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Abstract—With the advent of machine learning in applications
of critical infrastructure such as healthcare and energy, privacy
is a growing concern in the minds of stakeholders. It is pivotal
to ensure that neither the model nor the data can be used to
extract sensitive information used by attackers against individuals
or to harm whole societies through the exploitation of critical
infrastructure. The applicability of machine learning in these
domains is mostly limited due to a lack of trust regarding the
transparency and the privacy constraints. Various safety-critical
use cases (mostly relying on time-series data) are currently un-
derrepresented in privacy-related considerations. By evaluating
several privacy-preserving methods regarding their applicability
on time-series data, we validated the inefficacy of encryption
for deep learning, the strong dataset dependence of differential
privacy, and the broad applicability of federated methods.

Index Terms—Time-Series Classification, Privacy-Preserving
Machine Learning, Differential Privacy, Federated Learning,
Secure Sharing, Critical Infrastructure, explainable AI

I. INTRODUCTION

THE growing involvement of automated decision making
in safety-critical areas such as healthcare, transporta-

tion, automation, and infrastructure management poses special
challenges for the protection of societies and individuals.
While flourishing areas like eXplainable AI (XAI), which
deals with the verification of system functions and building
of stakeholders’ trust, offer first practical solutions for real-
world applications, others are yet left mostly unconsidered by
the broader community. Besides the right to an explanation, as
defined in the GDPR [1], providers and developers of modern
AI systems are furthermore legally bound to ensure confiden-
tiality of user data and to implement the right to be forgotten.
The emerging field of Privacy-Preserving Machine Learning
(PPML) tackles problems arising through the disclosure and
transfer of sensible information during training and inference
of machine learning models [2]. Potential privacy breaches are
multidimensional, including training data, input, output, and
model privacy addressed by different concepts such as Feder-
ated Learning (FL), Secure Multiparty Computation (SMPC),
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Differential Privacy (DP), and Homomorphic Encryption (HE).
As different privacy dimensions are often only partially cov-
ered by single PPML methods, sophisticated privacy concepts
consisting of diverse measures must be developed to ensure
safe deployment in areas of critical infrastructure.

The targeted reconstruction of training samples from a
model’s weights [3] is just one of many possible scenarios [4],
[5] that could lead to unintentional data leakage in the real-
world deployment of data-driven algorithms. Such privacy
breaches could lead to more severe consequences beyond the
theft of sensible user information or companies’ intellectual
property. Disclosure of vulnerabilities in critical infrastructures
like energy grids, hospitals, and transportation systems through
digital data processing could be exploited by attackers, poten-
tially harming entire societies.

The goal pursued in PPML is sometimes opposed to moti-
vations of XAI research [4], [6] and computationally efficient
machine learning. It is therefore especially important to em-
phasize the early development of advanced PPML techniques
allowing sufficient explanation and computational efficiency.

First frameworks for PPML have emerged in recent
years [7], [8]. Despite the variety of developed methods,
reviews of PPML methods usually focus on the image do-
main [9], [10] while the specific applicability of methods on
time-series data is usually left unattended. Sequential time-
series data poses different challenges compared to visual data
and plays an enormous role in many critical applications such
as energy infrastructure, healthcare, and automation and must
therefore be examined in isolation.

This work evaluates the transferability of recent state-of-
the-art PPML methods to the time-series domain and reports
the lessons learned.
Our contributions include:

• Extensive performance benchmarking considering differ-
ent privacy preserving methods and architectures in the
time-series highlighting their applicability and limita-
tions.

• Detailed influence analysis of hyper-parameters on DP
and FL.

• A fusion approach combining DP and FL resulting in
minor accuracy loss and increased privacy.

• Evaluation of runtime and performance drop in encrypted
Secret Sharing training and inference, respectively high-
lighting the significant overhead of HE and limited ap-
plications areas.
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II. RELATED WORK

Recent achievements in the XAI domain and major efforts
towards the explanation of algorithmic decisions [11] led to
impressive achievements, including the reconstruction of input
from trained models. Research has shown that recovering
sensitive data from models is possible and results in a strong
need for methods assuring privacy. Carlini et al. [5] have
shown that it is possible to reconstruct a network’s training
data in the natural language domain and measure the likelihood
of a model to reconstruct textual features. Coavoux et al. [4]
discuss the amount of information exposed by the latent
representation of data leaked through insecure channels.

