract

Automatic Assignment of Semantic Frames in Dialogue

Natural language understanding (nlu) is one of the most challenging nlp tasks. There
exist different approaches to ‘teaching’ a machine to ‘understand’ the meaning of words,
sentences and larger units of text. One of them employs the ideas of frame semantics.

According to frame semantics, a semantic frame represents some event or situation.
The meaning of a word can be understood only in context, and both the word and the
expressions that introduce the context take certain slots of a frame.

Currently, the application of frame semantics to nlu tasks is not a very well-
explored research topic. The task of automatic assignment of semantic frames in dia-
logue is hardly studied at all. An additional challenge here is a lack of annotated data.
However, classification of utterances using frames offers a lot of advantages: it allows
to capture the semantics of the whole utterance, gives it structure and has necessary
inventory to formalize this structure together with the relations between its elements.

In this thesis we investigate the potential of frame semantics as a meaning rep-
resentation framework for team communication in a disaster response scenario. We
focus on the automatic frame assignment and retrain pafibert, which is one of the
state-of-the-art frame classifiers, on English and German tradr data. We examine
the performance of both models and discuss their adjustments, such as sampling of
additional instances from an unrelated domain, adding extra features to input token
representations, applying frame filtering to exclude unlikely candidate frames and some
others.

We show that sampling extra out-of-domain training data has a limited positive
effect if the original training set is small, and that filtering may also produce a positive
influence on the classifier performance, if the training set is large enough and has a
good coverage of frame-evoking targets. We discuss an unexpected impact of extra
features on the models’ behaviour and perform a careful study of the mistakes made
by the classifiers.

In addition, we present a detailed analysis of all the corpora used in our experiments
with respect to the distributions of semantic frames, lexical units that evoke them,
parts of speech of these units and so on. The results of this analysis can be useful for
further research in the area of frame semantics. Finally, we summarize our experience
of annotating tradr data with frames in the form of annotation guidelines.

iii

Contents

Abstract iii

Contents v

1 Introduction 3

2 Background and Related Work 7
2.1 Meaning representation frameworks . 7
2.2 Frame semantics . 9

2.2.1 FrameNet project . 10
2.2.2 FrameNet annotation principles 12
2.2.3 Corpora with semantic frame annotation 13
2.2.4 Frame semantics in nlp . 16

2.3 Multiclass classification with neural networks 22
2.3.1 Neural Networks . 22
2.3.2 bert model . 24

2.4 Handling imbalanced data . 28
2.4.1 Data level approaches . 28
2.4.2 Algorithmic level approaches . 29

2.5 Performance measures for imbalanced data 31
2.5.1 Sensitivity and specificity . 32
2.5.2 False positive and false negative rates 32
2.5.3 Geometric mean . 33
2.5.4 Index of balanced accuracy . 33

2.6 Micro- and macro-averaging . 34

3 Data 37
3.1 tradr data . 37

3.1.1 Domain . 37
3.1.2 Characteristics of team communication 38
3.1.3 Domain-typical topics . 41
3.1.4 Dialogue turns distribution . 43
3.1.5 Utterance completeness . 45
3.1.6 Semantic frames distribution . 46
3.1.7 lu and pos distributions . 49

v

vi Contents

3.1.8 Ambiguity of lus . 50
3.2 FrameNet data . 52

3.2.1 Domain . 52
3.2.2 Semantic frames distribution . 53
3.2.3 lu and pos distributions . 55
3.2.4 Ambiguity of lus . 56

3.3 tradr vs. FrameNet: comparison . 57
3.4 German tradr and salsa data . 58
3.5 Data for experiments . 61

4 Experiments and Discussion 65
4.1 Initial models for English tradr . 65

4.1.1 Architecture . 66
4.1.2 Results and discussion . 68

4.2 Adjustments of the English pafibert model 72
4.2.1 Changing context window size 72
4.2.2 Sampling from FrameNet data 74
4.2.3 Adding features . 78
4.2.4 Frame filtering . 83

4.3 German frame classifier . 86

5 Conclusion and Future Work 93

A Annotation Guidelines 97

B New Frames 113

C Multiclass classification methods 117

Bibliography 123

1

Acknowledgements

I wish to express my sincere appreciation to my supervisors, Ing. Ivana Kruijff-
Korbayová, Ph.D. and Prof. Dr. Josef van Genabith, who offered me an opportunity
to work on this interesting topic, helped me with advice, gave feedback and insightful
comments. I would also like to thank my fellow students/colleagues Tatiana Anikina
for sharing useful ideas for the experiments and Daria Fedorova for her help with the
annotation of the tradr data and systematization of the correspondences between
FrameNet and salsa frame labels.

Chapter 1

Introduction

Undoubtedly, nowadays natural language processing (nlp) is living through exciting
times, characterized by a rapid development and success in various fields, such as
syntax, semantics, discourse or speech. Recent advances in neural networks as well as
ever-growing computational and memory capacities allowed to train language models
that show great results in such tasks as segmentation, parsing, tagging, different sorts
of labelling and many others.

There exist models that are good at solving more complex problems, e.g., machine
translation, summarization, co-reference resolution, information extraction, content
analysis or question answering. Such tasks are closely related to semantics and their
full realization assumes processing input in context. Often they imply performing
inference.

Now it is also possible to build language models for writing poetry, fiction, program-
ming code and so on. There are models that allow us to talk with some application -
to order food, buy tickets, choose a restaurant, a cinema or find the nearest parking
place. All this sometimes makes us think that a computer is able to understand spoken
or written speech and think like humans do.

How do humans think? And what does it mean - ‘to understand’? The answers
to these questions lie out of the scope of the present thesis, because the phenomena
under examination are rather complex processes. And still, some of their aspects can
be analyzed from the point of view of computational linguistics and computer science.
They also can be simulated using state of the art machine learning techniques. Such
simulation often implies using some meaning representation framework as a means of
‘understanding’ the meaning of a sentence or an utterance.

In the present work we would like to refer to the theory of frame semantics as a
meaning representation framework for dialogues from the domain of disaster response.
Our work is actually a part of a larger research project that aims at extracting run-time
mission knowledge from verbal team communication in a disaster response scenario.
Mission knowledge encompasses the mission goals, tasks that mission participants asked
to perform and their status, the relevant objects and locations and so on. Extracting
this information and keeping track of changes in a dynamic mission environment can
help provide situation awareness and teamwork assistance [Willms et al., 2019].

Frame semantics is a paradigm defining the meaning of words through the context
they are used in [Fillmore, 1976]. This assumes that, depending on context, a word (or

3

4 Introduction

an expression) is able to evoke in our minds a certain event or situation together with
a set of slots called frame elements associated with it, even if some of these slots were
not explicitly filled in the sentence.

Using frame semantics as a full meaning representation structure implies perform-
ing frame semantic parsing, namely identifying frame-evoking elements (targets) and
corresponding frames, as well as recognizing certain spans as frame elements and clas-
sifying them. These are challenging tasks, with the main problems being a lack of
training data, a great variety of frames and polysemy of words. In our thesis we will
focus only on automatic assignment of semantic frames in English and German tradr
dialogues [Kruijff-Korbayová et al., 2015] given a target. And before doing this, we will
also need to study the main characteristics of team communication in our data, and
to annotate the corpus with frames and targets that evoke them. So, in this thesis we
will try to answer the following research questions:

1. Can we apply existing guidelines for text annotation to dialogue data? Relying
on FrameNet annotation guidelines by Ruppenhofer et al. [2006], we will annotate
all tradr dialogues with semantic frames, targets (frame related elements) and
lexical units. We will summarize our experience, highlight the differences in
the annotation of text and dialogue data, and illustrate the main characteristics
of our annotation approach, as well as challenging cases that require further
consideration.

2. Is the tradr corpus much different from other available data annotated with
frames, namely FrameNet [Baker and Sato, 2003] and salsa [Burchardt et al.,
2006]? We will present a detailed analysis of these datasets, including their do-
mains and distributions of semantic frames, lexical units of frame-evoking targets
and their parts of speech. This will allow us to estimate the possibility of using
out-of-domain data for training a frame classifier for team communication in a
disaster response scenario.

3. Can the frame distribution influence the performance of a classifier? We will
investigate why multiclass imbalanced data requires specific learning approaches
and/or specific performance metrics and will give an overview of them.

4. Given a target expression, how to train a classifier to assign frames? Can some
existing models be reused or fine-tuned on tradr data? We will consider several
approaches to building a frame classifier for dialogue data from the domain of
disaster response. We will start with a simple sequence classification approach
that assumes fine-tuning of a pretrained bertbase model [Devlin et al., 2019] on
tradr data. Next, we will consider reusing one of the existing state-of-the-art
frame classifiers trained on the FrameNet text data for English tradr dialogues,
as well as retraining this classifier on our English or German data.

5. How well will a classifier trained on text perform on dialogue data? Will the
performance of the classifier change if we train it on mixed data (FrameNet
plus tradr)? We will suggest three different sampling approaches, discuss the
mistakes that the classifiers make, and try to explain why they make them. In

5

contrast to many papers that report standard accuracy, precision, recall and F-
score to measure the performance of a frame classifier, we will concentrate on
metrics specifically designed for imbalanced data, e.g., geometric mean and the
index of balanced accuracy.

6. Is it possible to achieve a better performance of the state-of-the-art classifier
trained on tradr data? If yes, then how? And if no, then why? We will
examine several opportunities for the improvement of the classifier performance,
such as changing the size of the context window of the frame-evoking targets,
enriching the input tokens with lexical and discourse features and applying the
frame filtering mechanism.

7. Are there any differences in training a frame classifier on English and German
tradr data? Do sampling and adding extra features have a similar effect on the
two classifiers? We will compare the performance of English and German models
and try to explain possible differences or similarities.

The structure of the thesis is as follows. In Chapter 2 we will present background
information in order to provide the necessary context for our research, such as a survey
of meaning representation frameworks, the key points of the frame semantics theory
and its realization as the FrameNet project that resulted in the creation of a frame
database and the FrameNet corpus. We will also give an overview of other available
corpora, both text and dialogue, annotated with frames, and try to summarize the main
achievements in frame-semantic parsing at the levels of a separate sentence/utterance
and discourse. Next, we will discuss multiclass classification with a focus on neural
networks and bert, as bertbase makes up the core of all the frame classifiers that we
are going to train. Because the datasets we will be working with are not only multiclass
but also heavily imbalanced, we will give an overview of the approaches to deal with
imbalanced data, and introduce suitable performance measures.

Chapter 3 will be devoted to the analysis of English and German tradr, as well
as FrameNet and salsa data. We will examine and compare their domains, size, the
distributions of semantic frames, lexical units and so on. Additionally, we will explain
how we preprocessed all data for the experiments.

In the next chapter we will present the frame classifiers, namely our baseline which
is a simple sequence classification model trained on tradr data, and the pafibert
model [Tan and Na, 2019] that we want to reuse. We will investigate how well the
pafibert model performs on the tradr corpus when trained on in-domain and out-
of-domain data, analyse the classifier mistakes, introduce several modifications of the
basic pafibert model, and discuss where and why they fail or succeed. Where possible,
we will run the same experiments in parallel for English and German tradr data and
compare the results.

Finally, in Chapter 5 we will make a conclusion. In addition to that, in Appendix
A the interested reader can find the annotation guidelines describing our approach
to the annotation of tradr data with semantic frames, targets, lexical units and so
on. Appendix B contains the definitions of new frames that we introduced, as well as
examples. Appendix C provides additional information about multiclass classification
techniques.

Chapter 2

Background and Related Work

The aim of this chapter is to give the reader the necessary background knowledge about
various topics related to automatic assignment of semantic frames in dialogue. We will
start with a definition of semantic parsing and a brief overview of meaning represen-
tation frameworks. This will help familiarize the reader with various approaches to
capturing the meaning of a sentence or an utterance, and illustrate the place of frame
semantics among them. We will explain how frame semantics is different from these
approaches, and why we decided to choose it as a meaning representation framework.
The next section will present the FrameNet project as a practical realization of frame
semantics, and provide the reader with necessary terminology and examples. In addi-
tion, we will also give an overview of various corpora annotated with semantic frames
and introduce a number of frameworks designed to perform frame-semantic parsing.
As the goal of our work is to train a frame classifier attempting to differentiate between
hundreds of labels, we will also discuss neural networks as one of the most common
approaches to multiclass classification. We will focus on the bert model, which will be
used as a core element of all our models that will be presented later. Finally, we will
summarize the most common approaches to working with imbalanced data, explain
why some typical performance metrics should be avoided when working with it, and
introduce the metrics that we are going to use instead.

2.1 Meaning representation frameworks

Before we proceed with the topic of frame semantics, we would like to explain in
more detail what semantic parsing in general is, what approaches to the meaning
representation of a sentence/utterance or even a larger piece of discourse exist, and
also to compare frame semantics with these approaches.

Kate andWong [2010] define semantic parsing as transforming natural language sen-
tences into computer executable complete meaning representations for domain-specific
applications. This definition assumes that there should exist some formal structure,
e.g., a graph, a table with slots, a logical formula, executable program code, etc. and an
algorithm that would translate a sentence in natural language into this structure. The
algorithm can be based on some hand-crafted rules or trained on some data. According
to Kate and Wong [2010], semantic parsing assumes deep semantic analysis, its goal is

7

8 Background and Related Work

to understand the whole sentence. Because the result of semantic parsing is meant to
be read by a machine, the output is supposed to be exact and non-ambiguous.

There exist various approaches to representing the meaning of a sentence. Among
the earliest meaning representation frameworks is, e.g., the one used in the lsnlis
project (the Lunar Sciences Natural Language Information System) [Woods, 1972].
The framework consists of templates that represent an extended variant of the ordi-
nary predicate calculus notation with Boolean connectors, such as ‘and’ and ‘or’, and
quantifiers. The main goal of lsnlis is to assist lunar geologists in searching necessary
information in a large computer database, and the meaning representation formalism
is necessary to convert the queries in natural language into a machine-readable form.

Another way to capture meaning representation is to use templates with goals (in-
tents) and corresponding slots. Such an approach is realized, e.g., in the atis (Air
Travel Information System) corpus created for the evaluation of the spoken language
understanding systems [Price, 1990]. The corpus contains utterances and their map-
pings to intents and slots. The templates are designed for the domain of air travel, e.g.,
the intent ‘Airfare’ has such slots as ‘Cost_relative’, ‘Departure_city’, ‘Arrival_city’
and so on.

Speaking about more recent meaning representation frameworks, it is necessary
to mention Discourse Representation Theory (drt) [Kamp et al., 2011], which aims
at dynamic interpretation of sentences depending on their context. drt focuses on
such phenomena as anaphora, conditionals, quantification, tense, presupposition, and
propositional attitudes. According to drt, a sentence/utterance evokes a mental rep-
resentation in the head of its reader/hearer. This mental representation is called a
Discourse Representation Structure (drs). It can change as discourse unfolds and new
information comes in. A drs (often depicted as a box) consists of two parts: a set of
discourse referents which represent objects and a set of drs-conditions which encode
the information about referents. A drs-condition can be atomic, i.e. be a predicate,
or complex, i.e. embed one or more other drss. More details about drt, as well as
examples, can be found in the book by Kamp et al. [2011].

The drt framework served as a basis for the creation of a corpus called Groningen
Meaning Bank (gmb) [Basile et al., 2012]. It is a semantic resource that integrates
various phenomena, e.g., predicate-argument structure, scope, tense, thematic roles,
rhetorical relations and presuppositions.

As Koller et al. [2019] notice, nowadays there is a growing interest in the represen-
tation of meaning in the form of directed graphs. Semantic graphs may have several
roots, several incoming (except for roots) and outcoming edges, and they need not be
connected, i.e. a graph may contain a pair of nodes that are not connected by a path
[Oepen et al., 2019]. Among the most well-known graph-based meaning representa-
tion frameworks are, e.g., ccg word-word dependencies [Hockenmaier and Steedman,
2007], ucca (Universal Conceptual Cognitive Annotation) [Abend and Rappoport,
2013], dmrs (Dependency Minimal Recursion Semantics) [Copestake, 2009] and amr
(Abstract Meaning Representation) [Banarescu et al., 2013]. Graph-based approaches
can be classified based on different criteria. It can be the aspect of meaning they fo-
cus on, like predicate-argument structure, the interpretation of nodes, e.g., nodes may
represent individual entities or more abstract objects, etc. One of the most widely
used classifications relies on the relationship between the tokens of the sentence and

2.2 Frame semantics 9

the nodes of the graph [Koller et al., 2019]. More information, including systematic
overviews of the graph-based approaches, the interested reader can find, e.g., in papers
by Koller et al. [2019]; Oepen et al. [2019]; Kate and Wong [2010].

The list of meaning representation frameworks that we have just mentioned is, of
course, not exhaustive. More examples can be found, e.g., in the surveys by Kamath
and Das [2018] or Zhu et al. [2019]. It should also be said that most of the frameworks
we mentioned focus more on general concepts rather than on nuances of lexical meaning.
However, often it is also important to take lexical semantics into account. One of the
most advanced meaning representation frameworks that are based on it is called frame1

semantics.
We will present frame semantics in detail in the next section, and only point out its

differences to the rest of the approaches. First of all, frame semantics does not use any
logical formalisms or graphs, instead it splits the sentence into spans (simple substrings)
with respect to target token(s) and assigns categories to them like, e.g., semantic role
labeling does. So, the representations are simple and can be easily read and understood
by a human. Consequently, much less effort is required for the annotation of text
with semantic frames and frame elements. Second, the representations capture only
the lexical meaning and do not include any information about quantification, scope,
tense, etc. Third, sentence representations are not supposed to be dynamic, i.e. frame
semantics does not have enough inventory to track changes and update the categories
respectively. So, on the one hand, frame semantics has lots of limitations, but on the
other hand, its simplicity and the fact that it focuses on lexical semantics make it very
attractive as a way of meaning representation, which can be combined, e.g., with the
logic-based frameworks.

2.2 Frame semantics

In this section we will briefly summarize the main ideas behind the theory of frame
semantics, give a concise description of the FrameNet database for the English language
that has roots in this theory, present the basic frame annotation principles for text and
dialogue, and introduce the most important concepts that will be used throughout
the work, such as frame, target, lexical unit, etc., and provide examples illustrating
them. We will also give an overview of other corpora annotated with semantic frames
besides FrameNet, including text and dialogue data of different size and from different
domains. We will compare them with the tradr data and discuss the possibility
of using them as training data for our model. Next, we will summarize the most
notable frameworks that perform frame-semantic parsing, including frameworks that
focus only on automatic frame assignment, and more complex ones that also perform
frame element recognition and classification. In addition, we will present the main
achievements in frame-semantic parsing at discourse level. To provide the reader with
a systematized overview of the area, we will track the development of frame-semantic-
parsing through time, outline the main tendencies and compare various frameworks
with each other.

1Note that we use the term ‘frame’ as defined by Ruppenhofer et al. [2006], and not in its narrow
sense meaning a structure with slots used in task-oriented dialogues.

10 Background and Related Work

According to Petruck [1996], frame semantics is a research program in empirical
semantics which emphasizes the continuities between language and experience, and
provides a framework for presenting the results of that research.

The theory of frame semantics goes back to the 1970s. One of the pioneers in
this area of research was Charles J. Fillmore. He suggested that a language description
should include not only lexicon and grammar, but also a set of ‘frames’ that incorporate
the semantics of the language elements [Fillmore, 1976]. Fillmore [1982] defines a frame
as a system of concepts which are related to each other, and states that one cannot
understand a separate concept without understanding the whole structure it is a part
of. This structure usually comes to mind automatically, when we hear a word in a
certain context. Frame semantics tries to describe and formalize such structures. The
notion of frame can be traced back to Fillmore’s ‘case frames’, that were parts of a
framework called ‘case grammar’ [Fillmore, 1967]. According to case grammar, the
meaning of a sentence is conveyed by a predicating word which is a verb. Each verb is
associated with a certain number of slots or ‘cases’. The elements that fill in the slots
are the verb’s arguments. Fillmore introduced six main argument types: Agentive,
Instrumental, Dative, Factitive, Locative and Objective. Case frames are descriptions
of predicates (verbs) together with semantic roles of their arguments, and represent
abstract situations or scenes. The main disadvantage of case grammar was the fact
that grouping verbs by their valency patterns did not always allow to capture the
difference in their meanings, e.g., the difference between the phrases “give it to John”
and “send it to Chicago” was lost [Fillmore, 1982]. To overcome the limitations of
mixed syntactic-semantic valence description of predicates, in his subsequent research
Fillmore focused more on frames rather than on verbs and arguments.

It should be emphasized that Fillmore [1982] uses the word ‘frame’ as a general
cover term for such concepts as ‘schema’, ‘script’, ‘scenario’, or ‘cognitive model’. Ac-
cording to Fillmore, all meaningful words in a language evoke in our mind certain
situations, and frames serve to identify them and give them structure and coherence.
He stressed that the frames are universal, however, the way they are realized may differ
from language to language [Fillmore, 1976].

The reason for this difference is the fact that frames reflect the environment, the
model of the world, experiences and cultural background of a language user. The fol-
lowing example taken from a paper by Petruck [1996] illustrates the idea: the sentence
“Julia will open her presents after blowing out the candles and eating some cake” evokes
in our minds a birthday party scene despite the fact that the word ‘birthday’ was not
mentioned. We simply automatically associate ‘presents’, ‘blowing out the candles’ and
‘eating cake’ with a birthday party based on our cultural experience.

So, we can conclude that frame semantics aims at systematic description of lexical
meanings of words by means of giving structure to abstract stereotypical events and
situations evoked by these words. In the rest of the current section we will show how
the ideas of frame semantics can be realized in practice.

2.2.1 FrameNet project

The theory of frame semantics served as a basis for the FrameNet project that started
in 1997 [Baker et al., 1998]. The project resulted in the following achievements. First,

2.2 Frame semantics 11

the notions of frame, frame element (fe) and target got clear definitions presented
below.

Frame is a schematic representation of a situation involving various participants, props
(i.e. any inanimate entities that figure into the description of a scene characterized in
a frame) and other conceptual roles, each of which is a frame element.
Frame element is a frame-specific defined semantic role that is the basic unit of a
frame.
Target is the frame-evoking element in respect to which the annotation is provided.

Second, a complex lexical database that is both human- and machine-readable was
created and made publicly available online. Third, a software suite for editing and
annotating frames was developed. Later there also appeared a number of apis that
allow convenient ways to work with the FrameNet database, e.g., the nltk FrameNet
api [Schneider and Wooters, 2017] and Valencer [Kabbach and Ribeyre, 2016].

It is necessary to give some more details about the FrameNet database. It consists
of two closely related and intertwined parts.

The lexical database contains more than 13,600 lexical entries also known as lex-
ical units (lus), which can be represented by a separate word, a multi-word expression
or an idiomatic phrase [Ruppenhofer et al., 2006]. Each entry introduces a particular
word sense that evokes a certain frame. It includes a brief sense description, a table
of fes and their syntactic representations that are typical for this word sense, possi-
ble valence patterns found in the data for this lu and a list of manually annotated
examples.

The frame database includes more than 1,200 frames. For each frame there is
a definition, a list of core (i.e. essential to the meaning of a frame), non-core (i.e.
not uniquely characterizing) and extra-thematic (relating to or encompassing another
frame) fes, information about various relations connecting a frame with other frames
and a list of lus that evoke this frame. Examples 2.2.1 and 2.2.2 illustrate the defini-
tion of ‘Inspecting’ frame and some of its fes. Notice that in Example 2.2.2 one of the
fes, namely ’Unwanted_entity’ is absent, and the abbreviation dni is given instead.
dni stands for ‘definite null instantiation’ and is used to mark the core element that is
omitted, because it can be understood from discourse context. There also exist other
types of null instantiation. They include ini (indefinite null instantiation) employed
to illustrate the missing objects of transitive verbs (e.g., eat, sew or bake) used intran-
sitively, and cni (constructional null instantiation) which introduces grammatically
licensed omissions, e.g., in imperative or passive structures.

Example 2.2.1. ‘Inspecting’ Frame Definition
An inspector directs his/her perceptual attention to a ground to ascertain whether
the ground is intact or whether an unwanted_entity is present. Alternatively,
the desired outcome of the inspection may be presented as a purpose.

Example 2.2.2. ‘Inspecting’ Frame’s FEs
[INSPECTOR He] moved toward the control panel and [TARGET inspected]
[GROUND it] [LOCATION_OF_PROTAGONIST from a distance], [MEANS without touching it]
[UNWANTED_ENTITY DNI].

12 Background and Related Work

FrameNet is stored as a relational database in mysql, accessible via a web interface
called Framesql (see Figure 2.1a). The interface allows users to make queries. It is
also possible to trace the relations between frames using the FrameGrapher (Figure
2.1b) and learn more about the FrameNet as a frame taxonomy via FrameLatticeList
(Figure 2.1c). To explore these features, the interested reader can refer to the Internet
site of the project [FrameNet, 2020]. The database can be extracted in the xml format
and used for various nlp applications.

(a) FrameSQL user interface

(b) FrameGrapher shows how
e.g., the frame ‘Inspecting’

relates other frames: red arrows
stand for ‘Inheritance’, pink ones
- for ‘Perspective On’ relations

(c) FrameLatticeList shows all frames that can be traced via different relations to one of the
root frames, e.g., the ‘Event’ frame

Figure 2.1: Various tools for working with the FrameNet database

2.2.2 FrameNet annotation principles

The creation of both lexical and frame databases and investigation of valence pat-
terns of hundreds of lus involved the annotation of thousands of sentences which are

2.2 Frame semantics 13

now available as the FrameNet corpus. In this section we will talk about FrameNet
annotation approaches and principles as presented in the annotation guidelines by Rup-
penhofer et al. [2006] and give a couple of examples. This can help better understand
the theory of frame semantics, as well as its differences from other meaning represen-
tation frameworks. We will start with two main approaches to frame annotations used
in the FrameNet project.

The first one is called lexicographic annotation. Its main goal is to study all
possible valency patterns of a lu in each of its senses, and store them in the database
together with examples.

The second one is called full-text annotation. It assumes that each meaningful
word in a sentence can evoke a frame. This results in creating several annotation sets
for each sentence.

Currently, there are more than 174,500 lexicographic annotation sets and more than
28,400 full-text ones in FrameNet. The data for the lexicographic annotation mostly
comes from the British National Corpus (bnc). And that for full-text annotation was
drawn from several sources, such as the American National Corpus (anc), the Nuclear
Threat Initiative website, and the Wall Street Journal (wsj) [Baker, 2008]. More
details about the data sources will be given in the next chapter.

Both annotation approaches assume having three main layers of annotation for each
target. The first layer consists of fes annotation of a frame evoked by a certain target,
which is annotated too. The goal is to find in the sentence all the dependents of the
target word. As mentioned earlier, in case some core fes are absent in the sentence,
the empty slots must be marked with the correct null instantiation type. As a rule,
not only the heads but the whole syntactic constituents of the target are annotated
(see Example 2.2.2). The second layer serves to identify phrase types of the syntactic
constituents. There are several kinds of noun, prepositional, verb and other phrases.
Finally, the third layer is used for assigning grammatical functions to the fes. Each
target type, i.e. verb, noun, adjective, and so on, is associated with certain grammatical
functions. The main ones are ’External Argument’, ’Object’ and ’Dependent’. The full
lists of phrase types and grammatical functions can be found in [Ruppenhofer et al.,
2006]. Example 2.2.3 shows how we can use them for annotation. Notice that the fes
from Example 2.2.2 presented earlier are actually assigned on top of the corresponding
syntactic structures/grammatical functions demonstrated in the current example.

Example 2.2.3. ‘Inspecting’ Frame’s phrase types and grammatical functions
[NP.Ext He] moved toward the control panel and [TARGET inspected] [NP.Obj it] [PP[from].Dep

from a distance], [PP[without].Dep without touching it] [DNI.– DNI].

We will examine the FrameNet corpus with respect to the distribution of semantic
frames and the ambiguity of lus in Chapter 3, and in Chapter 4 we will use the corpus
as primary and additional data for training a frame classifier.

2.2.3 Corpora with semantic frame annotation

Besides the FrameNet data, there exist other corpora annotated with semantic frames.
Here we will present those corpora that we are aware of. They include text and dialogue

14 Background and Related Work

data, and can be either freely found online or requested. Their overview will be given
in Table 2.1.

To start with, there exists the Manually Annotated Sub-Corpus (masc) [Ide, 2017].
It is in English. The corpus represents a part of the Open American National Corpus
(oanc) and consists of 500,000 tokens. The data belongs to 19 different genres and
contains 20 various types of annotation including semantic frames. However, dialogue
data makes merely 15% of the corpus and only about 40,000 tokens of the corpus were
annotated with frames using the full-text annotation approach [Passonneau et al.,
2012]. The corpus is in the tsv format and freely available.

A dataset in English called ‘Yahoo! Answers Gold Standard’ (yags) was created
specifically for testing frame-semantic parsers [Hartmann et al., 2017]. It is based on
web user-generated questions and answers and contains more than 1,400 sentences,
3,000 frame annotations, and 6,000 semantic role annotations. The corpus is in the
xml format and can be freely used for research purposes. The annotations are stored
separately as simple text files.

One more interesting dataset is fn-re [Alhoshan et al., 2018]. It contains 220 user
requirements (about 1,148 sentences with 21,012 tokens) meant for software develop-
ment, which were annotated with semantic frames and frame elements. The data comes
from various online sources, is stored in the xml format and is publicly available. The
corpus is also in English.

Another dataset containing annotations of frames, targets, frame elements and
syntactic roles is called salsa [Burchardt et al., 2006]. It is a German newspaper
corpus. It includes annotations of more than 35,000 verbal and nominal instances.
Altogether the corpus makes up 838,307 tokens. It is in the tiger xml format and
can be requested for research.

There exist very few purely dialogue corpora annotated with semantic frames, and
nothing that we were able to find is in English.

One of such corpora is, e.g., an Arabic tihr_arc corpus of 4,000 dialogues, col-
lected using the Wizard of Oz approach, when a human operator simulates the re-
sponses of a telephone server. The corpus belongs to the touristic domain and was
annotated with semantic frames as part of the project on improvement of human-
machine dialogue systems [Lhioui et al., 2017].

A corpus called ratp-decoda in French contains more than 2,000 manually tran-
scribed telephone conversations of the Customer Care Service [Lailler et al., 2016]. The
topics include schedules, traffic states, lost and found objects, railway related problems
and many others. The corpus contains more than 146,000 frame annotations based on
the guidelines provided in the paper by Trione et al. [2015].

Another dialogue corpus annotated with semantic frames was created in the course
of the luna (Language Understanding in multilingual communication systems) project.
This corpus is in Italian. It contain 180 human-human (9,074 utterances with 66,290 to-
kens) and 249 human-machine (1,525 utterances with 12,420 tokens) dialogues, recorded
in the call center of the customer service of the Italian Consortium for Information Sys-
tems. The former are spontaneous conversations about software/hardware problems,
the latter were recorded under the Wizard of Oz setting using ten predefined scenarios
[Raymond et al., 2008].

As our task is to perform automatic frame assignment in team communication

2.2 Frame semantics 15

in disaster response scenario, and the corpus we have (tradr) is rather small, we
were very interested in finding other dialogue corpora annotated with semantic frames
from the same or related domain. However, we see that the absolute majority of the
presented dialogue data is not in English or German, which makes it difficult to use
them (multi- or cross-lingual approaches can be a part of future research). Next, all
the available text corpora in English or German come from the domains that are very
different from ours, and most of these corpora are not very large either. Finally, each
corpus is organized and structured in its own way (see Table 2.1).

Corpus Lang. Form Domain Size Format Publications

FrameNet English text newspaper texts 199,508 sentences
xml FrameNet [2020]4,751,140 tokens

masc English text & various genres # sentences n/a
graf Ide [2017]dialogue 500,000 tokens

yags English text question-answer pairs 1,415 sentences n/a Hartmann et al. [2017]from Yahoo! Answers # tokens n/a

fn-re English text user requirements for 1,148 sentences
xml Alhoshan et al. [2018]software development 21,012 tokens

salsa German text newspaper texts 35,236 sentences
tiger xml Burchardt et al. [2006]838,307 tokens

tihr_arc Arabic dialogue tourism
4,000 dialogues

n/a Lhioui et al. [2017]# sentences n/a
tokens n/a

ratp-decoda French dialogue customer care service
2,109 dialogues

xml Lailler et al. [2016]# sentences n/a
tokens n/a

luna Italian dialogue customer care service 10,599 utterances
tiger xml Raymond et al. [2008]78,710 tokens

Table 2.1: Overview of corpora annotated with semantic frames (‘n/a’ stands for
‘not available’)

As none of the presented datasets is ideally suited for our purposes, we will focus
on the tradr corpus as our primary data, and use the salsa corpus as a source
of additional training data for our German frame classifier. For training the English
version of the classifier we will use the FrameNet data. In contrast to other datasets
both FrameNet and salsa are quite large and have apis allowing to work with the data
conveniently. We will have a closer look at the salsa corpus together with FrameNet
and tradr in Chapter 3.

To wrap up our summary of the available corpora annotated with frames, we would
like to mention that most of them, including dialogue data, were annotated following
the FrameNet annotation guidelines (see Ruppenhofer et al. [2006]). We used these
guidelines to annotate the tradr data too, as it was difficult to find any instructions
designed specifically for dialogue. One of such rare examples is the luna project.
Their annotation instructions were very helpful to us. We relied on them to deal with
incomplete/elliptical and ungrammatical utterances, figurative meaning and new senses
that are not part of the FrameNet database. More details about the annotation of the
tradr corpus with frames can be found in Appendix A.

16 Background and Related Work

2.2.4 Frame semantics in nlp

In what follows we will present the most notable practical applications of frame seman-
tics in nlp. Earlier, in Section 2.1 we noticed that frame semantics is not one of the
most common meaning representation frameworks, however, since 2007, when frame
semantic structure extraction got included into the list of SemEval’07 tasks [Baker
et al., 2007], this research area has been gradually growing, and there regularly appear
new papers devoted to the topic of frame-semantic parsing. Most of them describe
approaches aiming to work on text data, but the outcomes of this research still can be
useful to us.

Some of the projects deal only with automatic frame assignment, others have a
bigger goal, namely, recognizing targets, frames and frame elements. And whereas
most frameworks focus on individual sentences, there also exist approaches to frame-
semantic parsing at discourse level.

We start with examples of the frameworks that concentrate on automatic frame as-
signment. This task assumes that the target is already given, and the main challenge
is to choose the correct frame in case of polysemous targets.

One of such frameworks is SimpleFrameId from the creators of the yags dataset
[Hartmann et al., 2017]. The main idea behind this framework is to represent the tar-
get and its context as vectors, concatenate them and train a classifier based on neural
networks that will assign the best-scoring frame to the given target-context representa-
tion. As an option, it is possible to perform frame filtering, using the information about
mapping of certain lexical units (lus) to certain frames from the FrameNet database.

The framework tsabcnn described in the paper by Zhao et al. [2018] also assumes
that the target is already identified and focuses on frame assignment. Each word
in a sentence is represented using word2vec embeddings. These representations are
concatenated with position vectors capturing the positions of words with respect to
the target. A classifier based on convolutional neural networks is then trained to learn
the frame labels.

The most recent approaches to frame assignment rely on bert embeddings and pre-
trained models [Devlin et al., 2019]. E.g., Sikos and Padó [2019] present four different
models based on bert embeddings, with and without fine-tuning.

A framework called pafibert [Tan and Na, 2019] is also based on bert embeddings
and on a pretrained bert model. Like SimpleFrameId, pafibert makes use of context
information and allows to do frame filtering. As part of the fine-tuning process it uses
an attention mechanism to give weights to words that make up the context of the
target.

One more interesting approach to automatic frame assignment was introduced by
Ribeiro et al. [2020]. It focuses on verbal frame-evoking targets and represents them
using contextualized elmo embeddings. In case the target is multi-word, Ribeiro et al.
[2020] use dependency parsing to get the head word. Next, the targets are treated
as nodes in a graph. A pair of nodes is connected only if the distance between them
is smaller than a certain threshold. The nodes are clustered using Chinese Whispers
algorithm [Biemann, 2006]. A new instance is classified by determining the closest
cluster. The approach is fully unsupervised.

We must emphasise that all the systems briefly described above were trained on

2.2 Frame semantics 17

text and never tested on dialogue data.
Now we will present the frameworks that perform frame-semantic parsing, i.e.

they detect frame-evoking targets, frames, argument (frame element) spans, and clas-
sify frame elements. We will start with the frameworks developed for text data.

The approach to frame elements identification suggested by Gildea and Jurafsky
[2002] is considered to be a pioneering work in the area of frame-semantic parsing,
despite the fact that such typical steps as target and frame detection are omitted. To
identify frame element labels Gildea and Jurafsky [2002] train a statistical classifier.
First, they parse the training data and manually match the frame elements with the
corresponding tree constituents. Second, they extract various features, such as phrase
type, governing category, position, head word and so on to represent these constituents.
The classifier learns the probabilities of semantic roles given a set of features. Gildea
and Jurafsky [2002] also examine the problem of frame element boundary detection.
They train a separate binary statistical classifier that learns to predict for a syntactic
tree constituent given as a set of features, whether it is a frame element or not.

