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ABSTRACT
Artificial mediators are promising to support human group con-
versations but at present their abilities are limited by insufficient
progress in group behaviour analysis. TheMultiMediate challenge
addresses, for the first time, two fundamental group behaviour
analysis tasks in well-defined conditions: eye contact detection and
next speaker prediction. For training and evaluation, MultiMedi-
atemakes use of the MPIIGroupInteraction dataset consisting of
22 three- to four-person discussions as well as of an unpublished
test set of six additional discussions. This paper describes the Mul-
tiMediate challenge and presents the challenge dataset including
novel fine-grained speaking annotations that were collected for
the purpose of MultiMediate . Furthermore, we present baseline
approaches and ablation studies for both challenge tasks.
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1 INTRODUCTION
Conversations play a central role in our lives – be it during busi-
ness meetings, family gatherings, or in study groups. How people
interact in conversations has a significant impact on interaction
outcomes. For example, if a shy person does not speak up during
a brainstorming session, valuable ideas might be overlooked, or if
discussions escalate and become personal, the group may not be
able to solve its tasks efficiently.

As a result, a number of artificial systems have been proposed to
support human conversations and improve interaction outcomes [2,
31, 34]. One of the most ambitious ways to support humans in con-
versations is via artificial mediators [31] which have the advantage
to resemble human interactions. Among others, artificial media-
tors have been studied in the context of mental health [6], educa-
tion [13, 23], and collaborative teamwork [7, 36]. However, current
artificial mediators still typically rely on Wizard-of-Oz paradigms
to circumvent challenging sensing tasks required to adequately
react to group behaviour [6, 13, 23, 35]. To realise the vision of an
autonomous artificial mediator supporting group conversations,
significant improvements on several fundamental group behaviour
sensing and understanding tasks are required.

We introduce theMultiMediate challenge to help realise this vi-
sion by facilitating measurable progress on central group behaviour
sensing and analysis tasks over several years. This year, MultiMe-
diate focuses on eye contact detection and next speaker prediction.
Both are fundamental tasks to be solved to interpret human group
behaviour as well as to seamlessly interact with the group. Eye
contact is linked to many important aspects of group interactions,
including leadership [8, 26], interpretation of emotional facial ex-
pressions [15, p. 147] turn-taking [20, 22], and liking [22]. Similarly,
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predicting who will speak next is a key human ability, enabling
us to plan and start responses already before the interlocutor has
finished speaking [4, 38, 39]. Apart from enabling mediators to
seamlessly insert utterances, it may also allow them to proactively
guide the conversation to balance participants’ contributions.

In this paper, we present the first challenge for eye contact detec-
tion and next speaker prediction in group interactions that evaluates
participants’ approaches on an unpublished test set. We further
propose baseline approaches for each challenge task and perform
comprehensive evaluations. Finally, we present novel fine-grained
speaking status annotations for MPIIGroupInteraction [28] that are
made publicly available for future use.

2 PREVIOUS WORK
We review previous work on eye contact detection in group inter-
actions, as well as next speaker prediction.

2.1 Eye Contact Detection
In contrast to the continuous gaze estimation task [43], eye contact
detection methods use a discrete output space [27, 42]. In this way,
the problem is not only simplified, but it also directly enables the
computation of relevant group interaction features like the amount
of gaze a speaker is receiving from interactants. Due to the dif-
ficulties of extracting meaningful information from eye regions
covering only a few pixels in ambient camera recordings, past work
on eye contact detection in group interactions often used head
pose as a proxy to gaze direction [5, 14] or treated gaze as a latent
variable [1, 30]. Recent advances in gaze estimation from standard
RGB cameras [3, 43] have enabled eye contact detection in group
interactions to more heavily rely on evidence extracted from the
eye regions. For example, [29] presented an approach to eye con-
tact detection using convolutional neural networks trained on head
pose, utterances and horizontal eye direction. Subsequently, [41]
proposed an approach based on eye gaze and head pose estimates
extracted from OpenFace [3] fed into a mulitlayer perceptron. To
overcome the need for annotations specific to participants’ seating
positions, [27] exploited the correlation between gaze and speaking
behaviour in an unsupervised eye contact detection approach.