Several methods evolved in the last years to fulfill pri-
vacy standards required to use machine learning in critical
infrastructure domains resolving weak points of plain models.
Al-Rubaie and Chang [2] described different privacy threats
and corresponding solutions when dealing with sensitive data.
Detailed explanations of the privacy-preserving methods are
provided in Section III.

Over several years different strategies evolved to understand
and attack machine learning models. The model reconstruction
introduced by Milli et al. [12] allows the reconstruction of
rare private data through attacks on a model’s latent space.
This can result in data leakage, especially for modern Deep
Learning (DL) methods in combination with XAI, as a model’s
gradients and latent information is often exposed to the
public. Another attack proposed by Frederikson et al. [3]
called model inversion allows the reconstruction of training
data utilizing public feature vectors. Membership inference
attacks were introduced by Shokri et al. [13] and allow
to infer whether specific samples were part of a model’s
training dataset. Anonymization was a common approach to
protect sensitive data from providing individual information to
third parties. However, methods were developed which allow
inverting this process, rendering sole anonymization useless
for the protection of sensitive information. For a more detailed
report on data anonymization, we refer to Saranya et al. [14],
providing an overview of the possibilities to anonymize data
and problems arising from this approach.

The exponential increase of digital data produced by diverse
parties led to interactions between different digital stake-
holders worldwide. The field of collaborative data analysis
has therefore increasingly moved to the industry domain and
research, leading to additional challenges concerning data
privacy. Zhang et al. [15] describe challenges and problems
arising through this distributed setting. The authors propose a
solution that fulfills cryptographic and distributed requirements
to establish a secure environment. Besides such approaches,
perturbation of private data aiming to blur individual informa-
tion while retaining important population statistics is one of
the most powerful solutions to achieve privacy for machine
learning. Ji et al. [16] analyzed several aspects of differential
privacy methods including a review and the applicability of
these methods to different models.

In the privacy-preserving time-series domain Imtiaz et
al. [17] leveraged the benefits of data feature clustering to
enhance distributed private training, leading to increased ro-

bustness of results for federated settings. Moreover, Zheng
et al. [18] explored a similar direction, utilizing tree-based
methods to collect data similarities, creating a query scheme.
Yue et al. [19] performed private medical sequence data
analysis using fully encrypted LSTM networks. Erdemir et
al. [20] investigated private sharing of time-series data for
reinforcement learning using mutual information to measure
the information revealed by the system.

The survey work of Zhang et al. [21] presents a wide variety
of existing privacy methods, their computation overhead and
limitations. Tanuwidjaja et al. [10], [22] surveyed different
privacy-preserving approaches as well as important terminol-
ogy related to PPML.

As opposed to the development of specific privacy-
preserving methods for the time-series domain, there is still
a lack of extensive evaluation of readily available privacy-
preserving methods, commonly used in other domains. In this
work, we attempt to benchmark the most common PPML
techniques and open-source frameworks regarding their ap-
plicability on time-series data.

III. EVALUATED METHODS

A. Differential Privacy

The field of DP deals with the maximization of population-
level information extracted from sensitive data while minimiz-
ing the probability of extracting information about individual
samples or data subsets. The method evaluated in this work is
the Differentially Private SGD algorithm (DP-SGD) [23]. DP-
SGD engages in the optimization of the DL model and ensures
training data privacy in the final model weights by clipping,
averaging, and adding noise to the gradients over different
subsets of samples. Other DP methods aim at perturbing the
input [24], output or optimization objective [25] of the model.

We use the DP-SGD implementation provided by Ten-
sorflow Privacy1. The influence of DP is investigated under
variation of the batch size, gradient clipping threshold, and
noise level.

B. Federated Learning

Federated Learning describes the idea of distributing the
optimization of a machine learning algorithm to multiple
remote clients, allowing them to securely contribute their
private share of data locally to the model training. The term
was first coined in 2015 by McMahan et al. [26] introducing
the FedAVG algorithm, consists of a central server retrieving
model gradients from each client after every iteration. An
averaged model is redistributed to all clients at the beginning
of the next iteration.

The applicability of the widely used FedAVG method is
evaluated under variation of different training parameters in-
cluding the batch size, number of remote clients, number of
contributing clients per epoch, and stratification of the data.
Experiments are conducted using the implementations from
Tensorflow Federated2.

1https://github.com/tensorflow/privacy
2https://www.tensorflow.org/federated
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TABLE I
UEA & UCR DATASETS RELATED TO CRITICAL INFRASTRUCTURE.