One of the first frameworks that was built to identify targets, frames and frame
elements is called lth [Johansson and Nugues, 2007]. It performs target identification
using a set of hand-crafted rules. The frame and frame element recognition steps
employ dependency syntax and svm classifiers. For non-ambiguous targets a frame
can be retrieved using a simple mapping. Ambiguous targets are represented as feature
vectors, and include such features as target’s lemma, a set of target’s dependencies and
so on. An svm classifier is trained to disambiguate them. Frame element identification
is realized as a two-step procedure: argument identification and argument classification.
Both steps imply filtering out some nodes, e.g., support verbs and copulas, from the
parse tree and training an svm classifier based on hand-crafted features, such as the
target lemma, voice, or dependency path from the target to the node.

Das et al. [2010] with a model called semafor follow the approach presented by
Johansson and Nugues [2007]. They also rely on a set of rules for automatic target
extraction and use a very elaborated set of features to represent targets and frame
elements, but replace svm classifiers with feature-based, discriminative probabilistic
(log-linear) models. In addition, Das et al. [2010] examine a problem of overlapping
frame elements and apply beam-search technique to avoid this.

One of the most well-known frameworks was suggested by Hermann et al. [2014]
and also performs frame and argument identification given a target. It is one of the
first semantic parsers to use embeddings. The target is represented as a vector, certain
parts of which are reserved for certain argument representations. If some argument
is missing, its slot is filled with zeros. Then this sparse, high-dimensional vector is
mapped to a low-dimensional space. All frame labels are also represented in this low-
dimensional space as vectors. The classifier learns to minimize the distance between
the target vector and the correct label vector. For argument identification Hermann
et al. [2014] use a set of semantic roles of the given frame and a rule-based argument
extraction algorithm that in its turn exploits the dependency tree of the sentence. The
procedure is very similar to that of Das et al. [2010].

An interesting approach to frame-semantic parsing is realized in a framework named
Open-Sesame [Swayamdipta et al., 2017]. It is one of the first frame-semantic parsers
employing neural networks and embeddings for all the steps in the pipeline, namely

18 Background and Related Work

frame, argument span and argument identification. The model uses bidirectional lstm
for frame identification and segmental rnn based on combination of bilstm with a
semi-Markov conditional random field (crf) for span and argument detection, and does
not require syntactic or dependency parsing. However, the authors of the framework
mention that adding information about the syntactic structure of the sentence helps
to improve the performance of the classifier.

Yang and Mitchell [2017] present another framework that performs frame and ar-
gument identification with the help of neural networks. Frame identification is done
using a simple multi-layer network, while the second task assumes more complex ap-
proach, namely training two different neural networks. The first is called sequential
and relies on bilstm with crf and aims at modeling sentence-level information. The
second is called relational. It is a simple multi-layer network which captures span-level
dependencies between the target and its arguments. The second model is trained using
the knowledge extracted from the first one.

One of the most recent approaches to frame-semantic parsing was presented by
Kalyanpur et al. [2020]. It is interpreted as sequence-to-sequence generation problem,
and is based on the encoder-decoder architecture, namely on the t5 model, which is
available via the HuggingFace library [Wolf et al., 2020]. In contrast to other frame-
works mentioned earlier, Kalyanpur et al. [2020] do not treat frame-semantic parsing
as a pipeline, where frame identification is followed by argument detection and clas-
sification. Instead, they employ multi-task learning which assumes that two or more
models learn their tasks separately, but share parameters or part of the architecture.
Another notable characteristic of the approach is the use of New Oxford American
Dictionary (noad) [Lindberg and Stevenson, 1999] to provide a broader coverage as
the FrameNet word senses are not exhaustive.

Next, we will present two frame-semantic parsing frameworks designed for dialogue.
Unfortunately, they are not very recent, but still of a special interest to us.

As part of the above mentioned luna project, Coppola et al. [2008] developed
a frame-semantic parser for conversational speech. The parsing process includes four
main steps: target detection, frame disambiguation, frame element boundary detection,
semantic role classification. The first two steps are performed using heuristics and a
multi-classification approach, the realization of the last two steps is very similar to
the lth framework and involves syntactic parsing and training svm classifiers. The
difference is that Coppola et al. [2008] use additional structural features for svm. They
are tree kernels, polynomial kernels and their sum. Tree kernels are scalar products that
evaluate the number of common subtrees between pairs of parse trees. A polynomial
kernel is also a scalar that measures the strength of the relationship between two
objects: PK (o1, o2) = (c + ~x1 · ~x2)d, where o1, o2 are objects, c - constant, ~x1, ~x2 -
feature vectors and d - degree of the polynomial.

A semi-supervised approach to frame and frame element identification in dialogue
for French is presented by Trione et al. [2015]. Its main goal is actually to speed up the
manual annotation process, not pure frame-semantic parsing. The framework includes
three levels: data preprocessing, syntactic parsing adapted for conversational speech
and semantic parsing. The focus is on frame and argument span identification. The
targets and frames are detected with the help of a hand-crafted set of lexical triggers,
which includes 200 most frequent words from 7 domains. To perform span detection,

2.2 Frame semantics 19

Trione et al. [2015] adjust a dependency parser to the processing of spontaneous speech.
This is an iterative process: parse errors are analyzed and manually corrected, the
parser is retrained, and the procedure is repeated until the parses are good enough.
This is a very costly process. Frame element classification is performed manually.

Characteristic
features

Framework

G
ild

ea
&

Ju
ra
fs
ky

(2
00

2)

lt
h
(2
00

7)

lu
n
a
(2
00

8)

se
m

a
fo

r
(2
01

0)

H
er
m
an

n
et

al
.
(2
01

4)

Si
m
pl
eF

ra
m
eI
d
(2
01

7)

O
pe

n-
Se
sa
m
e
(2
01
7)

Y
an

g
&

M
it
ch
el
l(
20
17
)

t
sa

bc
n
n
(2
01
8)

pa
fi

be
rt

(2
01

9)

R
ib
ei
ro

et
al
.
(2
02
0)

K
al
ya

np
ur

et
al
.
(2
02
0)

hand-crafted rules X X X X
hand-crafted features X X X X X

kernels X
parsing X X X X X X X

embeddings X X X X X X X X
statistical classifier X

svm X X
conditional log-linear model X X

neural network X X X X X X
crf X X

clustering X X
graph structure X

Frame assignment accuracy n/a 62.1∗ n/a 61.44∗ 88.41 87.63 70.7∗ 88.2 89.72 88.97 80.26∗ 90.0

Table 2.2: Comparison of various frame-semantic parsing frameworks; scores
marked with ‘*’ stand for F-score (the authors do not report accuracy); ‘n/a’ means

that the scores are not available, because the frame recognition step is omitted

To summarize our survey of frame-semantic parsing, we would like to make the
following conclusions. As for target identification, most of the frameworks assume that
it is already given. If not, it is detected using heuristics and hand-crafted rules. For
frame identification it is crucial to use context and target position within the sentence.
Among all the parts of the frame-semantic parsing pipeline frame element detection is
the most difficult and complex one. Our overview of the frameworks allows to outline
several important tendencies. First, token/context representation has changed from
feature-based vectors to embeddings (often pretrained ones). As for argument span
representations, syntactic/dependency trees also got replaced with embeddings. There
happened a shift from rule-based and statistical models to neural network approaches,
and gradually complex neural network frameworks, e.g., tsabcnn or Open-Sesame,
gave way to simpler and more efficient ones based on pretrained embeddings and models
like bert. Table 2.2 compares most of the frameworks we have discussed, and is a good
illustration of tendencies that have been mentioned above. The last row of the table
presents the best results that these frameworks were able to achieve for the task of
automatic frame assignment.

So far we have discussed the frameworks that aim at capturing the meaning of
isolated sentences. However, for many practical applications it is more beneficial to

20 Background and Related Work

examine a sentence (or an utterance) as part of discourse and establish cross-sentence
links between the semantic structures, e.g., resolve implicit frame elements (the so-
called null instantiations in FrameNet) and find co-referential arguments.

One of the first attempts to analyse FrameNet as a means of knowledge repre-
sentation at discourse level was made by Fillmore and Baker [2001] who researched
FrameNet’s potential application for the task of text understanding. They view Frame-
Net as a way to assist with word-sense disambiguation, find semantic dependents of
frame-evoking elements, choose valence-justified parses, and activate topic-related vo-
cabulary for recognition and selection of the correct sense in successive parts of a text.
As an example, the researchers use FrameNet for the analysis of a small newspaper
text. They rely on syntactic parsing to identify frames and frame elements in all the
sentences, and try to determine parts of the structures that make the sentences coher-
ent. However, Fillmore and Baker [2001] focus only on the analysis and do not suggest
any algorithmic approaches.

A similar study was performed by Burchardt et al. [2005]. The researchers also
analyse a piece of newspaper writing. They assign frames and frame elements to it,
investigate different types of relations between frames and arguments and try to find
characteristic patterns in these relations which would allow to infer co-reference rela-
tions between frame elements and resolve implicit arguments. Burchardt et al. [2005]
differentiate between contextual relations that are based on deep parsing, e.g., struc-
tural embedding, adjacency or discourse relations, and lexico-semantic frame relations
captured by FrameNet, such as Inheritance and Subframe relations. The authors also
mention that further inference of co-reference relations and resolution of implicit argu-
ments can only be heuristic, as FrameNet provides partial conceptual structure. Finally,
the researchers present some ideas how the process of inference can be generalized and
automatized using the lfg grammars. More information about lfg grammars can be
found in the work by Butt et al. [2004].

Ruppenhofer et al. [2010] drew more attention to the topic of frame-semantic pars-
ing beyond the sentence-level, when they included the problem of linking events and
their participants in discourse into SemEval’10 tasks. The task focused on frame ele-
ment classification and on finding and filling implicit arguments. Due to the difficulty
and novelty of the task, only a few frameworks were submitted. In what follows, we
will briefly introduce two of them (the third framework is omitted as it performs frame
element resolution only at sentence level). As mentioned in Section 2.2.1, FrameNet
distinguishes between three types of implicit arguments: constructional, indefinite and
definite null instantiations. Both systems deal only with the third type of null instan-
tiations.

The first framework was already presented earlier. It is semafor [Das et al., 2010]
which was adapted for implicit argument recognition and resolution. The framework
models implicit arguments linking as a variant of role recognition with the set of po-
tential arguments being extended with noun phrases from the previous sentence. The
system also uses, among other information, semantic similarity between the heads of
potential arguments and role fillers in the training data.

The second framework called venses++ was developed by Tonelli and Delmonte
[2010]. It is a reduced version of their other framework called getaruns designed for
text understanding. venses++ is based on the lfg theory and has three modules:

2.2 Frame semantics 21

lexico-semantic, anaphora resolution and deep semantic. The modules are joined into
a pipeline which given a sentence outputs a predicate-argument structure as a logical
form. The system uses its own set of arguments that only partially overlap with
FrameNet frame elements. So, venses++ output is first mapped to frame elements.
Next, if the predicate is a verb, the system decides which core elements are missing
by using some hand-crafted rules and comparing the output with valence patterns of
lexical units available via the FrameNet database. To find candidates to fill in the
empty slots, venses++ checks previous sentences for semantically close predicates.
In case of a nominal predicate, the system first goes through the so-called History List,
where all the nominal heads from previous sentences are stored, and extracts heads
that are semantically related to the predicate. Then, using the FrameNet database,
it checks what core frame elements are missing and tries to find the right candidates
among the extracted heads with the help of hand-crafted rules.

Since 2010, we have observed some further notable approaches to the problem of
implicit arguments resolution using context. One of them was presented by Laparra
and Rigau [2012]. They associate all frame elements (their heads, to be exact) in train-
ing data with semantic types, which are basically sets of features, such as WordNet
sense, ontological features, lemma, etc. Next, they train a model that learns a prob-
ability distribution of semantic types of each frame element. Now, to track all dnis,
Laparra and Rigau [2012] count frequencies of frame element pattern for all lexical
units in training data. So, given a certain lexical unit, all frame elements of the most
frequent pattern are considered as potential dnis. The system looks for the most likely
candidates using a window of three previous sentences.

Roth and Frank [2015] presented a framework that also aims at inducing implicit
arguments from pairs of comparable texts. The texts are newspaper articles and were
grouped by matching headlines. The framework consists of two steps. The first step
assumes aligning predicate-argument structures across the text pairs. The structures
are represented as bipartite graphs, where predicates are nodes connected by a weighted
edges. The weight defines how similar each two predicates are. It is deduced using
arguments, contexts and other features. The graphs get recursively split into subgraphs,
and similar predicates get aligned via clustering. In the second step the alignments are
used together with heuristic rules to infer implicit arguments.

Unfortunately, we were not able to find any more recent approaches to frame-
semantic parsing at discourse level. Actually, the topics of semantic role labeling and
establishing co-reference between the arguments are still actively researched, but many
contemporary researchers focus on PropBank arguments instead of FrameNet. One
of the obvious reasons for this is that the set of frame elements in FrameNet is se-
mantically much more fine-grained than the set of PropBank arguments. This, as
well as the fact that FrameNet elements are not systematized into any taxonomy (at
least, officially), makes them difficult to use for the retrieval of implicit arguments or
establishing relations across sentences in a piece of discourse.

To conclude our overview of frame-semantic parsing, we would like to emphasize
that even though in the current thesis we will focus only on automatic frame assign-
ment, we found it important also to present the current state of research in the field
of frame-semantic parsing in general, and to summarize and compare the most notable
frameworks designed to perform other steps of frame-semantic parsing, such as frame

22 Background and Related Work

elements recognition and classification. This can help the reader acquire a better un-
derstanding of how the ideas of frame semantics can be realized in practice. In addition,
our overview can be relevant for future research. In our work we will use the pafibert
model with position-based attention mechanism by Tan and Na [2019]. It is considered
to be one of the state-of-the-art frame classifiers (the model showed the accuracy of
about 89% when evaluated on in-domain test set), and it is easier to re-implement in
comparison with other neural networks based classifiers that we mentioned. We will
present our experiments with the pafibert model in Chapter 4.

So, in this section we have presented the theory of frame semantics, its realization
in the FrameNet project, several text and dialogue corpora annotated with semantic
frames, and a number of frameworks designed to perform frame-semantic parsing. We
have compared the available corpora with tradr data, discussed which ones can be
used for our work and explained our choice of FrameNet and salsa corpora. We have
also introduced various approaches to frame semantic parsing and came to conclusion
that the pafibert model by Tan and Na [2019] looks the most suitable for our purposes.

2.3 Multiclass classification with neural networks

To train a classifier that would be able to differentiate between hundreds of classes
(e.g., in FrameNet there are 1,024 different frame labels) is not a straightforward task.
There exist various approaches. Originally, most of them were designed for binary
classification problems. Following Aly [2005], they can be divided into three main
groups: algorithms that assume a simple extension from binary, algorithms based on
transformation to binary and hierarchical classification.

In this section we will focus on multiclass classification with neural networks, as all
our models that will be presented in Chapter 4 are based on them. Neural networks
belong to the group of binary approaches that can be easily extended to work with
multiclass data. Other algorithms from this group include decision trees, k-Nearest
Neighbor, Naive Bayes and Support Vector Machines. More information about them,
as well as a summary of the algorithms that are based on transformation to binary and
hierarchical classification can be found in Appendix C.

We will start the section with an explanation of what a very simple feedforward
neural network may look like and how it functions. Next, we will discuss what a
transformer block is, and how it was realized in bert which can be considered one of
the most successful models for many nlp tasks. In Chapter 4 we will see how bert
can be used for the task of automatic frame assignment.

2.3.1 Neural Networks

A feedforward neural network usually consists of an input layer, an output layer and
one or more hidden layers in between. Each hidden layer is made up of the so-called
‘neurons’ and is followed by an activation function. The output layer also has an acti-
vation function. This function makes the neurons non-linear, scaled and differentiable
[Sun et al., 2009]. In other words, its purpose is to ‘switch on’ the important neurons
and ‘switch off’ the ones bearing unnecessary or redundant information. The hidden

2.3 Multiclass classification with neural networks 23

layers are connected via weight matrices. In the beginning the weights are initialized
to very small random numbers.

If the network is used to train a binary model, then the output layer contains
only one neuron, and the result of the activation function can be interpreted as a
probability with which an input instance belongs to the positive class. Depending
on this probability, the instance gets a label 1 (positive class) or 0 (negative class).
The label is then compared with the gold label using a loss function, and the weight
matrices are updated via a backpropagation process [Sun et al., 2009].

The training process is iterative, i.e. the calculations are repeated for every new
training instance/batch for several epochs until the weights are adjusted and the dif-
ference between the output and gold labels is minimized.

We see now that a binary network can be easily transformed to a multiclass one by
adding a certain number of neurons to the output layer. After the application of the
activation function, each separate neuron is mapped to either 1 or 0 based on some
threshold. How many neurons to add depends on how the labels are encoded.

One-per-class-coding assumes that the labels are one-hot vectors, such that each
vector contains a single high (1) bit at a certain position with all the remaining elements
being low (0) bits, as shown in Figure 2.2a [Wikipedia, 2020f]. If we have K classes,
then each one-hot encoding should be of size K, and the number of neurons in the
output layer N will also be equal K. In this case the class of the input example will be
defined judging from the position of the high bit in the output sequence. Notice that
all the remaining neurons in the sequence should be low bits [Aly, 2005].

Distributed output coding means that the labels are interpreted as sequences of
binary features, i.e. they are vectors that may contain more than one high bit, as
in Figure 2.2b. Often the length of a sequence representing a label is bigger than
the number of classes K. Normally, the labels have length up to 2N − 1, where N is
the size of the output layer. Given a new instance, the classifier outputs a vector of
probabilities, which are mapped either to 1 (feature is present) or 0 (feature is absent).
The output is compared to all possible class labels using the Hamming distance, and
the closest one is chosen [Aly, 2005].

Class 1 1000
Class 2 0100
Class 3 0010
Class 4 0001

(a) One-per-class-coding

Class 1 00000
Class 2 00111
Class 3 11001
Class 4 11110

(b) Distributed output coding

Figure 2.2: Label encodings [Aly, 2005]

It is important to point out that a network with a standard backpropagation al-
gorithm can be very sensitive to imbalanced classes. Sun et al. [2009] write that both
empirical and theoretical studies show that during the training of such a network the
net error for samples of major class(es) decreases, while the net error for samples of
minor class(es) grows. They explain such behavior by the fact that the weights of the
network are updated in the direction of the joint gradient vector, which is dominated
by the gradient vector of the major class.

24 Background and Related Work

2.3.2 bert model

As all the classifiers that we are going to present in Chapter 4 rely on the pretrained
bert model, it is necessary to introduce its main components and explain how they
function.

According to Devlin et al. [2019], bert stands for Bidirectional Encoder Repre-
sentations from Transformers. It is a language model that learns contextual token
representations (embeddings) from the BooksCorpus (800M words) [Zhu et al., 2015]
and English Wikipedia (2,500M words). bert was trained with two objectives. One is
predicting randomly masked tokens based only on their contexts, the other is a next
sentence prediction, i.e. producing a score, which for each pair of sentences says how
likely it is that one sentence follows the other.

bert can be used either for extracting contextual embeddings for the given input,
or for fine-tuning for a variety of nlp tasks. As of 2019, simple fine-tuning of the bert
model allowed to achieve state-of-the-art performance for 11 tasks, such as question
answering, sentiment classification, entailment recognition and others (see Devlin et al.
[2019] for details).

A bert model represents a stack of transformer blocks. There are two main bert
configurations. bertbase has 12 transformer blocks, a hidden layer of size 768 and 12
self-attention heads in each block. bertlarge consists of 24 transformer blocks, has a
hidden layer of size 1,024 and 16 self-attention heads in each block. All our models,
as well as the pafibert model rely on the bertbase model. In what follows we will
illustrate what a transformer block in bert looks like, and how it learns contextual
embeddings.

Figure 2.3: Transformer
(encoder) block in bert (taken

from Alammar [2018])

Figure 2.4: bert input representation (taken
from Devlin et al. [2019])

Figure 2.3 illustrates a single transformer (encoder) block in bert. It consists of a
self-attention layer and a feed forward layer, both followed by layer normalization. The
feed forward layer is applied independently to each vector, and a residual connection
(dashed line) is added around each layer, right before the normalization. In what
follows we will present the components of the block in more detail.

2.3 Multiclass classification with neural networks 25

According to Devlin et al. [2019], bert input can be an arbitrary span of contigu-
ous text, not necessarily an actual linguistic sentence. The input sequence may consist
of either one or two sentences (spans) separated by a special token [sep]. The input is
tokenized using WordPiece embeddings [Wu et al., 2016] and 30,000 token vocabulary.
Following the WordPiece approach, any out-of-vocabulary word is split into smaller
subtokens. Another special token [cls] is added to the beginning of the sequence. Its
purpose is to aggregate syntactic and semantic characteristics of the input for further
classification tasks (fine-tuning). As a result of tokenization, the tokens are mapped
to input ids, which in their turn are mapped to token embeddings. The length of the
input sequence in bertbase is limited by 512 tokens.

By its nature, a single transformer block, as well as the whole network is not
sensitive to the word order in the input sequence, i.e. if we shuffle up the input, we get
the exact same output, whatever weights we learn [Bloem, 2019]. However, for many
languages and nlp tasks the word order is important. One of the ways to capture it
is to map a position of each token in the sequence to its positional embedding. Note
that in bert the positional embeddings are learnt during the network training, while
the original Transformer [Vaswani et al., 2017] uses the positional encodings, which are
computed using a special function that maps positions to real valued vectors without
any learning.

To differentiate between two sentences in the input, the tokens in each sentence
are also mapped to one of two ids (usually 0 and 1) saying to which sentence a token
belongs. For each id a special segment embedding is learned.

As Figure 2.4 demonstrates, the input for bert transformer network is a sum of
token, segment and position embeddings.

Self-attention is the only layer in bert that learns how the input tokens relate
to each other. As Vig [2019] writes, attention is a way for a model to assign weights
to tokens based on their importance to some task. It can be viewed as a function
(see Figure 2.5) that given a sequence of embeddings X produces a new representation
for each embedding by taking a weighted average of the original input. The attention
weights depend on the current token and show how much this token attends to other
tokens in the sequence. Note that the length of the new representations (denoted as
Y in Figure 2.5) can be different from the length of the original embeddings, because
attention usually implies linear transformations of the embeddings in X.

In order to explain what is happening inside the attention function, we will rely on
the materials by Bloem [2019] and Alammar [2018]. First, it is important to note that
every input embedding xi is used in three different ways in the self attention operation:

• As a query it is compared to every other embedding to establish the weights for
its own output yi.

• As a key it is compared to every other embedding to establish the weights for the
output of all the other embeddings yj, where j 6= i.

• As a value it is used as part of the weighted sum to compute each output vector
once the weights have been established.

To extract the query, key and value vectors for an embedding xi, it is multiplied
with three different trainable matricesWq,Wk andWv all of the same size like this: qi =

26 Background and Related Work

Wqxi, ki = Wkxi, vi = Wvxi. We assume that all three vectors have the same dimension
d. Next, to know how much an embedding xi attends to some other embedding xj,
we simply calculate the dot product between the corresponding query and key vectors:
wij = qTi kj. Figure 2.6 illustrates this procedure. Here it is calculated how much
attention the embedding x2 gives to its neighbour, the embedding x3. The attention
weight w23 is a dot product between the query vector (red) of x2 and the key vector
(blue) of x3. To get a weighted representation of x3, its value vector (green) is scaled
by w23. The same operations are performed between x2 and all the other embeddings
in the input, including x2 itself. The results are summed up to get the final output y2.
The rest of the output is calculated in a similar manner.

It is necessary to mention that before the value vectors of the sequence can be scaled
by the corresponding attention weights, a couple of additional operations are applied
to these weights. First, the weights are scaled by

√
d, where d is the dimension of the

query, key and value vectors mentioned earlier. Note that d is usually smaller than the
dimension of input embeddings h. This is done to get rid of very large values, as they
can kill the gradient, slow down learning and influence the second operation, namely
Softmax, in a negative way. Softmax makes sure that all weights are positive and sum
up to one.

Figure 2.5: Attention as a
function (taken from Vig [2019])

Figure 2.6: Calculating attention weights (taken
from Bloem [2019])

Earlier we said that bertbase has 12 attention heads. This means that the actual
attention implementation in bert assumes building for each embedding xi in X 12 sets
of query, key and value matrices. As Alammar [2018] writes, this allows to expand the
model’s ability to focus on different tokens in the input and to capture a wider range
of relations. Moreover, as all matrices in each attention head are randomly initial-
ized and independent from matrices in other heads, the attention layer gets multiple
representation subspaces instead of having all information summed up in one place.

So, all the attention related operations described above are performed separately
for each attention head. The result of this procedure is 12 different representations
of the output vector yi. Each representation is of length d. Because the next layer
in the encoder block, namely the feed forward layer, does not expect to deal with 12
different representations for each input embedding, they need to be condensed into a
single vector that would incorporate the information from all attention heads. This is
done by concatenating the outputs of the attention heads and multiplying the resulting

2.3 Multiclass classification with neural networks 27

vector by an additional trainable matrix Wo. The output of this operation is then sent
to the feed forward layer.

The feedforward layer expects as input a batch of sequences of embeddings of size
l×h, where l is the sequence length and h is the hidden layer size of 768. It consists of
two simple linear layers with a ReLU activation function between them. The output
of this layer has the same dimensions as the input [Rush et al., 2018].

As shown in Figure 2.3, both the self-attention and feed forward layers are followed
by a layer normalization. The layer normalization was introduced by Ba et al. [2016].
It is one of the many normalization approaches that are used in deep learning.

The main motivation behind the layer normalization is to enable smoother gradi-
ents, faster training, and better generalization accuracy [Xu et al., 2019; Kurita, 2018a].
Its difference from some other possible normalization methods lies in the dimension,
along which the values are normalized. Assume that our input has form b × l × h,
where b stands for batch size, l denotes sequence length and h is the size of hidden
layer. Layer normalization suggests normalizing the values along the last dimension h.

So, according to Xu et al. [2019], if we take a single feature sequence x = (x1, ..., xh),
its normalized representation would be calculated as LN(x) = g · N(x) + b, where g
and b are learnable parameters that aim at scaling and increasing the magnitude of
the activations, and N(x) = x−µ

σ
stands for usual input normalization using mean

µ = 1
h

∑h
i=1 xi and standard deviation σ =

√
1
h

∑h
i=1(xi − µ)2 of data. More details

about the layer normalization can be found in the original paper by Ba et al. [2016].
The main advantage of the layer normalization is that the statistics µ and σ are

calculated independently for each feature representation and do not depend on the
batch size [Kurita, 2018b].

In Figure 2.3 we can notice that before the layer normalization operation is applied,
the output of the self-attention layer is summed up with its input. This is called a
residual connection, it is depicted as a dashed line in Figure 2.3.

As Sahoo [2018] writes, adding residual connections to the network makes sense if
the network consists of several blocks or layers. When the network is deep enough, due
to vanishing/exploding gradients, it may have trouble learning simple functions like
identity. Moreover, such networks may experience the accuracy degradation problem,
when at some point the accuracy saturates and starts to decrease. Residual connections
between blocks help tackle these issues.

In order to understand how a residual connection R works, it is convenient to
interpret it as a difference between output and input, where the output is depicted as
a function of input H: R(x) = y − x = H(x) − x. It is possible to rearrange this
equation as H(x) = R(x) + x, i.e. to treat the desirable (or true) output as a sum of
the output of the residual function and the input [Sahoo, 2018]. In case of bert the
residual function is represented by the self-attention layer. It is exactly what we can
observe in Figure 2.3 as input for layer normalization.

To conclude this description of the components of bert, we would like to emphasize
that understanding of how bert functions is important not only because it is the main
component of all our models, but also because it can be useful for the correct analysis
of these models’ performance, e.g., we will later refer to bert’s attention layer in order
to explain some phenomena observed during our experiments.

28 Background and Related Work

2.4 Handling imbalanced data

Many classification learning systems are designed to show best performance if they
are trained on balanced data [Sun et al., 2009; Alam et al., 2019]. If a class is under-
represented in training data, it is difficult for the model to learn it, and as result the
classifier will be biased towards more frequent classes, i.e. instances that belong to a
minority class will be misclassified more often [Sun et al., 2009]. This is something one
would like to avoid, especially if rare classes are important.

According to Sun et al. [2009], the problem of imbalanced classes is especially salient
for small datasets. The authors refer to research presented in a paper by Japkowicz
and Stephen [2002], which shows that as the size of the training data increases, the
error rate caused by the imbalanced class distribution decreases. So, imbalanced classes
cease to be a problem if enough training data is given. However, how much data is
enough is another question.

The imbalance in class distribution often comes together with overlapping classes.
They make a system especially sensitive to class imbalance and significantly decrease
its performance [Japkowicz and Stephen, 2002; Prati et al., 2004].

The problem of imbalanced data is particularly relevant to us. All the datasets we
are going to work with are highly imbalanced - their instances are distributed between
hundreds of classes, and many of these classes have only one or two inhabitants. In
addition, the tradr dataset is rather small. Ambiguity is another problem, e.g., up to
35% of instances in FrameNet and 53% in tradr contain ambiguous lexical units. We
will focus on these characteristics of our data in Chapter 3, and in this section we would
like to introduce the most common methods for handling class imbalanced data. They
can be roughly divided into two large groups: data level approaches and algorithmic
level approaches [Alam et al., 2019]. It is, of course, possible to use a combination of
techniques from both groups.

2.4.1 Data level approaches

To data level approaches belong techniques that modify the data in order to make it
more balanced and decrease the effect of a majority class or classes. Normally, it is
done before training. There are three main groups.

The oversampling approach involves increasing the number of instances of a mi-
nority class. The easiest way to do this is to replicate already existing instances. This
can be done randomly or in an informed way, when the samples to copy are carefully
chosen. A disadvantage of this method is a high possibility of a model overfitting, as
the role of certain separate samples grows, but no new samples are created.

To avoid the overfitting problem it is possible to use techniques that assume repli-
cating and creating new samples of a minority class in user-defined proportions. These
techniques differ in their nature and complexity. Some of them generate new instances
based on distance between pairs of neighbours in the minority class, e.g., smote
[Chawla et al., 2002] and its variants, others employ clustering to decide how many
new instances need to be generated and to filter out irrelevant data, e.g., cbos [Chen
and He, 2014] or trim [Puntumapon et al., 2016]. There also exist approaches to syn-
thesize new samples by adding some noise to already existing ones. Many algorithms

2.4 Handling imbalanced data 29

combine several methods. Additional information about them, as well as more detailed
taxonomies can be found, e.g., in papers by Esteves [2020], Branco et al. [2015] or Sun
et al. [2009].

The approaches described above are easy to use, and usually they perform better
than a random oversampling. However, one should be careful using these techniques,
as many of them synthesize new instances disregarding the majority classes. So, it may
happen that the newly created samples lie too close to the representatives of a majority
class, and this may lead to an overlapping of classes and decrease the performance of
the model [Sevastianov and Shchetininb, 2020].

Undersampling is a technique that removes instances from a majority class to
make the dataset more balanced. It also can be random or informed, when the algo-
rithm tries to identify and eliminate noisy samples or samples that come from over-
lapping regions. The latter category includes, for instance, a cluster-based algorithm
dsus [Ng et al., 2014], and distance-based algorithms called rbu [Koziarski, 2020] and
oss [Kubat et al., 1997].

The main disadvantage of the undersampling approach is a high possibility of delet-
ing some important data. As a result the classifier loses its ability to generalize [Sev-
astianov and Shchetininb, 2020].

Also, there is a sub-type of undersampling called active learning. It suggests that
a classifier learns only from the most informative samples in the data. Finding these
samples is not a trivial task. One of the approaches assumes using an svm classifier
to dissect the data with hyperplanes. Instances that lie closer to the hyperplanes are
considered to be more important than those that lie farther away [Branco et al., 2015].

Hybrid methods combine the over- and undersampling approaches. An overview
of such algorithms can be found, e.g., in [Esteves, 2020]. Note that some researchers
use the notion of hybrid methods with respect to the techniques that use data level ap-
proaches together with algorithmic level ones and/or classifier ensembling (e.g., Branco
et al. [2015]).

Both over- and undersampling are designed to alter the original class distribution
inherent in the data and make it balanced. However, according to Sun et al. [2009],
a balanced class distribution does not necessarily provide optimal results. And an
optimal distribution for each particular case is unknown, so the right proportions of
over- and undersampling are difficult to determine.

Effective resampling is another problem. Ideally, one would like to detect the sub-
concepts in each minority class and then oversample each sub-concept. At the same
time all irrelevant and noisy samples should be deleted from the majority classes.
However, such data analysis can be very costly in terms of time and computation [Sun
et al., 2009]. And the situation gets worse as the number of classes grows.

2.4.2 Algorithmic level approaches

This category includes various approaches that alter existing classifiers to make them
more sensitive to a minority class. Using such techniques may help avoid performing
resampling and save time and resources. On the other hand, any successful modification
of a learning algorithm is only possible if one has a very good understanding of how it
functions and why it fails working with imbalanced data [Sun et al., 2009].

30 Background and Related Work

One of the most well-known algorithmic techniques is cost-sensitive learning.
It assumes different costs for different misclassification cases. These costs are usually
given in the form of a matrix. The general idea is that it is possible to introduce
higher costs (or penalties) for misclassification of rare class instances, and lower costs
for misclassification of other instances. Thus, while trying to minimize the total cost,
the classifier will focus more on the rare classes [Sun et al., 2009].

A drawback of cost-sensitive learning is that given a dataset, the corresponding
cost matrix is usually unknown. In order to come up with such a matrix very good
knowledge of the domain is necessary. And if the data has many classes, the problem
gets even more complicated.

It is interesting to note that, according to Sun et al. [2009] and Branco et al.
[2015], algorithmic level cost-sensitive learning cam be translated into a pure data level
approach, which does not require a cost matrix. The trick assumes weighting the data
space. It changes the original data distribution by multiplying each sample by a factor
that is proportional to its importance. Again, the weights are usually unavailable, and
the resulting model may be prone to overfitting [Branco et al., 2015].

Another subtype of algorithmic level approaches is formed by ensemble-based
techniques. Note that some researchers place them into a separate category, as some
techniques also incorporate data level methods (e.g., Sun et al. [2009] and Mahani and
Ali [2019]).

Ensembling suggests training several classifiers and subsequently combining them
into a single one. Classification is performed using a voting strategy - the predictions
are aggregated and the label is chosen by the majority of votes [Mahani and Ali, 2019].
The motivation behind this approach is that the generalization ability of an ensemble is
better than those of separate classifiers. This happens because each classifier is trained
on certain data, so different classifiers most likely make different mistakes [Sun et al.,
2009]. Ensemble-based approaches can be further divided into two subclasses: boosting
and bagging.

Boosting incorporates cost-sensitive learning. At the very beginning of the training
process equal weights are assigned to all instances, then a series of classifiers are trained
one after another. After each classifier is trained the weights get updated so that
misclassified instances cost more, and the next classifier is forced to focus more on such
samples [Alam et al., 2019]. One of the most popular boosting algorithms is AdaBoost.
For more information on AdaBoost, its variants, special modifications for imbalanced
classes and other boosting techniques the reader can refer to the works by Sun et al.
[2009], Esteves [2020] or Mahani and Ali [2019].

Bagging is a technique that assumes training several classifiers on subsets of a given
dataset. The subsets are built using sampling with replacement. If the given dataset
is imbalanced then either oversampling, or undersampling, or a combination of both
is applied to create training sets [Mahani and Ali, 2019]. Bagging can be, of course,
combined with boosting. Details on many modern bagging algorithms are given, e.g.,
in the works by Mahani and Ali [2019], Esteves [2020] or Alam et al. [2019].

For our experiments we will try out both data and algorithmic level approaches to
handle imbalanced classes in our data. First, we will perform data oversampling, but
instead of replicating or generating artificial tradr examples, we will sample additional
instances for rare classes from out-of-domain FrameNet and salsa data. Second,

2.5 Performance measures for imbalanced data 31

following Tan and Na [2019], we will consider integrating a frame filtering mechanism
into our model. It assigns zero weight to the unlikely frame candidates based on the
mapping of the given lexical unit to a set of frames it evokes. The mappings can be
constructed before training using the training data or some external reference, e.g.,
FrameNet database. We will not introduce any changes to the loss function. Our
approach can be especially helpful for non-ambiguous and/or rare frames.

2.5 Performance measures for imbalanced data

In Section 2.3 we showed how neural networks can be used to tackle multiclass problems.
However, it is known that neural networks are sensitive to class imbalanced data [Sun
et al., 2009]. As shown in Section 2.4, there exist many ways to handle class imbalance,
but there is no guarantee that making the data balanced will help to train a more
reliable classifier without hindering its ability to generalize. In addition to that, it is
not always easy or possible to adapt the learning algorithm to handle imbalanced data.

This means that sometimes we cannot manipulate our data and/or classifier much,
and need robust techniques that would allow to estimate the classifier performance
in an adequate way. In what follows we will discuss some of the most widely used
performance measures for a classifier trained on imbalanced data. In all cases, if not
stated otherwise, we assume that a classifier produces discrete output. We will also
explain why some common metrics, such as accuracy, are not reliable in this scenario.

In order to explain how many performance measures work, we will need a notion of
a confusion matrix (or a contingency table). Table 2.3 shows an example of a binary
confusion matrix. In this case we have two classes, one is called positive, i.e. it is a
class we are interested in, and the other is called negative. Rows represent the true
distribution of classes, and columns - the predicted one. Inner cells show the number
of correctly (green) and incorrectly (pink) classified instances. The names of the cells
are self-explanatory. False positives are usually called Type I error, and false negatives
- Type II error. A binary confusion matrix can easily be extended to three and more
classes. In this case instead of true/false positives and negatives we will simply have
correctly and incorrectly classified samples.

