
Contextual Classification Using Self-Supervised Auxiliary Models for Deep
Neural Networks

Sebastian Palacio Philipp Engler Jörn Hees Andreas Dengel
German Research Center for Artificial Intelligence (DFKI)

TU Kaiserslautern
first.last@dfki.de

Abstract

Classification problems solved with deep neural net-
works (DNNs) typically rely on a closed world paradigm,
and optimize over a single objective (e.g., minimization of
the cross-entropy loss). This setup dismisses all kinds of
supporting signals that can be used to reinforce the exis-
tence or absence of a particular pattern. The increasing
need for models that are interpretable by design makes the
inclusion of said contextual signals a crucial necessity. To
this end, we introduce the notion of Self-Supervised Auto-
genous Learning (SSAL) models. A SSAL objective is real-
ized through one or more additional targets that are derived
from the original supervised classification task, following
architectural principles found in multi-task learning. SSAL
branches impose low-level priors into the optimization pro-
cess (e.g., grouping). The ability of using SSAL branches
during inference, allow models to converge faster, focus-
ing on a richer set of class-relevant features. We show that
SSAL models consistently outperform the state-of-the-art
while also providing structured predictions that are more
interpretable.

1. Introduction

Machine learning models tackling classification prob-
lems are isolated in nature i.e., they are defined, and op-
erate under a closed world paradigm [2] where all possible
inputs belong to one out of multiple but finite pre-defined
classes. This simplification goes against emerging needs
for more interpretable models [6, 18] potentially harming
performance, as humans naturally rely on external, com-
plementary knowledge to find corroborating or conflicting
evidence for a particular decision. Our brains process infor-
mation in a non-linear fashion, aggregating heterogeneous
stimuli that converge to a unified interpretation or action.
Closed world models are thereby semantically disconnected
from the patterns we may deem reasonable, making the

Figure 1. Overview of a SSAL model. Starting from a common
feature representation h, a supervised goal f and an auxiliary
branch g are used for training and prediction. Training objective
for g is derived from the original labels used for f following a
mutually exclusive grouping.

quest for explanations an ill-posed endeavor. The field of
adversarial perturbations is a good example of this seman-
tic gap for explanability [24]. Despite having input sam-
ples that preserve all the perceptually relevant information,
adversarially perturbed samples can be misclassified with
high probability. The effectiveness of adversarial attacks
provides a strong body of evidence that patterns extracted
by neural networks are effective but fundamentally differ-
ent from the ones we are able to understand.

Is there a way to embed context signals into the training
process of a neural network without resorting to additional
ground-truth? Contextual information can be of course col-
lected alongside class labels, but what exactly should that
context be, is non-trivial and costly. In this work, we pro-
pose the use of auxiliary classifiers to solve a surrogate ob-
jective that is still closely related to the original task. In-
tuitively, we design the auxiliary task based on a simple
characteristic of independent classification problems: if a
model can classify a set of disjoint fine-grained classes,
it should also be able to classify an arbitrary grouping of

1

ar
X

iv
:2

10
1.

03
05

7v
1

 [
cs

.L
G

]
 7

 J
an

 2
02

1

those classes. The architecture of a traditional model can be
hence modified by adding a symbiotic auxiliary classifier
that shares a common feature representation, but optimizes
the grouping objective instead (Figure 1). For prediction, a
combination of both outputs is possible through an element-
wise (Hadamard) product or via a learned linear combina-
tion.

We describe the auxiliary task as “autogeonous” as it
is self-supervised i.e. it does not rely on additional anno-
tations, and it is derived from a source within the dataset,
namely the original labels. We refer to the use of aux-
iliary classifiers using such a surrogate objective as Self-
Supervised Autogenous Learning (SSAL). The close rela-
tionship between SSAL tasks and the main task allows the
main model to benefit from auxiliary classifiers both during
training and inference.

From the standpoint of set theory, it is easy to see how
the main and auxiliary objectives are aligned while express-
ing fundamentally different goals. Given a set of fixed class
labels Y = {y1, y2, . . . , yk}, a labeled sample (xi, yi), the
singleton {yi} ⊂ Y , and the classification result f(xi) = y,
the prediction of f is correct iff y ∈ {yi}. A corol-
lary of this classification setup is that the conditions for
correctness remain unaltered for f(xi) when a second set
YG = {yi}∪{yj} with yi 6= yj is considered. SSAL corre-
sponds to an auxiliary classifier g that explicitly focuses on
the relationship g(xi) = y is correct iff y ∈ YG.

The benefits of an SSAL paradigm is threefold: (1) it
acts as regularizer for the original architecture, (2) the con-
textual nature of the surrogate objective provides supporting
evidence that aligns with human expectations, therefore be-
ing interpretable by design. Finally, (3) we show through a
set of comprehensive experiments on CIFAR100 [12], Tiny-
Imagenet [16], and Imagenet [20], that the joint training
regime consistently yields superior accuracy even after con-
trolling for model size.