Sector & Dataset Train Test Length Chls. Classes
Communications
UWaveGestureLibraryAll 896 3582 945 1 8
Critical manufacturing
FordA 3601 1320 500 1 2
Energy
ElectricDevices 8926 7711 96 1 7
Food and agriculture
Crop 7200 16800 46 1 24
Strawberry 613 370 235 1 2
Information Technology
Wafer 1000 6164 152 1 2
Public health
ECG5000 500 4500 140 1 5
FaceDetection 5890 3524 62 144 2
MedicalImages 381 760 99 1 10
NonInvasiveFetalECGThorax1 1800 1965 750 1 42
PhalangesOutlinesCorrect 1800 858 80 1 2
Telecommunications
CharacterTrajectories 1422 1436 182 3 20
HandOutlines 1000 370 2709 1 2
Transportation systems
AsphaltPavementType 1055 1056 1543 1 3
AsphaltRegularity 751 751 4201 1 2
MelbournePedestrian 1194 2439 24 1 10

Federated ensembling is conducted for comparison with
FedAVG. Ensembling is a popular tool to improve the per-
formance of multiple weak learners in machine learning [27].
If not stated otherwise, weighted softmax averaging is used as
ensembling scheme.

C. Secret Sharing & Homomorphic Encryption

Homomorphic encryption schemes allow performing com-
putations on ciphertexts, resulting in equivalent computations
as applied to their corresponding plain texts. HE still comes
with a lot of limitations that impede its utility in practical Deep
Learning applications [28]. Due to these persisting issues, we
performed limited evaluation on HE through Secret Sharing.

The idea of Secret Sharing is to split a secret into n uninfor-
mative shares distributed to n independent clients. Conversions
between arithmetic and binary Secret Sharing schemes used in
the CrypTen [8] framework are partially homomorphic and use
private addition and multiplication to allow the computation
of linear, non-linear as well as comparator operations. We
evaluate the feasibility of the Feature Aggregation use case
where each client possesses an encrypted share of features
that can be privately combined for training. This scenario
can occur when different energy providers collaborate by
privately sharing partial grid features or hospitals sharing
partial electronic health records of the same patient. Moreover,
we assess the feasibility of inferring on an encrypted version
of a publicly trained model.

IV. DATASETS

We selected a subset of datasets from UEA & UCR [29]
repositories for our experimentation, addressing privacy criti-
cal classification tasks from some of the most critical sectors
to benchmark the applicability and performance of existing
privacy-preserving methods on sensitive time-series data. The
datasets cover high-stakes fields such as energy, communica-
tion, transportation, industry, and healthcare. In addition to
the variety of tasks, sequence lengths, numbers of channels,

Fig. 1. Experimental Setup. Visualization of the different approaches, their
combination and data used by those methods. DP + FE refers to the fusion
approach using differential privacy and federated ensembling.

and dataset sizes, the subset addresses different types of data
including sensor or EEG/ECG data.

Table I lists the different characteristics of the datasets used
in this study.

V. EXPERIMENTS & RESULTS

Figure 1 outlines the experimental setup in which different
privacy-preserving data analysis methods are applied on the
same preprocessed data to assure commensurability. In case
of federated training, data is split into N distinct data silos
and experiments were conducted 5 times with different re-
producible splits to account for variations in data distribution.
In addition, we always selected the best run out of the 5 as
representative performance for the corresponding setup.

We constructed a 1D version of AlexNet as baseline. Due
to its sufficiently large amount of parameters, the network
can properly generalize on the utilized datasets while still
remembering parts of the training data, thus leaving room for
improvement of data privacy. Every model is trained for 100
epochs using softmax cross-entropy loss with early stopping,
SGD optimizer, if not stated otherwise and the learning rate
is halved upon plateauing of the validation loss. Complete
implementation details can be found in our repository3.

A. Experiment 1 - Performance Benchmarking

Preserving privacy in data analysis usually involves the dis-
guise of sensitive information and therefore an inherent trade-
off between privacy and model performance. The missing
information would have potentially contributed to solving the
problem at hand, as targeted partial disguise of non-relevant
information is nearly impossible in complex, high-dimensional
data. In our first experiment series, we evaluated an AlexNet
for all evaluated privacy-preserving methods mentioned in
Section III, comparing their performance on the complete
selection of datasets. This performance benchmarking does not
yet provide any information about the amount of preserved
privacy but serves as an initial comparison of the baseline
models’ performance as compared to the application of PPML
methods such as DP, FL, and Secure Sharing.