Predicted class
Negative Positive

Tr
ue

cl
as
s

Negative true false
negatives (TN) positives (FP)

Positive false true
negatives (FN) positives (TP)

Table 2.3: Confusion matrix: example (taken from Tharwat [2020])

According to Tharwat [2020], any performance metric that uses both rows of the
confusion matrix is sensitive to imbalanced data, and it cannot distinguish between
the numbers of correct labels from different classes unless changes in class distribution
cancel each other.

32 Background and Related Work

To explain this phenomenon, the author compares two metrics: accuracy and ge-
ometric mean. Accuracy is defined as Acc = TN+TP

TN+FP+FN+TP
and geometric mean as

GM =
√

TP
TP+FN

· TN
TN+FP

. Let us assume that the number of true negative samples
changes by some value α. Now we have Acc = αTN+TP

αTN+αFP+FN+TP
6= TN+TP

TN+FP+FN+TP
,

and GM =
√

TP
TP+FN

· αTN
αTN+αFP

=
√

TP
TP+FN

· TN
TN+FP

. We see that both metrics use
both rows of the confusion matrix for a score calculation, but while accuracy is affected
by changes in class distribution, geometric mean is not, as α can easily be cancelled
[Tharwat, 2020].

It is important to remember that accuracy may be the same for balanced and
imbalanced data in case tn and tp stay the same. This may be misleading. And it is
one more reason why accuracy should be avoided when dealing with imbalanced classes
[Tharwat, 2020].

Among commonly used metrics that are also considered to be unreliable because of
the reason presented above are precision, F-score (the harmonic mean between precision
and recall), Matthews correlation coefficient (mcc), optimized precision (op), Jaccard
measure and some others [Tharwat, 2020]. We will not present them here. In what
follows we will focus on metrics that will be directly used for the evaluation of our
models, and on those that are necessary to understand how our primary metrics work.

2.5.1 Sensitivity and specificity

Sensitivity, which is also called true positive rate (tpr) or recall is a metric that
shows the proportion of correctly classified samples with respect to all true positives.
Specificity, or true negative rate (tnr) does exactly the same but for negative instances.
The formulas for both sensitivity and specificity are given in Equation 2.1.

TPR =
TP

TP + FN
=
TP

P
, TNR =

TN

TN + FP
=
TN

N
(2.1)

Each of the metrics relies only on values from a certain row, so they can be consid-
ered safe when handling imbalanced data. However, there is a disadvantage. Sensitivity
and specificity estimate different aspects of a classifier performance and cannot be used
to assess the quality of a classifier in general [Tharwat, 2020].

2.5.2 False positive and false negative rates

Sensitivity and specificity have complement metrics - false negative rate (fnr) and
false positive rate (fpr), respectively. So, fnr is a ratio of incorrectly classified pos-
itive samples with respect to all positive examples, and fpr is exactly the same for
true negative samples. Like sensitivity and specificity, both metrics can be used with
imbalanced data and assess separate aspects of classifier performance. Their formulas
are presented in Equation 2.2.

FNR = 1− TPR =
FN

TP + FN
=
FN

P

FPR = 1− TNR =
FP

TN + FP
=
FP

N

(2.2)

2.5 Performance measures for imbalanced data 33

2.5.3 Geometric mean

Geometric mean (gm) is another performance metric suitable for imbalanced data.
Originally, gm is defined as the nth root of the product of n numbers, and represents the
so-called central tendency, i.e. a central or typical value for a probability distribution
[Wikipedia, 2020c]. In machine learning gm is a square root of sensitivity and specificity
product as depicted in Equation 2.3.

GM =
√
TPR · TNR (2.3)

One of the advantages of gm is its ability to alleviate the influence of outliers. This
can be useful, for instance, in cases when sensitivity of a classifier is good, but the
specificity is bad, or vice versa.

2.5.4 Index of balanced accuracy

One more useful metric that considers sensitivity, specificity and gm is called an index
of balanced accuracy (iba). As García et al. [2009] point out, many metrics for imbal-
anced data do not reflect the contribution of each class to the overall performance, and
do not take into consideration which class is prevalent. So, e.g., different combinations
of tpr and tnr may produce the same gm scores. To deal with this shortcoming,
García et al. [2009] introduce an iba metric shown in Equation 2.4.

IBA = (1 + α ·Dominance) ·GM2 = (1 + α(TPR− TNR)) · TPR · TNR (2.4)

According to García et al. [2009], the Dominance = tpr − tnr metric is used to
inform about the dominant class and how significant this dominance relationship is.
The Dominance score lies in the range [−1; 1]. The more the value is close to zero,
the more balanced both rates are. The iba metric can be interpreted as a trade-off
between Dominance and gm2. Its score may vary between zero and one inclusively.
To weight the value of Dominance a parameter 0 ≤ α ≤ 1 is introduced. If α = 0, iba
turns into gm2.

Table 2.4 compares tpr, tnr, accuracy and gm metrics with the iba metric with
three various α values. Assume that all the classifiers were trained on the same imbal-
anced dataset, which contains two classes in proportion 1:10 with a minority class being
a positive one. One can see that the accuracy does not care about how well a classifier
can recognize the positive class, and depends on the majority class rate. gm outputs
almost the same score regardless of the performance for the positive class. And iba is
more flexible. If we want to give more weight to Dominance, the score will be biased
towards the last classifier, which demonstrates the best performance for the positive
class. The smaller the parameter α is, the more weight is laid on the performance with
respect to the majority (negative) class.

Other useful metrics suitable for the evaluation of models trained on imbalanced
data include diagnostic odds ratio (dor), Youden’s index (yi), discriminant power
(dp), balanced classification rate (bcr), etc. More information about them can be
found, e.g., in the surveys by Tharwat [2020] or Sokolova et al. [2006].

34 Background and Related Work

TPR TNR Acc. GM IBA1 IBA0.5 IBA0.1

Classifier 1 0.550 0.950 0.914 0.723 0.314 0.418 0.502
Classifier 2 0.680 0.810 0.798 0.742 0.479 0.515 0.544
Classifier 3 0.810 0.680 0.692 0.742 0.622 0.587 0.558
Classifier 4 0.950 0.550 0.586 0.723 0.732 0.627 0.543

Table 2.4: Comparison of several performance metrics and iba with different α
parameters (taken from [García et al., 2009])

In our work we will use index of balanced accuracy (IBA) as the main metric,
because it has several advantages in comparison with other metrics that we mentioned.
First, it evaluates all aspects of the model, i.e. its ability to recognize both positive
and negative instances. Second, in contrast to some other metrics, e.g., dor or dp,
its score lies between zero and one, is better interpretable and can be compared with
standard accuracy. Third, while some metrics like yi, gm or bcr do not always react
correctly on changes in true positive and true negative rates (e.g., their scores stay the
same if the rates are swapped), IBA does reflect such changes. Forth, IBA is always
defined (e.g., dor and dp are not) and it allows the user to control the influence of
dominant classes with the α parameter. Finally, IBA (as well as some other metrics)
was implemented as part of the Python imbalanced-learn package (see Lemaître et al.
[2017]) and can be used out of the box.

2.6 Micro- and macro-averaging

If we have only two classes, the application of the performance metrics presented above
is straightforward. However, if there are more than two labels, we need to calculate
the scores for each class and then assess the overall performance of the classifier. This
can be achieved using two different approaches: micro- and macro-averaging [Sokolova
and Lapalme, 2009].

Micro-averaging assumes that only one confusion matrix is created. The counts,
namely, true negatives, false positives, etc., are calculated for each separate class based
on the ‘one against all’ method, i.e. one class is treated as positive, and the rest form
the negative class. The counts for each class are accumulated in the same confusion
matrix, using which various performance measures can be computed.

In case of macro-averaging, the counts for each class are gathered in separate ma-
trices, using the same ‘one against all’ approach. All necessary scores are calculated
based on each individual matrix and then averaged.

The difference between micro- and macro-averaging lies in their treatment of sep-
arate classes and samples. So, micro-averaging gives all samples the same weight, no
matter if they come from the majority or minority classes. If most misclassified in-
stances belong to the minority classes, this won’t influence much the final score, as
all samples are treated as equally important, and instances of large classes absolutely
outnumber those of rare ones. Macro-averaging gives all classes equal weight. In the
result the minority classes influence the final score as much as the majority ones. So,

2.6 Micro- and macro-averaging 35

if one is interested in the classifier performance on small classes, macro-average is an
approach to go with [Van Asch, 2013].

Predicted
N P

T
ru
e N 10 0

P 0 90

(a) Class A

Predicted
N P

T
ru
e N 95 0

P 5 0

(b) Class B

Predicted
N P

T
ru
e N 95 0

P 5 0

(c) Class C

Predicted
N P

T
ru
e N 200 0

P 10 90

(d) Aggregated

Figure 2.7: Micro- and macro-averaging: confusion matrices

Let us illustrate both approaches with the following example. Assume that we
have a classifier trained to distinguish between three classes a, b, c, and our test data
contains 100 samples, of which 90 belong to class a, 5 to class b and another 5 to
class c. Figure 2.7 demonstrates classification results in the form of four confusion
matrices: matrices (a), (b) and (c) show the counts for each separate class, matrix (d)
presents aggregated counts, i.e. the summed up counts from the first three matrices.
Judging by the matrices, our classifier has perfect knowledge of the majority class,
namely, class a, but fails to classify correctly both minority classes b and c. Assume
that we want to evaluate our classifier using the sensitivity measure. Following the
micro-averaging approach, we take matrix (d) and get TPR = TP

TP+FN
= 90

90+10
= 0.9.

According to the macro-averaging approach, we calculate averaged sensitivity, using
the other three matrices: TPR = (90

90+0
+ 0

0+5
+ 0

0+5
)/3 ≈ 0.3. It is clear that two

scores are very different, so if the correct recognition of minor classes is important
for the task, it is recommended to use macro-averaging for evaluation of a classifier
performance [Van Asch, 2013].

As in our research we are interested in recognition of all the classes regardless of
the number of inhabitants, the evaluation of all the models we are going to train will
be done with macro-averaging. The package imbalanced-learn that we will use applies
it by default for all the metrics.

So, in this chapter we have provided the reader with the most essential knowledge
related to our research questions. We have presented the theory of frame semantics
and the FrameNet project, defined the most important concepts and illustrated how
the meaning of a sentence can be captured using the frame structure. We have also
discussed neural networks as one of the most widely used approaches to multiclass
classification, and examined in detail the components of the bert model. We presented
various techniques to handle imbalanced data and introduced performance measures
suitable for models trained on such data. We have tried to explain why this information
is relevant for our work, and what approaches we are going to use exactly and how.

Chapter 3

Data

In this chapter we will familiarize the reader with the tradr, FrameNet and salsa
data. We will compare the corpora with respect to their domains, the distributions
of semantic frames, lexical units and their parts of speech. We will also examine the
role of ambiguous lexical units in our data. Such information will help understand the
nature of the data, predict the results we can expect from the frame classifier, motivate
our choice of performance metrics and provide some insight into why the classifier may
make certain mistakes. Besides general data analysis, we will also explain how we
prepared and split all the data into training, validation and test sets.

3.1 tradr data

tradr is a research project in the area of robot-assisted disaster response [Kruijff-
Korbayová et al., 2015; Disaster Robotics Research Project, 2020]. As part of the
project several teams of firefighters performed a series of exercises that simulated sit-
uations after a disaster, such as a fire, an explosion and so on. Team communication
recorded during these exercises was later transcribed and is known now as the tradr
corpus. It consists of 15 files with dialogues, six files contain dialogues in English, and
nine - in German. Six German dialogues were translated into English in the course of
the tradr project in order to get more English training data.

In what follows we will examine the data in detail. It is important to mention that
the analysis of the tradr domain, characteristics of team communication and dialogue
contents that will be given below is relevant for both English and German sub-corpora.
The rest of the current section will be devoted to the investigation of the distributions
of semantic frames, lexical units and their parts of speech in English tradr data (both
original and translated). The corresponding analysis of the German sub-corpus will be
presented separately in Section 3.4, due to the differences in annotation approaches.

3.1.1 Domain

So, all tradr dialogues represent human-human team communication in robot-assisted
disaster response. The dialogues in German were recorded in 2015 and 2016, the
English data comes from 2017. It should also be pointed out that the firefighters who

37

38 Data

took part in the exercises in 2017 were not native English speakers - they were asked to
use English for the experiments. In total the joint corpus contains about 2,9k dialogue
turns (see Table 3.1).

Recording Mission Duration Turns
TJex2015 363

Day 1 48:21 min 186
Day 2 33:21 min 177

TEval 2015 1,279
Day 1 58:23 min 359
Day 2 65:04 min 356
Day 3 57:15 min 272
Day 4 53:22 min 292

TEval 2016 422
Day 1 n.a. 312
Day 2 n.a. 110

TEval 2017 811
Day 1 64:02 min 239
Day 2 149:20 min 400
Day 3 56:36 min 172

Table 3.1: tradr data: corpus composition (based on the paper by Anikina and
Kruijff-Korbayová [2019])

A typical field exercise assumes that a rescue team explores the environment us-
ing robots, namely unmanned ground vehicles (ugvs) and unmanned aerial vehicles
(uavs). The robots look for sources of smoke, fire, or contamination, check if there are
victims and if the site is safe enough for human rescuers and firefighters to enter. The
robots are equipped with gas detectors and two camera types: a standard camera and
an infrared one, they can take pictures and share them. Some ugvs have a mechanical
arm and are capable of taking samples, as well as turning, pushing or moving objects.
They can also climb stairs. Some pictures of ugvs taken during tradr exercises can
be seen in Table 3.2.

The team consists of several operators who control the robots, a team leader (tl)
and sometimes also a mission commander (mc). The mc is in charge of the whole
mission and gives tasks to teams. The tl distributes the tasks between the operators,
coordinates their actions and reports to the mc. The operators use robots to perform
the tasks assigned to them and report to the tl about the results or possible difficulties.
The robots are controlled remotely, and the operators and the tl do not have to be
present on site directly. Instead, they can see the area and all the objects there with
the help of robots’ cameras. The robots investigate the unknown and continuously
changing environment step by step from different angles. In parallel a virtual map
with relevant points of interest marked on it is being created.

3.1.2 Characteristics of team communication

Now we would like to present the main characteristics of team communication in the
above given scenario and illustrate them with some examples. This will give the reader

3.1 tradr data 39

an insight about how exactly the communication between mission participants is orga-
nized.

First, all information flows through a rather complex communication pipeline
with several participants. This leads to situations when the same information or re-
quests are repeated twice. Example 3.1.1 shows how a question about a leakage is
transmitted from the mc to the operator via the tl. In a similar manner the answer
is transferred back to the mc.

Example 3.1.1. Information flow from MC to Operator via TL
MC: I got the picture of the blue canister. According to the result of my request it seems
to be fuel. The question is if the canisters broken, or has a leakage, or if it’s still tight?
TL: I’ll check that.
TL: UGV-2 to team leader.
TL: UGV-2, please answer.
TL: Yes, the canister with the Otalin, is it broken? Is there only a small puddle or has
it leaked out completely? How many litres are that?
UGV-2: Well, I can’t exactly say how much, but there’s definitely some leaking.

Table 3.2: ugvs in action (taken from [Disaster Robotics Research Project, 2020])

Second, participants are supposed to follow a certain communication protocol,
i.e. there are special phrases to be used to start/finish conversation, check the con-
nection quality, accept/reject requests, etc. Communication protocol helps to make
the communication better structured and more clear, especially, if communication is
done by radio. Example 3.1.2 presents a typical conversation opening, and illustrates
phrases used to indicate that a dialogue turn is finished (‘over’) or successfully pro-
cessed (‘roger’).

40 Data

Example 3.1.2. Following communication protocol
UGV-2: Team leader to UGV 2 please answer.
TL: I’m listening.
UGV-2: Yes, I’ve taken two pictures again, one of the smoke development and one of
the green barrel that’s lying here. Over.
TL: Yes, roger.

Third, tl constantly switches from one operator to another, and the flow of infor-
mation is usually split into several threads that may overlap. Sometimes, this may
lead to confusion and misunderstanding. One of such situations is depicted in Example
3.1.3, where operators accidentally swapped their tasks. Sometimes the tl speaks with
two operators simultaneously, as Example 3.1.4 demonstrates.

Example 3.1.3. Accidental task swap
TL: Delta, how are you doing? Over.
UGV-2: I’m looking for the victim one that... You’ve told me inspect victim one.
TL: Delta, you said you’re speaking for the victim. Is that correct?
UGV-2: Yeah, that’s correct. That’s my screen.
TL: Erm... I thought, you should go to the fire. And look how big the fire is, and how
the heating is in the surrounding. Over.

Example 3.1.4. TL speaking with two operators at the same time
TL: UGV-2 or UGV-1, do you have gas alert in your UGV? Over.
UGV-1: UGV-1. Negative.
UGV-2: UGV-2. No alert. Over.
TL: All right.

Next, because the mission participants can observe the environment via a virtual
map or pictures made by robots, they often refer to objects on the screen using
gestures or pointing. Example 3.1.5 illustrates the situation.

Example 3.1.5. Reference to location via pointing
UGV-2: Where is that?
TL: There. That is on this corner. Over here.
UGV-2: Ok. Ok.
TL: Emm... Over here.
UGV-2: Ok.
TL: Now you go explore this corner for more problems.

The fact that the mission participants perceive the environment via some medium is
reflected in language usage. We call this double reality representation. Often, when
the tl assigns tasks and gives commands, they speak to an operator, but mean a robot.
The operators may mark important objects and places that the robots investigate on
the virtual map as ‘points of interest’ (pois). These pois are then used to refer to the
real objects or places, although they are just symbols on the computer screen. Both
phenomena are shown in Example 3.1.6, cases (a) and (b) respectively.

Moreover, an unexpected expression referring to some area or object may pop up
during the dialogue simply because this area or object was ‘silently’ put on the screen,
and this fact was never explicitly mentioned before.

3.1 tradr data 41

Example 3.1.6. Double environment representation
(a) TL: UGV-2, UGV-1. Can you go forward a little bit?

UGV2: I will go forward. Operator one, so I make your way clear. Over.
(b) TL: Can you go to a victim forty and check for functions? Over.

Finally, like any spontaneous speech tradr dialogues are characterized by repe-
titions, elliptical constructions and a heavy use of fillers, such as ‘erm’, ‘uh’, etc. Some
utterances are not finished, and often they contain grammatical mistakes.

So, above we have summarized the main features of the tradr team communi-
cation. We have seen that some of them, e.g., communication by protocol, complex
communication pipeline or double reality representation are domain-specific. They give
us a better understanding of the domain and help explain some phenomena in frame
distribution, e.g., why some frames are much more common than others.

3.1.3 Domain-typical topics

To give the reader some idea about the actual contents of the tradr dialogues, in this
section we will briefly summarize the topics that are the most characteristic of our data.
We will also mention the most common problems that the mission participants had to
deal with during the exercises, as the discussion of these problems makes a significant
part of the dialogues. Later we will see how the topics presented here correlate with
the distribution of semantic frames.

Let us start with dialogue contents related tomission tasks. As mentioned earlier,
during a mission robot operators get requests from the team leader and report back
the results. Taken together, requests, progress reports and questions/answers related
to them form the bulk of the dialogues. In general we can distinguish the following
requests: explore certain area and find sources of smoke, fire, contamination, etc.;
search for victims; move or fly along a certain path; mark mission-related objects
and/or way-points on a virtual map; make pictures and share them. To this group
we can also add all sorts of questions concerning task understanding, acceptance or
confirmation.

Quite a lot of utterances serve the purpose of establishing or checking connec-
tion between the mission participants. Obviously, the most common problem here is
a poor connection, so that the participants mishear or misunderstand each other (see
Examples 3.1.7 and 3.1.8).

Example 3.1.7. Poor connection: radio’s down
MC: Team leader to mission commander. Please answer.
UGV-1: Team leader, radio’s down.
MC: Okay.
TL: Alright. The team... The team leader can hear you again. Radio’s working again.

Example 3.1.8. Poor connection: misunderstanding
TL: Can you explore that area, please?
UGV-2: Yeah. What’s area do you mean?
TL: Area on the west side. Over.
UGV-2: The area on the left side. Ok.

42 Data

TL: The area on the west side. Over.
UGV-2: On the west side.

Another dialogue topic in a constantly changing environment is tracking changes.
It can be changes in robots’ locations and status, or changes of the surroundings, e.g.,
smoke and fire may spread, victims may change their posture or move (see Examples
3.1.9 and 3.1.10).

Example 3.1.9. Tracking changes: robot’s status
TL: Can you give me your status? Because I don’t see you are really moving.
UGV-2: I’ve seen that to myself too. One moment. I... I will give my status for about
thirty seconds. Over.

Example 3.1.10. Tracking changes: environment
UGV-1: One victim is outside the plant. Is going away. And victim two, I guess he is
dead.

Discussion of various technical problems also happens quite often in the tradr
dialogues. It can be problems with internet connection, with sending pictures and data,
receiving gps signal or problems related to controlling the robots or drones, including
cases with empty batteries, troubles with joystick, flippers or arm (see Examples 3.1.11
and 3.1.12).

Example 3.1.11. Technical problems: sharing pictures
TL: Ground operator one, the picture hasn’t arrived yet.
UGV-1: Team leader, do you have a picture now?
TL: Negative.
UGV-1: Yes, it doesn’t work somehow.

Example 3.1.12. Technical problems: robot stopped working
UGV-1: Team leader. My robot has stopped working.
TL: Both robots stopped. Can you reset them? Over.
UGV-1: Negative. For operator one.
UGV-2: Negative for two.

Another common problem during field exercises has to do with reality interpre-
tation. The problem is usually caused by indirect perception of the environment by
mission participants. As the team members see the site mostly through robots’ cam-
eras, and there can be smoke, gas or fire, it is not always easy to identify an object
in sight, or tell for sure that the robot has found what it was looking for. Sometimes
the operators report about the same thing thinking that they have found two separate
ones. The speakers may be unsure if they discuss the same entity or different ones.
These problems are illustrated by Examples 3.1.13 and 3.1.14.

Example 3.1.13. Difficulties in distinguishing two objects
UGV-1: I see a victim. It’s looks like he’s sitting on a chair. Is that the same victim
you see?
UGV-2: Negative. It’s an... erm... maybe. My victim is also sitting on an chair.

3.1 tradr data 43

Example 3.1.14. Identification problem
MC: On UAVs first picture showing the overview there is a light spot. Maybe you can
zoom in again? I don’t know what that is.

Finally, quite frequent among English tradr dialogues are cases when the dialogue
participants try to establish a correspondence between points of interest on a virtual
map (screen) and real objects or places. Also, the situation is sometimes complicated
by the fact that environment may change. Especially frequent are problems with
identifying the robots’ location. Some of such difficulties are shown in Examples 3.1.15
and 3.1.16.

Example 3.1.15. Difficulties in identifying robot’s location
TL: Yeah okay, I should be able to see you then. It’s in front of the smoke machine,
right?
UGV-1: Nope. I’m in front of that furnace that has various portholes. Well, that’s how
I would describe it.

Example 3.1.16. Difficulties in matching POIs with real objects
UGV-1: Victim eleven and smoke five. I put POI.
TL: So, victim eleven is that victim which is code three and smoke five, smoke fifteen...
Is that the barrel?
UGV-1: Yes. Smoke five is the barrel. Right.
TL: Eeeh. Fifteen, isn’t it?

To conclude our survey of domain-typical topics, we would like to point out that
while the discussion of mission tasks, their progress and status is in the focus of team
communication, a considerate part of the dialogues is devoted to the discussion of
various problems that may accompany the mission, e.g., bad radio/internet connection,
difficulties in establishing correspondence between real objects and symbols on the map,
tracking changes and so on. In Section 3.1.6 we will see how the topics that we have
discussed found their reflection in the distribution of semantic frames.

3.1.4 Dialogue turns distribution

Let us first present some general statistical facts about the tradr data. This will help
better understand the peculiarities of team communication in the disaster response
scenario. In order to process the dialogues, split them into separate sentences and
perform tokenization we use the nltk library for Python [Bird et al., 2009].

Table 3.3 shows the distribution of dialogue turns, utterances and tokens between
all mission participants in both English and German dialogues. Also, average numbers
of utterances per turn and tokens per utterance are given. The upper part of the table
demonstrates information about the original German dialogues, next is the statistics
of all the available translations from German into English. Figures that characterize
the original English dialogues follow. The last part of the table presents the statistics
of the joint data, which combines original English dialogues and six German dialogues
that were translated into English.

We see that in total the data in English contains 2,094 dialogue turns, and the
number of turns in dialogues translated from German is about 1.6 times bigger than

44 Data

the number of turns in the English ones. On average, each dialogue turn contains 1.23
utterances, and English turns are slightly longer than the German ones. All turns taken
together contain 22,156 tokens, and a single utterance is rather short - on average it
consists of 8.68 tokens. One can see that as a rule a single utterance translated from
German into English is about 1.7 times longer than a single utterance recorded in
English - on average they have 10.79 and 6.48 tokens respectively.

MC TL UGV-1 UGV-2 UAV Total
German data

Dialogue turns 60 984 466 250 304 2,064
Utterances 61 997 470 250 307 2,085
Tokens 526 6,165 3,630 2,002 2,243 14,566
Avg. # utterances per dt 1.02 1.01 1.01 1.00 1.01 1.01
Avg. # tokens per utterance 8.62 6.18 7.72 8.01 7.31 6.99

English data translated from German (6 dialogues out of 9)
Dialogue turns 60 586 286 168 183 1,283
Utterances 61 596 289 168 186 1,300
Tokens 820 5,214 3,620 2,131 2,246 14,031
Avg. # utterances per dt 1.02 1.02 1.01 1.00 1.02 1.01
Avg. # tokens per utterance 13.44 8.75 12.53 12.68 12.08 10.79

Original English data
Dialogue turns - 427 224 157 3 811
Utterances - 710 309 231 3 1,253
Tokens - 4,769 1,872 1,461 23 8,125
Avg. # utterances per dt - 1.66 1.38 1.47 1.00 1.55
Avg. # tokens per utterance - 6.72 6.06 6.32 7.67 6.48

All data (original English data + English data translated from German)
Dialogue turns 60 1,013 510 325 186 2,094
Utterances 61 1,306 598 399 189 2,553
Tokens 820 9,983 5,492 3,592 2,269 22,156
Avg. # utterances per dt 1.02 1.29 1.17 1.23 1.02 1.23
Avg. # tokens per utterance 13.44 7.64 9.18 9.00 12.01 8.68

Table 3.3: tradr data: dialogue turns (dt) statistics

It is interesting to compare the English translations of the German dialogues with
their original versions. A noticeable difference can be seen in the total number of tokens
used, and as a consequence, in an average utterance length. So, in total, six translated
dialogues contain almost as many tokens as the nine original dialogues with sentences
being approximately 1.5 times longer than the original ones.

Looking at Table 3.3 we can also notice that the team leader has more turns than
each of the other mission participants: in total this number is only slightly smaller than
the sum of all the rest dialogue turns taken together. The least number of turns belongs
to the mission commander, who is actually present in only two of all tradr dialogues
in German, and in field exercises performed in English in 2017 this role is absent. Next,
we see that uav plays much more notable role in exercises done in German: 304 turns

3.1 tradr data 45

against 3 turns in the English dialogues. As for average utterance length, the longest
ones belong to mission commander, and the utterances of the team leader are usually
shorter than those of robot operators.

So, the main takeaways for us here are as follows. First, our English and German
tradr corpora are quite small (22,156 and 14,566 tokens respectively). Second, the
dialogue turns of all mission participants are really short - their length hardly exceeds
one utterance. Third, the utterances themselves are also short - normally, not longer
than seven or nine tokens.

3.1.5 Utterance completeness

As normally we use semantically complete sentences containing frame-evoking elements
for training/testing a model, it is also important to analyse the completeness of utter-
ances contained in the tradr corpus.

First, it is necessary to point out that, due to the fact that we deal with spontaneous
speech, the dialogues contain many communication fragments, which represent all sorts
of noises, unfinished sentences, isolated words, etc. As they are incomplete from the
point of view of semantics, we simply assign a frame ‘Communication_fragment’ to all
of them. Such fragments do not have frame-evoking targets, so they are excluded from
training/testing process. In total, communication fragments make up about 2.5% of
all the data. Because English was not the native language of the firefighters who took
part in the field exercises in 2017, communication fragments are much more frequent
in the English tradr dialogues than in the German ones.

Second, the data also contains many elliptical utterances. We label an utterance
as elliptical if we can deduce its meaning, but the target that evokes this meaning is
actually missing. There may be different reasons why the target is missing, from cases
where it is omitted to avoid redundancy to cases with grammatical mistakes or slips
of the tongue. About 13.5% of all our data is elliptical. Because of the missing targets
we have to exclude this part of data from the experiments as well.

Almost 84% of data are full utterances with targets, and we use them for train-
ing/testing procedures.

A summary of the distribution of utterances with different level of completeness
across English and German dialogues can be found in Table 3.4. For each utterance
type the table shows the number of its raw occurrences as well as the proportion of
these occurrences in the corpus. The last row shows the total number of instances
which have frame labels. Additional information about communication fragments and
elliptical sentences, as well as examples, is given in Appendix A.

Eng. transl. from Ger. All data
Utterance type # occ. % # occ. % # occ. %
Communication_fragment 103 6.56 3 0.11 106 2.53
Elliptical utterances 295 18.78 270 10.31 565 13.48
Full utterances 1,173 74.67 2,347 89.58 3,520 83.99
Total 1571 100 2620 100 4191 100

Table 3.4: English tradr data: utterances’ completeness

46 Data

Note that according to Table 3.4 the total number of utterances in all the dialogues
is bigger than the total number of utterances given in Table 3.3: 4,191 vs. 3,338
sentences. This is due to the fact that our data was first annotated with dialogue
acts, and in the process some utterances were split or merged or cleaned up, e.g.,
all fillers and hesitation markers within utterances were cut out and kept as separate
dialogue acts. Frame annotation was built upon the dialogue act annotation with some
sentences split/merged back into their original forms. Moreover, some utterances were
assigned several frames, because several tokens within those utterances were interpreted
as targets (see Appendix A for details).

Now let us take a closer look at the elliptical utterances. Currently they are ex-
cluded from our experiments, but can be relevant for future research. So, elliptical
utterances do not have targets, but we are still able to assign frames to them. Table
3.5 shows top five most frequent frames that were assigned to the elliptical utterances,
as well as the absolute and relative occurrences of these utterances in the corpus. The
table is split into three parts. The first part focuses on the original English data, the
second part - on the translations from German, and the last one - on all the available
tradr data in English. We see that almost 69% of the elliptical utterances belong to
‘Communication_by_protocol’ frame. Other common frame labels here are ‘Identity’,
‘Motion’ and ‘Inspecting’.

Eng. transl. from Ger. All data
Frame label # occ. % Frame label # occ. % Frame label # occ. %
Comm._by_protocol 206 69.83 Comm._by_protocol 183 67.78 Comm._by_protocol 389 68.85
Motion 14 4.75 Identity 22 8.15 Identity 27 4.78
Inspecting 12 4.07 Holding_off_on 9 3.33 Motion 21 3.72
Communication 9 3.05 Motion 7 2.59 Holding_off_on 18 3.19
Holding_off_on 9 3.05 Create_representation 7 2.59 Inspecting 13 2.30

Table 3.5: English tradr data: top 5 elliptical frames

Please, note that both Table 3.4 and Table 3.5 do not contain any information
about the original German data. This is because elliptical constructions are treated
differently there (see Section 3.4).

3.1.6 Semantic frames distribution

Before we start discussing the distribution of semantic frames in the English tradr
data, we need to know more about how the corpus was annotated. We annotated
utterances in tradr dialogues with frame-evoking targets, corresponding lexical units,
frames and parent frames. We did not annotate them with frame elements, phrase types
or grammatical functions. We assumed that each utterance can potentially have several
targets. The detailed description of our approach to the annotation of tradr data, as
well as illustrating examples are presented in Appendix A. It also includes a discussion
of such annotation issues as the absence of lexical units and senses in the FrameNet
database, the choice of targets within the utterance, adaptation of frames and so on.
Performing annotations, we had to introduce several new frames, their definitions can
be found in Appendix B.

3.1 tradr data 47

Now we can proceed with an analysis of the semantic frame distribution in the
English tradr data. This will help make some judgments about the semantic structure
of the data and support our statements about the most common topics discussed earlier.
In what follows we will take into consideration all frame labels present in our data
regardless of the utterance type, i.e. communication fragments and elliptical sentences
will also be a part of the analysis.

From Table 3.4 we know that the whole corpus contains 4,191 frame instances.
These instances are distributed between 190 different frame labels. The original English
data counts 107 different frames, and the part translated from German has 162. The
distribution of the frame labels is not uniform, i.e. some frame labels occur much more
often than others.

As we have too many frame labels to place them all into a single table, a diagram
or a pie chart, we will focus only on the most frequent/infrequent frames. Table 3.6
demonstrates the proportions of such frames in the whole corpus. The left part of the
table presents the top ten most frequent frames, their absolute and relative occurrences
in the data, e.g., the frame ‘Capability’ is represented by 305 instances in the English
tradr corpus, and taken together these 305 instances make 8.35% of all the data. The
right part of the table reveals the role of the infrequent frames, namely the number of
individual frames and the amount of instances each of these frames has in the corpus,
as well as the role of these instances in the data. As the corpus has lots of infrequent
frames, we group them by the number of occurrences, e.g., 30 different frames in English
tradr data are represented by two instances each, so altogether we have 60 instances
that make about 1.43% of all the data.

Top 10 most frequent frames Role of infreq. frames in the data
Frame label # occ. % # frames # occ. per fr. %
Communication_by_protocol 759 18.11 46 1 1.10
Communication_response_message 350 8.35 30 2 1.43
Capability 305 7.28 10 3 0.72
Motion 217 5.18 12 4 1.15
Perception_experience 217 5.18 15 5 1.79
Sending 140 3.34 6 6 0.86
Locative_relation 140 3.34 10 7 1.67
Create_representation 127 3.03 5 8 0.95
Identity 123 2.93 2 9 0.43
Communication_fragment 106 2.53 1 10 0.24
Total 2484 59.27 137 433 10.33

Table 3.6: English tradr data: frame distribution in all dialogues

One can easily see that the utterances that belong to the top ten most frequent
frames make almost 60% of the corpus, while the instances of 137 infrequent frames
(each has maximum ten inhabitants) count only about 10%. The frame distribution
is heavy-tailed: 137 infrequent labels make about 72% of the total number of different
frames, and top ten most frequent ones - only about 5%. The plots illustrating the
situation can be found in Table 3.1. They show the dependence of frame frequency on
its rank, where the rank means a frequency’s place in a list of frequencies sorted from

48 Data

the largest to the smallest. In the left plot the axes have linear scales, in the right one
both axes are logarithmic.

Figure 3.1: tradr data: frame frequencies

If we take a look at the most frequent frames presented in Table 3.6, we will see
that ‘Communication_by_protocol’ is the most common frame, its instances form more
than 18% of all the data. This is more than the sum of all occurrences of frames
‘Communication_response_message’ and ‘Capability’, which are the second and the
third most frequent frames respectively. Other widely used frames reflect the most
common dialogue topics and mission tasks, e.g., ‘Motion’, ‘Perception_experience’ or
‘Create_representation’.

Top 10 most frequent frames Role of infreq. frames in the data
Frame label # occ. % # frames # occ. per fr. %
Communication_by_protocol 248 15.79 29 1 1.85
Communication_response_message 123 7.83 18 2 2.29
Capability 110 7.00 12 3 2.29
Perception_experience 109 6.94 3 4 0.76
Communication_fragment 103 6.56 8 5 2.55
Motion 103 6.56 3 6 1.15
Inspecting 73 4.65 2 7 0.89
Locative_relation 64 4.07 3 8 1.53
Communication 52 3.31 1 9 0.57
Create_representation 50 3.18 4 11 2.80
Total 1035 65.88 83 262 16.68

Table 3.7: English tradr data: frame distribution in the original dialogues in
English

Similar tendencies can be observed in the English and German (translated) parts of
the corpus, if we take them separately. The top three most frequent frames are identical

3.1 tradr data 49

for both sub-corpora, other common frames in a slightly different order are also present
in both sub-parts of tradr data. The ratio of frequent frames to infrequent ones is
similar as well. The details can be found in Tables 3.7 and 3.8.

Top 10 most frequent frames Role of infreq. frames in the data
Frame label # occ. % # frames # occ. per fr. %
Communication_by_protocol 511 19.50 51 1 1.95
Communication_response_message 227 8.73 19 2 1.45
Capability 195 7.44 15 3 1.72
Motion 114 4.35 9 4 1.37
Perception_experience 108 4.12 7 5 1.34
Sending 103 3.93 4 6 0.92
Identity 84 3.21 5 7 1.34
Create_representation 77 2.94 3 8 0.92
Locative_relation 76 2.90 4 9 1.37
Scrutiny 54 2.06 1 10 0.38
Total 1549 59.12 118 334 12.75

Table 3.8: English tradr data: frame distribution in dialogues translated from
German

Our analysis allows us to draw the following important conclusions. First, all En-
glish tradr data is highly imbalanced - a few majority classes have hundreds of in-
stances, while lots of minority ones are represented by only ten and less examples each.
This fact motivates the choice of performance metrics for the evaluation of the frame
classifier that were discussed in Chapter 2. Second, frames are good indicators of the
dialogue contents presented in Section 3.1.3. E.g., the frequency of the ‘Communica-
tion_by_protocol frame shows that establishing connection really makes a large part
of the dialogues, and ‘Capability’, ‘Communication_response_massage’ and frames
capturing various activities reflect discussion of mission relevant tasks, as well as the
nature of these tasks.