2. Related Work
Early Work: The notion of auxiliary classifiers for neu-

ral networks can be tracked down back to the early days of
machine learning. In 1990, Abu et al. [1] proposed the use
of “hints” i.e. additional knowledge about an objective for
neural networks. These hints were represented as an ad-
ditional gradient term for a Multi-Layer Perceptron trained
via back-propagation [19]. They concluded that the use of
hints could allow networks to converge faster as the set of
potential solutions was constrained further.

Multi-Task Learning: This idea was later expanded to
what is currently known as Multi-Task Learning (MTL) [3].
In this scenario, a network is trained jointly on multiple
tasks that are not necessarily aligned but still share some
commonalities, and therefore can benefit from a joint repre-
sentation. However, MTL falls short when defining metrics

quantifying the similarity between tasks. Furthermore, the
result of MTL is a model that can solve two problems but
the heterogeneity of the domains often precludes the pos-
sibility of a joint prediction. Although recent advances on
MTL have demonstrated that jointly learning disparate tasks
does not harm performance [11], measuring the net ben-
efit for all tasks still depends on a perceived ad-hoc sim-
ilarity between them. The symbiotic interaction between
the two objectives is thereby obscured, making it difficult
to establish if one or both tasks benefit from one another
(i.e. if the relation is mutualistic, commensalistic or para-
sitic). Some surprising and rather unexpected relationships
between tasks have been reported in the literature, show-
ing that the degree of relatedness between tasks is not triv-
ial to assess. For instance, Lee et al. [14] showed how a
video classifier trained on finding the right order of a clip
of shuffled frames was advantageous for fine-tuning on ac-
tion recognition, image classification and object detection
tasks. Similarly, Vondrick et al. [26] also found that an
effective object tracker can be obtained by training on a
frame-colorization task. In fact, a recent study of the rela-
tionships between a plethora of visual tasks explicitly high-
lights the non-triviality of the relationships between some
of them [30].

Hierarchical Priors: One prominent use of auxiliary
classifiers, beyond the scope of MTL, is representing hi-
erarchical knowledge. As the categories of classification
problems are often semantically organized this way (e.g.
objects, places, animals, species, breeds), some work has
focused on the benefits of encoding said priors. The hi-
erarchical relations can be known a-priori and used for
adjusting a prediction by modeling relations of exclusion
or subsumption [5]. Alternatively, hierarchical relation-
ships can be learned alongside the model to compensate
for classes with a small number of samples [21] or a pos-
teriori where labels for a “student” model are represented
by the ones learned previously by a “teacher” classifier [8].
Our approach focuses on relationships that are semantically
present (through the original labels) but do not require ad-
ditional annotations for the auxiliary task. This implies that
the relationships are innate (i.e., not learned), thereby not
prone to limitations in the models or training schemes.

Regularizing Branches: Another well-known purpose
of auxiliary classifiers has been the stabilization of gradi-
ent flow for very deep neural networks. Most prominently,
auxiliary classifiers were used for training different itera-
tions of the Inception architecture [23, 22]. Here, auxiliary
networks were small parallel branches that used the same
training objective as the main network. These branches
were only used during training and the reported benefits in-
clude faster convergence, more stable gradients and regu-
larization. More recently, models constructed via Neural
Architecture Search also made use of auxiliary classifiers in

a similar fashion [34]. All of these examples use auxiliary
classifiers exclusively for training, resort to the exact same
loss function, and are not taken into account for prediction.

Heterogeneous Surrogate Constraint: Instead of one
auxiliary branch with the same classification objective, ben-
efits have been reported where small binary classifiers are
attached at each layer [13]. These binary branches opti-
mize an objective that measures whether features at each
layer are discriminative for the main prediction i.e., they
yielded a true positive or a false negative prediction. Alter-
natively, a reconstruction objective imposed to the original
supervised cost (instead of the feature relevance score) was
shown to improve classification as well [32]. Our work is
similar in that it also relies on a different auxiliary objec-
tive which requires no extra labels. However, we use the
notion of grouping which preserves more information from
the original labels than the notion of feature relevance or
input reconstruction. This way, the alignment of the clas-
sification objective and the SSAL branch provides outputs
that are explicitly and directly interpretable.

Groups as Auxiliary Prior: the idea of joining classes
together has been exploited to improve upon a classifica-
tion objective. By grouping classes that fall under a more
general semantic term (e.g., “cat” and “dog” are both “an-
imals”), a data-augmentation scheme can easily mine ad-
ditional data samples that relate to the term subsuming the
included labels (the super-term) using a search engine [27].
Both the crawled data and the original dataset are passed
through a network with two corresponding branches and
trained jointly. Note that data for the “auxiliary” task (the
branch for super-classes) is disjoint to the one used for the
fine-grained task. Moreover, there is no explicit correspon-
dence between the classification of the super-class and the
original class. A different approach starts by assigning the
original labels to visually similar groups and training a ded-
icated feature extractor for each one. At the same time, a
soft-gating mechanism is trained to decide which special-
ized feature extractors should be used, to finally combine
their features into one prediction [25]. In this case, there
are no auxiliary objectives (grouping is a priori) and there
is only one loss with a single prediction per sample.