3https://github.com/DominiqueMercier/PPML-TSA
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A direct comparison of the approaches highlights a prevalent
performance decrease when applying methods with higher
privacy levels. However, most performance losses are in a rea-
sonable frame which would not impede practical application.
Table II shows the detailed comparison of weighted F1-scores
for all evaluated methods and datasets.

a) Differential Privacy: Except for some datasets, com-
parable performance has been achieved by the DP-SGD ap-
proach. However, all datasets except for HandOutlines and
AsphaltRegularity exhibit varying drops in performance. It
appears that the application of DP overall results in notable
performance losses for many datasets. This might indicate
a sensitivity of neural networks regarding the clipping of
gradients and the addition of noise. Both privacy and perfor-
mance highly depend on the selection of the correct hyper-
parameters. Experience showed that there seems to be no
general rule, except for empirical testing, leading to suitable
hyper-parameters resulting in an optimal trade-off.

b) Federated Learning: Overall results show a similar
performance loss as compared to DP, disregarding small
datasets resulting in non-converging models. Surprisingly, the
simple ensemble approach has shown much better performance
compared to both previous approaches. However, it has to be
noted that in contrast to FedAVG and DP, ensembling does
not provide any protection against model inversion or similar
privacy attacks. The coexistence of multiple models trained on
fewer data could even simplify such attacks in some cases.

B. Experiment 2 - Architecture comparison

Furthermore, we evaluated the impact of the different meth-
ods on a variety of deep network architectures. We used a
selection of five common DL architectures (AlexNet, LeNet
FCN, FDN, LSTM) for experimentation to assure significance
of our claims. It is important to notice that the models
vary in their number of parameters and we do not compare
across the models. We focused on each architecture in an
isolated way to evaluate the impact of the privacy methods
applied to them. The FCN and FDN structues are aligned
with the respective parts in AlexNet. The LSTM consists of
two bidirectional LSTM layers. These architectures cover the
main set of layers used in time-series analysis. Moreover, we
excluded transformer architectures in addition due to dataset-
specific knowledge and embeddings required as well as further
obstacles like model size, computational expense and lack of
compatibility with the used frameworks.

In Table III we show that the average performance trade-
off of AlexNet when using privacy methods is superior to the
other models when applying privacy-preserving methods. In
addition, we see that LeNet resulted in bad performance across
almost all setups. Considering the generally lower performance
of LeNet on the baseline models, it can be assumed that these
issues arise from the reduced model capacity as compared to
AlexNet. Furthermore, only the AlexNet and FDN network
were able to converge across all the setups whereas the FCN
and LSTM converged for all setups except one. However,
besides LeNet all methods showed to be compatible with the
most common privacy-preserving methods.

Fig. 2. Performance vs Noise. Evaluation of the loss in weighted F1-score
and change in privacy when using different noise multipliers. Lower values
of Eps correspond to higher privacy.

C. Experiment 3 - Differential Privacy: Hyper-parameter
Evaluation

The impact of different hyper-parameters on the privacy
obtained by DP-SGD is evaluated next. We selected three
representative datasets from different domains to perform
evaluation, due to their varying sequence lengths, training data
sizes, and the number of classes. The FordA dataset covers
an anomaly detection task whereas the ECG5000 and Elec-
tricDevices datasets cover classification tasks. All parameters
except for the noise multiplier are kept fixed as it has the
most significant impact on the privacy-accuracy trade-off. Each
run is performed with gradient clipping threshold set to 1.0
and a batch size of 32. Moreover, we examine the impact
on the privacy level when changing each training parameter
in isolation. This impact can be computed independently from
model training and is therefore evaluated using a large number
of different conditions.

Figure 2 provides detailed insight on the impact of noise on
model performance and the corresponding change in privacy.
The Eps value on the y-axis is an indicator for privacy. A
detailed explanation of the parameter including the mathe-
matical background can be found in [30]. In this analysis,
it is enough to note that Eps depends on multiple different
parameters and that lower values indicate higher privacy levels.
The ratio of noise added to the gradients is controlled by the
noise multiplier nε, where the gradient is left unaltered for
nε = 0 but privacy is only increased for nε > 0. Larger
values of nε bear the risk of generating noise that dominates
the actual gradient information, rendering fine-tuning crucial.