3.1.7 lu and pos distributions

In what follows we will analyse the distributions of lexical units (lus) and their parts
of speech (pos) across the English tradr corpus. This information together with
the analysis of the ambiguity of lus that will be discussed next is important for our
experiments with the filtering of candidate frames by the given lu.

In total the English tradr data counts 434 different lus. Table 3.9 shows the top
ten most frequent ones. All three parts of the table demonstrate similar tendencies:
we see that the most frequent lus are verbs, and they are mostly the same everywhere.
The distribution of lus, like the distribution of frames, is not uniform: the same top
ten most common lus occur in about 40% of all the utterances and at the same time
make only slightly more than 2% of the whole amount of different lus.

Looking at the lexical units in Table 3.9 it is easy to suggest the frames they
may evoke, e.g., the lu ‘see.v’ most likely evokes the frame ‘Perception_experience’,
‘can.v’ - ‘Capability’ and so on. However, the order of these frames would be a little

50 Data

bit different from that presented in Table 3.6. Moreover, the most probable frame
candidates for such lus as ‘listen.v’ and ‘answer.v’ - frames ‘Perception_active’ and
‘Communication_response’ are absent from the list of top ten most frequent frames.
This allows us to conclude that some lus are ambiguous, i.e. they have several senses
and thus evoke more than one frame. We will discuss the ambiguity of lexical units in
Section 3.1.8.

Eng. transl. from Ger. All data
LU # occ. % LU # occ. % LU # occ. %
can.v 106 9.04 can.v 192 8.18 can.v 298 8.47
see.v 76 6.48 listen.v 165 7.03 listen.v 168 4.77
go.v 73 6.22 roger.intj 150 6.39 roger.intj 161 4.57
be.v 36 3.07 answer.v 135 5.75 see.v 156 4.43
ok.intj 36 3.07 be.v 98 4.18 answer.v 135 3.84
okay.intj 32 2.73 send.v 89 3.79 be.v 134 3.81
explore.v 29 2.47 see.v 80 3.41 send.v 117 3.32
send.v 28 2.39 take a picture.v 54 2.30 go.v 113 3.21
thank.v 26 2.22 there be.v 50 2.13 there be.v 60 1.70
know.v 22 1.88 go.v 40 1.70 take a picture.v 59 1.68
Sum 464 39.56 Sum 1,053 44.87 Sum 1,401 39.80

Table 3.9: English tradr data: top 10 most frequent lus

Now let us briefly examine the pos distribution of lexical units presented in Table
3.10. Like the distributions of frames and lus, it is also not uniform. All lus are
distributed between seven different pos tags. One can notice that within the whole
corpus verbal lus occur in 75% of the utterances. The second frequent pos that a lu
may have is interjection. To this pos belong almost 8% of all the lus. Interjections as
frame-evoking elements are typical for ‘Communication_response_message’, which is
quite common. It is also interesting that adjectival lus are more frequent than nominal
ones, and that prepositional lus occur as often as the adverbial lus.

Eng. transl. from Ger. All data
pos # occ. % pos # occ. % pos # occ. %
.v 828 70.59 .v 1829 77.93 .v 2657 75.48
.intj 98 8.35 .intj 172 7.33 .intj 270 7.67
.n 98 8.35 .a 147 6.26 .a 190 5.40
.adv 53 4.52 .n 77 3.28 .n 175 4.94
.prep 52 4.43 .prep 63 2.68 .prep 115 3.27
.a 43 3.67 .adv 59 2.51 .adv 112 3.18
.conj 1 0.09 - - - .conj 1 0.03
Total 1,173 100 Total 2,347 100 Total 3,520 100

Table 3.10: English tradr data: lu pos distribution

3.1.8 Ambiguity of lus

Ambiguity of lexical units is another important aspect we need to discuss, because this
is one of the things that make training a frame classifier a challenging task.

3.1 tradr data 51

Let us first check the top ten most ambiguous words in the tradr corpus given in
Table 3.11. As usual, the data in the table shows the results for the original English
tradr data, dialogues translated from German, as well as both parts taken together.
The first column in each part contains lus, the second one - number of different frames
a certain lu evokes. One can see that all lus in the table are rather common verbs,
and they are mostly the same in all three parts of the table. According to the last
part of the table representing the whole corpus, the lus ‘be.v’ and ‘do.v’ are the most
ambiguous - each of them evokes six different frames. There are four other lus each of
which evokes five separate frames. Note that three lus in this column are also present
among the top ten most frequent ones.

Eng. transl. from Ger. All data
LU # diff. fr. LU # diff. fr. LU # diff. fr.
do.v 5 there be.v 5 be.v 6
can.v 3 get.v 5 do.v 6
look.v 3 be.v 5 look.v 5
give.v 3 discover.v 4 there be.v 5
be.v 3 look.v 4 get.v 5
come.v 3 make.v 3 make.v 5
copy.v 2 escape.v 3 say.v 4
change.v 2 can.v 3 come.v 4
there be.v 2 come.v 3 can.v 4
check.v 2 take.v 3 discover.v 4

Table 3.11: English tradr data: top 10 most ambiguous lus

As lexical ambiguity represents a challenge for any frame classifier, we are naturally
interested in how many lexical units in the tradr data are ambiguous, and if these
ambiguous lexical units are frequent. This information is summarized in Table 3.12.
The first column of this table shows how many different lus evoke a certain number
of frames. The number of the evoked frames is given in the second column. So, e.g.,
in the whole corpus there are nine lus, each of which evokes 3 different frames. The
remaining two columns show the proportions of both ambiguous and non-ambiguous
lus with respect to all individual lus taken together (the third column), and with
respect to all their instantiations in all available senses (the fourth column). Using
Table 3.12 we can observe that in general only about 15% of all lus are ambiguous.
However, all these ambiguous lus are realized in nearly 53% of utterances containing
targets. Simple calculations show that on average a single lu evokes 1.24 frames.

So, we see that while the ambiguous lus are not very frequent in comparison to
non-ambiguous ones, the frames that they evoke are frequent, and this may become a
problem for the frame classifier, as it is not always possible to perform frame disam-
biguation using utterance context. The fact that we work with team communication
data makes this problem even more complicated, as the mission participants often tend
to omit many details to make their utterances brief and simple. We will return to the
influence of ambiguity in Chapter 4, when we analyse the performance of our models
and mistakes they make.

52 Data

English data (228 individual lus)
diff. lus # diff. fr. prop. wrt. lus prop. wrt. all inst.
1 5

31 (13.60%) 513 (43.73%)5 3
25 2
197 1 197 (86.40%) 660 (56.27%)

Data transl. from Ger. (316 individual lus)
diff. lus # diff. fr. prop. wrt. lus prop. wrt. all inst.
3 5

45 (14.24%) 1202 (51.21%)2 4
10 3
30 2
271 1 271 (85.76%) 1145 (48.79%)

All data (434 individual lus)
diff. lus # diff. fr. prop. wrt. lus prop. wrt. all inst.
2 6

65 (14.98%) 1862 (52.90%)
4 5
4 4
9 3
46 2
369 1 369 (85.02%) 1658 (47.10%)

Table 3.12: English tradr data: distribution of (non-)ambiguous lus

Now, let us summarize the main properties of the English tradr data. First, it
belongs to the domain of team communication during disaster response. The domain
has its influence on the language - most of the utterances are short and simple. Second,
the data is multiclass and heavily imbalanced - 4,191 utterances are distributed between
190 various classes, and 137 of these classes have ten or less inhabitants. Third, more
than half of all the data samples contain ambiguous targets, which may evoke up to
six different frames. All this makes the process of training a frame classifier a very
challenging task.

3.2 FrameNet data

In this section we will present more details about the FrameNet corpus. This is im-
portant, because if we want to use the corpus (or some part of it) to train a frame
classifier that would work for tradr data, we need to know the differences between
the two corpora.

3.2.1 Domain

The FrameNet data includes sentences that were annotated using two different ap-
proaches: the so-called ‘lexicographic’ and ‘full-text’ annotations. The materials for

3.2 FrameNet data 53

these two types of annotations come from different sources [Baker, 2008].
The sentences for lexicographic annotation come from the British National Corpus

(bnc). According to Wikipedia [Wikipedia, 2020b], the bnc is a 100-million-word
corpus of English. It is a result of the project that was started somewhere around
1990. About 90% of the bnc samples were taken from different newspapers, research
journals from various academic fields, fiction and non-fiction books and many other
types of texts. The rest of the corpus are samples of transcribed spoken data. The
transcriptions represent conversations produced in various situations. It can be formal
business or government meetings, conversations on radio shows or phone-ins. We do
not know what part of the bnc was actually used for FrameNet annotations.

The data annotated according to the full-text approach comes from the American
National Corpus (anc), the Nuclear Threat Initiative website and the Wall Street
Journal. The anc consists of 22 million tokens of written and spoken data [Wikipedia,
2020a]. The project came to life in 1998. In the beginning the anc included such
corpora as the Indiana Center for Intercultural Communication Corpus (icic), the
Charlotte Narrative and Conversation Collection (cncc), as well as government docu-
ments and texts from a few u.s. publishers [Ide, 2008]. Later the corpus was extended
with tweets and various web data.

The Wikipedia page about Nuclear Threat Initiative (nti) says that it is a non-
profit organization founded in 2001, which works to prevent catastrophic attacks and
accidents with weapons of mass destruction and disruption – especially nuclear, bio-
logical, radiological, chemical and so on [Wikipedia, 2020e]. The data in the corpus
obviously relates to these topics.

And finally, the Wall Street Journal (wsj) corpus consist of data that belongs to
the domain of business, finance and economics. More information about the corpus
can be found in Paul and Baker [1992].

Again, it is unknown what parts of these corpora were taken for the full-text
FrameNet annotations. But based on the corpora descriptions we can conclude that
the FrameNet domain is very different from that of the tradr data.

3.2.2 Semantic frames distribution

Before proceeding with the analysis of semantic frames distribution of FrameNet data,
we would like to present more general information about the corpus.

So, with the help of nltk FrameNet api [Schneider and Wooters, 2017] we extract
from the FrameNet corpus the following information: sentences that were annotated
with frames, positions of frame-evoking targets in the form of character indices, a
lemmatized variant of each target (i.e. lus) and frame labels themselves. With all
duplicates deleted this makes up 199,508 sentences. In order to tokenize the sentences
we use the same nltk library for Python that we employed for the tokenization of
tradr data. In total our FrameNet data contains 4,751,140 tokens. This is about 209
times more than in tradr corpus. An average sentence length counts approximately
23,81 tokens. This means that on the whole the FrameNet sentences are 3.5 times
longer than tradr ones.

There are 1,014 different semantic frames in FrameNet data, around 5.3 times more
than in tradr corpus. Because, like in case with tradr, it is impossible to place all

54 Data

1,014 frames into a single table or chart, in Table 3.13 we present only the information
about the most frequent frames as well as the role of the least frequent ones in the
FrameNet corpus. We chose such a format in order to be consistent with tradr
data visualization approach, and to make the distributions of frames in two corpora
comparable.

Top 10 most frequent frames Role of infreq. frames in the data
Frame label # occ. % # frames # occ. per fr. %
Self_motion 6,453 3.24 27 1 0.01
Stimulus_focus 4,058 2.03 20 2 0.02
Emotion_directed 3,380 1.69 19 3 0.03
Clothing 3,181 1.59 11 4 0.02
Statement 3,037 1.52 12 5 0.03
Body_parts 2,672 1.34 8 6 0.02
Natural_features 2,361 1.18 9 7 0.03
Containers 2,111 1.06 12 8 0.05
Experiencer_obj 2,067 1.04 7 9 0.03
Judgment_communication 1,988 1.00 10 10 0.05
Total 31,308 15.69 135 598 0.30

Table 3.13: FrameNet data: frame distribution

If we take a look at the top ten most frequent frames shown in the left part of Table
3.13, we will notice at once that the given list is completely different from the list of
the most frequent frames in tradr data presented in Table 3.6. Taken together all
instances of these frames make 15.69% of the data. This is less than the proportion
of sentences belonging to the top ten most frequent frames in the tradr corpus, but
taken into consideration the fact that the FrameNet corpus is much larger and contains
much more individual frames, it is still a lot. The right part of Table 3.13 shows the
distribution of very infrequent frames, namely, how many separate frames have from
one to ten instances, and what percentage of the data they make. We see that there
are 135 different frames, each of which occurs ten or less times in the FrameNet data.
All together they constitute a rather insignificant part of the data - only around 0.3%.

In general, the tendency in frame frequency distribution in FrameNet is similar to
that of in tradr. Top ten most frequent frames make less than 1% (in tradr - about
5%) of total amount of different frames, but their instances compose quite a large
part of the corpus. At the same time very infrequent frames make more than 13% (in
tradr - 72%) of all frames, and cover only a scanty amount of data. The difference
in proportions of frequent and infrequent frames between FrameNet and tradr can
probably be explained by the fact that the frame frequency is relative with respect to
the corpus size and the number of individual frames in the corpus. For instance, among
the most frequent frames in tradr data are frames that count about 100-200 instances,
however, for FrameNet data such numbers mean only moderate frame frequency.

Our conclusion about the similarities in frame frequency distributions in both cor-
pora is supported by the plots in Table 3.2. Two curves show how frame frequency
changes depending on its rank, and they are comparable to the curves in Table 3.1.

3.2 FrameNet data 55

Figure 3.2: FrameNet data: frame frequencies

3.2.3 lu and pos distributions

Table 3.14 demonstrates the distributions of lus and pos in the FrameNet corpus.
Here we can notice some tendencies that are also observed in tradr data. At the
same time, there are also differences. We will discuss them below.

Top 10 most frequent lus lu pos distribution
lu # occ. % pos # occ. %
not.adv 544 0.27 .v 82,068 41.14
in.prep 472 0.24 .n 77,204 38.70
say.v 384 0.19 .a 33,759 16.92
tell.v 337 0.17 .prep 2,926 1.47
use.v 284 0.14 .adv 2,032 1.02
swim.v 278 0.14 .scon 752 0.38
people.n 274 0.14 .num 345 0.17
program.n 262 0.13 .art 267 0.13
eye.n 253 0.13 .idio 105 0.05
live.v 250 0.13 .c 50 0.03
Sum 3,338 1,67 Total 199,508 100

Table 3.14: FrameNet: top ten most frequent lus and lu pos distribution

In total, the FrameNet corpus counts 8,333 individual lus. The left part of the table
shows the top ten most frequent lus. First of all, we see that they are very different
from the most frequent lus in tradr data shown in Table 3.9. The top two lines are
occupied by an adverb and a preposition, the rest are verbs and nouns, while the list
of top ten most frequent lus in tradr data contains nine verbs and one interjection.

All together the FrameNet instances that have as targets the most common lus
shown in Table 3.14 make only around 1.7% of all FrameNet data. Still, it can be

56 Data

considered as a lot, because these ten frame-evoking lus make approximately 0.12% of
the total amount of different lus. tradr data reveals a similar trend.

The right part of Table 3.14 is also interesting. Here we can notice that the
FrameNet lus are distributed between 10 various pos tags, and more than 40% of
all targets in the FrameNet corpus are verbs. Nominal targets take almost 39% of data
thus forming the second largest group. The third largest group is represented by adjec-
tival lus. Other pos are much less frequent. In contrast to tradr data, in FrameNet
we can come across lus that belong to such pos as subordination conjunction (.scon),
coordinating conjunction (.c), article (.art) or idiomatic expression (.idio). Judging by
this, we can conclude that the distributions of lexical units in both corpora are rather
different.

3.2.4 Ambiguity of lus

One more aspect we need to discuss in order to compare FrameNet and tradr corpora
is ambiguity of lexical units. This information is given in Table 3.15.

FrameNet data (8,333 individual lus) Top 10 ambiguous lus
diff. lus # diff. fr. prop. wrt. lus prop. wrt. all inst. lu # diff. fr.
2 10

1,301 (15.61%) 69,801 (34.99%)

strike.v 10
2 9 hit.v 10
5 8 order.n 9
9 7 make.v 9
17 6 development.n 8
34 5 swing.v 8
76 4 find.v 8
239 3 take.v 8
918 2 lose.v 8
7,031 1 7,031 (84.38%) 129,707 (65.01%) develop.v 7

Table 3.15: Ambiguity in FrameNet data

In the left part of the table we see how many different lus evoke certain number of
different frames. The information is grouped exactly like in Table 3.12. We see that
7,031 lus out of 8,333, i.e. more than 84%, are not ambiguous. At the same time there
are lus, though not many, that are highly ambiguous and evoke 7-10 various frames
each. Note that in tradr data the most ambiguous lus evoke only 5-6 frames. It is
interesting that the proportions of ambiguous lus with respect to all individual lus
taken together are roughly the same in both corpora.

Now let us take a look at the proportion of instances with ambiguous targets with
respect to the amount of instances. We can notice that in the FrameNet corpus there are
more instances with non-ambiguous targets rather than with ambiguous ones, namely,
around 65% against 35%. If we compare these numbers with those in Table 3.12, we
will discover that in tradr data it is the other way around: almost 53% of all instances
contained ambiguous targets, and about 47% - non-ambiguous ones.

The right part of Table 3.15 demonstrates the top ten most ambiguous lus in the
FrameNet corpus. While in tradr data all of them were verbal, here we can also

3.3 tradr vs. FrameNet: comparison 57

find two nominal lus. In general, the most ambiguous lus in FrameNet are absolutely
different from those in the tradr corpus. The only exception is the lu ‘make.v’ which
can be found in both lists.

To conclude, we would like to point out the following characteristics of the FrameNet
corpus. First, it belongs to the domain of newspaper texts. As a result, its sentences are
usually long (more than 23 tokens on average) and have a complex structure. Second,
the FrameNet data, like tradr is also multiclass and imbalanced. It also contains lots
of instances with ambiguous lus. We will summarize the similarities and differences
between FrameNet and tradr in a separate section below. This will help us use
FrameNet data more efficiently in order to train a frame classifier for tradr.

3.3 tradr vs. FrameNet: comparison

The most obvious differences between the two corpora are, of course, the corpus size -
FrameNet data contains about 209 times more tokens - and domain - FrameNet mostly
consists of text samples that to a very large extent belong to such fields as business,
politics and science, while tradr data represents team communication in a disaster
response scenario.

Both corpora are multiclass and highly imbalanced, but while tradr data contains
instances that belong to 190 classes (frames), FrameNet corpus, due to much bigger
size, encompasses 1,014 different labels. 177 of 190 tradr frames occur in FrameNet.
This leaves 13 frames that do not have any instances in FrameNet, and 10 of these 13
frames were defined specially for tradr (see Appendix B) and are absent in FrameNet
at all, and 3 frames have only definitions but no actual instances in the FrameNet
database. It should be mentioned that some of the 10 frames that were created spe-
cially for tradr are very frequent, e.g., ‘Communication_by_protocol’ or ‘Communi-
cation_response_message’, others are rare, like ‘Be_piece_of’ or ‘Being_reasonable’.
Despite the fact that many of the frames are common for both FrameNet and tradr,
their roles are different, as the corpora have completely different domains.

Frame # occ. %
Capability 467 0.23
Motion 463 0.23
Perception_experience 589 0.30
Sending 214 0.11
Locative_relation 332 0.17
Create_representation 45 0.02
Identity 0 0.00

Table 3.16: Role of most frequent tradr frames in FrameNet data

The domain difference is illustrated by Table 3.16, which shows the role of some
of the most frequent tradr frames in the FrameNet corpus. Most of them make
only 0.1% - 0.2% of the whole number of instances. Frame ‘Create_representation’
is rather infrequent - there are only 45 instances of this frame in FrameNet data. In

58 Data

comparison, tradr data while being much smaller in size contains 127 instances of
‘Create_representation’ frame. There is not a single example of ‘Identity’ frame in the
FrameNet corpus, despite the fact that the description of this frame exists in FrameNet
online database.

Next, it is important to emphasize the difference in the lengths of instances of two
corpora. While an average sentence in FrameNet data consists of almost 24 tokens,
tradr sentences are normally only about 7 tokens long. Such length divergence can
be explained by domain differences, and this should be also taken into consideration if
FrameNet data is to be used for training a frame classifier.

Naturally, FrameNet and tradr also differ in the distribution of lus. While
FrameNet contains 8,333 individual lus, tradr has 434 ones, and only 280 of them
occur in both corpora. Another noticeable difference between tradr and FrameNet
data is in the pos distributions of lus. The reason for this is the fact that the moti-
vations behind the choice of targets are completely different. While the main goal of
FrameNet project is lexicographic, i.e. building a lexical database and studying the
combinatorial properties of words [FrameNet, 2020], we try to capture the meaning of
each utterance with respect to its relevance for the mission. So, in FrameNet verbal
and nominal lus are represented in more or less equal measure, and in general the lus
belong to a wider range of parts of speech. In tradr we mostly concentrate on verbal
lus, as the dialogues are very task-oriented. In contrast to the FrameNet project, we
are not interested in articles, numbers or conjunctions as targets. As a result, the lus
in focus, as well as frames they evoke, are very different in two projects. It is also
obvious that semantic frame distributions differ a lot as well.

Despite differences in size and domain, the two corpora have some similarities.
First, the shapes of the distributions of frame frequencies seem to be similar (compare
plots in Tables 3.1 and 3.2). Second, the proportions of ambiguous lus with respect
to the total number of various lus are approximately the same in both corpora.

Based on this information, we can conclude the following. Our main corpus, namely
the tradr corpus, is rather small. Taking into account the fact that the data is
multiclass and highly imbalanced, the number of instances of some classes in it is
clearly insufficient to train a reliable classifier. As the FrameNet data comes from a
completely different domain and is imbalanced too, it is unlikely that a frame classifier
trained on FrameNet will perform well on tradr data. However, the FrameNet data
can be helpful as a source of additional training examples for the classifier. We will
check these hypotheses in the next chapter.

3.4 German tradr and salsa data

As we will also train a German version of the frame classifier, it is necessary to introduce
our German data, namely the German tradr corpus and salsa data. But first we
would like to explain why we need to present German tradr data separately from
the English one, and why it was annotated with semantic frames from scratch instead
of a simple transferring of frame labels from the translated utterances to the original
German ones.

To start with, only six dialogues out of nine were translated, which means that

3.4 German tradr and salsa data 59

three dialogues needed to be annotated anyway. Second, the original utterances differ
from their translations in structure, word order, length and so on, because usually
it is impossible to perform word by word translation. Finally, we wanted to sample
additional data from the German salsa corpus, which was annotated with frames
that slightly differ from those used in the English FrameNet. For all these reasons
we had to perform the annotations of all nine German tradr dialogues separately,
and as a result there is no one-to-one correspondence in frame labels between German
utterances and their translated counterparts.

It is important to point out the differences in annotation approaches to English
and German dialogues. One of them is that the German tradr data was not anno-
tated with frame-evoking targets and, consequently, with lexical units. Instead, the
frame choice for each utterance was justified by the so-called ‘target related elements’,
which represent the whole phrase that the target is a part of. Often, the target is
the head of the phrase, but not necessarily. So, e.g., all tokens in the utterance “Er-
stes Geschoss bei der Brandentwicklung” are considered to be target related elements
of ‘Locative_relation’ frame, while according to the annotation approach for English
data, only the preposition ‘bei’ (namely, its English counterpart) would be marked as
the target. It should be noticed that using target related elements instead of simple
targets has pros and cons. One of the advantages is that target related elements provide
more context and may be helpful for frame recognition in case of elliptical utterances,
when the targets themselves are omitted. The downside of the approach is that it can
be difficult for the classifier to decide which of the target related elements it should
focus on to assign the right frame.

Because in the German data targets were replaced with target related elements,
elliptical utterances were also treated differently. While such instances in the English
tradr were excluded from the experiments, similar tradr instances in German were
included into training/test data as long as they had at least one target related element.
Notice that it is still possible to recognize the elliptical utterances in the German data
- all omitted frame related elements that are important for understanding the meaning
of the utterance were restored in a separate column during the annotation.

We wanted to make German frame annotations compatible with a set of frames used
for the annotation of the salsa corpus (we will present it later in this section), because
this would enable sampling additional training instances from it. In order to do so, we
had to replace some of the frames used for the annotation of English tradr dialogues
with their salsa-typical variants. This was not an easy task. According to Burchardt
et al. [2006], the salsa corpus relies on an older version of FrameNet, namely FrameNet
1.2, but because of differences between English and German, certain FrameNet frames
required adaptation for the salsa annotation. First, frame elements of some frames got
merged because of ontological distinctions between their roles in English and German.
Second, new frame elements were introduced for some frames. Third, some non-lexical
FrameNet frames (i.e. general frames that do not have instances) were used as lexical.
And finally, new frames were introduced. Unfortunately, we were not able to find
any official definitions of the salsa frames, and do not know for sure if the names of
the adapted frames were somehow changed or not. In addition to this, the FrameNet
version that was used for the annotation of the English tradr dialogues, namely
FrameNet 1.7, differs from FrameNet 1.2 - some new frames were added, some old

60 Data

frames got split or merged.
Trying to establish a mapping from FrameNet 1.7 to salsa, we noticed that some

frame labels were identical in both corpora, e.g., ‘Activity_start’ or ‘Activity_ongoing’,
so we left them as they were. When we had both English and German labels with iden-
tical usage examples, we replaced the English label with the German one, e.g., ‘Closure’
became ‘schliessen5-salsa’, and ‘Needing’ - ‘brauchen2-salsa’. Moreover, we found out
that certain frames in FrameNet 1.7 correspond to two different ones in salsa. We re-
placed them accordingly, e.g., instead of ‘Being_operational’ we used ‘ausfallen1-salsa’
and funktionieren1-salsa’, and instead of ‘Change_operational_state’ - ‘starten1-salsa’
and ‘ausschalten1-salsa’. For frames that did not have salsa-equivalents we used la-
bels from FrameNet 1.7. Finally, we need to mention that in contrast to FrameNet the
relations between frames are not annotated in the salsa corpus. Because of this, only
frame labels coming from FrameNet were annotated with parent frames.

Top 10 most frequent frames Role of infreq. frames in the data
Frame label # occ. % # frames # occ. per fr. %
Communication_by_protocol 731 20.77 31 1 0.88
Communication_response_message 195 5.54 22 2 1.25
Presence 183 5.20 12 3 1.02
Grasp 168 4.77 10 4 1.14
Capability 156 4.43 6 5 0.85
Motion 155 4.40 8 6 1.36
Sending 140 3.98 1 7 0.20
darstellen3-salsa 106 3.01 4 8 0.91
Perception_experience 105 2.98 2 9 0.51
Scrutiny 99 2.81 9 10 2.56
Total 2,038 57.91 105 376 10.68

Table 3.17: Original German tradr data: frame distribution

Due to the differences in the annotation approach that have been listed above, the
total number of frame labels used for the annotation of the original German tradr data
is less than the total number of frames used to annotate their translations: 152 and 162
labels, respectively. The labels are distributed across 3,519 instances. Table 3.17 shows
this distribution in detail. As usual, the left part of the table presents the top ten most
frequent frames, and the right part illustrates the role of infrequent frames in the corpus.
If we compare this table with the corresponding table presenting the distribution of
frames in translated data (see Table 3.6), we can notice that two distributions are very
similar. First, the frame labels and their order in the left parts of both tables are
almost the same with two exceptions: the frames ‘Presence’ and ‘Grasp’ are absent in
Table 3.6, which contains the frames ‘Identity’ and ‘Locative_relation’ instead. Note
that ‘darstellen3-salsa’ corresponds to the ‘Create_representation’ frame. Second, the
most frequent as well as infrequent frames make approximately the same proportions
in both datasets. In the original German dialogues their share is about 58% and 11%
respectively, in the translated data - about 59% and 13%.

Now let us proceed with the salsa corpus. The corpus extends the German tree-
bank called tiger with semantic annotations, i.e. given a syntactic tree, its root was
annotated with the frame label, and the root’s edges - with frame elements’ labels.

3.5 Data for experiments 61

The annotation focused on verbal targets in the first place [Burchardt et al., 2006]. As
tiger treebank consists of articles from the German newspaper ‘Frankfurter Rund-
schau’ [Brants et al., 2002], the domain of salsa data is close to that of FrameNet.
We extract sentences, targets and the corresponding frame labels from salsa with
the help of salsa api, which is available for downloading at salsa Project [2020].
We do not have any information about lexical units or parent frames, as they are not
annotated in salsa. In total we have 35,236 sentences (contain 838,307 tokens) that
belong to 880 different frames. Only 80 frames are common with the German tradr
corpus, which includes 152 individual frames.

The frame distribution in salsa data is presented in Table 3.18. We see that the top
ten most frequent frames listed in it are different from those in both German tradr
and FrameNet corpora. Obviously, frame distributions in general are also different in
these three datasets. Still, it is clear that salsa data, like tradr and FrameNet,
is highly imbalanced - the instances that belong to the top ten most frequent frames
make up about 29% of all the data. One can also notice that salsa contains a lot of
frames that occur only once or twice - together they make up almost 29% of all the
available frames. And if we consider all the frames that have ten or less instances, we
will end up with 509 frames which compose more than 57% of all labels but cover only
5% of data. In comparison, in FrameNet such frames make up only slightly more than
13% and cover 0.30% of data.

Top 10 most frequent frames Role of infreq. frames in the data
Frame label # occ. % # frames # occ. per fr. %
Calendric_unit 1,854 5.26 148 1 0.42
Telling 1,608 4.56 104 2 0.59
People 1,593 4.52 61 3 0.52
Political_locales 1,380 3.92 49 4 0.56
Request 780 2.21 37 5 0.53
Statement 719 2.04 29 6 0.49
Support 649 1.84 27 7 0.54
Judgment_communication 601 1.71 21 8 0.48
Leadership-fnsalsa 542 1.54 13 9 0.33
Causation 472 1.34 20 10 0.57
Total 10,198 28.94 509 1,768 5.01

Table 3.18: salsa data: frame distribution

So, we see that basically everything that what written earlier about the similarities
and differences between the English tradr data and FrameNet can be used to compare
the German tradr data and salsa - the two corpora differ in domain, size and
distribution of semantic frames. In the next chapter we will check whether and how
the salsa corpus can be used to improve the performance of the frame classifier.

3.5 Data for experiments

In what follows we will describe how we prepared and partitioned our data for the
experiments that are presented in the next chapter. We will start with the data in

62 Data

English.
Before deleting duplicates, there were 3,521 utterances in English tradr and

200,750 sentences in FrameNet. We consider duplicates the instances that have match-
ing sentences, targets and frame labels. After deleting them, we were left with 2,930
tradr instances and 199,509 FrameNet ones.

We split both corpora into main data, which is used for training and validation,
and makes up 90% of each dataset, and test data, which makes up 10%. So, the main
part of the tradr data counts 2,637 instances, the part for testing - 293. The main
part of FrameNet has 179,559 samples, and the corresponding test data - 19,950. As
both corpora contain multiple frame labels that are represented by a single instance
each, the main part of each corpus has frames that are not present in the part reserved
for testing, and vice versa. So, after the split the main parts of tradr and FrameNet
have 184 and 1,012 individual frames, in comparison with 190 and 1,014 frames before
the split. As we plan to perform 5-fold cross-validation using the main parts of the two
datasets, we need to remove the frames that have less than 5 instances each, otherwise it
will be impossible to split the main parts into 5 folds, so that all frames are represented
in each fold. After the rare frames removal, we have 81 labels in tradr data and 931
labels in FrameNet. The corpus sizes decrease down to 2,444 and 179,386 sentences
respectively.

5-fold cross validation assumes that during the training the main data will be ran-
domly split into five equal folds (parts), of which four will be used for training and one
for validation. Thus, in case of tradr in each iteration the training data will include
1,955 samples, and the validation data - 489. For FrameNet it will be 143,509 and
35,877 samples, respectively. Rotating the parts as shown in Figure 3.3 we will train
five models. The model with the best validation IBA score will be evaluated on the
test sets.

Figure 3.3: 5-fold cross-validation procedure (taken from Harlan [2020])

Next, we remove from both test sets the instances of the frames that are absent
in the corresponding main parts, because the frame classifier will not be able to learn
such frames, and it would be unfair to test it on their instances. As a result we are left
with 268 utterances in tradr test set (test set A) and 19,923 sentences in FrameNet
test set. in addition to this, we create two more tradr test sets (B and C), which are
subsets of the test set A. The test set B contains the same frames as set A, except for

3.5 Data for experiments 63

‘Communication_by_protocol’ and ‘Communication_response_message’ frames, and
counts 247 samples. We remove the above-mentioned frames, because most of them
represent short stable expressions, like “Team leader for operator one”, or “Roger”, and
therefore are easy to learn and predict. As these frames are among the most frequent,
they may lead to biased evaluation results for some metrics. While the test sets A and
B are designed for testing the models trained only on those samples whose labels are
present in tradr data, one of our classifiers is to be trained purely on FrameNet data.
We know that some of the tradr frames are absent in FrameNet. So, in order to have
a universal test set that could be used for evaluation of any model, we built the test
set C. It counts 234 instances of frames that occur in both tradr and FrameNet main
parts. All these data splits and manipulations are summarized in Table 3.19. Parts of
the data that are actually used for training are given in bold.

Data tradr # frames FrameNet # frames

Size before dropping duplicates 3,521 190 200,750 1,014
Size after dropping duplicates 2,930 190 199,509 1,024
Main (training + validation) data size 2,637 184 179,559 1,012
Main data size (rare frames removed) 2,444 81 179,386 931
Training data size 1,955 81 143,509 931
Validation data size 489 81 35,877 931
Test data size (initial) 293 - 19,950 -
Test data size (rare frames removed) 268 81 19,923 931
Test set A 268 81 - -
Test set B 247 79 - -
Test set C 234 50 - -

Table 3.19: English tradr and FrameNet training, validation and test data

Similar manipulations are performed with the German tradr data. Because we
are planning to use salsa only for sampling and not as the main source for training
any models, we do not partition it. So, first we remove all duplicates from our German
tradr corpus. As a result we have 2,813 utterances. Here we need to point out that
we identify the duplicates by the identical utterances, frame labels and target related
elements. Notice that salsa data does not contain any duplicate sentences. Next, the
data is split into main and test parts, rare frames are removed, and the frame labels in
test data are brought in accordance to those in the main part to form the test set A.
The test set B is built from the test set A as described earlier. As we will use the 5-fold
cross-validation procedure also for training the German frame classifier, the main data
is split into training and validation parts as described above. All these steps are shown
in Table 3.20.

Before presenting our experiments and their results, we would like to sum up the main
accomplishments of this chapter. We have presented three different corpora annotated
with semantic frames, namely tradr, FrameNet and salsa. We have thoroughly
examined and compared their domains, size, distribution of semantic frames and (where
it was possible) the distributions of lexical units and their parts of speech. We have

64 Data

tried to predict how certain characteristics of our data may influence the performance
of the frame classifier, and what effect the differences between the corpora may have on
its performance on the tradr corpus in case out-of-domain data (FrameNet or salsa)
is used to train the model. We will check these assumptions in the next chapter.

Data tradr # frames

Size before dropping duplicates 3,519 152
Size after dropping duplicates 2,813 152
Main (train. + valid.) data size 2,532 146
Main data size (rare frames removed) 2,378 72
Training data 1,902 72
Validation data 476 72
Test data size (initial) 281 -
Test set A (rare frames removed) 259 72
Test set B 217 70

Table 3.20: German tradr training, validation and test data

Chapter 4

Experiments and Discussion

In this section we will present semantic frame classifiers for both English and German
tradr dialogues. Our main focus will be on English data. We will introduce several
models that will be split into three groups.

The first group will include three initial models, namely a baseline model, which
is a pretrained bertbase model fine-tuned with a standard approach on tradr data
for the task of sentence classification, and two pafibertbase models [Tan and Na,
2019] that we re-implemented. One of the pafibert models is trained on FrameNet
data, as presented in the paper by [Tan and Na, 2019], the other, which we will call a
basic model in order to differentiate it from the baseline, is trained purely on tradr
data. We will analyse the mistakes that these classifiers make and check how well a
model trained on data coming from one domain can perform on data from a completely
different one.

Next, we will investigate several modifications of the basic model, and discuss their
performance. The modifications will comprise changing the size of the context window
around the frame-evoking target, adding samples from FrameNet to tradr training
data, extending bert embeddings with extra features and applying frame filtering.
These models will be included into the second group.

Finally, our basic classifier for German which is trained on tradr data and also
relies on pafibertbase will be introduced. As in the case of the frame classifiers for the
English tradr dialogues, we will study the effect of sampling and adding features on
our German model, and try to explain why and where the classifier succeeds or fails.
We will not consider the modifications of the context window size, because instead of
targets German tradr dialogues are annotated with frame related elements, which
often include several tokens, so that it is difficult to compare the window sizes and
the corresponding effect across German and English data. Frame filtering, which also
assumes having targets/lexical units annotation, will be omitted as well.

4.1 Initial models for English tradr

This section will be devoted to the first group of the frame classifiers, which includes
three models. We will start with the architecture of these models, then we will present
the results on the corresponding test sets and discuss the mistakes.