Despite these advances, eye contact detection in group interac-
tions from RGB cameras is still far from being solved. E.g. the recent
approach of [41] reaches an accuracy of 64.5% on the AMI corpus [9]
and the approach of [27] reaches 63% accuracy on the MPIIGroupIn-
teraction corpus [28].With theMultiMediate challenge, we intend
to boost research on eye contact detection by increasing attention
for this challenging task and providing a fair evaluation of methods
on yet unpublished data.

2.2 Next Speaker Prediction
Humans use a multitude of cues to not only plan their speaking
turn and predict others’ [10, 17, 20], but also to signal to others their
intention of taking a turn [32]. Researchers have long attempted to
understand this human skill [22] and to apply machine learning to
predict turn ending and turn taking, using a wide variety of features
such as mouth opening [17], head movement [16], respiration [17],
blinking [11], gestures [25], word content [12] and gaze [19–21].
Most studies on conversation turn analysis focus on turn changing,

Figure 1: Illustration of the recording setup for the MPI-
IGroupInteraction dataset. Cameras are indicated with
green, microphones with blue. Figure printed with permis-
sion from the authors of [28].

ending, yielding or taking, collectively called end-of-turn estimation
or turn management [17, 24], while fewer address the challenging
issue of identifying who will speak next.

Furthermore, the majority of recent research on multi-party con-
versations is done on private datasets [18, 21], of which many are in
Japanese [18, 21, 24]. Since turn-taking timings have been shown to
vary by language [39], it is unclear how those findings transfer to
other languages. The AMI corpus [9] is the only non-Japanese multi-
party corpus used in a handful of next speaker prediction tasks, only
one of which uses machine learning [24, 32], and mostly contains
non-native speakers, which has been shown to affect conversational
flow [40]. In multi-party discussions, successful uni-modal (non-
verbal) models, with better than chance accuracy, predict the next
speaker using head movements [16], eye-gaze [17, 18] or mouth
opening [17], while the most successful recent models are multi-
modal, using for example eye gaze and mouth opening [17] or eye
gaze and dialogue features [24]. Similar multi-modal approaches
have also been shown to be most successful in humans taking
turns in human conversation, presumably because they remove
ambiguities as to the intent of the next speaker [32].

While existing literature mostly used inter-pausal units [38] or
dialog acts [24] as anchor points for speaker prediction, we pro-
pose to use a fixed observation time-window, as well as a fixed
time point for prediction. Thereby, we remove the dependence on
pause durations or turn annotations. Similar continuous models
[33, 37] have so far been limited to dyads. To the best of our knowl-
edge, MultiMediate for the first time approaches next speaker
prediction in this way, on a multi-modal, multi-party dataset.

3 CHALLENGE DESCRIPTION
MultiMediatemakes use of the MPIIGroupInteraction dataset [27,
28]. For next speaker prediction, we extend MPIIGroupInteraction
with new fine-grained annotations of speaking status. This dataset
has the distinct advantage of the availability of unpublished record-
ings that can be used for evaluation (see Section 3.1). We first de-
scribe MPIIGroupInteraction and subsequently discuss annotation
procedures and task definitions for both challenge tasks.



Figure 2: Distribution of the speaking time per sessions. The sessions are grouped by the number of participants. Each group is
sorted in ascending order with respect to the participant that has the highest percentage of participation. Red circles indicate
sessions from the test set.

3.1 Dataset
Training data. Weuse the already published part ofMPIIGroupIn-

teraction [28] as training data. This dataset consists of 22 conver-
sations between three to four people, lasting 20 minutes each. For
each group, the study manager chose a discussion topic that was
maximally controversial among the participants. Interactants dis-
cussed this topic and were recorded by eight frame-synchronised
video cameras and four microphones (see Figure 1).