Our results show that for all datasets the performance
decreases significantly after a certain value of nε. ECG5000
exhibits a relatively low and linear decrease of 3% when
changing nε from 0.1 to 0.25. This does not hold for the
remaining datasets. ElectricDevices has a stable F1-score up
to nε = 0.175 but then drops significantly. Similar behavior as
exhibited by FordA. Moreover, FordA covers a binary anomaly
detection task that reflects an unacceptable performance loss
for noise multiplier values larger than 0.2.

The results can be summarised as follows: The Eps value
is a good and inexpensive indicator that can be used to
provide a solid estimate of the privacy achieved in a specific
parameter setup, prior to model training. However, its absolute
value is difficult to interpret and greatly depends on the
dataset. The noise multiplier nε has a drastic impact on the
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TABLE II
PERFORMANCE BENCHMARKING. COMPARISON OF BASELINE ALEXNET MODEL AND DIFFERENT PRIVACY-PRESERVING METHODS REPORTING BEST
WEIGHTED F1-SCORES. N CORRESPONDS TO THE NUMBER OF CLIENTS USED IN FEDERATED SETTINGS. RESULTS OF NON-CONVERGING MODELS ARE

STRUCK OUT.

Dataset Baseline Diff. Privacy FedAVG N=2 FedAVG N=4 Fed. Ens. N=2 Fed. Ens. N=4
AsphaltPavementType 88.30 81.90 85.22 80.88 88.93 86.22
AsphaltRegularity 98.93 98.93 98.54 96.27 99.07 98.80
CharacterTrajectories 99.37 97.88 96.98 89.29 99.09 98.74
Crop 75.16 48.70 56.64 38.06 74.18 72.14
ECG5000 93.37 89.58 88.57 87.49 93.33 92.70
ElectricDevices 64.01 52.71 65.14 64.76 65.91 65.90
FaceDetection 63.58 51.43 62.11 62.34 64.55 64.59
FordA 92.80 91.06 90.90 85.91 93.49 93.11
HandOutlines 91.29 98.81 86.99 85.73 91.31 89.85
Medical Images 77.20 51.21 34.95 34.95 72.14 64.13
MelbournePedestrian 94.94 86.55 18.44 20.77 86.19 87.60
NonInvasiveFetalECGThorax1 90.81 78.01 35.60 5.15 90.65 87.36
PhalangesOutlinesCorrect 82.29 46.60 46.60 46.60 79.97 78.91
Strawberry 96.77 50.36 50.36 50.36 95.43 95.41
UWaveGestureLibraryAll 96.06 90.26 92.33 89.91 95.54 93.52
Wafer 99.50 98.10 84.12 84.12 98.67 98.19

Average 87.77 75.76 68.34 63.91 86.78 85.45

TABLE III
ARCHITECTURE BENCHMARKING. COMPARISON OF DIFFERENT MODEL ARCHITECTURES REPORTING WEIGHTED F1-SCORES. N CORRESPONDS TO

THE NUMBER OF CLIENTS USED FOR THE FEDERATED APPROACHES. RESULTS OF NON-CONVERGING MODELS ARE STRUCK OUT.

Architecture Dataset Baseline Privacy-Preserving Methods
Diff. Privacy FedAVG N=4 Fed. Ens. N=4 Average

AlexNet ECG5000 93.37 89.58 87.49 92.53
ElectricDevices 64.01 52.71 64.76 62.80

FordA 92.80 91.06 85.91 92.80
Average 83.39 77.78 79.39 82.71 79.96

LeNet ECG5000 87.70 43.03 43.04 43.04
ElectricDevices 63.28 60.18 31.10 61.11

FordA 31.58 35.11 35.61 35.12
Average 60.85 46.11 36.58 46.42 43.04

FCN ECG5000 88.43 88.51 86.91 91.67
ElectricDevices 50.05 46.16 9.46 60.11

FordA 69.70 84.38 61.86 91.82
Average 69.39 73.02 52.74 81.20 68.99

FDN ECG5000 93.08 88.24 89.89 90.61
ElectricDevices 51.50 53.56 52.89 52.63

FordA 82.58 67.01 80.30 76.52
Average 75.72 69.60 74.36 73.25 72.41

LSTM ECG5000 92.57 85.38 85.98 89.10
ElectricDevices 70.33 62.18 57.30 62.12

FordA 42.22 0 42.34 48.03
Average 68.37 49.19 61.87 66.42 59.16

model performance but this impact is dependent on the data
distribution and problem at hand.

Another important aspect when applying DP is the impact
of other parameters such as dataset size, batch size, and the
number of epochs. Using the estimation approach mentioned
above, we calculated the expected Eps values in a controlled
environment. We started with a fixed setup using 5000 sam-
ples, 100 epochs, batch size 32 and nε: 0.5.