65

66 Experiments and Discussion

4.1.1 Architecture

As a baseline we use the BertForSequenceClassification model from the Transformers
library by HuggingFace [Wolf et al., 2020]. We choose it as the most straightforward
way to perform sequence classification. We do not consider frame classifiers reported
in Chapter 2 as possible baselines, because they were trained on text corpora, and the
domains of these corpora are very different from ours. So, BertForSequenceClassifica-
tion is a pretrained bertbase model with an additional linear layer on top of the pooled
output. The pooled output is the last layer hidden-state of the first token ([cls]) of
each sequence in a batch, and has shape b × h, where b is the batch size and h is the
hidden layer size. The size of the additional linear layer depends on the number of
labels we provide to the instantiation of the BertForSequenceClassification model. We
use 81 frame labels as explained in Section 3.5 and fine-tune the model on the main
part of the English tradr data (2,444 utterances) with 5-fold cross-validation. The
training is performed for 8 epochs per fold using an adaptive learning rate that starts
with 3e-5 and an AdamW optimizer.

Now let us illustrate the architecture of pafibert with its position-based attention
mechanism, and present two frame classifiers which rely on it.

The pafibertbase model expects as input a sequence (an utterance or a sentence)
in the form of bert token ids, attention masks for the given sequence that serve to
distinguish between the original and padded tokens, and a position vector encoding
where the frame-evoking target is located in the sequence. The position vector has
the same length as the vector with input ids and consists of zeros and ones with ones
marking the tokens that are part of the target as shown in Figure 4.1. Note that if
the bert tokenizer splits a token into smaller sub-tokens, each sub-token is considered
to be a part of the target, and is marked accordingly. We can also provide the model
with token type ids (also known as segment embeddings) and positional embeddings,
or, because our input only consists of single utterances/sentences, we can let bert
pre-compute them for us.

Figure 4.1: pafibert: input tokens and the corresponding position vector (taken
from Tan and Na [2019])

All required inputs are then fed through the 12 transformer blocks of bertbase

model to produce a matrix of hidden states H of size n × d, where n is maximal
sequence length and d = 768 is the hidden layer size. As Tan and Na [2019] do not say
explicitly the hidden state of which encoder block they use, we assume that H is the
hidden state of the last block.

In contrast to BertForSequenceClassification, instead of a single linear layer on
top of standard bertbase before the classification is performed, pafibertbase has an
additional position-based attention layer. The purpose of this layer is to attend to the
target and the context around it. While the BertForSequenceClassification model has

4.1 Initial models for English tradr 67

no clue what tokens in the sequence are important for the right frame assignment, the
pafibert model utilizes the information about the target, and thus is able to produce
much better results.

The attention mechanism in pafibert uses H to build a vector [c; t], which is a
concatenation of a context vector c and a target vector t. The d-dimensional context
vector

c = HTα (4.1)

captures a relation between the hidden representations of the input sequence and an
alignment vector α of length n, which contains weights showing how much each token
in the input is important as a context element. In order to determine which tokens are
parts of the context and which ones should be ignored, a context window around the
target token is used with lower and upper bounds defined as

β1 =

{
pstart − w if (pstart − w) > 1

1 if (pstart − w) ≤ 1
β2 =

{
pend + w if (pend + w) < n

n if (pend + w) ≥ n
(4.2)

where pstart and pend are the smallest and the largest target positions in the sequence,
and w is the window size. If the target is a single token, then pstart = pend. We keep
w = 10 used by Tan and Na [2019] for both of our classifiers reusing pafibert. The
alignment weights for all the tokens that lie outside of [β1, β2] range are set to zeros, and
for tokens that are inside of it, the weights are calculated using the Softmax function:

αi =
exp(hit)∑β2
j=β1

exp(hjt)
(4.3)

where hi is a hidden representation of a token within [β1, β2] and t is the hidden
representation of the target(s). So, with all weights summing up to one, the context
vector c is just a weighted average of the input sequence.

The d-dimensional target vector t

t = HTp (4.4)

captures a relation between H and the position vector p, which is part of the input
together with the sequence itself. As mentioned earlier, the position vector indicates
where the targets in the sequence are.

Finally, the concatenated context and target vectors [c; t] go through an additional
linear layer Wc and a Tanh activation function to produce a d-dimensional attentional
hidden state h̃. Next, h̃ is fed into a standard linear layer Ws with a Softmax function
on top to perform classification. The whole pipeline with all intermediate steps is well
illustrated in Figure 4.2.

We reuse this architecture to build two frame classifiers, which we train on different
datasets: one - entirely on FrameNet (main part with 179,386 instances), the other
- entirely on the English tradr data (same as used for fine-tuning). As FrameNet
and tradr differ in size and in the number of frame labels, the classifier trained on
FrameNet data is able to differentiate between 931 frames, while the classifier trained
on tradr can distinguish between 81 classes. Due to the domain differences, the

68 Experiments and Discussion

maximum input length the classifiers can process also differs. It is 314 tokens for the
former, and 45 tokens for the latter. In all other aspects two models are absolutely
identical. The training procedure is the same that was used for training the baseline
model.

Figure 4.2: pafibertbase architecture (taken from Tan and Na [2019])

4.1.2 Results and discussion

Now let us have a look at the performance of our initial models and discuss the results.
For evaluation we use a Python package called imbalanced-learn developed by Lemaître
et al. [2017]. It allows to produce a classification report using such metrics as precision
(PRE), sensitivity (SEN), specificity (SPE), F-score (F1), geometric mean (GM)
and the index of balanced accuracy with α = 0.1 (IBA0.1). All metrics are calculated
using macro-averaging. The report also contains the information about the test set
size (SUP). As precision and F-score are considered sensitive to imbalanced data, we
won’t rely on them during the discussion. We won’t remove them either to let the
interested reader compare the scores. As mentioned in Chapter 2, we will refer to IBA
as our main performance measure. The evaluation results are presented in Table 4.1.

4.1 Initial models for English tradr 69

The baseline is tested on a part of the English tradr data unseen during the
training, namely on the test sets A, B and C. More details about the data can be
found in Section 3.5. From Table 4.1 we see that the baseline model demonstrates
rather unsatisfactory performance - the IBA is only 32% - 37% depending on the test
set, and other metrics (except specificity) have very low scores too. The reason for
this is the fact that simple fine-tuning does not integrate information about the frame-
evoking targets and their contexts, so that it is impossible for the model to guess what
tokens in the sequence it has to focus on. So, it is obvious that in order to improve
the performance, we need to tell the model which tokens in each utterance it should
pay attention to, and the pafibert model suggested by Tan and Na [2019] provides a
convenient way to do so.

We test the pafibert classifier trained on tradr data, on the test sets A, B and
C, while the other classifier trained on FrameNet is tested on both FrameNet test set
and test set C. The latter represents a convenient way to compare the performance of
the models trained on in- and out-of-domain data, as it contains only the instances of
frames common for both FrameNet and tradr.

Let us first have a look at the performance of the pafibert model trained on the
FrameNet data. This classifier has the IBA of 91% when evaluated on the data coming
from the same distribution, however, when tested on tradr data, it shows much worse
results, namely, only 51% IBA. We can notice that the main reason for low IBA score
is the bad sensitivity (recall). Such results support the hypothesis that the model is
very domain-specific, it does not generalize well, and we cannot simply re-use it for
tradr data without any modifications or further fine-tuning. At the same time this
classifier is still better than the baseline. So, we see that attending to the right tokens
is really crucial for the performance.

Classifier Test set PRE SEN SPE F1 GM IBA0.1 SUP

Baseline
tradr set A 0.33 0.39 0.96 0.35 0.50 0.37 268
tradr set B 0.29 0.35 0.96 0.30 0.46 0.32 247
tradr set C 0.30 0.35 0.96 0.31 0.46 0.32 234

pafibert trained
on FrameNet

FrameNet set 0.92 0.92 1.00 0.92 0.96 0.91 19,923
tradr set C 0.71 0.53 1.00 0.58 0.63 0.51 234

pafibert trained
on tradr

tradr set A 0.90 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.90 0.88 1.00 0.88 0.93 0.87 247
tradr set C 0.91 0.88 1.00 0.88 0.92 0.86 234

Table 4.1: Experiment results

Before discussing the performance of the pafibert model trained on tradr data,
we would like to have a closer look at the mistakes that the classifier under consideration
makes when evaluated on test set C, and understand why exactly it happens. This
can be relevant for our further experiments with sampling from FrameNet described in
Section 4.2.2.

So, we know that FrameNet and tradr have different frame distributions, and,
as discussed in Section 3.3, if we take any of the most frequent tradr frames, its

70 Experiments and Discussion

proportion in the FrameNet corpus will be maximum 0.3%, i.e. such a frame will
be represented by less than 600 instances. This number does not look terribly small,
taking into consideration that the whole tradr training corpus contains only 2,444
samples unevenly distributed between 81 frames.

To get a better understanding of why the classifier trained on FrameNet fails on
the tradr test set C, let us study more precisely the distribution of frames from our
test set in the FrameNet training data. The tradr test set C contains instances that
belong to 50 different frames. All these frames are present in the part of FrameNet
data reserved for training. Taken together, they count 14,517 instances and make up
around 8% of FrameNet training data. The rarest frame is ‘Holding_off_on’, which
has only 12 instances in the FrameNet training data, the most frequent is ‘Awareness’,
represented by 1219 instances. On average, each of the 50 frames in the tradr test
set C appears 290 times in the FrameNet training set. This seems to be enough to
learn them. And still, the IBA score was only slightly better than 50%.

Let us have a look at the mistakes made by the classifier. Table 4.2 shows the top
ten frames from the tradr test set C that were incorrectly classified. The second
column shows the number of misclassified instances with respect to the total amount
of instances of the given frame in test set. The third column shows the number of
training FrameNet instances.

True frame Error rate # training inst.

Capability 16/35 (46%) 422
Create_representation 12/12 (100%) 39
Locative_relation 12/15 (80%) 299
Motion 7/21 (33%) 409
Being_obligated 6/6 (100%) 37
Perception_experience 5/25 (20%) 529
Possibility 4/5 (80%) 51
Scrutiny 3/4 (75%) 709
Being_located 3/3 (100%) 96
Awareness 2/4 (50%) 1219

Table 4.2: Top 10 frames from the tradr test set C incorrectly classified by the
pafibert model trained on FrameNet data

We see that all frames having less than a hundred of training instances demonstrate
a very high error rate - almost 100%. However, in many cases the number of training
instances is much larger, but the error rate is still high, e.g., this is true for ‘Capability’,
‘Locative_relation’ or ‘Scrutiny’ frames. Obviously, there are reasons for such an
unsatisfactory classifier performance, other than an insufficient number of training
examples. In what follows we will try to summarize these reasons.

First of all, some frames by definition are really semantically close to each other, e.g.,
‘Capability’, ‘Possibility’ and ‘Likelihood’, or ‘Scrutiny’ and ‘Inspecting’, or ‘Awareness’
and ‘Opinion’. In most cases neither the target nor the context can help differentiate
the nuances of meaning of such frames.

4.1 Initial models for English tradr 71

Next, due to the fact that FrameNet is very fine-grained, many tradr instances
got classified as belonging to very specific frames which we did not use when annotating
the tradr data, like ‘Interior_profile_relation’ and ‘Non_gradable_proximity’ (we
use their parent frame ‘Locative_relation’ instead), or ‘Self-motion’ instead of more
general ‘Motion’ frame.

Another reason for poor performance of the classifier in question is the fact that
tradr instances of certain frames have targets that, due to domain differences, are
not typical for these frames in FrameNet. For instance, all tradr samples of ‘Cre-
ate_representation’ frame were misclassified, because the model expected ‘draw’, ‘carve’
or ‘sketch’ as targets, but got ‘take/make a picture’ and labeled the input utterances as
‘Physical_artwork’ instead. A similar situation is observed in case of ‘Being_located’,
‘Presence’ and some other frames.

Of course, there is also a problem of ambiguity. For example, the target ‘change’
can evoke both ‘Replacing’ and ‘Cause_change’ frames, and the target ‘lie’ - ‘Posture’
and ‘Being_located’.

Now let us have a look at the test set IBA scores obtained by the pafibert model
trained on the tradr data. We can notice that they are slightly lower than the in-
domain test set IBA score of the counterpart model trained on FrameNet data, namely
87% - 88% vs. 91%. We attribute it to the fact that the latter model was trained on a
much larger dataset. It is worth mentioning that despite the huge difference in the size
of training data, the difference in IBA scores is only about 3% - 4%, which allows us to
hypothesise that the pafibert model does not really need a lot of training examples
to achieve relatively good accuracy. If we compare the results of both pafibert-based
models on the test set C, we can once again see that the in-domain model (even if it is
trained on much smaller data) obtains much higher IBA scores than the out-of-domain
one. Finally, we can clearly see that the pafibert model trained on tradr is much
better than the baseline. As it turned out to be the best among the three classifiers,
from now on we will consider it to be the basic model.

Also, we see that in case of our basic model the results for the tradr test sets
A, B and C look very similar with only a slight performance decrease for smaller sub-
sets. This can probably be explained by the fact that our metrics are not sensitive
to class sizes, so when we remove two majority classes, it does not influence much
the overall result. However, this is not quite the case with the baseline. Here, the
performance decrease is more visible. Our explanation is as follows. Classes ‘Com-
munication_by_protocol’ and ‘Communication_response_message’ removed from the
tradr test sets B and C are probably the ones that the baseline can predict better
than other frames, due to the fact that these two classes in most cases are represented
by very short utterances like “Yes”, “Roger” and so on. Because the baseline does not
possess any information about the targets, the longer the sentence is, the more likely
the model will misclassify it. So, when the above mentioned classes get removed, the
performance inevitably deteriorates.

Finally, we can observe that regardless of the model and test set, the specificity is
perfect. This can be explained by the fact that macro-averaging, used by imbalanced-
learn to calculate the scores, by definition relies on confusion matrices built according
to the one-against-all approach. If we consider a single matrix, the only thing that
matters for specificity is that the whole lot of instances of classes that are not currently

72 Experiments and Discussion

in focus (i.e. negative classes) should not be classified as positive. The true classes
of such instances, and how well the classifier can distinguish between them are not
important for specificity. So, if the number of false positives is close to zero, the
specificity will always be very high.

So, in this section we have discussed the performance of our baseline model and
two frame classifiers both relying on the pafibert architecture, but trained on differ-
ent data (FrameNet and tradr). Judging by the results we can make the following
conclusions. First, the information about the frame target and its context is crucial
for the correct frame recognition. Second, both pafibert models demonstrate rather
good results when tested on in-domain data. In addition, it looks like the pafibert
classifier actually does not require very much data to achieve good scores - trained on
only 2,444 tradr instances it achieves the IBA of about 86% - 88% on unseen data.
Second, the performance of the FrameNet-based pafibert model on tradr data is far
from being perfect. The analysis of mistakes shows that it happens not only because
of the difference in domains and the ambiguity of targets, but also because of different
annotation approaches and small nuances in frame meanings that are especially diffi-
cult to detect. We do not exclude the possibility of further modifying/fine-tuning of
the FrameNet-based pafibert model on tradr data, but this lies out of the scope of
this work. However, we will investigate the effect of sampling from FrameNet in one
of the later sections.

4.2 Adjustments of the English pafibert model

Aiming at performance improvement, in what follows we will present several modifica-
tions and adjustments of the pafibert model trained on tradr. We will discuss the
results of these experiments, and analyse the typical mistakes made by the classifiers.

4.2.1 Changing context window size

Following Tan and Na [2019], who found the window size w = 10 to be optimal for
the FrameNet data, we used this window size in both our pafibert-based models
presented in the preceding section. However, as was mentioned earlier, the FrameNet
and tradr datasets have different average sentence lengths, namely, 24 and 7 tokens,
respectively. So, even if we take into consideration that some tokens are split by the
bert tokenizer, w = 10 seems to be excessive for tradr data, as in most cases it
encompasses the whole utterance.

In order to check whether a smaller window size can help increase performance,
we retrained the basic model using w = 1, w = 3 and w = 5. The results of these
experiments are presented in Table 4.3. The last row of the table contains the test
scores of the basic model (has w = 10), which are given for reference. We see that
our hypothesis about a smaller window size being better for tradr data was not
confirmed. Moreover, judging by the scores, there seems to be no direct correlation
between the window size and the performance. E.g., w = 1 gives higher scores than
w = 3 or w = 5, and w = 10 provides better results than w = 1. It looks like the
fluctuations in performance do not follow any stable pattern.

4.2 Adjustments of the English pafibert model 73

Window size Test set PRE SEN SPE F1 GM IBA0.1 SUP

w = 1
tradr set A 0.89 0.88 1.00 0.88 0.93 0.87 268
tradr set B 0.90 0.88 1.00 0.88 0.92 0.87 247
tradr set C 0.90 0.88 1.00 0.88 0.92 0.87 234

w = 3
tradr set A 0.90 0.87 1.00 0.87 0.92 0.86 268
tradr set B 0.90 0.87 1.00 0.87 0.92 0.86 247
tradr set C 0.90 0.86 1.00 0.87 0.91 0.85 234

w = 5
tradr set A 0.88 0.88 0.99 0.88 0.92 0.87 268
tradr set B 0.88 0.87 0.99 0.87 0.92 0.86 247
tradr set C 0.88 0.87 0.99 0.87 0.91 0.85 234

pafibert trained
on tradr

(basic model)

tradr set A 0.90 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.90 0.88 1.00 0.88 0.93 0.87 247
tradr set C 0.91 0.88 1.00 0.88 0.92 0.86 234

Table 4.3: Performance of the basic model with different window sizes

To have a better understanding of what is going on, we compared the validation
IBA scores for different window sizes and folds during the 5-fold cross-validation pro-
cess. The scores are presented in Table 4.4. The best of them are given in bold. We
see that regardless of window size, the models were able to reach approximately the
same IBA, namely, 90 - 91%. Moreover, the validation IBA score averaged across five
folds is the same for all of them.

Fold w = 1 w = 3 w = 5 w = 10

Fold 1 0.91 0.89 0.90 0.89
Fold 2 0.88 0.89 0.88 0.89
Fold 3 0.86 0.89 0.90 0.90
Fold 4 0.90 0.87 0.87 0.89
Fold 5 0.91 0.91 0.91 0.90

Avg. 0.89 0.89 0.89 0.89

Table 4.4: The basic model: IBA for different folds and window sizes

A possible explanation of this situation can be the fact that we have too little train-
ing and test data in combination with the stochastic nature of the learning algorithm.
Probably, having more data would result in scores which demonstrate less fluctuations
and let us make a more profound judgment. Another important point is that our data
is imbalanced, and, as it was already discussed, certain majority classes mostly contain
very short utterances, for which the difference in window size is not relevant. Again,
more training instances, especially those that belong to the minority classes, could help
alleviate the impact of those frequent short utterances.

As for now we cannot tell which window size is optimal for tradr, we stay with
w = 10. This window size is used in all other experiments if not stated otherwise.

74 Experiments and Discussion

4.2.2 Sampling from FrameNet data

Earlier we saw that a classifier trained purely on FrameNet data demonstrated rather
poor results when it was tested on the tradr test set. Based on these results we
concluded that we cannot reuse that model to classify tradr data. However, we
can sample from FrameNet some additional instances and retrain the basic pafibert
model, originally trained only on tradr, on the updated training set containing both
tradr and FrameNet examples. Theoretically, this could help achieve better perfor-
mance and generalization ability, as well as provide more diverse contexts to allow the
model to learn differences in meaning of ambiguous targets.

In order to check our assumptions, we perform a series of experiments with sampling
from the FrameNet corpus. We sample from a subset of FrameNet containing 21,492
instances of frames that are present in the tradr data (about 12% of the whole
FrameNet corpus). The experiments can be split into two groups. The first group
includes training models with different portions of blindly sampled data. The second
part involves experiments with informed sampling.

Let us start with the blind sampling. The portions of sampled data range from 10%
to 100%, and the instances are chosen randomly, regardless of their classes and how
many instances these classes have in tradr data. Each model is trained using the
same 5-fold cross-validation approach with the training set being a mixture of tradr
and sampled FrameNet data, and the validation set coming solely from tradr data.

The performance of these models on our three tradr test sets is shown in Table
4.5. We can observe that the IBA scores of most of the models are comparable to or
slightly better than the IBAs of the basic model. The best scores (given in bold) are
achieved by the model with 40% of sampled data, in this case the improvement makes
up 1% for tradr test sets A and B, and 2% for test set C. However, we cannot say
that sampling always demonstrates some positive effect, as three models with sampling
presented in the table show slightly worse IBA scores than the basic model.

Based on the results shown in Table 4.5, we can conclude the following. If blind
sampling brings any improvement, it is not really significant, namely no more than
1-2% in terms of IBA. There seem to be no strict correlation between the sampled
data size and performance, e.g., models with 10%, 40% and 100% of sampled data
have almost identical IBA, and a model with 20% of sampled data performs worse
than the one with 10%. One possible explanation of such fluctuations in scores may
be the stochastic nature of the training and testing procedures and an insufficient test
set size. Another possible reason for such results can be the fact that a subset of
the FrameNet data devised for sampling only contains a small amount of really useful
instances that are not always sampled because of the random character of the sampling
procedure. So, instead of sampling from FrameNet blindly, we could focus more on
sampling instances of certain classes, especially of the minority ones, and thus try to
make our training data more balanced.

This leads us to the second group of the experiments which assume informed sam-
pling. In what follows we will discuss two informed sampling approaches that we
devised to overcome the main shortcoming of blind sampling, namely picking out the
instances at random regardless of their distribution in both training data and data held
out for sampling.

4.2 Adjustments of the English pafibert model 75

sampled inst. Test set PRE SEN SPE F1 GM IBA0.1 SUP

2,149 (10%)
tradr set A 0.92 0.90 1.00 0.90 0.94 0.89 268
tradr set B 0.91 0.89 1.00 0.89 0.93 0.88 247
tradr set C 0.91 0.88 1.00 0.89 0.93 0.87 234

4,298 (20%)
tradr set A 0.91 0.87 1.00 0.88 0.92 0.86 268
tradr set B 0.91 0.87 1.00 0.88 0.92 0.86 247
tradr set C 0.91 0.86 1.00 0.87 0.92 0.85 234

6,447 (30%)
tradr set A 0.91 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.91 0.88 1.00 0.89 0.93 0.87 247
tradr set C 0.91 0.88 1.00 0.89 0.93 0.87 234

8,596 (40%)
tradr set A 0.92 0.90 1.00 0.90 0.94 0.89 268
tradr set B 0.92 0.89 1.00 0.90 0.93 0.88 247
tradr set C 0.92 0.89 1.00 0.90 0.93 0.88 234

10,746 (50%)
tradr set A 0.92 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.91 0.88 1.00 0.88 0.93 0.87 247
tradr set C 0.91 0.88 1.00 0.88 0.92 0.87 234

12,895 (60%)
tradr set A 0.91 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.91 0.88 1.00 0.88 0.93 0.87 247
tradr set C 0.91 0.88 1.00 0.89 0.93 0.87 234

15,044 (70%)
tradr set A 0.92 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.92 0.88 1.00 0.88 0.93 0.87 247
tradr set C 0.92 0.88 1.00 0.89 0.93 0.87 234

17,193 (80%)
tradr set A 0.91 0.88 1.00 0.88 0.93 0.87 268
tradr set B 0.90 0.87 1.00 0.88 0.92 0.86 247
tradr set C 0.91 0.88 1.00 0.88 0.92 0.87 234

19,342 (90%)
tradr set A 0.92 0.88 1.00 0.89 0.93 0.87 268
tradr set B 0.92 0.87 1.00 0.88 0.92 0.86 247
tradr set C 0.91 0.87 1.00 0.88 0.92 0.86 234

21,492 (100%)
tradr set A 0.91 0.90 1.00 0.90 0.94 0.89 268
tradr set B 0.91 0.89 1.00 0.89 0.94 0.88 247
tradr set C 0.91 0.88 1.00 0.89 0.93 0.87 234

pafibert trained
on tradr

(basic model)

tradr set A 0.90 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.90 0.88 1.00 0.88 0.93 0.87 247
tradr set C 0.91 0.88 1.00 0.88 0.92 0.86 234

Table 4.5: Performance of models with different percentage of sampled FrameNet
data

The first approach, which we call balanced sampling, assumes sampling for each
class in the training data a number of FrameNet instances limited by the maximal class
population in the tradr training data. For example, the frame ‘Capability’ is the most
frequent in our training data - it has 247 inhabitants. This means that the number
of FrameNet instances that we want to sample for each class is defined as a difference

76 Experiments and Discussion

between 247 and the current amount of training examples in this class. Considering
that the FrameNet corpus is a large one and for many frames it is easy to find the
necessary number of additional samples, such an approach makes our training data
much more balanced. In total, we sample 10,902 instances (around 51% of FrameNet
data held out for sampling). As a result, almost half of all frames in our training data
contain more than 200 examples, and only three frames have less than 10 data points.

However, this method also has a potential disadvantage. In case the number of
original tradr utterances is small, and the number of sampled instances is much larger
with their targets being different from those in the original utterances, the model will
be biased towards dominating training samples and thus prone to misclassification of
the tradr test examples. To avoid a situation, when sampled instances dominate the
original ones, we introduce another informed sampling approach with an additional
constraint saying that the number of sampled examples cannot exceed the number
of the original ones. We call it equal sampling. As an example assume that the
frame ‘Becoming_aware’ has only 25 instances in the tradr training data. Now,
instead of sampling 222 additional FrameNet examples to reach the limit of 247 samples,
we sample only 25 FrameNet sentences. Following this approach, we sample 1,622
instances (about 7.5% of FrameNet data for sampling).

Both models were trained using 5-fold cross-validation strategy. Their performance
on all tradr test sets is given in Table 4.6. The scores show that unfortunately
the informed sampling does not perform better than a blind one. Equal sampling
produces a little bit higher scores than balanced sampling. These scores are comparable
with the scores of the basic model, and are slightly worse, namely by 1%, than those
demonstrated by the best model with blind sampling (see Table 4.5). As the difference
in scores is really small, it is difficult to conclude, whether it is significant, or is just a
side effect of stochastic fluctuations.

Sampling type Test set PRE SEN SPE F1 GM IBA0.1 SUP

Balancing
10,902 inst. (≈ 51%)

tradr set A 0.91 0.88 1.00 0.88 0.93 0.87 268
tradr set B 0.91 0.87 1.00 0.88 0.92 0.86 247
tradr set C 0.91 0.86 1.00 0.87 0.92 0.85 234

Equal
1,622 inst. (≈ 7.5%)

tradr set A 0.92 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.91 0.88 1.00 0.89 0.93 0.87 247
tradr set C 0.92 0.88 1.00 0.89 0.93 0.87 234

pafibert trained
on tradr

(basic model)

tradr set A 0.90 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.90 0.88 1.00 0.88 0.93 0.87 247
tradr set C 0.91 0.88 1.00 0.88 0.92 0.86 234

Table 4.6: Performance of models with different informed sampling approaches

In order to understand, why neither of the informed sampling approaches brings a
desired performance improvement, we compare the errors that these two models make
with the errors made by the basic model, and try to analyse the (lack of) influence of
the sampled data. We use the tradr test set A for this purpose. The errors grouped
by frames are presented in Table 4.7. The table includes only those frames from the

4.2 Adjustments of the English pafibert model 77

test set, whose instances were misclassified by the basic model. The frames are sorted
by the number of errors in descending order (the fifth column). The third column
shows the number of frame instances in the training data before sampling. The next
column demonstrates the number of samples of these frames in tradr test set A. The
rest of the table presents the number of sampled examples for each frame, and shows
how the number of errors changed depending on the sampling approach. Green is used
to mark a positive influence of sampling, pink - a negative one.

According to Table 4.7, we can say that sampling has a positive impact only on
a few frames. All of these frames have less than 30 instances in the original training
set. However, the number of added examples seems to have no influence in these cases,
i.e. it does not matter if we sample 10 or 100 additional sentences. In case of the
‘Arriving’ frame, adding more samples seems to have a positive effect, but this may
be just a chance result, similar to the case with the ‘Physical_entity’ frame, where no
additional examples were sampled at all. Sampling may lead to contradictory results,
as in case of the ‘Possibility’ frame. We can also notice that sampling seems to have
a negative effect on recognizing ‘Scrutiny’ and ‘Perception_active’ frames. It should
also be noted that both sampling types lead to a couple of more errors that are not
included in Table 4.7, as these instances were classified correctly by the basic model.
In total, balanced sampling resulted in six additional misclassification cases, and equal
sampling - in three such cases. Finally, we also need to mention that more than half
of the frames in Table 4.7 experienced absolutely no effect from any sampling type.

Frame
occ. in

tradr train
occ. in
tradr test

incorr.
classified

Balanced sampling Equal sampling

sampled
incorr.
classified

sampled
incorr.
classified

1 Being_obligated 28 6 3 37 1 28 2
2 Motion 177 21 2 70 2 70 2
3 Attempt 33 13 2 214 2 33 2
4 Create_representation 103 12 2 45 2 45 2
5 Perception_experience 169 25 2 78 2 78 2
6 Attempt_suasion 16 3 2 231 1 16 1
7 Inspecting 74 6 2 173 2 74 2
8 Presence 55 3 2 99 2 55 2
9 Event 6 1 1 236 1 6 1
10 Desirable_event 12 1 1 74 0 12 0
11 Arriving 27 2 1 220 0 27 1
12 Traversing 12 2 1 235 1 12 1
13 Becoming_aware 25 1 1 222 0 25 0
14 Physical_entity 9 3 1 0 0 0 1
15 Holding_off_on 6 3 1 13 1 6 1
16 intentionally_act 10 2 1 237 1 10 1
17 Scrutiny 60 4 1 187 2 60 2
18 Perception_active 35 5 1 212 2 35 2
19 Cause_to_move_in_place 7 1 1 80 1 7 1
20 Possibility 19 5 1 62 3 19 0
21 Comm._response_message 79 7 1 0 1 0 1

Table 4.7: Basic model vs. models with informed FrameNet sampling: error
comparison

If we have a look at the actual utterances from the tradr test set A that were
misclassified, we can find some explanations for such an unsatisfactory sampling effect.
In total, the basic model makes 30 mistakes. We can divide them into four main groups.

The first group is the largest and includes 22 mistakes that were made because of
ambiguous targets, such as ‘do’, ‘have’, ‘try’, ‘turn’, etc. in various forms. The fact that
in most cases neither the target, nor its context give any clues what the true frame may
be, makes the situation even more complicated. For instance, the basic model identifies
the utterance “I’ve already done that” with ‘done’ marked as target as an instance of

78 Experiments and Discussion

the ‘Intentionally_act’ frame, while the true frame is actually ‘Create_representation’.
Or the utterance “... you have to take a close look” with the target ‘have to’ is labeled
as ‘Imposing_obligation’ with the true frame being ‘Being_obligated’. In many of these
cases a predicted frame and a true one can be actually rather close semantically, or
several interpretations can be possible given a certain target. For example, ‘Capability’
(predicted) and ‘Attempt_suasion’ (true) frames for the utterance “... but you can
take a look at the picture box” with the target ‘can’, or ‘Inspecting’ (predicted) and
‘Perception_active’ (true) for “Can you go to the victim and look if he is...?” with
the target ‘look’, or ‘Capability’ (predicted) and ‘Possibility’ (true) for “I could circle
around the barrel and find out if there’ s a label on it” with the target ‘could’. And we
see that unfortunately sampling more examples of such frames does not help resolve
the ambiguity issue. So, e.g., equal sampling contributes to the correct classification
of three cases out of 22, but results in two new errors also caused by ambiguity.

The second group contains two errors caused by incorrect targets that in their
turn, come from incorrect reading of some wrongly formatted lines in the input file.
Apparently, the basic model fails to assign correct frames, because these targets contain
several tokens, which make them confusing. Both sampling approaches cannot solve
this issue.

Besides all this, we also have one misclassification case that happens because of an
inaccurate translation from German into English, when the verb ‘discover’ was used
instead of ‘explore’ and ‘inspect’ that normally evoke ‘Inspecting’ or ‘Scrutiny’ frames.
As a result, the basic model assigns the frame ‘Scrutiny’ instead of ‘Becoming_aware’
to the utterance “So just to discover what I see” with the target ‘discover’. In this case
sampling has a positive effect, and the utterance is classified correctly.

Finally, there are five more errors that do not belong to any of the three pre-
vious groups. These are silly mistakes that cannot be attributed to the similarity
between frames, ambiguous targets and so on. For instance, the utterance “Which
robot is now assigned to casualty search?” with the target ‘assigned’ got the label
‘Create_representation’ instead of ‘Being_obligated’. The effect of sampling on such
cases is also controversial. On the one hand it helps eliminate three errors, on the other
hand two new silly mistakes are made.

All in all, we have to conclude that data augmentation with sampling from FrameNet
turned out to be unable to bring any stable performance gain. However, it is possible
that sampling only certain frames, like those marked with green in Table 4.7, would
be more effective. Such an approach requires more investigation and evaluation of the
models on various test sets in order to pick out the most useful frames. Also, it can
happen that sampling could still be beneficial in cases when the model is evaluated
on different data from the same or similar domain. All this can be a topic for future
research.

4.2.3 Adding features

Our next attempt to improve the performance of the pafibert classifier trained on
tradr assumes introducing additional features for input tokens and sequences as a
whole. According to Sundararaman et al. [2019], several studies showed that, e.g., in the
machine translation area adding to the model such features as part of speech (pos) and

4.2 Adjustments of the English pafibert model 79

named entity tags provides a slight improvement over baseline for small size training
datasets. Sundararaman et al. [2019] perform their own experiments, in which they
modify the input embeddings with syntactic features, namely pos tags, grammatical
cases and subword masks. They motivate their choice of features by the fact that
pos tags and cases may help distinguish between important and common words, and
subword masks can bring cohesion in cases when tokens get split by the bert tokenizer.
The authors report that their models outperform bertbase model on four General
Language Understanding Evaluation (glue) [Wang et al., 2019] benchmarks. They
call their approach a syntax-infused transformer.

Following Sundararaman et al. [2019], we decided to check if introducing additional
features would have any positive impact on the performance of our model. We divide
them into two groups: lexical features that include pos tags and subword masks, and
discourse features that contain speaker tags and dialogue acts.

Let us first discuss the lexical features and their influence on the basic model. In
contrast to Sundararaman et al. [2019], we call this group ‘lexical’, because we only
have pos tags and subword masks here, and they do not capture any relations between
tokens, word order, etc. We deem these features useful for the following reasons.

First of all, we have cases, when the pos tag of a target may be important to
differentiate one frame from another. For example, in the utterance “Can you posi-
tion yourself onto the track?” the target ‘position’ is a verb and evokes the ‘Placing’
frame, while in the utterance “What’s your current position?” ‘position’ is a noun
that induces the frame ‘Locale_by_collocation’. A pos tag feature can serve for frame
disambiguation purposes here.

Second, because bert tokenization splits the tokens that are not included into the
tokenizer vocabulary, sometimes it happens that some parts of a token are not included
into the target context. The utterance “If you can make some pictures , u ##g ##v
two , then it give me some v - overview” is an example of such a situation. Given the
target ‘overview’ and the context window of ten tokens, we can notice that two parts
of the token ‘ugv’ are not part of the context. In this very example this fact may be
not relevant, however, it may be important in other cases, e.g., when a split token is a
dependent of the target and can help disambiguate it.

So, to tackle such issues, we provide our basic model with pos tags of the input
tokens, as well as the information about whether these tokens were split by the bert
tokenizer or not. In order to perform the pos tagging we use a tagger from the Python
SpaCy library [Honnibal and Montani, 2017]. There are 19 coarse-grained tags that
follow the Universal Dependencies scheme. They do not code any morphological fea-
tures, such as tense, aspect, degree and so on, and only cover the word type. We add
two more tags to this set. First, bert expects each input sequence to be extended
with two special tokens, namely [cls] and [sep] to mark the beginning and the end of
the sequence, respectively. We introduce a tag special to mark these special tokens
and separate them from ‘normal’ ones. Next, we add the tag pad for padded tokens,
as bert demands that all sequences should be of the same length. If a token gets split
by the tokenizer, each sub-token is assigned the pos tag of the original word.

As for the subword masks, our implementation is a little bit different from the one
described by Sundararaman et al. [2019]. They use iob format to label tokens and their
parts, i.e. whole tokens get the tag o, those that are split get the tag depending on

80 Experiments and Discussion

the sub-token position. So, the first sub-token is labeled with the tag b (’beginning’),
the ones in the middle - with the tag i (’inside’), and the last sub-token - with the tag
e (’end’). Our approach is simpler. The mask is set to a positive bit (1), if the given
element is a sub-token, and to a negative bit (0), if the token is intact.

It should be mentioned, that at first in order to train a model with additional
feature(s), we tried to follow one of the two methods suggested by Sundararaman et al.
[2019]. Both imply training the embeddings for the additional features along with the
model itself. According to the first method, the embeddings for the additional features
have the same dimensions as the bertbase hidden layer h = 768, and are summed up
with the input embeddings before being fed to the transformer blocks. The second
method assumes the concatenation of the embeddings and their affine transformation
to bert hidden size of 768 before feeding the embeddings to the transformer blocks.
In this case additional embeddings can be of any length. As Sundararaman et al.
[2019] note, the second option is more robust, but it requires learning a large matrix
to perform the affine transformation, which is problematic for tasks with little training
data. As the authors did not actually implement the second approach, we decided to
go with the first one. After feeding our summed up embeddings to the bertbase model,
we trained the rest of the pafibert model as usual (see Section 4.1.1). Unfortunately,
this did not bring us any performance gain. On the contrary, after the 5-fold cross-
validation procedure the averaged validation IBA score for the five folds was only
about 84%, which is worse than the IBA result of the basic model. The learned model
was not evaluated on the tradr test sets. A possible explanation of the unsatisfactory
performance of this approach can be the fact that we have much less training data,
namely only 2,444 examples, while Sundararaman et al. [2019] train their models using
4.5M instances.