Instead of a gating mechanism, HD-CNNs [28] utilize
a coarse classifier to control a set of specialized branches.
Due to the conditional re-routing of samples based on the
coarse classifier or the soft-gating, training these models
needs to be adaptive and multi-step, the risk of overfitting
increases (specialized networks rely on fewer samples), and
the computational cost goes up considerably as more fine-
grained classifiers are used.

In contrast, we opt for a much simpler setup that is not
affected by the number of coarse groups (in terms of com-
putation), beyond the dimensions of the output layer. Our
proposed network can be trained jointly and end-to-end us-

ing standard optimization algorithms, with no conditional
re-routing or special regularization mechanisms.

3. Methods
In this section, we describe the algorithmic components

from SSAL and how they integrate into a traditional clas-
sification problem for training and prediction. There are
four main components to discuss: grouping criterion, ar-
chitectural design, training objectives and joint prediction.
For each of these components, we introduce emergent meta-
parameters that need to be considered during evaluation.

3.1. Grouping Criterion

We propose that the autogenous auxiliary objective be
based on a grouping of the original classes. Modeling
groups explicitly allows a classifier to learn the property
of subsumption; a proven useful mean to generate expla-
nations in formal verification systems [17]. To this end, we
use a clustering algorithm based on similar principles than
the one used by Yan et al. [28] but imposing a constrain that
ensures balanced clusters. Concretely, given a set of classes
Yc = {y1, y2, . . . yc} we define Yk as a partition of Yc into
k subsets. The grouping starts by constructing a distance
matrixDc, based on the confusion matrix from a pre-trained
model. Given a normalized confusion matrix F with the di-
agonal set to zero, the distance matrix Dc is constructed by
subtracting 1 from it and then making it symmetric by aver-
aging the off-diagonals (Equation 2).

D̂ = 1− F (1)

Dc =
1

2
(D̂ + D̂T) (2)

Each cluster is initialized with one of the k labels with
the highest average distance to all other labels. The next
label in Yc to be assigned will be the one with the small-
est distance to a cluster currently holding less than c/k el-
ements. In case of a tied metric w.r.t. a cluster, a random
one among those is used for the assignment. Note that the
distance matrix Dc can be turned into a similarity measure
by omitting the inversion of F i.e., skipping Equation 1.

The output of this algorithm is a mapping γ : Yc →
Yk assigning a single group label to each of the original
ground-truth labels. This way, each sample in a labeled
dataset is modeled as a triplet (xi, yi, γ(yi)) representing
the input sample, the ground-truth label and the group label
it has been assigned to respectively. A more detailed de-
scription of the clustering algorithm, can be found in Sec-
tion A of the supplementary material.

There are two meta-parameters that we consider for
grouping, namely the number of groups to map to, and the
criterion used for grouping. While the former is expressed

by an integer 2 ≤ k ≤ C/2, the latter can prioritize either
joining or splitting visually similar ground-truth labels (by
controlling how D̂ is computed).

3.2. SSAL Architectural Design

The proposed model follows the structure of a hard pa-
rameter sharing architecture for MTL with three main com-
ponents, as shown in Figure 1. First, an initial, shared
branch h is in charge of extracting low-level features. Next,
these common features are fed into two branches f and g
with different classification objectives: one with the orig-
inal ground-truth classification objective, while the second
branch optimizes over the group labels. Given an input sam-
ple, the ensemble model will output a prediction for the
original classification target f(x) and a prediction for the
auxiliary task based on grouping g(x).

In practice, these architectures are realized by taking a
traditional classifier like Resnet50 [7], and attaching an an-
cillary classifier (with a group objective) at some point in-
between the layers of the original model. The specific layer
disposition for both auxiliary and original models depends
on the experiment but in essence, a mixture of convolutional
and pooling layers are used. A more detailed specification
of all networks used in this work can be found in Section B
of the supplementary material.

Under this last perspective, an important meta-parameter
of the architecture is the point at which the auxiliary clas-
sifier attaches to the original model. Having a junction in
earlier layers allows both branches to work with generic,
lower-level features but leaves little room for those features
to be regularized by the updates from both branches. An-
other possible meta-parameter is the number of auxiliary
classifiers that can be attached. In that case, we refer to
a set of (possibly different) groupings γ1, γ2, . . . based on
the ground-truth labels in Yc for which a dedicated auxiliary
branch g1, g2, . . . is used.