Only one of the parameters is changed at a time to assess the
impact of parameters independently. The results are presented
in Figure 3. The baseline is marked with vertical orange lines.
Confirming intuition, the dataset size, and the noise multiplier
lower increase privacy whereas the batch size and the number
of epochs decrease it.

The results emphasize that the method can give a good
idea about the possible setup required to achieve a certain

Fig. 3. Parameter impact. Evaluation of different parameters with respect
to the privacy. Lower Eps values correspond to higher privacy.

level of privacy before training. However, the consideration of
Eps does not provide any information about the convergence
guarantees, which must be adjusted through batch size and
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Fig. 4. Federated Ensemble Baseline. Performance evaluation of three
different ensembling voting techniques. Weighted F1-Scores are presented for
three different datasets.

epochs.

D. Experiment 4 - Federated Ensemble: Ensemble Size Eval-
uation

The number of participating clients, as well as the amount
and quality of data contributed by individual clients, are the
most critical factors in federated learning. This experiment
investigates the impact of increasing numbers of clients in the
most simplistic case of federated ensembling. Both batch size
b = {8, 16, 32, 64} and learning rates lr = {1e−2, 1e−3, 1e−
4} were tuned to obtain the best performance in each setting.
Federated experiments are conducted 5 times to account for
variations in data distribution of single data silos.

Three ensemble methods have been evaluated on the feder-
ated training of ECG5000, ElectricDevices and FordA datasets.
Figure 4 gives an overview of the performances achieved.
The results show that Weighted Softmax Averaging and Naive
Bayes classification achieve similar performance on the test
datasets, while ensembling by Majority Vote resulted in the
worst weighted F1-scores. It can be observed that the perfor-
mance of Majority Voting follows a downward trend with an
increasing number of clients.

Ensembles trained on ECG5000 and FordA both suffer from
a minor drop in classification and anomaly detection perfor-
mance whereas the F1-score for ElectricDevices significantly
decreases with a higher number of clients.

E. Experiment 5 - Differential Privacy in a Federated Setting

We examine the possibility to train local data in a federated
setting using DP-SGD at each client machine and theoretically
consider the resulting gain in privacy. Evaluation is done on all
datasets for different number of clients N = {2, 4} and batch
sizes b = {16, 32}, with fixed gradient clipping parameter
L2 = 0.5 and noise multiplier nε = 0.1.

Table IV shows the results of combined differential private
training of federated ensembles on all datasets. Many datasets
show decent performance losses over all tested settings. Over-
all the results show that depending on the dataset at hand, a
combination of DP and federated ensembling can be feasible to
combine its strengths. Higher performance could be achieved
by extensive hyper-parameter tuning on the specific use case,
as experience showed that specially DP-SGD is sensitive to
certain hyper-parameters.

A combination of differentially private with federated train-
ing results in a non-linear combination of the privacy levels as
the privacy achieved by DP-SGD depends on the dataset size,

batch size, and the number of epochs, which might vary when
switching from an aggregated to a federated setting. Training
in a federated setting aids training data privacy in two ways, by
ensuring that a client’s data remains on-site and by introducing
an averaging which mitigates some model inversion attacks.
The additional application of differentially private training on-
site adds further noise to the process which consequentially
results in an overall improvement of the training data privacy.
Whether a combination of DP and FL is suitable highly
depends on the dataset sizes available at individual client
locations as well as the complexity of the problem and must
therefore be decided on a case-by-case basis. As previously
concluded in the hyper-parameter evaluation of DP, a lower
dataset size, as well as a higher number of epochs, decrease
privacy. Both of which are likely to be the consequence
of switching from an aggregated to a distributed setting. A
securely aggregated, differentially private training therefore
might result in a higher privacy level as compared to local,
federated training on smaller datasets.

F. Experiment 6 - Secret Sharing Runtime Evaluation

Training and validation runtimes are major considerations
for the practical applicability of data-driven methods, espe-
cially in time-critical real-time applications. We evaluate the
feasibility of applying Secret Sharing to time-series applica-
tions by assessing training and validation runtimes, comparing
the implementations of the same 2D AlexNet for time-series in
vanilla PyTorch versus CrypTen. CrypTen has been evaluated
in the most basic setting performing encrypted training with
only a single client. Note that a 2D model was chosen to have
a comparable number of parameters in both settings. Unlike
CrypTen, vanilla PyTorch is not restricted to 2D architectures,
which results in a minor slow down.