As the syntax-infused transformer was not successful for our data, we tried to in-
corporate additional features into our baseline model at a later step in the network. As
before, we trained embeddings for our feature(s) together with the model, but instead
of summing them up with input embeddings and feeding to the transformer blocks, we
concatenated them with the bertbase model output, namely with (sub)token vectors,
and used them as input for the position-based attention layer of the pafibert model.
Next, instead of introducing one more linear layer to perform the affine transformation
to get back to the original hidden layer size, we simply increased the size of the first
linear layer of pafibert depending on the dimension of the (sub)token embeddings.

The results of this approach turned out to be better than those of our version of
the syntax-infused transformer, but still not good enough to beat the basic model.
They are presented in the first three rows of Table 4.8. We test the features separately
and in combination. We see that taken separately, the features do not bring any
improvement, and the scores are actually slightly worse than the corresponding scores
of the basic classifier. The combination of pos tags and subword masks with the
tokens representations seems to be more successful - it increases the performance by
1%. Unfortunately, we cannot call 1% increase significant, and it is difficult to judge,
whether it was really caused by the combination of features, or is a chance result.

The second group of additional features includes discourse features, namely the
speaker tag and dialogue act type. We decided to check these features, because
analysing the mistakes made by the basic classifier, we noticed that sometimes in-

4.2 Adjustments of the English pafibert model 81

formation about who is talking and why could be useful for frame disambiguation.
Especially, taken into consideration that utterances can be elliptical and ungrammat-
ical. For instance, given a short utterance “Try it” with the target ‘try’, our classifier
has difficulties labeling it, because in order to assign the correct frame it needs to know
the perspective, i.e. the speaker. If the speaker is the team leader, then the correct
frame is ‘Attempt_suasion’, if it is an operator, then it should be the ‘Attempt’ frame.

Following Anikina and Kruijff-Korbayová [2019], we use three labels to encode a
variety of speakers: mc for the mission commander, tl for the team leader and oper-
ator for all ugv and uav operators.

The information about the dialogue act type may also be helpful to disambiguate
frames. It can be used to strengthen the impact of the speaker tag, because there exist
a strong correlation between the speaker and the dialogue act [Anikina and Kruijff-
Korbayová, 2019], i.e. certain dialogue acts are typical for certain speakers, e.g., a
‘Request’ is normally made by the team leader, and an ‘Answer’ is usually given by
the operator. If we take the last example, it can be beneficial to know whether “Try
it” is a ‘Request’ or an ‘Inform’ dialogue act, if we want to figure out the perspective.
Another example is the utterance “Do you copy me?” with the target ‘copy’, which
is misclassified by the baseline as the ‘Communication_response_message’, when in
reality it belongs to the frame ‘Perception_experience’. Providing to the classifier the
information that the utterance is actually a question could help exclude ‘Communica-
tion_response_message’ from the list of candidate frames, as this frame encompasses
short answers and thus is incompatible with the dialogue act ‘Question’.

In order to tag each utterance with a dialogue act, we use a simplified set of 12 dif-
ferent labels. Originally, tradr dialogues were annotated with more than 60 dialogue
acts belonging to seven dimensions. We use simplified tags for the following reasons.
First, many of the original dialogue acts are rare, they have too few instances for the
classifier to learn them. Second, the difference between certain dialogue acts, e.g., be-
tween ‘Set Question’ and ‘Choice Question’ is not really relevant for the task of frame
recognition, and such dialogue acts can be merged. We borrow eight simplified tags
from the dimensions ‘Task’, ‘Communication Feedback’ and ‘Turn Management’ from
Anikina and Kruijff-Korbayová [2019]. These tags are ‘Affirmative’, ‘Confirm’, ‘Con-
tact’, ‘Disconfirm’, ‘Inform’, ‘Negative’, ‘Question’ and ‘Request’. We introduce four
more simplified labels to group the dialogue acts that belong to the rest of dimensions,
namely ‘Communication Management’, ‘Time Management’, ‘Discourse Structuring’
and ‘Social Obligations’. We use the dimensions’ names as simplified labels.

Like the embeddings for lexical features, the embeddings for discourse features are
trained jointly with the model. However, as they characterize the whole utterance and
not separate (sub)tokens, we concatenate them not with bert input representations,
but with the output of the pafibert position-based attention layer, i.e. with the target
and context representation for each utterance. We increase the size of the first linear
layer in the model accordingly.

Again, we test the discourse features separately and in combination. The results
are shown in Table 4.8. In contrast to our expectations, discourse features did not turn
out to be really beneficial. We see that the models with a single ‘speaker’ feature and
with both discourse features perform similarly to the basic classifier, and the model
with the feature ‘dialogue act’ demonstrates slightly worse results. We also tried to

82 Experiments and Discussion

combine lexical features with the ‘speaker’ feature (see the last row of Table 4.8), but
this model could not bring any performance gain either.

Feature test set PRE SEN SPE F1 GM IBA0.1 SUP

pos tag
tradr set A 0.89 0.88 1.00 0.88 0.92 0.87 268
tradr set B 0.89 0.87 1.00 0.87 0.92 0.86 247
tradr set C 0.89 0.87 1.00 0.87 0.91 0.86 234

Subword mask
tradr set A 0.89 0.88 1.00 0.87 0.92 0.87 268
tradr set B 0.89 0.87 1.00 0.87 0.92 0.86 247
tradr set C 0.89 0.86 1.00 0.87 0.91 0.85 234

pos tag +
Subword mask

tradr set A 0.91 0.90 1.00 0.90 0.94 0.89 268
tradr set B 0.90 0.89 1.00 0.89 0.93 0.88 247
tradr set C 0.91 0.88 1.00 0.89 0.93 0.87 234

Speaker
tradr set A 0.89 0.88 1.00 0.88 0.92 0.88 268
tradr set B 0.90 0.88 1.00 0.88 0.92 0.87 247
tradr set C 0.90 0.88 1.00 0.88 0.91 0.87 234

Dialogue act
tradr set A 0.89 0.87 1.00 0.87 0.92 0.86 268
tradr set B 0.88 0.86 0.99 0.86 0.91 0.85 247
tradr set C 0.88 0.85 0.99 0.86 0.91 0.84 234

Speaker +
Dialogue act

tradr set A 0.90 0.88 1.00 0.88 0.92 0.88 268
tradr set B 0.90 0.88 1.00 0.88 0.92 0.87 247
tradr set C 0.89 0.87 1.00 0.87 0.91 0.86 234

pos tag +
Subword mask +

Speaker

tradr set A 0.88 0.88 1.00 0.87 0.92 0.87 268
tradr set B 0.87 0.87 1.00 0.86 0.91 0.86 247
tradr set C 0.88 0.86 0.99 0.86 0.91 0.85 234

pafibert trained
on tradr

(basic model)

tradr set A 0.90 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.90 0.88 1.00 0.88 0.93 0.87 247
tradr set C 0.91 0.88 1.00 0.88 0.92 0.86 234

Table 4.8: Performance of models with different additional features

It is interesting to mention that if we have a look at the mistakes that the clas-
sifiers with discourse features make, we can see that all these models are not able to
distinguish between different perspectives despite the fact that we provide them with
information about the speakers. For instance, the models still have difficulties differ-
entiating between the ‘Attempt’ and ‘Attempt_suasion’ frames, which have a strict
correlation with the speakers: in our training data 27 out of 33 instances of the frame
‘Attempt’ have operator as speaker, and 14 out of 16 instances of ‘Attempt_suasion’
frame have tl as speaker. Information about dialogue acts seems to be useless either,
e.g., the utterance “Do you copy me?” with the target ‘copy’ is still labeled as ‘Com-
munication_response_message’ despite the fact that we inform the classifier that it is
a question.

It is difficult to say why both lexical and discourse features do not bring us any
significant performance improvement. One of possible hypotheses is that our learned

4.2 Adjustments of the English pafibert model 83

feature embeddings are rather short (2-4 neurons) in comparison with input embed-
dings (768 neurons) or context-target embeddings (1536 neurons), so their impact on
the whole (sub)token/utterance representations is actually negligible. We think that
in order to get a better estimation of the role of additional features, some further
experiments with more data are necessary.

4.2.4 Frame filtering

Analysing the mistakes made by the frame classifiers, we noticed that some mistakes
are rather silly and cannot be explained by target ambiguity or by semantic closeness
between predicted and true frames. For example, given the utterance “I put my robot
on hold and UGV-2 get a new battery” and a target ‘put on hold’, our basic classifier
assigns ‘Create_representation’ frame to it, while the real frame is ‘Holding_off_on’.
The reason for such sorts of errors is the fact that while learning the relation between
a target and its context and the true frame, we assume by default all available frames
(there are 81 of them) to be equally likely. So, in order to perform classification, our
Softmax function has to process all candidates, and in some cases, e.g., if we do not
have enough training samples, it can happen hat several candidate frames (often not
related) have equal chances to be predicted as the true frame, and the classifier makes
its choice completely at random.

To avoid such mistakes, we can try to inform our classifier about candidate frames
and make it focus only on those that make sense. In other words, we can apply frame
filtering. In a way, it is similar to weighting the data space, which is used to deal
with imbalanced data (see Section 2.4). Data space weighting assumes giving training
examples certain weights to increase/decrease their importance depending on their
classes, and frame filtering does the similar thing with candidate frames - frames that
are never evoked by the given target are given zero weight and thus are excluded from
the list of candidates.

Frame filtering is proposed as a variant of the pafibert model by Tan and Na
[2019]. The authors just add an additional frame filtering layer to the pafibertbase

model as shown in Figure 4.3. So, the output of the position-based attention layer goes
through the first linear layer and a Tanh activation function, and the outcome is fed
into the second linear layer Wk of size k × d, where k is the number of classes. Next,
instead of being fed directly to Softmax, the result is multiplied element-wise with a
so-called candidate frame vector, and is being further processed by the third linear
layer of size k × k and the Softmax function.

So, the candidate frame vector can be viewed as vector that contains weights for
all possible frames in the model depending on target. If the weights are set to ones,
the model will behave similar to pafibertbase. Setting certain frames to zero values,
we exclude them from candidates list. If the target has only one sense, then only one
candidate frame is present. If the target is ambiguous, then the search space is limited
by several candidate frames. Of course, for this approach to work really well we need
an exhaustive list of targets and all their senses, which is impossible. So, if we come
across an unseen target in our test data, the model will have to consider all possible
frames.

Tan and Na [2019] construct candidate frame vectors using two methods. The first

84 Experiments and Discussion

assumes frame filtering by lexical units of the targets, the second one - frame filtering
by targets. Both imply creation of look-up tables. According to the first method, they
map each lexical unit found in FrameNet to a range of frames that this unit evokes,
which are also retrieved from the FrameNet database. However, if test data comes
from a source other than FrameNet, the lexical units are usually unknown. The second
methods was introduced to tackle such a situation. It suggests an additional mapping
of targets to lexical units. In order to create this mapping, Tan and Na [2019] utilize
the Pattern library for Python [De Smedt and Daelemans, 2012]. They use it to get
various word forms for all lexical units from the FrameNet database. These word forms
are meant to cover possible targets, and are mapped to the corresponding lexical units.
Depending on the method, Tan and Na [2019] report the accuracy improvement by
1-2.5%, when filtering is applied.

Figure 4.3: pafibert: a filtering layer (taken from Tan and Na [2019])

We follow the first method suggested by Tan and Na [2019], and create candidate
frame vectors using filtering by lexical units. Our look-up table is based on the training
data. This means that given a test example, the corresponding candidate frame vector,
that we retrieve for the specified target, contains only those frames that were observed
in the training set with respect to this target.

Our original implementation of frame filtering layer also follows the one presented
by Tan and Na [2019] and depicted in Figure 4.3. Because the classifier with two
lexical features demonstrated the best IBA scores, we chose it for the experiments
with filtering instead of the usual basic model. So, the classifier got an additional
filtering layer and was trained using the 5-fold cross-validation procedure with the
usual eight epochs per fold. However, already the averaged validation IBA score after
the 5-fold cross-validation procedure turned out to be very low - only about 37%. When
we increased the number of epochs up to 16, the IBA score grew up to about 53%.
Because of the clearly unsatisfactory performance, we did not evaluate this model on
the test sets. We attribute such low validation accuracy to the fact that we have little
training data, but need to train an additional weight matrix of size k × k, where k
stands for the number of classes.

Next, we tried a slightly different filtering approach. We excluded the very last
hidden layer Ws and applied the Softmax function directly to the output of the frame

4.2 Adjustments of the English pafibert model 85

filtering layer, namely to the vector o ∈ Rk (see Figure 4.3). This modification allowed
to boost the model’s performance, so that the validation IBA score grew up to 93%
(average value for five folds).

This model was evaluated on our usual tradr test sets. The results are given in
Table 4.9. One can notice that the model with filtering still was not able to make it
past 88% IBA, which seems to be the upper bound.

Model test set PRE SEN SPE F1 GM IBA0.1 SUP

pos tag +
Subword mask +

Filtering

tradr set A 0.90 0.88 1.00 0.88 0.92 0.88 268
tradr set B 0.89 0.87 1.00 0.87 0.92 0.86 247
tradr set C 0.90 0.88 1.00 0.88 0.92 0.87 234

pafibert trained
on tradr

(basic model)

tradr set A 0.90 0.89 1.00 0.89 0.93 0.88 268
tradr set B 0.90 0.88 1.00 0.88 0.93 0.87 247
tradr set C 0.91 0.88 1.00 0.88 0.92 0.86 234

Table 4.9: Performance of the model with frame filtering mask

In order to understand the impact of filtering (or a lack of it) we perform careful
analysis of the mistakes made by the classifier. It leads us to the following conclusions.
Most of the mistakes, namely 19 out of 31 are caused by ambiguous targets. This is
the most challenging type of errors, and we suppose that they should be considered
the main problem that needs further consideration. Given the same test data, their
proportion among other types of mistakes usually makes up approximately 60 - 70%
regardless of the model. For now, such fluctuations seem to be a result of stochastic
nature of the training process.

Filtering allows to avoid errors coming from incorrectly parsed targets as long as
the corresponding lexical units are read correctly. It also helps understand why certain
types of errors are made. For example, earlier we mentioned the so-called silly mistakes,
when the predicted frames semantically have nothing to do with targets and context,
like in case of the utterance “I put my robot on hold and UGV-2 get a new battery” with
the target ‘put on hold’, which was labeled as ‘Create_representation’. Now we know
that such errors are caused by the fact that some targets/lexical units that occur in
the test data are absent in the training data, and as a result the model cannot focus on
any particular candidates and chooses the class to large extent at random. Among the
mistakes made by our classifier with filtering, 7 out 31 cases happen for this reason.

One more group of mistakes includes cases when an utterance is being misclassified,
because its target was used in a new sense that is not present in the look-up table.
This fact explains the last 5 mistakes out of 31 made by our classifier with filtering.
For instance, the utterance “Yes, that was quite a while ago” with the target ‘was’
was incorrectly labeled as ‘Identity’, while the true frame was ‘Event’. This happened,
because based on the training data look-up table for the lexical unit ‘be.v’ only contains
such frames as ‘Identity’, ‘Being_located’, ‘Presence’ and ‘State_of_entity’. The frame
‘Event’ is not on this list, and only occurs in the test data.

All in all, we see that in its nature filtering is a helpful feature. However, it works
only if sufficient training data is available. The last two groups of mistakes made by

86 Experiments and Discussion

the classifier with filtering could have been avoided if the look-up table with frame
candidates had a better coverage.

4.3 German frame classifier

In this section we will present the German version of the semantic frame classifier for
tradr data. We define the German basic model similarly to the English one. It is the
same pafibertbase model described earlier but trained exclusively on German tradr
data. Again, we use a context window w = 10, the contextualized token embeddings
are represented by the last hidden layer of the bertbase model, and no sampling or
extra features are applied. The model is trained with 5-fold cross-validation, and we
save the best model out of five. Each fold is trained for eight epochs with an adaptive
learning rate which starts with 3e-5.

The basic model’s performance on both German test sets is shown in Table 4.10.
We see that the IBA score reaches 81% - 83%, which is about 5% less than the IBA
score of the analogous basic model trained on the English tradr dialogues. The reason
for this difference can be the fact that the English training data is larger - in total it
contains 2,444 utterances, while the German training data consists of 2,378. If we
consider that on average a tradr utterance in English has 8.68 tokens, and a German
one - 6.99 (see Table 3.3), we can easily calculate that the training data in English
totals about 21,214 tokens against approximately 16,622 ones in the German training
data.

Now let us have a look at the mistakes that the basic classifier makes. In what
follows we will discuss the results given the test set A that contains 259 instances.
Here the basic classifier makes incorrect frame assignments for 42 utterances, and the
errors can be divided into three groups.

The first group includes 26 instances with ambiguous target related elements.
Among them we have 18 cases where the target related elements are actually rep-
resented by a single token or by a reflexive verb, e.g., the frame classifier assigns a
frame ‘Posture’ instead of ‘Presence’ to the utterance “Bin auf dem Treppenabsatz
aber weiter links gelegen” with the target ‘gelegen’, or a frame ‘melden2-salsa’ instead
of ‘Contacting’ to the utterance “Wir sind unterwegs und melden uns gleich nochmal”
with the target ‘melden uns’. Similar to the English data, most of these instances do
not contain any clues to help perform disambiguation. Especially ambiguous are the
targets represented by various forms of such verbs as ‘sein’, ‘haben’, ‘mögen, ‘müssen’,
‘gehen’, etc. Further 8 cases in this group include utterances where the target expression
consists of several tokens. It can be a stable expression or a verb with a prepositional
adverb, e.g., ‘vorbei gefahren’ in the utterance “... und die UGV 2 müsste da dran vor-
bei gefahren sein”, which got the label ‘Motion’, while the correct one was ‘Traversing’.
Or just the whole syntactic phrase, e.g., ‘draußen steht’ in the utterance “Draußen
steht ein Löschzug mit Blaulicht” which was classified as ‘Presence’ instead of ‘Loca-
tive_relation’. Judging by this examples, we can conclude that multi-token targets are
not perceived by the classifier as a whole, it tends to focus on a single word, and such
multi-token target expressions are actually confusing.

The second group encompasses 14 cases, which we define as simple mistakes. The

4.3 German frame classifier 87

target related elements here may consist of one or more tokens, but none of these tokens
normally evokes the frame that was assigned by the classifier. An example of such a
situation is the utterance “Schwenk mal nach rechts, dann müsstet ihr eigentlich in
die Halle reinblicken” with the target ‘reinblicken’ which was misclassified as ‘Motion’
with the right frame being ‘Perception_active’. It is interesting to note that sometimes
the label assigned by the classifier is considered to be wrong, but is still plausible
given the context. E.g., “... sag mir, wo du hin möchtest” with the target expression
‘hin möchtest’ was classified as ‘Motion’, while the correct frame is ‘Desiring-fnsalsa’.
Another example would be the sentence “Aber teilweise unfähig das umzusetzen, weil
mein Roboter sich teilweise gar nicht bewegt” with the frame related elements ‘sich gar
nicht bewegt’ which got the label ‘ausfallen1-salsa’ instead of ‘Motion’. In both cases
the gold frame corresponds to the direct meaning of the target expression, while the
assigned one assumes the interpretation of the expression in the context.

The last group is rather small and includes two misclassified utterances. Both utter-
ances have incorrect targets, which can happen due to annotation or processing errors.
Normally, such cases are rare. So, the utterance “Also - die Person müsste hinter dem
großen Hochofen auf dem freien Weg sein” got the label ‘Presence’ instead of ‘Loca-
tive_relation’, because the target expression ‘sein’ was wrong. Note that in principle
it is possible for ‘sein’ to evoke the ‘Presence’ frame. Similarly, the utterance “Ich
würde jetzt einfach geradeaus fahren und schauen was ich so weiter finde. Kommen”
was recognized as an instance of the ‘Communication_response_massage’, while the
correct frame was ‘Communication_by_protocol’. This happened, because ‘Ich’ was
incorrectly marked as the target expression instead of ‘kommen’ that normally evokes
the ‘Communication_by_protocol’ frame.

Model test set PRE SEN SPE F1 GM IBA0.1 SUP

Basic model tradr set A 0.84 0.84 0.99 0.83 0.89 0.83 259
tradr set B 0.84 0.82 0.99 0.82 0.88 0.81 217

Basic model +
balanced sampling

tradr set A 0.89 0.89 1.00 0.88 0.93 0.88 259
tradr set B 0.90 0.88 1.00 0.88 0.92 0.87 217

Basic model +
equal sampling

tradr set A 0.91 0.91 1.00 0.90 0.94 0.90 259
tradr set B 0.91 0.90 1.00 0.90 0.93 0.89 217

Basic model +
pos tag

tradr set A 0.87 0.86 0.99 0.86 0.91 0.85 259
tradr set B 0.88 0.86 0.99 0.86 0.91 0.85 217

Basic model +
subword mask

tradr set A 0.86 0.84 0.99 0.84 0.90 0.83 259
tradr set B 0.86 0.83 0.99 0.83 0.89 0.82 217

Basic model + pos tag
+ subword mask

tradr set A 0.84 0.84 0.99 0.83 0.89 0.82 259
tradr set B 0.84 0.84 0.99 0.83 0.88 0.83 217

Basic model + pos tag
+ equal sampling

tradr set A 0.87 0.85 1.00 0.85 0.90 0.84 259
tradr set B 0.87 0.85 0.99 0.85 0.90 0.84 217

Table 4.10: German frame classifier

Like in case with the basic model trained on English tradr data, we also investigate
the influence of sampling on the performance of the basic German frame classifier. As

88 Experiments and Discussion

earlier, we apply two types of sampling, namely balancing and equal. As a source of
sampling we use salsa data. Because we sample only the instances of those frames
that occur in German tradr data, most of the samples are filtered out from the salsa
corpus, so that only 2,486 out of 35,236 are left.

In case of balanced sampling we sample 2,375 instances from 2,486 available ones,
and retrain the classifier without changing any parameters. As Table 4.10 demon-
strates, this type of sampling allows to increase the IBA score up to 87% - 88%, which
is about 5% more than the score reached by the basic model. If we have a look at the
mistakes made by the classifier with balanced sampling, we can notice the following.
The number of simple errors is considerably reduced, namely from 14 to 8 cases. Next,
the number of mistakes caused by ambiguous target expressions also gets smaller - we
have 19 incorrectly classified instances against 26 ones when testing the basic model.
The last reduction is mostly determined by a better recognition of ambiguous target
expressions consisting of a single token. So, while the basic classifier misclassifies 18
utterances with such targets, the classifier relying on balanced sampling - 14. Finally,
we must mention that balanced sampling does not influence the two mistakes caused
by the incorrect data annotation/preprocessing.

For the second sampling approach - equal sampling - we randomly pick out 611 in-
stances from 2,486 salsa sentences left for sampling. This allows the model to achieve
an even better IBA score of 89% - 90%. Again, the increase of IBA is explained by
the fact that the amount of simple errors, as well as errors determined by ambiguous
single-token targets, decreases. However, because of the small test set size, it is difficult
to tell if the difference in performance of the models with balanced and equal types
of sampling is really significant. So, the classifier with the equal sampling in total
makes only 5 mistakes less than the classifier with the balanced one. Considering that
we deal with ambiguous targets, there always exists a possibility to assign the correct
frame by chance. E.g., our test set A contains two instances of the ‘Grasp’ frame, both
of which have the target ‘verstanden’ that usually evokes either ‘Grasp’ or ‘Commu-
nication_response_message’ frames. So, while the classifier with balanced sampling
misclassifies both instances as ‘Communication_response_message’, the classifier with
equal sampling misclassifies in a similar way only one of them. As the salsa corpus
does not contain any samples of the latter frame at all, we cannot say that the equal
sampling allows the classifier to learn the difference between ‘Grasp’ and ‘Communi-
cation_response_message’ better than the balancing one. It is clear that in case with
the equal sampling one of two instances was classified correctly by pure chance.

Speaking of sampling, it is necessary to mention another interesting detail, namely
the fact that despite showing different IBA results when evaluated on test data (see
Table 4.10), the basic model and the model with equal sampling (we omit the balanced
model from discussion as it behaves likewise) have the same averaged validation IBA
scores, as the second and the third columns of Table 4.11 demonstrate. The table
contains the validation scores of all of the five folds for each model, the best ones are
given in bold.One of the possible hypotheses of why the two models have different
test IBA scores (about 83% and 90%) but the same averaged validation ones can be
the usage of dropout during the 5-fold cross-validation procedure. Due to dropout
some neurons in the network get ‘switched off’ and in case of the model with sampling
some useful information coming from the additional salsa instances may get lost as a

4.3 German frame classifier 89

result. However, during the testing the model has all units available, and this allows it
to achieve better scores on the test sets. In addition to this, the small sizes of the test
sets often result in situations when even a small amount of chance correct assignments
inflates the IBA scores.

Model Basic model Basic model + Basic model + Basic model + pos tag
equal sampling pos tag + equal sampling

Fold 1 0.83 0.84 0.83 0.84
Fold 2 0.84 0.84 0.85 0.83
Fold 3 0.86 0.85 0.84 0.86
Fold 4 0.81 0.82 0.80 0.82
Fold 5 0.84 0.85 0.83 0.81

Avg. 0.84 0.84 0.83 0.83

Table 4.11: Validation IBA scores for different folds during cross-validation for
some of the models

We also need to point out one more observation regarding sampling, namely the
influence of sampling on the classifier performance depending on language. So, in case
with the classifier trained on the English data, sampling did not seem to work at all.
No matter if we applied direct sampling of certain percentage of FrameNet data, or
informed sampling, the IBA score stayed approximately the same. However, we can
observe the positive effect of sampling for the classifier trained on the German data -
equal sampling actually helped to correct more than half of the mistakes made by the
classifier that was trained without sampling. Our hypothesis about why it is so is as
follows. It looks like the size of the training data plays the crucial role here. We know
that the English training data contains almost 1.3 times more tokens than the German
one. Apparently, sampling can help if the training set size is small enough, but at the
same time the upper bound in terms of the training set size is rather low, i.e. if we had
more German training data, the effect from sampling would probably be comparable
with that of for the English training data. In addition to this, the differences between
languages (i.e. in morphology, syntax, semantics) may also be important. E.g., the
basic frame classifier trained on the English tradr data misclassified 30 out of 268
instances, and the absolute majority of errors, namely 22 (more than 73%), were caused
by ambiguous targets, and only 5 errors (less than 17%) were simple misclassifications.
In contrast to this, the percentage of simple errors made by the German frame classifier
was more than 33% (14 out of 42 cases), and the fraction of misclassified utterances
with ambiguous targets was smaller - about 62% (26 out of 42 errors). So, judging
by this, we can conclude that sampling probably helps to resolve simple mistakes, but
it is much less effective in cases where disambiguation is necessary. And this can be
another reason why it worked for the German frame classifier but failed for the English
one.

The last row of experiments with the frame classifier for German tradr data
includes several modifications of the basic model which assume extending token em-
beddings with lexical features. The modifications correspond to those performed on
the English model. We use the same lexical features: pos tags and subword masks.

90 Experiments and Discussion

We omit the discourse features, namely speaker and dialogue type, because despite the
fact that all German dialogues were previously annotated with speakers and dialogue
acts, the currently used data format does not include this information. The results of
the experiments are also given in Table 4.10.

First, we investigate the influence of lexical features without sampling any addi-
tional instances from the salsa corpus. It is interesting that extending token embed-
dings with the corresponding pos tag embeddings seems to have a positive effect on
the IBA score - in comparison with the score of the basic model it is about 3%-4%
higher. In order to check where exactly the improvement is, we had a look at the
mistakes made by the frame classifier.

We found out that in total the classifier incorporating the information about pos
tags makes 36 mistakes when tested on the test set A. This is 6 mistakes less than the
basic classifier made. If we compare the number of mistakes in each of the three groups,
we can notice that the modified classifier seems to be able to deal with ambiguous
target expressions better than the basic one. Actually, the ambiguous targets is the
only group out of three, where the number of errors decreased. E.g., the classifier
correctly identified two utterances with targets ‘liegen’ and ‘liegt’ as instances of the
‘Posture’ frame instead of ‘Presence’, as well as two utterances both with the target ‘ist’
as instances of the frame ‘Presence’ in place of ‘Identity’. However, it is unclear how
exactly the information about the pos tags contributed to the correct frame assignment
in the above mentioned cases. E.g., given two utterances “... auf dem Stuhl liegt ein
Paket, und vor dem Stuhl steht ein Paket” and “... und einmal von dem grünen Fass,
was hier liegt” both with the target ‘liegt’, it is unlikely that knowing that ‘liegt’ is a
verb and ‘Paket’ and ‘Fass’ are nouns can help us identify that the correct frame is
‘Presence’ in the first case and ‘Posture’ in the second one. As for the simple errors
made by the classifier with pos tags, their number stayed the same: the classifier was
actually able to assign the right frames to 6 out of 14 utterances misclassified by the
basic model, but at the same time it made 6 new errors. Lastly, two errors caused by
the wrong annotation/preprocessing, have not been corrected either. So, based on the
mistake analysis we can conclude that the influence of the pos feature is not really big,
and the IBA increase by 3% - 4% is very likely to be determined by the stochasticity
of the training procedure. Especially, if we consider that the model was tested on a
rather small test set.

As Table 4.10 shows, extending token embeddings with subword mask embeddings
as well as using the combination of two extra features likewise does not seem to really
influence the performance of the classifier. Note that in case of the frame classifier
trained on the English tradr dialogues, the effect of additional features was also rather
insignificant. In relation to this we should mention that recently there appeared several
studies that investigate how attention in bert works and what language patterns
it is able to learn. These studies actually shed some light on why adding lexical,
syntactic or other features to token embeddings has little to no effect. E.g., Clark et al.
[2019] investigated the behaviour of all 144 bert’s attention heads and their ability
to classify various syntactic relations. They found out that certain heads can identify
direct objects of verbs, determiners of nouns, objects of prepositions, and objects of
possessive pronouns with surprisingly high accuracy. Htut et al. [2019] report similar
observations. So, even if none of bert’s attention heads incorporates all syntactic

4.3 German frame classifier 91

information learned by the model, it looks like bert is still able to learn quite a lot
about various dependency relations in the data, so that the information about pos
tags and subword masks gets to certain extent redundant and does not produce the
expected effect.

Finally, we would like to mention one more modification of the basic model. It
assumes extending token embeddings with pos tag embeddings, because they still
seem to be more useful than subword mask embeddings, and using the equal sampling
from the salsa dataset, which showed better results than the balancing one. The
IBA score is given in Table 4.10, and it is rather perplexing. We see that the equal
sampling, which earlier helped us achieve the IBA score of 90%, has not provided the
anticipated positive effect - the IBA is 84% for both test sets, so that it is only slightly
better than the score of the basic model.

Trying to understand the difference in scores, we again refer to Table 4.11 which
summarizes the performance of different folds as well as the averaged validation IBA
scores of the two models with pos tags during the 5-fold cross-validation procedure. In
this table, namely in columns four and five, we see that the averaged IBA results for
both models are the same, and they are by 1% smaller than the averaged scores of the
models without the pos tag feature. The scores actually support our hypothesis that
adding lexical features to token embeddings does not have any real positive influence
on the model. Moreover, adding such features seems to confuse the frame classifier, so
that sampling looses its positive effect on the accuracy.

On the other hand, while the averaged validation IBA score of the basic model with
pos tag feature and the model with pos tag feature and equal sampling is 83%, in Table
4.10 we see that both models achieve slightly better results on the test sets - 85% and
84%, respectively. This can probably be explained by the fact that according to our
approach, the models with the best validation scores across the five folds were chosen,
and as a result the test IBA turned out to be better than the averaged validation one.

In conclusion we would like to summarize our observations during the training and
testing of different versions of frame classifier for both English and German data.
First, the pafibert model with its position-based attention mechanism suggested by
Tan and Na [2019] was able to achieve rather good IBA when trained on the tradr
dialogue data, despite the small size of the training sets. Second, we saw that sam-
pling additional training instances from unrelated domains can be useful only if the
original training set is small enough, but as it grows (even insignificantly) the positive
effect of sampling decreases. Also, sampling seems to be beneficial for handling simple
errors, but rather ineffective for cases that require disambiguation. Third, we found
no significant effect of adding lexical and/or discourse features to token embeddings.
In addition, a combination of sampling with an extra pos tag feature even seems to
neutralize a positive effect of sampling. However, here we must note that such ob-
servations need to be additionally checked by training and testing a model on much
larger datasets. Fourth, we came to the conclusion that applying filtering can also be
beneficial. It helps exclude simple errors, but also requires much more training data,
because such an approach can only be effective if the model has a good coverage. Fi-
nally, the analysis of mistakes made by various versions of the frame classifier for both
English and German showed that most of them happen because of ambiguous targets.

92 Experiments and Discussion

They are especially difficult to learn, and adding more training data does not seem
to help. Speaking of targets, it is also necessary to mention that multi-token target
expressions incorporating context turned out to be less effective than single-token ones,
as the former may confuse the classifier.

Chapter 5

Conclusion and Future Work

In this chapter we will recap our most significant achievements and findings, and present
some ideas concerning possible future work.

In this thesis we investigated the possibility of using frame semantics as a means of
providing a meaning representation framework for English and German dialogue data
coming from the domain of robot-assisted disaster response. We found semantic frames
to be easy and convenient for capturing the meaning of an utterance depending on the
target expression - the approach is span-based and does not require any sophisticated
data annotation or preprocessing. We successfully reused the pafibert frame classifier
developed by Tan and Na [2019] for our data and were able to achieve the IBA score of
88% - 90% on the test sets. Despite the fact that we had much less data than Tan and
Na [2019], who trained their models on the much larger FrameNet corpus, our scores
are comparable with theirs. As far as we know, our work is the first attempt to use
semantic frames for the domain of disaster response, and is among a few approaches
which aim at implementing a frame classifier for dialogue data.

In addition, we investigated the impact of sampling additional training instances
from an unrelated domain on the classifier’s performance. We found that sampling
helps achieve better IBA scores if the original training set is small, but as the size
of the training set increases, the positive effect of sampling quickly disappears. So,
in case of the German data with about 16,600 training tokens, the effect of sampling
was noticeable, however for the English data with more than 21,200 training tokens
sampling did not lead to any improvement. To strengthen our conclusion about the
negative correlation between the size of the original training data and the effect of
sampling, some additional experiments could be useful. E.g., it would be interesting
to check whether sampling will have any positive effect, if we decrease the size of the
English training data. In this thesis we tried out various types of sampling, namely
sampling certain percentage of data, balancing sampling, which aims at making the
training data more balanced, and equal sampling, which does not allow the number of
additional instances be larger than the number of the original ones in the same class.
It turned out that equal sampling was slightly more effective than two other types.
We did not perform any experiments with over- and/or undersampling which implies
sampling from the original dataset and is often used with imbalanced data. This can
be a subject for further research, especially interesting is an approach that assumes
generating synthetic training instances, e.g., the embeddings incorporating the targets

93

94 Conclusion and Future Work

and their context.
Besides sampling, we also examined how extending bert token embeddings with

lexical and discourse features influence the model’s performance. The lexical features
included pos tags and subword masks of the tokens, and discourse features - the speaker
and dialogue act tags. In contrast to our expectations, both lexical and discourse
features failed to demonstrate any stable positive influence on the model’s accuracy.
Moreover, the validation and test IBA scores of some models with certain features, as
well as the scores of English and German models with the same extra features were
contradictory, e.g., the German model with pos tags had a worse validation IBA than
the basic model, but a better test one, and the combination of pos tags and subword
masks seemed to work for the English model, but was the least successful for the
German one. Judging by such results we have to conclude that more training and test
data, as well as significance tests are required to estimate the impact of extra features
correctly.

For the English frame classifier we additionally performed experiments with s vary-
ing context window size and a frame filtering mechanism. The experiments revealed
that varying the context window size does not have much influence on the IBA score,
and filtering can be beneficial in case a much larger training set with a better coverage
of targets (lexical units) is available.

In general we saw that the described modifications had slightly different impact on
English and German frame classifiers. We are inclined to think that a larger test set
is needed to draw clearer conclusions. It should also be noted that in order to train
all presented frame classifiers we used the 5-fold cross-validation procedure. Out of
five models we only saved the one that showed the best results on the validation set
and then evaluated this model on the test sets. However, in the future it could also
be interesting to check whether it is possible to achieve better performance using the
ensembling technique, i.e. save all the five models and combine them into a single one.

Also, we studied the mistakes made by different versions of both English and Ger-
man frame classifiers. As expected, the largest group of mistakes is represented by
ambiguous targets, many of which evoke semantically close frames. The problem is
often aggravated by the fact that either the context does not contain any clues that
would allow to disambiguate such targets, or the necessary clues are part of previous
utterances and are difficult to retrieve. The problem of disambiguation undoubtedly
requires more research if we want to improve the performance of the model. Besides
this, we found that, in comparison to the basic English frame classifier, the German one
makes more simple errors that have nothing to do with target ambiguity. Obviously,
this happens due to a smaller size of the German training data, as sampling helps to
considerably decrease the number of such errors.

For now we focused only on automatic frame assignment given a target, and did not
pay any attention to the elliptical utterances where the targets are omitted. However,
as the analysis of the tradr data showed, elliptical utterances make up almost 19%
of the English tradr corpus and more than 10% of the German one. As ellipsis is
very typical of dialogue, it is necessary to research possible approaches to inferring the
omitted parts of elliptical utterances.