3.3. SSAL Training

Training relies on traditional end-to-end backpropaga-
tion using mini-batch SGD. Both branches f and g are
trained jointly, and their individual errors are measured us-
ing cross-entropy. Note that there is no unified prediction
at this point and the losses for each branch are only added
together to force an single update of the entire parameter
space, including the common initial feature extractor h. The
sum is controlled by weights λ1 and λ2 as shown in Equa-
tion 3:

L = λ1 Lf + λ2Lg (3)

where Lf and Lg are the cross-entropy losses for f and
g respectively.

3.4. SSAL Prediction

One of the main novelties of this work is the use of the
auxiliary classifier for prediction. To this end, we consider
two alternatives for calculating a joint prediction.

Joint Probability: the final prediction is represented as
the joint probability of the original prediction and the auxil-
iary classifier such that P (y|x) = softmax(fi(x) ·gγ(i)(x)),
where fi is the i-th output dimension of f(x), gγ(i)(x) is the
output dimension of the auxiliary branch associated with the
original label at i and · represents a scalar product. When
more than one auxiliary classifier is used, the output of all
auxiliary branches gi is raised to a power η ∈ (0, 1].

Learned Linear Combination: Predictions from f(x)
and g(x) are concatenated and then used to train a linear
classifier with the same number of outputs as there are la-
bels in the original ground-truth. Both f and g are as-
sumed to be trained already, and the linear classifier is hence
trained separately.

We also evaluate the prediction of f(x) alone as a base-
line. This way, we can establish the influence that jointly
training the auxiliary classifier has had in the performance
of the branch with the original classification problem. In
other words, this baseline evaluation measures the inductive
bias of the auxiliary classifier.

4. Experiments

In this section we describe the datasets, meta-parameters,
baselines and performance experiments to support and
quantify the benefits of SSAL models.

4.1. Datasets

We conduct experiments on three different image classi-
fication datasets with varying degrees of complexity:

CIFAR100 [12]: extension of CIFAR10 where 60 000
color images of size 32x32 belong to 100 different classes
of fine-grained objects or animals. The training and test set
contain 50 000 and 10 000 images respectively.

TinyImagenet [16]: 110 000 color images of size 64x64
split into 200 natural categories e.g., animals, food, furni-
ture. They are divided into 100 000 samples for training
and 10 000 for validation. The official testing set does not
provide labels, hence we take a small portion of the training
set for development and report results on the validation set.

Imagenet [20]: One of the largest image classification
datasets available. Image size is variable but samples are
commonly downscaled to 300x300 pixels. They comprise
over 1.2M images across 1000 categories. Similarly to
TinyImagenet, we use the 50 000 validation samples for
testing and in turn, take a small portion of the training set
for any validation that is required.

4.2. SSAL Meta-Parameters

As mentioned in Section 3, SSAL models introduce a va-
riety of meta-parameters requiring additional consideration.

Layer Architecture: as mentioned earlier, multi-
ple architectures are used depending on the dataset and
the objective of the experiment. We base our evalu-
ations and SSAL models on five high-performance ar-
chitectures: Resnet18 [7], Resnet50 [7], Wide-Residual-
Networks (WRNs) [29], Squeeze and Excitation Nets
(SENets) [9], and DenseNets [10]. For things like the
architecture of auxiliary branches, we use a combina-
tion of blocks comprising convolutional, pooling, batch-
normalization and inception-like layers. When a meta-
parameter search on these architectural elements is re-
quired, we use a small portion of the training set for vali-
dation, before evaluating on the corresponding test set.

Grouping Criterion and Number of Groups: we train
a SSAL model based on Resnet18 for CIFAR100 and Tiny-
Imagenet. The auxiliary classifier consists of four convo-
lutional layers with batch-normalization and ReLU activa-
tion, a global average pooling, two fully connected layers
and a final linear combination with softmax normalization.
The size and number of convolutional filters, and the num-
ber of fully connected neurons were determined via meta-
parameter search. See Section C of the supplementary ma-
terial for further details about said parameters.

We use a single SSAL branch (i.e. an auxiliary classifier)
with either 2, 4, 10 or 20 groups, and a grouping criterion
that either splits or joins visually similar classes following
the computation outlined in Section 3.1. The model pre-
diction is done by computing the joint probability as pro-
posed in Section 3.4. The auxiliary classifier attaches to
the main network after the first max-pooling, and before the
first residual block.

Results in Figure 2 show a constant improvement of the
combined classification error as the number of groups in-
creases. Although grouping visually similar classes yields
an initial small advantage compared to the “splitting” cri-
terion, this tendency inverts when the number of groups
reaches 10 and 20. The pattern, albeit some marginal fluctu-
ations, is preserved for both CIFAR100 and TinyImagenet.

This first experiment suggests that having more groups is
beneficial and that either splitting or joining visually similar
classes contribute to a better performance at a similar rate.