An evaluation of training and inference runtimes comparing
the implementations of the same 1D AlexNet for time-series
in vanilla PyTorch versus CrypTen gives a first estimate about
the feasibility of encrypted Secret Sharing in practice. Table V
shows that both training and inference using CrypTen is
significantly slower than vanilla PyTorch in the case of CPU
(roughly factor 350) and even more in the more realistic case
of GPU computation. This highlights the impracticality of
encrypted Secret Sharing for current real-world applications.

G. Experiment 7 - Encrypted Inference Evaluation

In a final experiment, a different Secret Sharing scenario
is considered where a model is trained on public data and
encrypted for inference on secret data. We assess potential
performance deviations arising from the encrypted evaluation
of data and model at inference time.

Table VI shows the weighted F1-Scores obtained by pri-
vate prediction on an encrypted AlexNet, trained on public
data. It can be observed that the performance of ECG5000
and ElectricDevices decreased negligibly and FordA even
increased slightly. This minor deviation of the original results
is expected, as encrypted computation results in some change
due to noisy encryption.
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TABLE IV
DIFFERENTIAL + FEDERATED ENSEMBLE. COMPARISON OF BASELINE WEIGHTED ACCURACIES USING BOTH METHODS SEPARATELY AND THEIR

COMBINATION TO ACHIEVE BETTER PRIVACY REPORTING WEIGHTED F1-SCORES. N CORRESPONDS TO THE NUMBER OF CLIENTS USED FOR THE
FEDERATED APPROACHES. RESULTS OF NON-CONVERGING MODELS ARE STRUCK OUT.

Dataset Diff. Privacy N=2 N=4
Fed. Ens. DP + Fed Ens. Fed. Ens. DP + Fed Ens.

AsphaltPavementType 81.90 88.93 78.44 86.22 77.96
AsphaltRegularity 98.93 99.07 97.87 98.80 96.40
CharacterTrajectories 97.88 99.09 97.72 98.74 97.66
Crop 48.70 74.18 63.18 72.14 62.99
ECG5000 89.58 93.33 90.01 92.70 89.52
ElectricDevices 52.71 65.91 61.22 65.90 55.39
FaceDetection 51.43 64.55 51.66 64.59 51.84
FordA 91.06 93.49 93.33 93.11 91.36
HandOutlines 98.81 91.31 68.33 89.85 87.40
Medical Images 51.21 72.14 47.53 64.13 37.95
MelbournePedestrian 86.55 86.19 87.95 87.60 86.47
NonInvasiveFetalECGThorax1 78.01 90.65 76.18 87.36 1.79
PhalangesOutlinesCorrect 46.60 79.97 62.29 78.91 50.70
Strawberry 50.36 95.43 50.36 95.41 50.36
UWaveGestureLibraryAll 90.26 95.54 93.55 93.52 92.24
Wafer 98.10 98.67 96.16 98.19 95.48

Average 75.76 86.78 75.98 85.45 70.34

TABLE V
RUNTIME EVALUATION. EVALUATION OF RUNTIMES OVER ONE BATCH
OF SIZE 8. ALL VALUES GIVEN IN SECONDS. USED HARDWARE: INTEL

XEON (QUAD CORE), NVIDIA GTX 1080 TI, 64 GB MEMORY.

Dataset Framework Training Inference
Avg (s) Std (s) Avg (s) Std (s)

ECG5000
CrypTen 35.132 0.594 8.561 0.363
PyTorch CPU 0.105 0.019 0.024 0.002
PyTorch GPU 0.004 0.001 0.001 0.000

ElectricDevices
CrypTen 30.196 0.145 7.113 0.030
PyTorch CPU 0.086 0.005 0.019 0.000
PyTorch GPU 0.004 0.001 0.001 0.000

FordA
CrypTen 68.110 0.484 18.673 0.931
PyTorch CPU 0.186 0.016 0.050 0.005
PyTorch GPU 0.004 0.001 0.001 0.000

TABLE VI
ENCRYPTED INFERENCE. PERFORMANCE LOSS FOR ENCRYPTED

INFERENCE COMPARED TO BASELINE ALEXNET REPORTING WEIGHTED
F1-SCORES.