Also, in the given thesis we did not perform other steps that are typically associated
with the frame semantic parsing. These steps include automatic target identification,

95

and recognition and classification of arguments (frame elements), and can be subjects
of future work. E.g., for target identification it is possible to use hand-crafted rules
picking targets depending on pos tags or tokens’ positions within a dependency tree.
Another opportunity is to train a classifier to choose the most semantically important
tokens, or simply to decide whether a given token can be a target. Identification and
classification of frame elements are considered to be more challenging tasks, and one
of the latest approaches in this area implies merging them into a single sequence-to-
sequence generation problem. This approach was suggested by Kalyanpur et al. [2020]
who performed their experiments on the text data, however, it can be easily transferred
to any domain including ours.

In addition, we took into consideration the fact that our training and test datasets
were imbalanced and used the appropriate metrics to measure the performance of the
classifiers. While many researchers working with the FrameNet data used standard
accuracy to evaluate their models (e.g., the absolute majority of those mentioned in
Section 2), we relied on the index of balanced accuracy metric (IBA) which tries to
consider the contribution of all classes to overall performance and is able to regulate
the influence of the majority classes. In addition to the IBA metric our classification
reports also include sensitivity, specificity and geometric mean which are also suit-
able for imbalanced data, as well as precision and F-score which are less reliable for
imbalanced data, but nevertheless are widely used.

Another important achievement is the annotation of both English and German
tradr data with semantic frames and frame-evoking targets (frame related elements).
In total, the English tradr corpus contains 3,521 frame instances, and the German
one - 3,519. We summarized our annotation approach as annotation guidelines which
can be found in Appendix A and defined ten new frames presented in Appendix B.
As far as we know, the tradr corpus is the only corpus annotated with frames in
the domain of team communication in disaster response. For the tasks of argument
recognition and classification the corpus can be further annotated with frame elements.

Not only did we annotate the tradr corpus with targets and frames, but we also
examined it in detail. We described the distributions of dialogue turns and semantic
frames, as well as that of lexical units that correspond to the targets and their parts
of speech. We analysed the utterances from the point of view of completeness and
ambiguity, and discussed the main topics and characteristics of team communication.
We also performed a similar analysis of FrameNet data and compared the two datasets.
Our analysis can be helpful for other researchers who plan to use FrameNet data for
training or sampling, or want to adapt the models trained on FrameNet data for other
tasks.

Appendix A

Annotation Guidelines

In what follows, we will present the annotation guidelines that were worked out during
the annotation of English tradr data with semantic frames. All examples are taken
from the tradr data, except another source is given. Words in bold stand for frame-
evoking targets.

A.1 Preliminaries

For now, the annotations are stored in a simple Excel file. Each dialogue takes a
separate Excel sheet. The data was previously annotated with dialogue acts including
dimensions and corresponding communicative functions according to the iso standard
24617-2 [Bunt, 2019]. These annotations are complemented with information about
semantic frames. We add the following columns to the existing annotations: ‘Frame
id’, ‘Frame’, ‘Parent frame’, ‘lu’ and ‘Target’. Each annotation instance takes its own
row. Frame labels are taken from the FrameNet 1.7 database. Currently, we do not
annotate frame elements, grammatical functions and phrase types. Where possible, we
try to rely on the FrameNet annotation guidelines [Ruppenhofer et al., 2006].

A.2 Annotation unit

We regard a single utterance, including incomplete ones, as a separate annotation unit.
Because the data was earlier annotated with dialogue acts, several utterances may be
treated as a single dialogue act, if they fulfill the same function. In such cases we need
to split them (see Example A.2.1).

Example A.2.1. Dialogue act splitting

Dialogue act annotation:
[TASK/INFORM TL: Over here. There we have two victims. One victim is a saved.]

Frame annotation:
(a) [LOCATIVE_RELATION Over here].
(b) [PRESENCE There we have two victims].
(c) [RESCUING One victim is a saved].

97

98 Annotation Guidelines

On the other hand, some utterances in the original data were split, either because
they contained two or more different dialogue acts, or because dialogue acts were the
same, but the described actions were different. Such utterances are merged back to
their original forms (see Examples A.2.2 and A.2.3).

Example A.2.2. Dialogue act merging (different dialogue acts)

Dialogue act annotation:
(a) [TASK/INFORM UGV-1: I put an icon on the plant where I saw fire.]
(b) [COMMUNICATION MANAGEMENT/SELF-CORRECTION UGV-1: I was... saw]

Frame annotation:
[CREATE_REPRESENTATION I put an icon on the plant where I was... saw fire.]

Example A.2.3. Dialogue act merging (same dialogue acts)

Dialogue act annotation:
(a) [TASK/REQUEST TL: Can you go toward the red barrel]
(b) [TASK/REQUEST and see what in it is?]

Frame annotation:
[CAPABILITY Can you go toward the red barrel and see what in it is?]

A.3 Nested frames
We assume that a single utterance may contain more than one frame. These frames
may be nested (see Example A.3.1. Our annotation format suggests using a separate
row for each frame, therefore, in this case we create several copies of the utterance - a
copy for each frame.

The reason for such an approach is that often it is impossible to pick out a single
frame that would be semantically the most important. However, if we assume potential
existence of multiple targets in a sentence, then we need some criteria for choosing the
semantically relevant ones, because theoretically we can treat each meaningful word as
a frame-evoking element.

Example A.3.1. Nested frames
[CAPABILITY And I can not [PERCEPTION_EXPERIENCE see [BREATHING he is breathing.]]]

A.4 Target annotation
In this section we will present the main criteria defining the choice of frame-evoking
targets.

We treat verbs as main frame-evoking elements. In cases, when the verb form
includes auxiliary verbs, we mark only semantically important element, i.e. the main
verb, as target (see Example A.4.1).

Example A.4.1. Main verb as target
[SENDING Pictures have been sent.]

A.4 Target annotation 99

Usually a target is a single token, even when a word form consists of several ones.
There are, however, some exceptions. First, we treat phrasal verbs or multi-word
idiomatic/fixed expressions as a whole as targets (see Examples A.4.2 and A.4.3).
Second, we consider expressions consisting of a support verb and a noun, which is a
semantic head in this case, to be multi-word targets (see Example A.4.4).

In FrameNet terminology, a support element (it is not necessarily a verb) is an
element that syntactically governs the semantic head, but does not reliably represents
the same meaning if taken separately [Ruppenhofer et al., 2006].

It is important to note that in this very case the FrameNet annotation guidelines
treat only semantic heads as targets. Our approach is different, because we give more
weight to verbs, as we plan to correlate frame annotations with semantic role labelling
in the future.

Example A.4.2. Phrasal verb as target
[BECOMING_AWARE Yes, I try to find that out.]

Example A.4.3. Fixed expression as target
[HOLDING_OFF_ON I put my robot on hold.]

Example A.4.4. Support verb plus noun as target
[COMMUNICATION_RESPONSE I can’t give the answer.]

In many cases elements that reflect the meaning of an utterance best are not verbs.
They can be nouns, adjectives, prepositions and so on. This happens, for instance, if we
deal with linking verbs or expletives. So, in Example A.4.5 both targets are adjectives,
and in Example A.4.6 one target is an adjective and the other is a noun.

Example A.4.5. Linking verbs
(a) [AWARENESS Number of missing people is unknown too.]
(b) [CORRECTNESS That’s correct.]

Example A.4.6. Expletive constructions
(a) [POSSIBILITY Is it possible to take a picture from above and to send it to me, UAV
drone?]
(b) [EXPLOSION There was an explosion in the area between the two furnaces.]

Sometimes, even if a verb functions as a normal meaningful element, it does not
necessarily represent the semantics of an utterance. As shown in Example A.4.7, the
location of the robot is more important than the fact that it is ‘standing’ and not, say,
‘lying’. And the noun ‘possibility’ reflects the meaning of the question better than the
verb ‘have’.

Example A.4.7. Non-verbal targets
(a) [LOCATIVE_RELATION I am standing in front of one.]
(b) [POSSIBILITY Do you have the possibility to change the level?]

We also treat participles I (gerunds) and II (past participles) as potential targets,
because they are verbal forms and often play an important role in the meaning of an
utterance, as Example A.4.8 demonstrates.

100 Annotation Guidelines

Example A.4.8. Participles as targets
(a) [SCRUTINY Go on searching.]
(b) [FLUIDIC_MOTION When I turned around the vessel there was a light liquid substance
leaking.]
(c) [CREATE_REPRESENTATION I’d need some pictures from there, taken from the middle
of the two furnaces and around the furnace.]

A.5 Lexical unit annotation
Whereas a target is a direct constituent of a sentence, i.e. a word form, a lexical
unit is a lemma of this word form. This means that each lemma can have several
different instantiations. Each lemma is complemented with a tag representing its part
of speech (see Example A.5.1). For the full list of possible tags, please, refer to the
FrameNet annotation guidelines [Ruppenhofer et al., 2006] or the corresponding website
[FrameNet, 2020]. We store lexical units in a separate column.

Example A.5.1. Targets and LUs
Target LU
leaks leak.v
leaked leak.v
taking a picture take a picture.v
correct correct.a
roger roger.intj

For now we mostly use information about lexical units in order to learn more about
the distribution of our data, namely what lemmas are the most/least frequent, per-
centage of polysemous lemmas, etc.

A.6 Frame annotation
Here we will introduce our main frame annotation principles.

A.6.1 General vs. specific frames

It was already mentioned that our goal is to find a frame that is semantically the clos-
est to the given utterance. However, as we do not have much data, such an approach
may easily lead to a situation, when we have only a couple of instances of certain
frames, and this is not enough to train a reliable frame classifier. This may happen if
a frame has many subframes. For example, a frame ‘Locative_relation’ has 14 child
frames, such as ‘Abounding_with’, ‘Adjacency’, ‘Directional_locative_relation’, ‘Ex-
pected_location_of_person’ and so on. A frame ‘Motion’ has 5 child frames, some of
which have further subframes. In such circumstances a rule of thumb is to choose a
frame that is neither too general nor too specific (see Example A.6.1).

Example A.6.1. Preference to more general frames
(a) [LOCATIVE_RELATION It was near the furnace on the left at a height of about 50

A.6 Frame annotation 101

meters.] (not ‘Spacial_co-location’ frame)
(b) [LOCATIVE_RELATION Should be right next to the barrel.] (not ‘Adjacency’ frame)
(c) [LOCATIVE_RELATION That’s inside the plant.] (not ‘Interior_profile_relation’ frame)
(d) [MOTION Can you describe exactly in which direction you want me to fly?] (not
‘Self-motion’ frame)

On the other hand, sometimes the nuances of meaning of parent and child frame
are too important to merge the two frames. In such cases we keep them separate.
As shown in Example A.6.2, the target ‘guide’ evokes the frame ‘Cotheme’, not ‘Self-
motion’, which is the parent frame of ‘Cotheme’ and not ‘Motion’, which is the parent
frame of ‘Self-motion’. And in the second sentence we also think it is necessary to
capture the differences between motion in general and motion of a fluid.

Example A.6.2. Preference to more specific frames
(a) [COTHEME Could you guide UGV 2 to that place?] (not ‘Self-motion’ or ‘Motion’
frames)
(b) [FLUIDIC_MOTION Nothing leaking from the barrel.] (not ‘Motion’ frame)

A.6.2 Adapting existing frames

Next frame annotation principle has to do with the fact that the domain we work with
is rather specific. As a result, some domain-specific frames are missing in the FrameNet
database. Sometimes, however, it is possible to reuse certain frames so that they cover
new phenomena.

Below we will present some guidelines taken from Ruppenhofer et al. [2006], which
tell us when it is possible to use an already defined frame:

• The meaning of the sentence in question is semantically close to the meaning
captured by a candidate frame.

• The number and types of explicit and implicit frame elements of a candidate
frame and in the given sentence are equal.

• There should be aspectual coherence, i.e. if a candidate frame depicts an event
that consists of several sub-events/stages, the lexical unit in question must de-
scribe an event with the same structure.

• The perspectives (e.g. ‘Buyer’ vs. ‘Seller’) should be the same.

• Semantic relations between frame elements and to other frames should be the
same for all lexical units in the frame.

If these criteria are not met, and some systematic differences can be detected, the
existing frame should be split in two or more frames, or a new one should be introduced.

Here are some other criteria, also from Ruppenhofer et al. [2006], that allow us to
reuse already existing frames:

• Grammar differences, such as voice, aspect, tense, etc.

• Antonymy (e.g. ‘high’ and ‘low’ both evoke ‘Position_on_a_scale’ frame)

102 Annotation Guidelines

• Usage differences due to deixis (‘come’ vs. ‘go’), register (slang vs. formal
language), dialect, evaluation (‘criticize’ vs. ‘praise’), etc.

Example A.6.3 demonstrates the principle of reusing/adaptation. So, we take the
‘Create_representation’ frame to describe the action of creating of a point of interest on
the screen. Similarly, we use ‘Being_located’ frame not only to speak about something
that is in stable position with respect to some location, as the original definition says,
but also to describe positions that can change, but are stable at the current moment,
for instance, a position of a robot or a victim. Some jargon words/expressions, like
‘code three’ (i.e. ‘dead’) can also be mapped to existing frames.

Example A.6.3. Reusing frames to cover new phenomena
(a) [CREATE_REPRESENTATION Can you make a POI of that bottle?
(b) [BEING_LOCATED Does the picture show me where it is located?]
(c) [DEAD_OR_ALIVE The victim is code three.]

Sometimes, when we have difficulties finding a suitable frame in the database by the
given lexical unit, paraphrasing the utterance seems to be a solution of the problem.
However, according to the FrameNet annotation guidelines [Ruppenhofer et al., 2006],
in most cases it is not so. Generally, only paraphrasing of separate lexical units works,
but not paraphrasing of the whole sentences. The latter changes sentence structure,
and as a result the distribution of meaning across the sentence parts changes too (see
Example A.6.4 from Ruppenhofer et al. [2006]).

Example A.6.4. Paraphrasing changes meaning
(a) [CHANGE_OF_CONSISTENCY The paste hardened due to hydration of the cement.
(b) [CAUSE_CHANGE_OF_CONSISTENCY The hydration of the cement hardened the paste.]

Example A.6.5 shows two utterances, where we tried to paraphrase the lexical units.
In both cases the target verbs ‘give’ and ‘relate’ are present in the database, but not
in the senses we need.

Example A.6.5. Paraphrasing of lexical units
(a) [COMMUNICATION Could you give me further details on the container?] (‘give’ ≈
‘communicate’)
(b) [GRASP To be able to relate to the location of the barrel.] (‘relate’ ≈ ‘understand’)

A.6.3 Introducing new frames

Still, in some cases it is impossible to adapt to our purposes frames already existing
in the FrameNet database. Moreover, sometimes certain word senses are not present
in the database at all, as it is not exhaustive. In such situations we need to introduce
new frames.

First of all, we work with a very specific domain: team communication in disaster
response. This means, there exists a certain communication protocol that the mission
participants should follow. There are certain phrases to be used in order to establish

A.6 Frame annotation 103

communication, check the connection quality, accept or reject a mission request and
so on (see Examples A.6.6 and A.6.7). The FrameNet database does not have such
specific frames.

Example A.6.6. Communication by protocol
(a) [COMMUNICATION_PROTOCOL Team leader for operator one.]
(b) [COMMUNICATION_PROTOCOL Team leader listening.]
(c) [COMMUNICATION_PROTOCOL Give message.]

Example A.6.7. Communication response message
(a) [COMMUNICATION_RESPONSE_MESSAGE Yes, roger.]
(b) [COMMUNICATION_RESPONSE_MESSAGE Negative.]
(c) [COMMUNICATION_RESPONSE_MESSAGE Yes, positive.]

Note that, in principle, we can treat such utterances as ‘normal’ ones and assign
the corresponding frames from the FrameNet database. So, the utterance “Team leader
listening” would get the label ‘Perception_active’, and the utterance “Negative” -
the label ‘Attitude_description’. However, we decided against such an approach, and
introduced new frames in order to emphasize the specific nature and purpose of such
utterances.

Instances of ‘Communication_by_protocol’ frame can be easily recognized, as they
normally contain mentions of mission roles (e.g., ‘team leader’, ‘operator one’ or ‘uav’)
and targets that relate to communication (e.g., forms of ‘listen.v’, ‘answer.v’, ‘come
in.v’, etc).

We also use the frame ‘Communication_response_message’ for all short answers,
positive, as well as negative.

Annotating dialogues we often come across incomplete utterances. If an incomplete
utterance has some meaningful elements, so that we are able to assign frames to them,
we do so (see Section A.6.4 for details). However, often such utterances only contain
different noises, false starts, repetitions and make little sense. We use a new frame
called ‘Communication_fragment’ for such cases (see Example A.6.8).

Example A.6.8. Communication fragment
(a) [COMMUNICATION_FRAGMENT Erm...]
(b) [COMMUNICATION_FRAGMENT We- you]
(c) [COMMUNICATION_FRAGMENT Well, it is...]

Missing frames are not always domain-specific. So, Example A.6.9 shows three new
frames that we had to introduce, because we could not find suitable frames in the
FrameNet database. When a new frame is being introduced, it is important to check,
if we can integrate the frame in question into the existing frame hierarchy, i.e. find
potential parent and sibling frames. For instance, our new frame ‘Level_of_clarity’
has parent frame ‘Gradable_attributes’, and frame ‘Be_piece_of’ is a child frame of
‘Being_included’.

Example A.6.9. Word senses absent in FrameNet database
(a) [LEAD The stairwell leads upwards.]
(b) [LEVEL_OF_CLARITY Yes, the pictures aren’t very sharp.]

104 Annotation Guidelines

(c) [BE_PIECE_OF I can also see fragments that belong to the building lying around
here.]

Finally, we would like to give one more example showing that paraphrasing does not
always work - Example A.6.10. In both cases demonstrated here we had to come up
with new frames, namely ‘Level_of_substance’ and ‘Being_reasonable’, because the
paraphrases and the corresponding frames that are available in the FrameNet database
represent meanings different from the original ones. So, ‘smoke’ denotes ‘substance’,
while ‘smoky’ also incorporates the degree. And while ‘reasonable’ in the sense present
in the FrameNet database describes a person and their behaviour, ‘make sense’ cannot
be applied to a person, in the current context the expression means that a certain
decision is rational and practical.

Example A.6.10. Paraphrasing fails
Original utterance:
[LEVEL_OF_SUBSTANCE It’s actually quite smoky.]

Paraphrase:
[SUBSTANCE There’s actually lots of smoke.]

Original utterance:
[BEING_REASONABLE It would definitely make sense if you let the UAV guide you.]

Paraphrase:
[MENTAL_PROPERTY It would definitely be reasonable if you let the UAV guide you.]

The full list of new frames that we introduced while annotating tradr dialogues
is given in Appendix B.

A.6.4 Ellipsis

One more important annotation principle has to do with annotation of elliptical sen-
tences. In contrast to communication fragments described in Section A.6.3, elliptical
utterances are absolutely meaningful, with some parts omitted, because the dialogue
participants can easily infer them from context.

In cases of ellipsis we always try to mentally ‘restore’ an incomplete utterance using
its immediate context (i.e. two or three previous utterances) and infer the right frame
(see Example A.6.11). We place a label ‘e’ in both ‘lu’ and ‘Target’ columns to mark
such utterances.

Example A.6.11. Frame inference in elliptical utterances (targets omitted)
Original utterance:
[IDENTITY Kind of a sidewalk.]

Inferred utterance:
[IDENTITY It is a kind of a sidewalk.]

Original utterance:
[PERCEPTION_EXPERIENCE Like a third barrel that could be around.]

A.7 Parent frames 105

Inferred utterance:
[PERCEPTION_EXPERIENCE Can you see anything like a third barrel that could be around?]

It is important to mention that sometimes an utterance can be elliptical from the
point of view of linguistics, however we do not label it as such. This happens if the
target is not omitted, and the corresponding frame can be assigned (see Example
A.6.12).

Example A.6.12. Elliptical utterances (targets present)
Original utterance:
[MOTION Is going away.]

Inferred utterance:
[MOTION The victim is going away.]

Original utterance:
[CREATE_REPRESENTATION I have made a picture with red.]

Inferred utterance:
[CREATE_REPRESENTATION I have made a picture with red barrel.]

We do not treat short positive or negative answers like “Yes” and “No” as elliptical,
even if according to some classifications they are labeled as such. We do so, because
in many cases short answers relate to several previous frames, so we would have to
infer all of them at the same time. Therefore, short answers are normally labelled with
‘Communication_response_message’ frame (see Example A.6.13).

Example A.6.13. No inference for short answers
TL: [MOTION Fly westwards], [ATTEMPT_SUASION try to find the victim],
[CREATE_REPRESENTATION if you see something interesting, make a picture.]
UAV: [COMMUNICATION_RESPONSE_MESSAGE Yes.]

A.7 Parent frames
For each frame assigned to an utterance we try to find the corresponding parent frame
in the FrameNet database using the relation ‘Inherits from’. A frame can inherit from
more than one frame. In this case we place all given parents into the corresponding
slot. We are interested only in immediate parent frames, i.e. we do not search further
up to the root frame. If the given frame is an independent one, i.e. has no parent(s),
we store its label as a parent. If we introduce a new frame, we try to find a place for
it in the FrameNet hierarchy (see Section A.6.3.) Example A.7.1 shows some parent
frames.

Example A.7.1. Frames and Parent frames
Frame Parent frame
Sending Sending
Motion Event
Communication Cause_to_perceive
Capability Gradable_attributes, Possibility
Locative_relation Basis_for_attribute, State

106 Annotation Guidelines

Parent frames can be useful in case one needs to group certain frames together in
order to decrease the number of labels while training a classifier.

A.8 Annotation issues

In what follows we will present main challenges that we faced with while annotating
the tradr data, as well as some suggestion about how to deal with them.

A.8.1 Absence of lexical units and senses in the database

One of the most obvious problems is absence of certain lexical units and word senses
in the FrameNet database. If a lexical unit is missing, we check if its synonyms are
present, or if there exist a close frame that could be adapted (see Section A.6.2 for
details). A related issue here is that sometimes it is very difficult to find the necessary
frame in the database even if it actually exists. If neither the lexical unit nor the word
sense can be found, a new frame is introduced (see Section A.6.3).

A.8.2 Disagreement between the meaning of an utterance and
the frame evoked by the target

However, sometimes both the lexical unit and the corresponding frame(s) can be found,
and still there is a feeling that they do not really represent the meaning of the utterance.
Often, especially when the targets are some simple, common words, like ‘have’, ‘give’ or
‘take’, the frames found in the database seem to be either too general, or just not really
suitable. The most typical usages of these words in our domain relate to communication
between mission participants, distribution of tasks, information exchange, etc.

Example A.8.1 is a good illustration of the problem. According to the FrameNet
database, the lexical unit ‘give.v’ evokes three frames: ‘Giving’, ‘Infecting’ and ‘Sex’.
Out of them only the frame ‘Giving’ looks like a possible candidate to label the sen-
tences (a) - (c). The problem is that ‘Giving’ corresponds to the literal meaning of
‘give.v’, i.e. describes an event, when a donor transfers some object to a recipient. And
the real meanings of the utterances (a) - (c) have very little to do with this sense of
our target. Similarly, the ‘Possession’ frame, evoked by the lexical units ‘have.v’ and
‘have got.v’, is not the perfect choice for sentences (d) - (e), because it represents the
basic, literal meaning of both verbs.

In other words, the dilemma is as follows. We can either reuse the FrameNet
frames interpreting their definitions very loosely and metaphorically, or we can find
more suitable frames, which would have very little to do with our targets.

Example A.8.1. Domain-specific word senses
(a) [IMPOSE_OBLIGATION I gave you this area.]
(b) [COMMUNICATION Can you give me your status?]
(c) [COMMUNICATION_BY_PROTOCOL Team leader, give message.]
(d) [PRESENCE I don’t have any percentage.]
(e) [POSSESSION I ’ve got an arm with me.]

A.8 Annotation issues 107

As Example A.8.1 shows, we prefer finding more suitable frames to metaphorical
interpretations. Only in (d) we had to reuse ‘Possession’ frame, as we could not find
a better candidate in the FrameNet database.

A.8.3 Distribution of meaning within the utterance

There is another issue related to the one described above. Namely, if our domain and
immediate context have such big influence on the interpretation of our targets, does
not this mean that they actually perform a supportive function? Would it make sense
to use the whole phrase as a target, e.g., ‘give status.v’, or pick up other targets if
possible?

This question is not easy to answer. Have a look at Example A.8.2. All utterances
here have something to do with communication/information exchange, and all of them
have ‘give’ as as main predicate. While it looks reasonable to make such words as
‘feedback’, ‘details’ or ‘answer’ be part of the target (see ceases (c) - (e)), including
‘procedure’ or ‘location’ into targets does not really make much sense, as these words
have nothing to do with communication (see cases (a) - (b)).

Example A.8.2. Multi-word targets?
(a) [COMMUNICATION It’s procedure I gave you.]
(b) [COMMUNICATION Can you give me your location?]
(c) [REPORTING Give me some feedback.]
(d) [COMMUNICATION Can you give me some details on where the smoke development
is?]
(e) [COMMUNICATION_RESPONSE I can’t give the answer...]

Another option would be to treat objects of ‘give’ as targets. But while this ap-
proach would work for utterances (c) and (e) of Example A.8.2, in cases (a), (b) and
(d) that would be clearly wrong. In general, our solution is to extend the targets, if it
helps to represent the meaning of an utterance better.

Example A.8.3 illustrates another aspect of the problem discussed, namely the
difficulty to keep the annotations consistent. We use ‘Create_representation’ frame to
label two activities typical for our data: taking a photograph and marking an object on
the computer screen with a special symbol. So, according to our annotation approach,
we extend our targets, as utterances (a) and (b) demonstrate. But the situation with
creating ‘a point of interest’ on the screen is more difficult. Similarly to ‘make a
picture.v’, we include ‘a point of interest’ to be part of the target, as in utterance (c).
However, we can notice that with other verbs rather than ‘make’, like ‘place’, ‘put’ or
‘mark’, the part ‘a point of interest’ is often omitted, as in sentence (d), so that we
are left with the verb only.

Example A.8.3. Multi-word targets?
(a) [CREATE_REPRESENTATION Please, give me a total overview of the central building.]
(b) [CREATE_REPRESENTATION I take a snapshot but I don’t know how to share it.]
(c) [CREATE_REPRESENTATION Make a point of interest of it.]
(d) [CREATE_REPRESENTATION Yes, I’ve placed an obstacle I can’t go through because
I’m too high.]
(e) [CREATE_REPRESENTATION I placed victim point of interest on the map.]

108 Annotation Guidelines

The current solution to the problem is to use a convention, according to which we
normally extend certain verbal targets like ‘make’ or ‘take’, and do not extend others,
such as ‘place’ (compare utterances (c) and (e) in Example A.8.3).

This situation is also complicated by the fact that, according to the definition of
‘Create_representation’ frame given in [FrameNet, 2020], such elements as ‘a snapshot’,
‘picture’, ‘point of interest’, etc. can be interpreted as a core frame element called
‘Representation’.

A.8.4 Target choice

There is one more issue related to the distribution of meaning within an utterance,
namely, the choice of target. The problem discussed in Section A.8.3 was as follows: we
know the main meaning of an utterance, but we are not sure what elements represent it
best. Here the problem is that it is difficult to decide what aspect of utterance meaning
is the most prominent.

Example A.8.4 illustrates the situation. All utterances (a) - (e) have similar struc-
ture with ‘have’ as the main verb. However, the frames assigned to these utterances
are all different. In principle, it is possible just to follow our strategy that says to focus
more on verbs (see Section A.4), and assign the frame ‘Presence’ to all of the utter-
ances. But does the frame ‘Presence’ represent the meaning of the utterances well?
Let us see. In sentences (a), (d) and (e) ‘task’, ‘problem’ and ‘possibility’ seem to be
more prominent than ‘have’. Moreover, they stand for abstract notions that cannot
really be present at any location.

On the other hand, choosing the word ‘picture’ instead of ‘have’ as target in (c)
would evoke the frame ‘Physical_artwork’, which does not say anything about who
has got the picture and for whom. So, in this case the frame ‘Possession’ seems to be
more relevant. The situation is similar with sentence (b).

Example A.8.4. What is the meaning?
(a) [IMPOSING_OBLIGATION I have a task for you.]
(b) [PRESENCE They didn’t have enough air.]
(c) [POSSESSION I have a nice picture for you.]
(d) [PREDICAMENT I have a problem with my robot.]
(e) [POSSIBILITY Do you have the possibility to change the level?]

In general, it is rather difficult to make up a set of simple rigid rules saying how to
choose a target so that it reflects the main meaning of the utterance. The choice can
be influenced by context, and is often subjective, as different people may interpret the
same sentence differently.

A.8.5 Frame choice

Sometimes we have several similar candidate frames for an utterance. Often, there
is only slight difference between such frames, which is difficult to detect in certain
contexts. This often happens when the frames are tied to each other via ‘see Also’
relation. The FrameNet annotation guidelines state that ‘see Also’ relation has no

A.8 Annotation issues 109

semantic meaning, it connects two confusable frames which have overlapping lexemes
[Ruppenhofer et al., 2006].

Example A.8.5 illustrates the issue. According to their definitions (see [FrameNet,
2020]), both ‘Inspecting’ and ‘Scrutiny’ frames describe an event when an ‘Inspec-
tor’/’Cognizer’ is paying close attention to some ‘Ground’. The difference is that
‘Inspecting’ assumes checking if the ‘Ground’ is intact or if some ‘Unwanted entity’
is present, and ‘Scrutiny’ focuses on discovering of the salient characteristics of the
‘Ground’, or if some ‘Phenomenon’ is present/contained in the ‘Ground’. However, in
our context the salient characteristics and phenomena often turn out to be unwanted
entities, or the existence of such entities is implied, but never mentioned explicitly.

So, we label utterances (a) and (b) with the frame ‘Inspecting’, because the ‘Un-
wanted entities’ are given explicitly, and assign the frame ‘Scrutiny’ to utterances
(c) and (d), because potential entities are only implied in (c) and in (d) the ‘victim’
is interpreted as a ‘Phenomenon’ and not as an ‘Unwanted entity’. However, note
that the difference in meaning between all these sentences is really superficial, and the
assignment of frames is only the matter of interpretation.

Example A.8.5. Inspecting or Scrutiny?
(a) [INSPECTING Please, also check with the infrared camera if there are any people
down there.]
(b) [INSPECTING Could you move southwards and check the building for dangerous sub-
stances?]
(c) [SCRUTINY So, you’ve basically checked the actual area around the furnaces?]
(d) [SCRUTINY Please go into the plant and search for victim...]

Frames ‘Existence’ and ‘Present’ also represent a source of confusion. The former
simply declares an existence of something irrespective of time, duration or location,
while the latter is a child frame of ‘Being_located’ and focuses on the existence of
some entity detected by some observer at certain location and time. We try to ap-
ply ‘Existence’ frame with respect to something constantly present and we use frame
‘Presence’ if something is present/relevant only at a certain time. However, often such
things are difficult to judge, and our frame assignments may be disputable or inter-
changeable. Have a look at Example A.8.6. Actually, we could easily swap ‘Existence’
and ‘Presence’ labels in all of the utterances.

Example A.8.6. Existence or Presence?
(a) [EXISTENCE Just make sure that there’s a reference point somehow.]
(b) [EXISTENCE There’s a graffiti saying JZ.]
(c) [EXISTENCE At one place there are two small spots.]
(d) [PRESENCE I could circle around the barrel and find out if there’s a label on it.]
(e) [PRESENCE There are no signs of leakages around the area of the two barrels and
the canister.]
(f) [PRESENCE Are there any further findings on that?]

Other problematic pairs of frames are, for instance, ‘Becoming_aware’ and ‘Com-
ing_to_believe’ or ‘Required_event’ and ‘Desirable_event’. The frames here are not

110 Annotation Guidelines

connected by the ‘see Also’ relation, but still in some contexts it is sometimes difficult
to understand what is meant.

A.8.6 General or specific?

In Section A.6.1 we wrote that if some specific frame occurs only a couple of times,
then we should prefer a more general one. Only if the nuances of meaning are relevant
enough should we go with a more specific frame. However, sometimes it is not easy to
decide whether those nuances are relevant or not. Moreover, there doesn’t exist any
strict rules telling us what is more important and what is less.

Have a look at Example A.8.7. Sentence (a) represents frame ‘Containing’. There
are only two instances of this frame in our data. Both of them are evoked by the verb
‘contain’. Does this make them really different from instances of ‘Locative_relation’
frame, which are mostly evoked by prepositions and adverbs?

Likewise, utterances (b) and (c) represent frames ‘Be_piece_of’ and ‘Be_subset_of’,
both of which occur only once in the whole corpus. The utterances describe different
things, (b) is about fragments belonging to a partially destroyed building, and (c) is
about power generator, which should be excluded from possible sources of fire. Are
these differences important enough to keep two separate frames?

Utterance (d) is the only instance of frame ‘Cause_of_temperature’ in the corpus.
Should we keep it, or should we use ‘Change_position_on_a_scale’ instead, which
does not immediately relate to temperature?

Example A.8.7. General or specific?
(a) [CONTAINING Yes, it’s a blue canister standing upright and locked, containing
Otalin.] (parent fame: ‘Locative_relation’)
(b) [BE_PIECE_OF I can also see fragments that belong to the building lying around
here.] (parent frame: ‘Being_included’)
(c) [BE_SUBSET_OF That doesn’t count.] (parent frame: ‘Being_included’)
(d) [CHANGE_OF_TEMPERATURE Can you find out if there’s some heat radiation?] (par-
ent frame: ‘Change_position_on_a_scale’)

As Example A.8.7 shows, the aspect of specificity requires more careful thought,
and probably some annotations need to be reconsidered.

A.9 Perspective

Another aspect of our data which may cause troubles is perspective. We distinguish
the following interpretations of ‘perspective’.

First interpretation has to do with the fact that we work with dialogues, i.e. an
event may be viewed from two different points: either the speaker or the listener.

Compare utterances (a) and (b) in Example A.9.1. Both utterances have the verb
‘try’ as a frame-evoking element. But the perspectives are different: while in (a)
we have a team leader encouraging an operator to make a closer photo, in (b) the
initiative comes from an operator themselves. Similarly, we use frames ‘Waiting’ and

A.9 Perspective 111

‘Holding_off_on’ to distinguish between own initiative/commitment and request, as
utterances (c) and (d) illustrate.

Sometimes it can be difficult to tell what perspective is in focus. Sentences (e) and
(f) demonstrate this. They get labels ‘Imposing_obligation’ and ‘Being_obligated’
respectively, however both sentences could be interpreted from opposite perspectives,
so that the labels would be swapped.

Example A.9.1. Two perspectives: speaker vs. listener
(a) [ATTEMPT_SUASION UGV1, please try to get results that are a little bit closer.]
(b) [ATTEMPT Yes, I can try that.]
(c) [WAITING I’ll wait for another order.]
(d) [HOLDING_OFF_ON Wait a minute.]
(e) [IMPOSING_OBLIGATION Your task is to go to the selected area for you.]
(f) [BEING_OBLIGATED You don’t have to go to the fire. Over.]

Note that the FrameNet annotation guidelines [Ruppenhofer et al., 2006] do not
separate ‘Holding_off_on’ and ‘Waiting’ frames based on perspective. The two frames
are connected via a ‘see Also’ relation, and no clear distinctions between them are
given.

Second interpretation of perspective occurs due to the fact that an operator is
often identified with a robot that they operate. As a result, most requests/questions
concerting activities performed by robots sound as if they are performed by operators.
In such cases two perspectives get merged into one. As illustration see utterances
(a), (c), (e) and (g) in Example A.9.2. These utterances get the label ‘Motion’ or
‘Traversing’ despite the fact that the operator does not really move anywhere. It may
seem that a more reasonable approach would be to assign the frame ‘Operate_vehicle’
to all of them. This would definitely work in sentences (a) and (c). However, in other
cases this would lead to a mismatch between the targets and the frames they evoke,
as ‘roll’, ‘climb’ or ‘pass by’ have nothing to do with ‘Operate_vehicle’ frame. So, in
order to be consistent, we treat an operator and their robot as a whole, and do not
separate perspectives.

Actually, there are a few cases where an operator and their robot are clearly sep-
arated. Utterances (b), (d) and (f) in Example A.9.2 illustrate such a situation. In
(b) and (d we have operator’s perspective, and both utterances get ‘Operate_vehicle’
frame. Sentence (f) has clearly the perspective of the robot and gets a ‘Traversing’
frame.

Example A.9.2. Two perspectives: operator vs. robot
(a) [MOTION Can you fly around?]
(b) [OPERATE_VEHICLE Please, fly the drone over the top level of the left furnace and
send a picture.]
(c) [MOTION Please, drive towards the smoke development.]
(d) [OPERATE_VEHICLE Please, drive back all the robots and then we’ll meet here.]
(e) [MOTION Yes, I’m already rolling forwards.]
(f) [TRAVERSING UGV1 has now climbed upstairs.]
(g) [TRAVERSING That’s where I should pass by, right?]

112 Annotation Guidelines

A.10 Conclusion
So, above we summarized the key points of our approach to frame annotation of tradr
corpus, as well as some frequent issues that we faced with while annotating the data.

In conclusion we feel necessary to stress that while our annotation approach is
based on the official FrameNet guidelines [Ruppenhofer et al., 2006], it also has its
peculiarities due to the fact that tradr data consists of dialogues and belongs to a
rather specific domain. We focus more on predicates, especially verbal ones, and we
are not so strict about targets being single tokens.