Position of the Auxiliary Classifier: we use a similar
setup based on Resnet50 for CIFAR100 and vary the point
at which the auxiliary classifier is attached. Each of the
four residual blocks in the original network is considered
an atomic unit. We evaluate the effects of attaching the aux-
iliary classifier after each one of said blocks. The architec-
ture of the auxiliary classifiers remain the same, except for
the number of channels in the first layer which increases as
the point of attachment lies deeper in the original network.

2 4 10 20 40
Nr. of groups

40

45

50

55

Va
l.

Ac
cu

ra
cy

SSAL Joint Prediction

2 4 10 20 40
Nr. of groups

40

60

80

SSAL Branch

CIFAR100-SpiltSim
CIFAR100-GroupSim

TinyImagenet-SplitSim
TinyImageNet-GroupSim

Figure 2. Accuracy when varying the number of groups and group-
ing criterion on CIFAR100. Left: joint prediction of the SSAL
model. Right: classification of the auxiliary classifier alone .

g1 g2 g3 g4 g5 g6 g7
SSAL Branch Position

75
76
77
78
79

Va
l.

Ac
cu

ra
cy

SSAL Joint Prediction

g1 g2 g3 g4 g5 g6 g7
SSAL Branch Position

72
75
78
81
84
87

SSAL Branch

Resnet50 WRN DenseNet-BC

Figure 3. Classification accuracy when the position of the auxiliary
classifier varies w.r.t. the main network. Left: joint prediction of
the SSAL ensemble. Right: classification of the auxiliary classifier
(trained on 20 visually similar groups).

They all optimize over the same 20 groups joining visually
similar classes, and the final prediction is done via the joint
probability. The same experiment is conducted using two
different classifiers: a Wide Residual Network (WRN 28-
10) and a DenseNet (DenseNet-BC 100-12). Seven points
of attachment at different depths are selected for each net-
work. These points include paths that lie before, after and
in-between macro-blocks (see Figure 4).

Results in Figure 3 show that the position of the auxil-
iary classifier w.r.t. the main model has a tendency to per-
form best when the auxiliary classifier is attached at deeper
layers of the original network. This behaviour corresponds
directly with the performance of the SSAL branch itself,
which shows higher performance when it has been attached
at a deeper stage within the architecture.

Number of Auxiliary Classifiers: to evaluate the influ-
ence of attaching more than one auxiliary classifier to the
main model, we train Resnet18 on CIFAR100 while either
one or two auxiliary classifiers g1, g2 are attached. The aux-
iliary classifiers are both composed of two convolutional

Figure 4. Positions where SSAL branches are being attached to the
main network (red circles). Only one auxiliary branch is evaluated
at a time.

layers with batch-normalization and ReLU followed by an
inception-like layer, global average pooling and a linear out-
put layer with softmax normalization. The auxiliary branch
g1 is placed after the first residual block and optimizes over
20 visually similar groups. The g2 counterpart is placed af-
ter the second residual block and optimizes over 50 visually
similar groups. Final prediction is based on the joint proba-
bility and an equal normalization power η = 1 is used.

Two similar experiments are conducted using Resnet50
and WRN. For these two variants, three auxiliary branches
are simultaneously attached. Grouping is based on visual
similarity and they optimize over an increasing number of
groups: 20, 30 and 50 groups. The normalization power is
applied to all branches. Results are summarized in Table 1.

Increasing the number of SSAL branches does have a
positive impact on performance, as long as the normaliza-
tion power η decreases when the number of SSAL branches
increases. Intuitively, the role of SSAL branches is one of
verification and support rather than a predominant signal,
and thereby outputs from this branches should be weighted
down in scenarios when there are branches outnumbering
the original classification network. For Resnet18, adding
two SSAL branches yields an accuracy of 78.2%, a 2.6
pp. improvement over the baseline.

||gi|| η Test Acc. (%) Parameters

Resnet18 0 - 75.67 11.23M
1 1.0 76.62 11.92M
2 1.0 78.23 12.83M

Resnet50 0 - 79.13 23.77M
1 1.0 79.70 25.07M
3 1.0 80.36 28.89M
3 0.3 80.69 28.89M

WRN 28-10 0 - 80.19 36.56M
1 1.0 80.96 38.19M
3 1.0 80.68 43.25M
3 0.4 81.08 43.25M

Table 1. Classification accuracy for models with ||gi|| SSAL
branches on CIFAR100. Using more branches, together with reg-
ularization, improves performance. However the computational
footprint also increases.

4.3. Alternative Baselines

The use of auxiliary branches inevitably adds more raw
capacity to the overall network by virtue of the extra train-
able parameters. We test whether the consistent boost in
performance can be explained by the additional weights
(Occam’s razor) or if the introduction of the SSAL objec-
tive has merit on its own.