Evaluation data. To test the competitors’ algorithms we make
use of six recordings (five four-person conversations, one three-
person conversation) that were made during the creation of the
MPIIGroupInteraction corpus [28] but have not yet been shared
with other researchers. These recordings follow the exact same pro-
cedure as the recordings included in MPIIGroupInteraction with the
minor exception that the discussion topic was not picked to be maxi-
mally controversial among the group members. Instead a discussion
topic was randomly assigned to the group and group members were
instructed to choose opposing opinions for themselves. This detail
was changed for the final recordings of MPIIGroupInteraction in
order to create more friction. However, this change does not affect
the utility of these recordings for evaluating the challenge tasks.

3.2 Eye Contact Detection Task
Eye Contact Annotations. In a later study, additional eye con-

tact annotations were collected for a total of 6,254 frames of the
recordings [27]. These annotations indicate whether a participant
is looking at another participant’s face at a given moment in time,
and if yes, who this other participant is.

Task Definition. In line with previous work [27], we define eye
contact as a discrete indication of whether a participant is looking
at another participants’ face, and if so, who this other participant is.
Video and audio recordings over a 10 second observation window
are provided as temporal context for the classification decision. Eye
contact has to be detected for the last frame of this window, making
the task formulation also applicable to an online prediction scenario
as encountered by artificial mediators. The task is modelled using
five classes - one for each participants’ position and an additional
class for no eye contact. We use accuracy as performance metric.

3.3 Next Speaker Prediction Task
Speaking Status Annotations. We annotated all recordings with

respect to the current speaker according to a strict annotation

protocol. Besides speech during longer utterances, the annotators
where instructed to label back-channels (e.g. "mhm" or "right") and
short affirmative or dissenting statement (e.g "yes", "no") as speaking.
Nonverbal sounds like coughing or laughing were explicitly labelled
as not speaking, as were longer pauses during an utterance that
noticeably impact the flow of speech (e.g. thinking pauses). In cases
where it was still difficult to assess if a person is speaking, for
example if the voice of the speaker is very quiet or sounds similar
to that of another speaker, annotators were encouraged to take
body language and lip movements into account. Figure 2 shows the
distribution of the speaking time per session. Most sessions have
one or two dominant speakers, while other participants have little
speaking time. This is an ideal scenario where a virtual mediator
could smoothly intervene to help balance speaking times.

Task definition. Given an observation window of 10 seconds
starting at time 𝑡 , participants have to predict who is speaking
at time 𝑡 + 11𝑠 , i.e. one second after the end of the observation
window. We define the next speaker prediction task as a multi-
label classification problem where a model should predict a binary
value (speaking, not-speaking) for each participant. We evaluate
performance with the unweighted average recall over all samples.

3.4 Evaluation approach
Participants are required to submit a docker image with their code
to eval.ai1 where it will be evaluated on the unpublished test set.
While for each task an evaluation sample consists of a 10 second
observation window of audio and video data, the sampling methods
differ between tasks. For eye contact detection the available annota-
tions consist of single frames in regular intervals [27]. We use these
annotated frames as anchor points for the observation windows
such that the annotated frame is the last frame of the window. For
next speaker prediction we use the frames before a speaker change
occurs as anchor points and subtract a random offset in the range
of [0, 1000] milliseconds to determine the last frame of the obser-
vation window. In this way we ensure that the next speaker will
not always start to speak exactly one second after the end of the
input window, which is in line with our online prediction scenario.
To balance the data set, we generated an equal number of samples
with random anchor points where no speaker change occurs.

1https://eval.ai

https://eval.ai


Model Featureset Val ACC Test ACC

Head Pose 0.51 -
Individual Gaze 0.48 -

Gaze + Head Pose 0.54 0.52

Head Pose 0.50 -
Joint Gaze 0.43 -

Gaze + Head Pose 0.53 -

Most likely class 0.33 0.26

Table 1: Accuracies for eye contact detection obtained by
models trained specifically for each seating position (“Indi-
vidual”), or jointly across seating positions (“Joint”).