We tried to keep our annotations consistent, but still there exist some cases that
need further consideration.

Appendix B

New Frames

Below we will present new frames that we had to introduce ourselves, as the current
FrameNet database [FrameNet, 2020] does not contain any suitable candidates. We
will give a frame label, a definition and examples for each frame. The definition of
(non-)core frame elements is planned for future work.

Be_piece_of
Inherits from: Being_included

Definition: A part is considered to be a constituent of some entity described
by the whole. The relation is seen from the point of view of the
part.

Examples: I can also see [PART fragments] that belong to [WHOLE the building]
[PART lying around here].

Being_reasonable
Inherits from: Gradable_attributes

Definition: Certain behavior of protagonist is seen as practical and sensi-
ble.

Examples: As I can’t see anything at the moment, it would definitely make
sense if [PROTAGONIST you] [BEHAVIOR let the uav guide you to some
other points as soon as they’ve started again].

Communication_by_protocol
Inherits from: Communication

Definition: A communicator speaks to an addressee using the phrases of
special form (protocol) to establish/finish the conversation by radio.

Examples: [COMMUNICATOR Team leader] [ADDRESSEE for Tango].
[COMMUNICATOR Team leader], here is [ADDRESSEE Tango].
[COMMUNICATOR uav] [ADDRESSEE to ugv-1] please answer.
[COMMUNICATOR uav] speaking [ADDRESSEE idi].

113

114 New Frames

Communication_fragment
Inherits from: None

Definition: An auxiliary frame which serves the purpose of marking conver-
sational fillers and sequences with unclear meaning. The frame is
characterized by conflation of target and fragment itself.

Examples: [FRAGMENT Also... I’m with... erm...]
[FRAGMENT Eeh eeh my my my...]
[FRAGMENT Whether a person or its... below at the bottom edge
there’s a...]

Communication_response_message
Inherits from: Statement

Definition: A communicator gives a short usually positive or negative reply
to an addressee’s question or request. Sometimes a topic is also
mentioned.

Examples: Roger [TOPIC that], [ADDRESSEE team leader].
Okay.
Yes [COMMUNICATOR by ground operator 1].

Correction
Inherits from: Communication

Definition: A communicator informs an addressee that what the patient
has communicated is not right, true or suitable by providing the
corrected version of the message.

Examples: [COMMUNICATOR I] have to correct [PATIENT myself]: [MESSAGE ugv-
1].

Face_direction
Inherits from: State

Definition: An entity faces a particular direction.

Examples: For your information: [ENTITY it]’s looking [DIRECTION towards
south].

Lead
Inherits from: Cause_to_perceive

Definition: An entity leads in a particular direction or to some goal.

Examples: [ENTITY The stairwell] leads [DIRECTION upwards].
There’s smoke development at [ENTITY the first stairs] that go
[DIRECTION upwards].

115

Level_of_clarity
Inherits from: Gradable_attributes

Definition: A degree to which a representation is clear and detailed.

Examples: Yes, [REPRESENTATION the pictures] aren’t [DEGREE very] sharp.

Level_of_substance
Inherits from: Gradable_attributes

Definition: A degree of smoke in the air at some location.

Examples: It’s actually [DEGREE quite] smoky [LOCATION dni].

Appendix C

Multiclass classification methods

In Chapter 2 we have already mentioned that one of the ways to systematize multiclass
classification methods assumes splitting them into three groups: methods based on
extension from binary classification, methods that assume transformation to multiple
binary classifiers, and methods relying on hierarchical classification. In what follows we
will present these three groups. This overview can also serve as a reference in case the
reader needs additional information on how various frame-semantic parsers presented
in Chapter 2 were trained.

All the algorithms we will consider are supervised, i.e. they work with labeled
data. So, our training data has the form (xi, yi), where xi ∈ Rn is the ith training
instance and yi ∈ {1, ..., K} is the corresponding label. Under training a classifier we
mean learning a model H so that H(xi) = yi for each new instance xi [Aly, 2005]. If a
classification problem is binary, usually yi ∈ {0, 1}. Possible labels for multiple classes
will be discussed below.

C.1 Extension from binary

In Chapter 2 we have discussed neural networks, which belong to this category, and
mentioned some other approaches. We will briefly summarize them here.

C.1.1 Decision Trees

Decision tree is a classification algorithm that assumes building a tree, whose nodes
are attributes, edges are attribute values, and leaves are classes. The tree is built by
recursively splitting the training set, so that each new node is based on the attribute
that brings the maximum information gain [Aly, 2005; Sun et al., 2009]. The tree can
have as many leaves (classes) as necessary. A new sample is classified by following the
path from the root to a leaf depending on the sample’s attribute values.

Again, the standard version of the algorithm can be sensitive to the class imbal-
ance problem. If some classes are rare, the algorithm needs to perform more splits to
distinguish the classes. So, either the algorithm terminates before all necessary splits
are done, or the leaves for minor classes get removed in the course of pruning as being
susceptible to overfitting [Sun et al., 2009].

117

118 Multiclass classification methods

C.1.2 k-Nearest Neighbors

k -Nearest Neighbors is a very simple algorithm that does not actually require training a
model. It works for any number of labels. It is assumed that all samples of a dataset lie
in some common vector space. A new instance is classified by finding k nearest samples.
The class is chosen by the majority vote. The number k is usually determined using
a validation set, or by performing cross-validation. Various distance measures can be
used, e.g., Euclidean distance or cosine similarity [Aly, 2005; Sun et al., 2009].

The algorithm is also prone to making errors when classifying instances of rare
classes. As samples of such classes occur sparsely in the dataset, it is unlikely that the
correct rare label will prevail over more frequent labels [Sun et al., 2009].

C.1.3 Naive Bayes

Naive Bayes classifier is also suitable for multiclass data. Given a new instance
x = (x1, ..., xN), we assign it a class c, such that c = argmaxcP (C = c||x1, ..., xN),
where P (C = c||x1, ..., xN) = P (C=c)P (x1,...,xN ||C=c)

P (x1,...,xN)
. In other words, we choose the most

probable class given an instance, which is interpreted as a sequence of features.
To be able to apply the formula, we need to learn from the training set prior

probabilities of classes P (C1), ..., P (CK) and the probability of the given sequence given
a certain class P (x1, ..., xN ||C = c). We see that the denominator is the same for all
classes, so it can be discarded. If the sequence x1, ..., xN is long enough, chances that
it occurs in the training set are not high, and its conditional probabilities will likely
be zero. To avoid this, the dependencies between the features are ignored, and the
probability of the sequence given class is replaced with a product of probabilities of
individual features: P (x1||C = c)...P (xN ||C = c) [Aly, 2005].

As shown in [Sun et al., 2009], Bayesian classifiers tend to learn patterns of dominant
classes, and the patterns of small classes are hard to be encoded in the network. So,
such classifiers are also prone to misclassifications given imbalanced data.

C.1.4 Support Vector Machines

The Support Vector Machines (svm) classifier was originally designed only for binary
classification problems. It is based on the following idea: data points lying in some
common space can be separated by a hyperplane, so that the margin, i.e. the minimum
distance from the hyperplane to the closest data points, is maximized. The data points
that are the closest to the plane are called support vectors, hence the name of the
classifier [Sun et al., 2009; Aly, 2005].

There exist extensions of the svm classifier to multiclass versions. Most of them
are based on the following idea: the classification task is treated as an optimization
problem, and each class is represented by some new constraints and parameters added
to this problem. Some information about multiclass svm classifiers and related issues
can be found, for instance, in [Aly, 2005].

svm classifiers are considered to be robust and less prone to the data imbalance
problem, if the class distribution is not too askew. This can be explained by the fact
that the hyperplane separating the classes relies on only a few support vectors, and

C.2 Transformation to binary 119

the classes’ sizes do not affect its position much [Sun et al., 2009]. On the other hand,
Mahani and Ali [2019] write that in imbalanced datasets support vectors representing
minority classes lie far from the hyperplane. As a result their contribution to the final
decision is small, and minority classes get neglected. Mahani and Ali [2019] also discuss
some algorithms that aim at overcoming this drawback.

C.2 Transformation to binary

A multiclass classification problem can be transformed into several binary classification
problems. According to this approach, several binary classifiers are trained, and in order
to determine the class of a new instance the outputs of all classifiers are compared [Aly,
2005]. Below we will present two the most widely used methods.

C.2.1 One-against-all

The One-against-all (oaa) method assumes training N = K classifiers, where K is
the number of classes. Each classifier in the ensemble treats the instances of a class
in focus as positive, and the instances of all the other classes as negative, so it learns
to discriminate between the target class and all the rest. Any suitable binary training
algorithm can be used, e.g. svm, decision tree or logistic regression [Machine Learning
Mastery, 2020].

According to oaa approach, to avoid ambiguity each classifier outputs confidence
scores rather than discrete labels. The decision is then based on the classifier that
produces the maximum score [Wikipedia, 2020d].

Some researchers state that this method demonstrates performance that is compa-
rable to more complex approaches, if the binary classifiers are tuned well [Aly, 2005].
However, there is a downside: large datasets and/or lots of classes require training a
lot of models which may be costly from computational point of view [Machine Learning
Mastery, 2020]. Moreover, oaa decomposition is sensitive to imbalanced data, and the
resulting ensemble is prone to misclassifying instances of the minority classes [Lorena
et al., 2008].

C.2.2 One-against-one

The One-against-one (oao) approach is also an ensemble method. It is based on
training K(K−1)

2
binary classifiers, each of which aims at distinguishing between two

classes, and all the rest of the classes are ignored. Given a new instance, each classifier
assigns a label to it, and the final decision is made via a majority vote [Machine
Learning Mastery, 2020].

There are studies that show that oao approach is better than oaa [Aly, 2005]. To
the drawbacks of the method belong its tendency to overfitting if the dataset is small,
and high possibility of contradictory voting [Esteves, 2020; Sun et al., 2009].

It is also necessary to mention that both oaa and oao taken alone are not capable of
integrating efficiently the information coming from separate classifiers [Esteves, 2020].
In order to overcome this drawback, as well as other shortcomings, different hybrid

120 Multiclass classification methods

techniques were developed. Some overviews of them can be found, for example in the
works by Esteves [2020] or Lorena et al. [2008].

C.2.3 Error-Correcting Output-Coding

Error-Correcting Output-Coding (ecoc) is based on the idea of distributed output
coding for neural networks that was described in Chapter 2. According to the ecoc
approach, N binary classifiers are trained to differentiate betweenK classes. Each class
is represented via a codeword of high and low bits (features) of length N (see Figure
2.2b), so that each separate classifier learns to recognize a certain feature. Given a new
instance, all classifiers make their judgments, the output is compared with each of the
K codewords via the Hamming distance, and the closest class is chosen Dietterich and
Bakiri [1994].

It is important to mention that the length of a class codeword N should be bigger
than the number of classes K. The additional bits introduce some redundancy in
classes codification and allow the system to recover from possible classification errors
made by separate classifiers. It is exactly why this approach has part ‘error-correcting’
in its name [Lorena et al., 2008].

C.2.4 Generalized coding

This approach was first developed by E. Allwein et al. [2000] and is a generalization
of oaa, oao and ecoc methods. Similar to the ecoc, each class label is represented
by a codeword. However, in contrast to the ecoc, this codeword may contain three
different values: 1 if a feature is present, -1 if it is absent, and 0 if the feature is not
relevant for the given class. So, when each feature classifier is trained, all instances
where this very feature is set to 0 are excluded from the training process. Given a new
instance, it is classified like in the ecoc method.

It needs to be said that there exist other adaptations and modifications of the
presented class decomposition techniques. An overview of them can be found, for
instance, in [Lorena et al., 2008].

C.3 Hierarchical classification

Another way to handle multiclass data is to use hierarchical division of the output
space, so that several binary classifiers form nodes of a binary tree or a more general
structure like a directed acyclic graph (see Figure C.1). The leaves of the structure
represent individual classes [Lorena et al., 2008].

The root classifier learns to perform a general discrimination first, and each child
classifier performs a more refined partition until each leaf is associated with a certain
class. In order to classify a new instance, one starts with the root classifier and based
on its decision visits the next one. The procedure is repeated until a leaf is reached.
There is no need to use all the classifiers - only those that form a certain path are
engaged in the classification process.

C.3 Hierarchical classification 121

One of the advantages of hierarchical classification is its lower complexity in com-
parison with the methods described above: the number of classifiers to be trained is
much less than is required by, let’s say, oao approach. It is also necessary to point out
an obvious disadvantage of the method. The performance of each classifier depends on
how well its predecessors can differentiate classes. If errors are made, they accumulate,
and in the result the net performance suffers [Lorena et al., 2008].

More information about different techniques within the approach is presented, for
example, in works by Lorena et al. [2008] or Aly [2005].

Figure C.1: Hierarchical classification for a problem with 6 classes: directed binary
tree (left) and directed acyclic graph (right) [Lorena et al., 2008].

To conclude this survey, we would like to note that while earlier many frame-
semantic parsers or frame classifiers relied on the transformation of the classification
problem to binary classification tasks, nowadays, with the development of neural net-
works, the extension from binary to multiclass classification is more common.

Bibliography

Omri Abend and Ari Rappoport. Universal conceptual cognitive annotation (UCCA).
In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 228–238, 2013.

Tahira Alam, Chowdhury Farhan Ahmed, Sabit Anwar Zahin, Muhammad Asif Hos-
sain Khan, and Maliha Tashfia Islam. An effective recursive technique for multi-class
classification and regression for imbalanced data. IEEE Access, 7:127615–127630,
2019.

Jay Alammar. The Illustrated Transformer. https://jalammar.github.io/
illustrated-transformer/, 2018. Accessed: 2020-10-17.

Waad Alhoshan, Riza Batista-Navarro, and L. Zhao. Towards a corpus of require-
ments documents enriched with semantic frame annotations. In 2018 IEEE 26th
International Requirements Engineering Conference (RE), pages 428–431, 2018.

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of machine learning research, 1
(Dec):113–141, 2000.

Mohamed Aly. Survey on multiclass classification methods. Neural Netw, 19:1–9, 2005.

Tatiana Anikina and Ivana Kruijff-Korbayová. Dialogue act classification in team com-
munication for robot assisted disaster response. In Proceedings of SIGDIAL 2019,
2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv,
abs/1607.06450, 2016.

Collin F. Baker. FrameNet, present and future. In The First International Conference
on Global Interoperability for Language Resources, Hong Kong, 2008.

Collin F. Baker and Hiroaki Sato. The FrameNet data and software. In Yuji Mat-
sumoto, editor, The Companion Volume to the Proceedings of 41st Annual Meet-
ing of the Association for Computational Linguistics, page 161–164, 2003. URL
http://www.aclweb.org/anthology/P03-2030.pdf.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet
project. In COLING-ACL ’98: Proceedings of the Conference, pages 86–90, Mon-
treal, Canada, 1998.

123

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
http://www.aclweb.org/anthology/P03-2030.pdf

124 Bibliography

Collin F. Baker, Michael Ellsworth, and Katrin Erk. SemEval-2007 Task 19: Frame
semantic structure extraction. In Proceedings of the Fourth International Workshop
on Semantic Evaluations (SemEval-2007), pages 99–104, 2007.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Her-
mjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Ab-
stract meaning representation for sembanking. In Proceedings of the 7th linguistic
annotation workshop and interoperability with discourse, pages 178–186, 2013.

Valerio Basile, Johan Bos, Kilian Evang, and Noortje Venhuizen. Developing a large
semantically annotated corpus. In Eighth International Conference on Language Re-
sources and Evaluation, pages 3196–3200. European Language Resources Association
(ELRA), 2012.

Chris Biemann. Chinese whispers - an efficient graph clustering algorithm and its
application to natural language processing problems. In Proceedings of TextGraphs:
the First Workshop on Graph Based Methods for Natural Language Processing, pages
73–80, New York City, June 2006. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/W06-3812.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python.
O’Reilly Media, 2009.

Peter Bloem. Transformers from scratch. http://peterbloem.nl/blog/
transformers, 2019. Accessed: 2020-10-20.

Paula Branco, Luis Torgo, and Rita Ribeiro. A survey of predictive modelling under
imbalanced distributions. arXiv preprint arXiv:1505.01658, 2015.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith.
The TIGER treebank. In Proceedings of the workshop on treebanks and linguistic
theories, volume 168, 2002.

Harry Bunt. Guidelines for using ISO standard 24617-2. [s.n.], January 2019. TiCC
TR 2019–1.

Aljoscha Burchardt, Anette Frank, and Manfred Pinkal. Building text meaning repre-
sentations from contextually related frames - a case study. Proceedings of IWCS-6,
page 188, 2005.

Aljoscha Burchardt, Katrin Erk, Anette Frank, Andrea Kowalski, Sebastian Padó, and
Manfred Pinkal. The SALSA corpus: a German corpus resource for lexical semantics.
In LREC, pages 969–974, 2006.

Miriam Butt, Helge Dyvik, Tracy King, Hiroshi Masuichi, and Christian Rohrer. The
parallel grammar project. 2004. doi: 10.3115/1118783.1118786.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
SMOTE: Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1):
321–357, June 2002. ISSN 1076-9757.

https://www.aclweb.org/anthology/W06-3812
http://peterbloem.nl/blog/transformers
http://peterbloem.nl/blog/transformers

125

Dawei Chen and Jieyue He. CBOS-clustering base on the score for motif discovery
in biological network. In 2014 Fourth International Conference on Instrumentation
and Measurement, Computer, Communication and Control, pages 845–850, 2014.
doi: 10.1109/IMCCC.2014.178.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What
does BERT look at? An analysis of BERT’s attention, 2019.

Ann Copestake. Invited talk: Slacker semantics: Why superficiality, dependency and
avoidance of commitment can be the right way to go. In Proceedings of the 12th
Conference of the European Chapter of the ACL (EACL 2009), pages 1–9, 2009.

Bonaventura Coppola, Alessandro Moschitti, Sara Tonelli, and Giuseppe Riccardi. Au-
tomatic Framenet-based annotation of conversational speech. In 2008 IEEE Spoken
Language Technology Workshop, pages 73–76, 2008.

Dipanjan Das, Nathan Schneider, Desai Chen, and Noah A. Smith. Probabilistic frame-
semantic parsing. In Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pages 948–956, Los Angeles, California, June 2010. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/N10-1138.

Tom De Smedt and Walter Daelemans. Pattern for Python. The Journal of Machine
Learning Research, 13(1):2063–2067, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/N19-1423.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of artificial intelligence research, 2:263–286,
1994.

Disaster Robotics Research Project. Long-term human-robot teaming for robot-assisted
disaster response (TRADR). http://www.tradr-project.eu/, 2020. Accessed:
2020-04-30.

Vitor Miguel Saraiva Esteves. Techniques to deal with imbalanced data in multi-class
problems: A review of existing methods, 2020.

Charles J. Fillmore. The case for case. The Ohio State University, 1967.

Charles J. Fillmore. Frame semantics and the nature of language. Annals
of the New York Academy of Sciences, 280(1):20–32, 1976. doi: 10.1111/
j.1749-6632.1976.tb25467.x. URL https://nyaspubs.onlinelibrary.wiley.com/
doi/abs/10.1111/j.1749-6632.1976.tb25467.x.

https://www.aclweb.org/anthology/N10-1138
https://www.aclweb.org/anthology/N19-1423
http://www.tradr-project.eu/
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1976.tb25467.x
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1976.tb25467.x

126 Bibliography

Charles J. Fillmore. Frame semantics, pages 111–137. Hanshin Publishing Co., Seoul,
South Korea, 1982.

Charles J. Fillmore and Collin F. Baker. Frame semantics for text understanding. In
Proceedings of WordNet and Other Lexical Resources Workshop, NAACL, volume 6,
2001.

FrameNet. The official website for the FrameNet project. https://
framenet.icsi.berkeley.edu/fndrupal/, 2020. Accessed: 2020-04-30.

Vicente García, Ramón Alberto Mollineda, and José Salvador Sánchez. Index of bal-
anced accuracy: A performance measure for skewed class distributions. In Iberian
conference on pattern recognition and image analysis, pages 441–448. Springer, 2009.

Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic roles. Computa-
tional linguistics, 28(3):245–288, 2002.

Alex Harlan. You might be leaking data even if you cross validate.
https://alexforrest.github.io/you-might-be-leaking-data-even-if-you-
cross-validate.html, 2020. Accessed: 2021-01-20.

Silvana Hartmann, Ilia Kuznetsov, Teresa Martin, and Iryna Gurevych. Out-of-domain
FrameNet semantic role labeling. In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics: Volume 1, Long
Papers, pages 471–482, Valencia, Spain, April 2017. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/E17-1045.

Karl Moritz Hermann, Dipanjan Das, Jason Weston, and Kuzman Ganchev. Seman-
tic frame identification with distributed word representations. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1448–1458, Baltimore, Maryland, June 2014. Asso-
ciation for Computational Linguistics. doi: 10.3115/v1/P14-1136. URL https:
//www.aclweb.org/anthology/P14-1136.

Julia Hockenmaier and Mark Steedman. CCGbank: a corpus of CCG derivations and
dependency structures extracted from the Penn Treebank. Computational Linguis-
tics, 33(3):355–396, 2007.

Matthew Honnibal and Ines Montani. SpaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing. To ap-
pear, 2017.

Phu Mon Htut, Jason Phang, Shikha Bordia, and Samuel R. Bowman. Do attention
heads in BERT track syntactic dependencies?, 2019.

Nancy Ide. The American National Corpus: Then, now, and tomorrow. In Selected
Proceedings of the 2008 HCSNet Workshop on Designing the Australian National
Corpus: Mustering Languages, Summerville, MA. Cascadilla Proceedings Project,
2008.

https://framenet.icsi.berkeley.edu/fndrupal/
https://framenet.icsi.berkeley.edu/fndrupal/
https://alexforrest.github.io/you-might-be-leaking-data-even-if-you-cross-validate.html
https://alexforrest.github.io/you-might-be-leaking-data-even-if-you-cross-validate.html
https://www.aclweb.org/anthology/E17-1045
https://www.aclweb.org/anthology/P14-1136
https://www.aclweb.org/anthology/P14-1136

127

Nancy Ide. Case study: The Manually Annotated Sub-Corpus. In Handbook of Lin-
guistic Annotation, pages 497–519. Springer, 2017.

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic
study. Intelligent data analysis, 6(5):429–449, 2002.

Richard Johansson and Pierre Nugues. LTH: Semantic structure extraction us-
ing nonprojective dependency trees. In Proceedings of the Fourth International
Workshop on Semantic Evaluations (SemEval-2007), pages 227–230, Prague, Czech
Republic, June 2007. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/S07-1048.

Alexandre Kabbach and Corentin Ribeyre. Valencer: an API to query valence patterns
in FrameNet. In Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: System Demonstrations, pages 156–160, 2016.

Aditya Kalyanpur, Or Biran, Tom Breloff, Jennifer Chu-Carroll, Ariel Diertani, Owen
Rambow, and Mark Sammons. Open-domain frame semantic parsing using trans-
formers, 2020.

Aishwarya Kamath and Rajarshi Das. A survey on semantic parsing. arXiv preprint
arXiv:1812.00978, 2018.

Hans Kamp, Josef Van Genabith, and Uwe Reyle. Discourse representation theory. In
Handbook of philosophical logic, pages 125–394. Springer, 2011.

Rohit J. Kate and Yuk Wah Wong. Semantic parsing. The task, the state of the art
and the future. In Tutorial abstracts of the 20th Meeting of the Association for
Computational Linguistics, page 6, 2010.

Alexander Koller, Stephan Oepen, and Weiwei Sun. Graph-based meaning represen-
tations: Design and processing. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: Tutorial Abstracts, pages 6–11, 2019.

Michał Koziarski. Radial-based undersampling for imbalanced data classification. Pat-
tern Recognition, 102:107262, 2020. ISSN 0031-3203. doi: https://doi.org/10.1016/
j.patcog.2020.107262. URL http://www.sciencedirect.com/science/article/
pii/S0031320320300674.

Ivana Kruijff-Korbayová, Francis Colas, Mario Gianni, Fiora Pirri, Joachim de Greeff,
Koen Hindriks, Mark Neerincx, Petter Ögren, Tomáš Svoboda, and Rainer Worst.
TRADR project: Long-term human-robot teaming for robot assisted disaster re-
sponse. KI - Künstliche Intelligenz, 29(2):193–201, Jun 2015. ISSN 1610-1987. doi:
10.1007/s13218-015-0352-5. URL https://doi.org/10.1007/s13218-015-0352-5.

Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training sets:
one-sided selection. In Icml, volume 97, pages 179–186. Citeseer, 1997.

https://www.aclweb.org/anthology/S07-1048
https://www.aclweb.org/anthology/S07-1048
http://www.sciencedirect.com/science/article/pii/S0031320320300674
http://www.sciencedirect.com/science/article/pii/S0031320320300674
https://doi.org/10.1007/s13218-015-0352-5

128 Bibliography

Keita Kurita. An overview of normalization methods in deep learning.
https://mlexplained.com/2018/11/30/an-overview-of-normalization-
methods-in-deep-learning/, 2018a. Accessed: 2020-10-24.

Keita Kurita. Weight normalization and layer normalization explained (Normaliza-
tion in deep learning Part 2). https://mlexplained.com/2018/01/13/weight-
normalization-and-layer-normalization-explained-normalization-in-
deep-learning-part-2/, 2018b. Accessed: 2020-10-24.

Carole Lailler, Anaïs Landeau, Frédéric Béchet, Yannick Estève, and Paul Deléglise.
Enhancing the RATP-DECODA corpus with linguistic annotations for perform-
ing a large range of NLP tasks. In Proceedings of the Tenth International Con-
ference on Language Resources and Evaluation (LREC’16), pages 1047–1050, Por-
torož, Slovenia, May 2016. European Language Resources Association (ELRA). URL
https://www.aclweb.org/anthology/L16-1166.

Egoitz Laparra and German Rigau. Exploiting explicit annotations and semantic types
for implicit argument resolution. In 2012 IEEE Sixth International Conference on
Semantic Computing, pages 75–78. IEEE, 2012.

Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn:
A Python toolbox to tackle the curse of imbalanced datasets in machine learning.
Journal of Machine Learning Research, 18(17):1–5, 2017. URL http://jmlr.org/
papers/v18/16-365.

Chahira Lhioui, Anis Zouaghi, and Mounir Zrigui. A rule-based semantic frame anno-
tation of Arabic speech turns for automatic dialogue analysis. Procedia Computer
Science, 117:46–54, 2017.

Christine A. Lindberg and Angus Stevenson. New Oxford American Dictionary. Oxford
University Press, 1999.

Ana Carolina Lorena, André C.P.L.F. De Carvalho, and João M.P. Gama. A review
on the combination of binary classifiers in multiclass problems. Artificial Intelligence
Review, 30(1-4):19, 2008.

Machine Learning Mastery. One-vs-rest and one-vs-one for multi-class classifi-
cation. https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-
for-multi-class-classification/, 2020. Accessed: 2020-09-23.

Aouatef Mahani and Ahmed Riad Baba Ali. Classification problem in imbalanced
datasets. In Recent Trends in Computational Intelligence. IntechOpen, 2019.

Wing W.Y. Ng, Junjie Hu, Daniel S. Yeung, Shaohua Yin, and Fabio Roli. Diver-
sified sensitivity-based undersampling for imbalance classification problems. IEEE
transactions on cybernetics, 45(11):2402–2412, 2014.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Hershcovich, Marco Kuhlmann, Tim
O’Gorman, Nianwen Xue, Jayeol Chun, Milan Straka, and Zdenka Uresova. MRP

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
https://mlexplained.com/2018/01/13/weight-normalization-and-layer-normalization-explained-normalization-in-deep-learning-part-2/
https://mlexplained.com/2018/01/13/weight-normalization-and-layer-normalization-explained-normalization-in-deep-learning-part-2/
https://mlexplained.com/2018/01/13/weight-normalization-and-layer-normalization-explained-normalization-in-deep-learning-part-2/
https://www.aclweb.org/anthology/L16-1166
http://jmlr.org/papers/v18/16-365
http://jmlr.org/papers/v18/16-365
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/

129

2019: Cross-framework meaning representation parsing. In CoNLL Shared Task,
pages 1–27, 2019.

Rebecca J. Passonneau, Collin Baker, Christiane Fellbaum, and Nancy Ide. The MASC
word sense sentence corpus. In Mehmet Ugur Dogan, Joseph Mariani, Asuncion
Moreno, Sara Goggi, Khalid Choukri, Nicoletta Calzolari, Jan Odijk, Thierry De-
clerck, Bente Maegaard, Stelios Piperidis, Helene Mazo, and Olivier Hamon, editors,
Proceedings of the 8th International Conference on Language Resources and Eval-
uation, LREC 2012, Proceedings of the 8th International Conference on Language
Resources and Evaluation, LREC 2012, pages 3025–3030. European Language Re-
sources Association (ELRA), jan 2012. 8th International Conference on Language
Resources and Evaluation, LREC 2012 ; Conference date: 21-05-2012 Through 27-
05-2012.

Douglas B. Paul and Janet Baker. The design for the Wall Street Journal-based CSR
corpus. In Speech and Natural Language: Proceedings of a Workshop Held at Harri-
man, New York, February 23-26, 1992, 1992.

Miriam R.L. Petruck. Frame Semantics. John Benjamins, 1996.

Ronaldo C. Prati, Gustavo E.A.P.A. Batista, and Maria Carolina Monard. Class im-
balances versus class overlapping: An analysis of a learning system behavior. In
Mexican international conference on artificial intelligence, pages 312–321. Springer,
2004.

Patti Price. Evaluation of spoken language systems: The ATIS domain. In Speech and
Natural Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylvania,
June 24-27, 1990, 1990.

SALSA Project. Software. http://www.coli.uni-saarland.de/projects/salsa/
page.php?id=software, 2020. Accessed: 2020-12-16.

Kamthorn Puntumapon, Thanawin Rakthamamon, and Kitsana Waiyamai. Cluster-
based minority over-sampling for imbalanced datasets. IEICE TRANSACTIONS on
Information and Systems, 99(12):3101–3109, 2016.

Christian Raymond, Kepa Joseba Rodriguez, and Giuseppe Riccardi. Active Annota-
tion in the LUNA Italian Corpus of Spontaneous Dialogues. In LREC, 2008.

Eugénio Ribeiro, Andreia Sofia Teixeira, Ricardo Ribeiro, and David Martins de Matos.
Semantic frame induction as a community detection problem. pages 274–285, 2020.

Michael Roth and Anette Frank. Inducing implicit arguments from comparable texts:
A framework and its applications. Computational Linguistics, 41(4):625–664, 2015.

Josef Ruppenhofer, Michael Ellsworth, Miriam R.L. Petruck, Christopher R. Johnson,
and Jan Scheffczyk. FrameNet II: Extended Theory and Practice. International Com-
puter Science Institute, Berkeley, California, 2006. Distributed with the FrameNet
data.

http://www.coli.uni-saarland.de/projects/salsa/page.php?id=software
http://www.coli.uni-saarland.de/projects/salsa/page.php?id=software

130 Bibliography

Josef Ruppenhofer, Caroline Sporleder, Roser Morante, Collin F. Baker, and Martha
Palmer. SemEval-2010 task 10: Linking events and their participants in discourse.
2010.

Alexander Rush, Vincent Nguyen, and Guillaume Klein. The Annotated Trans-
former. http://nlp.seas.harvard.edu/2018/04/03/attention.html, 2018. Ac-
cessed: 2020-10-17.

Sabyasachi Sahoo. Residual blocks - building blocks of ResNet. https:
//towardsdatascience.com/residual-blocks-building-blocks-of-resnet-
fd90ca15d6ec, 2018. Accessed: 2020-10-26.

Nathan Schneider and Chuck Wooters. The NLTK FrameNet API: Designing for dis-
coverability with a rich linguistic resource. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages
1–6, 2017.

Leonid A. Sevastianov and Eugene Yu Shchetininb. On methods for improving the
accuracy of multi-class classification on imbalanced data. marketing, 2:3, 2020.

Jennifer Sikos and Sebastian Padó. Frame identification as categorization: Exemplars
vs prototypes in Embeddingland. In Proceedings of the 13th International Conference
on Computational Semantics - Long Papers, pages 295–306, Gothenburg, Sweden,
May 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-0425.
URL https://www.aclweb.org/anthology/W19-0425.

Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures
for classification tasks. Information processing & management, 45(4):427–437, 2009.

Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond accuracy, F-
score and ROC: A family of discriminant measures for performance evaluation. In
Australasian joint conference on artificial intelligence, pages 1015–1021. Springer,
2006.

Yanmin Sun, Andrew K.C. Wong, and Mohamed S. Kamel. Classification of imbalanced
data: A review. International journal of pattern recognition and artificial intelligence,
23(04):687–719, 2009.

Dhanasekar Sundararaman, Vivek Subramanian, Guoyin Wang, Shijing Si, Dinghan
Shen, Dong Wang, and Lawrence Carin. Syntax-infused transformer and BERT
models for machine translation and natural language understanding, 2019.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and Noah A. Smith. Frame-semantic
parsing with softmax-margin segmental RNNs and a syntactic scaffold. ArXiv,
abs/1706.09528, 2017.

Sang-Sang Tan and Jin-Cheon Na. Positional attention-based frame identification with
BERT: A deep learning approach to target disambiguation and semantic frame se-
lection, 2019.

http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec
https://www.aclweb.org/anthology/W19-0425

131

Alaa Tharwat. Classification assessment methods. Applied Computing and Informatics,
2020.

Sara Tonelli and Rodolfo Delmonte. VENSES++: Adapting a deep semantic pro-
cessing system to the identification of null instantiations. In Proceedings of the 5th
international workshop on semantic evaluation, pages 296–299, 2010.

Jeremy Trione, Frederic Bechet, Benoit Favre, and Alexis Nasr. Rapid FrameNet
annotation of spoken conversation transcripts. In Proceedings of the 11th Joint ACL-
ISO Workshop on Interoperable Semantic Annotation (ISA-11), London, UK, April
2015. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/W15-0212.

Vincent Van Asch. Macro-and micro-averaged evaluation measures (basic draft). Bel-
gium: CLiPS, 49, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Jesse Vig. Deconstructing BERT, Part 2: Visualizing the inner workings
of attention. https://towardsdatascience.com/deconstructing-bert-part-
2-visualizing-the-inner-workings-of-attention-60a16d86b5c1, 2019. Ac-
cessed: 2020-10-20.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. GLUE: A multi-task benchmark and analysis platform for natural language
understanding, 2019.

Wikipedia. American National Corpus. https://en.wikipedia.org/wiki/
American_National_Corpus, 2020a. Accessed: 2020-08-27.

Wikipedia. British National Corpus. https://en.wikipedia.org/wiki/
British_National_Corpus, 2020b. Accessed: 2020-08-27.

Wikipedia. Geometric mean. https://en.wikipedia.org/wiki/Geometric_mean,
2020c. Accessed: 2020-10-01.

Wikipedia. Multiclass classification. https://en.wikipedia.org/wiki/
Multiclass_classification, 2020d. Accessed: 2020-09-23.

Wikipedia. Nuclear Threat Initiative. https://en.wikipedia.org/wiki/
Nuclear_Threat_Initiative, 2020e. Accessed: 2020-08-27.

Wikipedia. One-hot. https://en.wikipedia.org/wiki/One-hot, 2020f. Accessed:
2020-09-14.

Christian Willms, Constantin Houy, Jana-Rebecca Rehse, Peter Fettke, and Ivana
Kruijff-Korbayová. Team communication processing and process analytics for sup-
porting robot-assisted emergency response. In 2019 IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR), pages 216–221. IEEE, 2019.

https://www.aclweb.org/anthology/W15-0212
https://www.aclweb.org/anthology/W15-0212
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://en.wikipedia.org/wiki/American_National_Corpus
https://en.wikipedia.org/wiki/American_National_Corpus
https://en.wikipedia.org/wiki/British_National_Corpus
https://en.wikipedia.org/wiki/British_National_Corpus
https://en.wikipedia.org/wiki/Geometric_mean
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Nuclear_Threat_Initiative
https://en.wikipedia.org/wiki/Nuclear_Threat_Initiative
https://en.wikipedia.org/wiki/One-hot

132 Bibliography

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davi-
son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. HuggingFace’s Transformers: State-of-the-art natural language
processing, 2020.

William Woods. The lunar sciences natural language information system, 1972.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s
neural machine translation system: Bridging the gap between human and machine
translation, 2016.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Under-
standing and improving layer normalization, 2019.

Bishan Yang and Tom Mitchell. A joint sequential and relational model for frame-
semantic parsing. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 1247–1256, 2017.

Hongyan Zhao, Ru Li, Fei Duan, Zepeng Wu, and Shaoru Guo. TSABCNN: Two-stage
attention-based convolutional neural network for frame identification. In Maosong
Sun, Ting Liu, Xiaojie Wang, Zhiyuan Liu, and Yang Liu, editors, Chinese Compu-
tational Linguistics and Natural Language Processing Based on Naturally Annotated
Big Data, pages 289–301, Cham, 2018. Springer International Publishing. ISBN
978-3-030-01716-3.

Qile Zhu, Xiyao Ma, and Xiaolin Li. Statistical learning for semantic parsing: A survey.
Big Data Mining and Analytics, 2(4):217–239, 2019.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books. In Proceedings of the IEEE
international conference on computer vision, pages 19–27, 2015.

	Abstract
	Contents
	Introduction
	Background and Related Work
	Data
	Experiments and Discussion
	Conclusion and Future Work
	Annotation Guidelines
	New Frames
	Multiclass classification methods
	Bibliography