To this end, we train modified versions of Resnet18
on TinyImagenet that add more weights in various ways,
matching or surpassing the number of parameters of a SSAL
model. We also compare models with the same architectural
layout SSAL models have but training without the SSAL
objective.

WideResnet18: has 50% more filters across all convo-
lutional layers.

DeepResnet18: adds four convolutional layers of 256
filters each with batch-normalization and ReLU activations
before the first residual block.

DWResnet18: similar to DeepResnet18 but doubling the
number of filters of the additional convolutional layers.

GapCatNoSSAL: based on a SSAL model but without
the SSAL loss. The output of the SSAL branch is concate-
nated to the GAP activation of the main classifier.

CatFCNoSSAL: based on the SSAL architecture but
without the SSAL objective. The output of the SSAL
branch and the original network are concatenated and
passed through a fully-connected layer with 2048 neurons.
This result is in turn passed through a linear combination
for the final prediction.

LinearComb: this is a fully trained SSAL model, but
instead of issuing predictions through a joint probability,
both the auxiliary output and the prediction from the orig-
inal classifier are concatenated together and used to train a
separate linear classifier.

Val. Acc. (%) Diff (pp.) Parameters

Resnet18 39.9 ± 0.3 0.0 11.2M
WideResnet18 42.3 ± 0.3 2.4 25.3M
DeepResnet18 43.1 ± 0.4 3.2 13.3M
DWResnet18 43.7 ± 0.1 3.8 19.0M

GapCatNoSSAL 40.2 ± 0.3 0.3 15.6M
CatFCNoSSAL 35.3 ± 0.8 -4.6 13.6M

LinearComb 44.1 ± 0.1 4.2 12.8M
SSAL x1 45.8 ± 0.2 5.9 12.6M
SSAL x3 50.0 ± 0.4 10.1 15.6M
Table 2. Baselines for SSAL models on TinyImagenet. Models
that have a deeper architecture, wider layers, or lack the SSAL
objective fail to reach the level of accuracy of SSAL models.

SSAL: classifier ensemble proposed in this work. For
the variant with one auxiliary classifier, the SSAL branch is
placed after the first residual block (g2 in Figure 4) while the
model with three SSAL branches correspond to attachment
points for g1, g2, and g3.

Networks are trained for 20 epochs with a triangular
learning rate peaking at epoch 8. Each experiment is re-
peated three times to account for initialization effects. Re-
sults are summarized in Table 2.

It is clear that adding more capacity to Resnet18 im-
proves accuracy. Capacity in the form of deeper layers
shows better results than using wider layers, and a com-
bination of both yields an overall improvement of up to 3.8
percentage points. Using the same architectural disposition
of a SSAL model but without the SSAL objective (*NoS-
SAL), worsen performance w.r.t. the baseline, discarding
this setup as the reason for improvements. Overall, the use
of SSAL objectives remains the most effective use of the ex-
tra weights and layers with an improvement over the base-
line of 5.9 to 12.7 percentage points (8.9 points better than
the best baseline, while keeping a lower paramater count).

Training Convergence: we measure the rate of conver-
gence when training a SSAL model on CIFAR100, verify-
ing that the SSAL objective has an aligned inductive bias
which is not only beneficial for classification but it also
requires less training steps. We train the CatFCNoSSAL
baseline for 20, 50 and 100 epochs, and compare it with
a fourth identical run, except that the SSAL objective is
added to the training procedure. Results in Figure 5 (left)
show the validation accuracy of these four systems. Here
we see that training with the SSAL objective drastically ac-
celerates convergence. Even after 100 epochs, an identical
architecture is still unable to match the performance of its
SSAL counterpart. The accelerated convergence rate is also
evident when comparing the training curves of the joint pre-
diction of a SSAL-based pipeline against a baseline imple-
mentation with no auxiliary branches (Figure 5 right).

0 20 50 100
Epochs

0
10
20
30
40
50

Ac
cu

ra
cy

0 10 20
Epochs

CatFCNoSSAL
+SSAL-Loss

SSAL Joint Prediction
SSAL Branch
Baseline

Figure 5. Classification accuracy of a SSAL Resnet18 (red) is not
only higher, but its best performance is reached after training for
fewer epochs than any baseline (purple).

Val. Accuracy Params (M)

org ours +TR +JP +LC org SSAL

Resnet50 - 78.9 79.7 80.6 80.2 23.8 28.9
SE-WRN 16-8 80.9 79.0 79.0 80.2 80.0 11.1 14.9
WRN 28-10 80.8 80.1 80.6 81.0 80.7 36.6 38.2
DenseNet 190-40 82.8 81.1 81.8 83.2 83.1 26.1 38.3
Table 3. Classification accuracy for multiple high-performance ar-
chitectures on CIFAR100. Adding the SSAL objective consis-
tently yields higher performance.

4.4. Improving Classification

Based on the analysis of meta-parameters for SSAL
models, we show that high accuracy is consistently attain-
able across a variety of well-known, thoroughly optimized
architectures.