Model ECG5000 ElectricDevices FordA
AlexNet Baseline 93.37 64.01 92.80
AlexNet Enc. 90.10 63.14 93.03

VI. DISCUSSION

The image domain is usually in the focus of new ML
developments due to the ease of problem understanding and
intuitive interpretation of context. The conducted experiments
serve as a first overview of the applicability and usabil-
ity of current state-of-the-art PPML applications for time-
series classification in safety-critical domains. Our experience
with available open-source frameworks showed that PPML
methods applicable to time-series classification already exist.
However, for some applications minor and sometimes major
adjustments are required for the proper utilization as most
of the frameworks are not in a productive state and offer
only limited support concerning features specifically required
for time-series. For instance, most of the frameworks cover
only implementations for 2D image processing although time-
series classification is a very important modality that is used
in almost all of the sixteen safety-critical domains.

During experimentation, some challenges of PPML specific
to the domain of time-series classification were revealed.
DP is a useful tool for ensuring the privacy of remote
time-series data. The applicability of the method is however
strongly linked with a trade-off between privacy and accuracy,
which depends a lot on the dataset and machine learning
task at hand. The selection of the right hyper-parameters
to ideally balance this trade-off is especially complicated in
real-world scenarios, where model providers have to select
hyper-parameters for unseen data on the client-side. In such
cases, we would recommend a top-down strategy in which the
noise and gradient clipping parameters should initially provide
maximum privacy in critical infrastructure use cases while
gradually being relaxed until an acceptable model performance
is achieved while data privacy is still tolerable. However, a set
of possible setups can be discovered using the mathematical
equation to compute the privacy value related to the differential
privacy approach. Doing so provides a possible set. It is not
possible to know the degree of network convergence without
training the network using the actual setting. Summarizing our
findings, it is highly beneficial to know the dataset features and
their susceptibility with respect to noise. Therefore, the under-
standing of the classification task and the value ranges can be
used to approximate suitable parameters for the approach.

Both FL and Secret Sharing did not prove to present unusual
challenges when applied to time-series classification. For FL
in general, but especially in time-series classification, it is of
prime importance that the preprocessing of data is performed
identically. Whereas preprocessing of other data types such as
images is much more natural and standardized, preprocessing
of time-series data is very application and problem dependent
and must be communicated to all participating clients in
a learning federation. The application of time-series data
partially alleviates the common downside of the high temporal
and computational cost related to homomorphic or partially
homomorphic encrypted computation. Despite HE exhibiting
unbearable computation times, making it unfeasible for practi-
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cal application in critical infrastructure, the private sharing of
data for encrypted inference proved to be a suitable approach.
Furthermore, our experiments using federated learning showed
that the combination of privacy-persevering methods, namely
DP and FL, performs similarly well. This indicates that the
combination of several feasible privacy-preserving methods
can be used to develop a comprehensive privacy concept
for real-world applications. Overall the performance of FL is
comparable to the DP approach. Whereas DP is more sensitive
to hyper-parameters like noise, FL is more sensitive towards
small dataset sizes and uneven data distributions. Intuitively,
the combination of both approaches suffers from both aspects
and achieved a lower average accuracy but an increase in
privacy. However, if certain aspects of the datasets are known
it is possible to adjust for these aspects.

VII. CONCLUSION

Together with XAI, PPML is a key technology paving the
way towards the omnipresent application of AI in critical
infrastructure systems by allowing to leverage synergies from
the collaboration of multiple private entities. This safe col-
laboration has the potential to achieve safe and methodically
transparent deployment of high-performing data-driven algo-
rithms in critical real-world high-stakes decision scenarios.
We benchmarked methods and open-source frameworks to
provide a first overview of the applicability of PPML methods
to the time-series domain, which plays a crucial role in a
variety of critical infrastructure application fields like energy,
industry, and healthcare, and highlighted challenges specific
to this particular type of input data. Our benchmarking covers
different model architectures commonly used in the time-series
domain. Furthermore, we used a set of carefully selected
datasets that cover various different aspects with respect to
their domain, data shape and task. Our findings highlight that
it is possible to successfully apply DP, FL, and our fusion
approach to different architectures and datasets. Furthermore,
our findings highlight the importance of a proper hyper-
parameter selection for the DP and the drawbacks using HE
with respect to the computational effort. For future research,
research communities need to engage in the joint development
of explainable and privacy-preserving ML solutions to balance
their competing objectives and achieve a broad applicability
in industrial use cases. Initially, efforts should be spent on
assessing the compatibility of different PPML methods with
existing XAI techniques. Moreover, computational and com-
munication overhead still constitute a major barrier to the
practical applicability of some PPML techniques e.g. HE.
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