4 EXPERIMENTS AND RESULTS
4.1 Eye Contact Detection
4.1.1 Method. Our baseline method makes use of features ex-
tracted via OpenFace 2.0 [3]. For a given sample, we run OpenFace
on the last video frame of the input, as this is the frame for which
an eye contact prediction needs to be made. We use head pose 3D
(translation and rotation) as well as the 3D eye gaze direction vec-
tors for both eyes. With these 12-dimensional feature vectors, we
train separate RBF-SVMs for each seating position, resulting in four
eye contact detection models. We choose 𝛾 and𝐶 parameters of the
SVM by 10-fold cross-validation on the training set. For evaluation
on the test set, we use both training and validation sets for training,
to evaluate on the validation set we only train on the training set.

4.1.2 Results. Our baseline method achieved 0.52 accuracy on the
test set. To determine the influence of features and training proce-
dure on performance, we evaluated ablated versions of our method
on the validation set (Table 1). The best result on the validation set
(0.54 Accuracy) was achieved by our full baseline method. Using
either only head pose or gaze features reduced accuracy to 0.51 and
0.48, respectively. We also trained a joint model across all seating
positions by generating an encoding of the eye contact labels that
is relative to the participant for whom we estimate the eye contact.
This joint model yielded worse results for all feature sets, indicating
that seating positions on the dataset are not interchangeable. All
model performances are clearly above the naive baseline of always
predicting the most frequent class (no eye contact) at 0.33 accuracy.
At the same time, the best performance achieved in our experiments
(0.54 accuracy) still leaves significant room for improvement. In
comparison to previous work [27], the benefit of using gaze infor-
mation is small (0.54 versus 0.51). This indicates that improvements
to gaze estimation methods or the integration of gaze estimates
could directly translate to improved eye contact detection.

4.2 Next Speaker Prediction
4.2.1 Method. Our method for next speaker prediction makes use
of features extracted via OpenFace 2.0 [3] over the complete input
video (frame by frame). We use static as well as dynamic features.
Static features are head pose 3D (rotation), 3D eye gaze direction
vectors for both eyes and facial action units 25 (lips part) and 26
(jaw drop) extracted from the last frame of the observation window.
Dynamic features are the mean values of differences of 3D head

Group Features Featureset Val UAR Test UAR

Static 0.54 -
No Dynamic 0.53 -

Static + Dynamic 0.55 -

Static 0.60 -
Yes Dynamic 0.53 -

Static + Dynamic 0.60 0.51

Most likely class 0.50 0.50

Table 2: Unweighted Average Recall (UAR) for next speaker
prediction with different featurests.

pose (translation), AU25 and AU26 between frames, calculated over
the last 4 seconds of the observation window. We train separate
RBF-SVMs for each seating position to predict if the participant
is the next speaker. We choose 𝛾 and 𝐶 parameters of the SVM by
5-fold cross-validation on the training set. We only use the training
set for training and evaluate on the validation set.

4.2.2 Results. We performed ablation experiments on the valida-
tion set to determine the influence of features (Table 2). We inves-
tigated two dimensions in our experiments: first, static features,
dynamic features or their fusion; second, features from only one
subject or features from all three or four subjects in the same group
were used. The best result was achieved by our full baseline method
using all features from all group members at 0.60 recall. However,
using static features only, from all group members, also achieved a
recall of 0.60. Using dynamic features only results in worse results
compared to static or all features. On the testing set, our approach
received a recall score of 0.51, which is lower than that on the val-
idation set. All results on the validation set are above the trivial
baseline of always predicting the most frequent class (no speaker)
at 0.50 recall, but the low recall, especially on the testing set, shows
that next speaker prediction remains a challenging task. The per-
formance drop on the testing set may come from a difference in
feature or label distributions between the training+validation and
the testing sets. However, our results provide us with an interest-
ing insight into group turn-taking dynamics: since group features
outperform the individual ones, we can conclude that what is most
relevant for next speaker prediction is not how someone behaves,
but rather how they behave in comparison to the other participants.

5 CONCLUSION
We introduced MultiMediate , the first challenge addressing eye
contact detection and next speaker prediction in well-defined condi-
tions and evaluated baseline approaches for each task. In the future
iterations of MultiMediate , we plan to build upon this years’
achievements and add more high-level tasks that ultimately will
enable machines to effectively mediate natural human interactions.
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