CIFAR100: We train SSAL models based on Resnet50,
WRN, SENet and DenseNet on CIFAR100. For each of
these original architectures, we attach three SSAL branches
with visually similar groups of 20, 33, and 50 groups. To
guarantee uniformity on the evaluation conditions, we have
re-implemented all models and trained them from scratch
so that the only difference between the original perfor-
mance and the SSAL variant is the proposed surrogate ob-
jective. Moreover, we report baselines from the original
source (org), our own re-implementation (ours), and the
LinearComb setup from Section 4.3 (+LC). For SSAL mod-
els, we report the accuracy of the original classifier i.e., us-
ing the SSAL branch during training but not for prediction
(+TR), and the full SSAL prediction using the joint proba-
bility (+JP). For further details about the architecture of the
SSAL branches and the training setup, please refer to Sec-
tion C in the supplementary material. Table 3 summarizes
the results.

These experiments show that training with the auxiliary
classifier consistently yields better performance. The induc-

ours
(org)

+TR +JP +LC GC

Top-1 75.5 76.4 76.9 76.7 75.7
Top-5 92.7 93.3 93.7 93.4 92.7
Table 4. Accuracy for SSAL Resnet50 on Imagenet. Experiments
are run 3 times. Standard deviation is 0.1.

CIFAR100 Imagenet

HD-CNN [28] 65.64 68.66 (-)*
HydraNets [25] 76.25 73.20 (-)*
COT [4] 79.46 75.60 (-)
DSL [13, 15] 81.95 76.12 (92.93)
DHM [15] 82.80 76.57 (93.24)
Aux. Train [31] 80.84 74.14 (-)*
SSAL (ours) 83.24 77.00 (93.80)

Table 5. Top-1 accuracy of related state-of-the-art and SSAL mod-
els. Results for Imagenet are based on Resnet50 except the ones
marked with *. Top-5 shown in parenthesis, if available.

tive bias of the SSAL branch guides the classifier even when
the auxiliary output is not used for prediction. Performance
improves even further when SSAL models issue a joint pre-
diction. Note that for WRN and DenseNet, the SSAL ver-
sion outperforms the state-of-the-art that was originally re-
ported, notwithstanding the weaker baseline it starts from.

Imagenet: To test the effects of SSAL branches on large
scale problems, we train a Resnet50 on Imagenet (ours), and
compare it with a corresponding SSAL model with three
auxiliary branches. As in the previous experiment, they
use visually similar classes with 200, 334, and 500 groups,
and report values for training with SSAL only (+TR), joint
prediction (+JP) and using the LinearComb setup from 4.3
(+LC). We also evaluate on a GapCatNoSSAL baseline
(GC) from 4.3 which has a similar architecture but no SSAL
objective. Table 4 shows how, once again, a SSAL model is
able to outperform the original baseline by almost 1.5 p.p..
Table 5, compares our results with recently proposed state-
of-the-art classifiers that convey contextual information in
the loss function, use other kind of auxiliary classifiers or
rely on different hierarchical priors for training.

4.5. Contextual Validation

We show that predictions of SSAL models are more in-
terpretable than regular DNNs thanks to the grouping ob-
jective of their auxiliary branches. The use of heatmaps has
been controversial as a mean to interpret a model’s output
because it can only point to the area of importance while
leaving out information about the underlying features that
elicit a high response [18]. Labels within each SSAL group
can be used to identify which low-level features are respon-
sible for the prediction.

Figure 6. CAM w.r.t. each auxiliary branch gi of the SSAL model.
gf denotes the final classification output of the SSAL model, and
org is the CAM of a normal Resnet50. Labels within predicted
SSAL groups are shown below each branch.

Figure 6 shows the Class Activation Mapping [33] of two
examples: a false-, and a true-positive. For the former, pre-
dicted SSAL groups contain labels with metallic parts, and
box-like shapes which correspond to areas with a strong ac-
tivation. For the slide rule, class labels in auxiliary groups
like “pill bottle” or “nipple” (mouthpiece of a baby bottle)
often depict the uniform markings found in rulers; a strong
indication that these are precisely the salient features that
guided this particular prediction.

In contrast, regular classifiers provide less nuanced in-
sights where multiple interpretations are possible. Exam-
ples in Figure 6 leave ample room for interpretation when
predicting “dial phone” or even the true positive for “slide
rule” (org). More examples in the supplementary material.

5. Conclusions

In this work, we have introduced SSAL: a methodology
for extending neural network architectures with auxiliary
objectives that are related to the original task. These ob-
jectives express low-level priors (e.g. grouping the labels),
do not require additional annotations, but derive from a pre-
existing annotated set i.e., they are autogenous. SSAL mod-
els follow the structure of multi-task learning algorithms,
therefore making a joint prediction possible based on the
outputs from all branches in the model. We show that the
use of SSAL objectives consistently yields higher classi-
fication performance across several state-of-the-art classi-
fiers like Resnets, DenseNets, SENets and WRNs for differ-
ent datasets like CIFAR100, TinyImagenet and Imagenet.
The usefulness of the SSAL objective is validated through a
comparison with several baselines including networks with
similar architectural structure but no SSAL objective and
networks with a comparable number of parameters. Finally,
we show how SSAL models leverage existing interpretabil-
ity methods (e.g. CAM) via the the low-level prior it was
trained on, the model itself interpretable by design.

Acknoledgments: This work was supported by the
BMBF project ExplAINN (01IS19074), DeFuseNN (Grant
01IW17002) and the NVIDIA AI Lab program.

References
[1] Yaser S Abu-Mostafa. Learning from hints in neural net-

works. Journal of complexity, 6(2), 1990. 2
[2] Abhijit Bendale and Terrance Boult. Towards open world

recognition. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. 1

[3] Rich Caruana. Multitask learning. Machine learning, 28(1),
1997. 2

[4] Hao-Yun Chen, Pei-Hsin Wang, Chun-Hao Liu, Shih-Chieh
Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng
Juan. Complement objective training. In International Con-
ference on Learning Representations, 2019. 8

[5] Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin
Murphy, Samy Bengio, Yuan Li, Hartmut Neven, and
Hartwig Adam. Large-scale object classification using label
relation graphs. In Proceedings of the European Conference
on Computer Vision (ECCV), 2014. 2

[6] Finale Doshi-Velez and Been Kim. Towards a rigorous
science of interpretable machine learning. arXiv preprint
arXiv:1702.08608, 2017. 1

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 4, 5

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2

[9] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 5

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 5

[11] Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish
Vaswani, Niki Parmar, Llion Jones, and Jakob Uszko-
reit. One model to learn them all. arXiv preprint
arXiv:1706.05137, 2017. 2

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 2, 4

[13] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou
Zhang, and Zhuowen Tu. Deeply-supervised nets. In Ar-
tificial Intelligence and Statistics, 2015. 3, 8

[14] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-
Hsuan Yang. Unsupervised representation learning by sort-
ing sequences. In Proceedings of the IEEE International
Conference on Computer Vision, 2017. 2

[15] Duo Li and Qifeng Chen. Dynamic hierarchical mimicking
towards consistent optimization objectives. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 8

[16] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. Tiny ima-
genet, 2017. 2, 4

[17] Deborah L McGuinness and Alexander Borgida. Explaining
subsumption in description logics. In IJCAI (1), 1995. 3

[18] Cynthia Rudin. Stop explaining black box machine learning
models for high stakes decisions and use interpretable mod-
els instead. Nature Machine Intelligence, 2019. 1, 8

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Par-
allel distributed processing: Explorations in the microstruc-
ture of cognition, vol. 1. In David E. Rumelhart, James L.
McClelland, and CORPORATE PDP Research Group, ed-
itors, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition: Foundations, chapter Learning
Internal Representations by Error Propagation, pages 318–
362. MIT Press, Cambridge, MA, USA, 1986. 2

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision (IJCV), 115(3),
2015. 2, 4

[21] Nitish Srivastava and Ruslan R Salakhutdinov. Discrimina-
tive transfer learning with tree-based priors. In Advances in
Neural Information Processing Systems, 2013. 2

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. 2

[23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 2

[24] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In International Con-
ference on Learning Representations, 2014. 1

[25] Ravi Teja Mullapudi, William R. Mark, Noam Shazeer, and
Kayvon Fatahalian. Hydranets: Specialized dynamic archi-
tectures for efficient inference. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 3,
8

[26] Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio
Guadarrama, and Kevin Murphy. Tracking emerges by col-
orizing videos. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018. 2

[27] Saining Xie, Tianbao Yang, Xiaoyu Wang, and Yuanqing
Lin. Hyper-class augmented and regularized deep learning
for fine-grained image classification. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2015. 3

[28] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh
Jagadeesh, Dennis DeCoste, Wei Di, and Yizhou Yu. Hd-
cnn: hierarchical deep convolutional neural networks for
large scale visual recognition. In Proceedings of the IEEE
International Conference on Computer Vision, 2015. 3, 8

[29] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016. 5

[30] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),
2018. 2

[31] Linfeng Zhang, Muzhou Yu, Tong Chen, Zuoqiang Shi,
Chenglong Bao, and Kaisheng Ma. Auxiliary training: To-
wards accurate and robust models. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.
8

[32] Yuting Zhang, Kibok Lee, and Honglak Lee. Augmenting
supervised neural networks with unsupervised objectives for
large-scale image classification. In International Conference
on Machine Learning, 2016. 3

[33] B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Tor-
ralba. Learning Deep Features for Discriminative Localiza-
tion. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 8

[34] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 3

