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Abstract
Modeling and executing knowledge-intensive processes (KiPs) are challenging with state-of-the-art approaches, and the
specific demands of KiPs are the subject of ongoing research. In this context, little attention has been paid to the ontology-
driven combination of data-centric and semantic business process modeling, which finds additional motivation by enabling the
division of labor between humans and artificial intelligence. Such approaches have characteristics that could allow support for
KiPs based on the inferencing capabilities of reasoners. We confirm this as we show that reasoners can infer the executability
of tasks based on a currently researched ontology- and data-driven business process model (ODD-BP model). Further support
for KiPs by the proposed inference mechanism results from its ability to infer the relevance of tasks, depending on the extent to
which their execution would contribute to process progress. Besides these contributions along with the execution perspective
(start-to-end direction), we will also show how our approach can help to reach specific process goals by inferring the relevance
of process elements regarding their support to achieve such goals (end-to-start direction). The elements with the most valuable
process progress can be identified in the intersection of both, the execution and goal perspective. This paper will introduce
this new approach and verifies its practicability with an evaluation of a KiP in the field of emergency call centers.

Keywords Ontology · Data-oriented business process · Knowledge-intensive process · Inferencing

1 Introduction

This paper introduces and evaluates an ontology- and data-
driven business process approach (ODD-BP), which aims to
deal with the special requirements of knowledge-intensive
processes (KiPs). The motivation arises from the research
about KiPs with its data-oriented character [7,10], which is
why we placed the data ”into the driver’s seat” of our new
approach [18,22–24]. SeveralBP-approaches have addressed
the advantages of declarative and data-oriented workflow
principles [5,7,16,27]. The data-oriented character of ODD-
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BP reflects those works by collecting the essence of these
approaches to set up a reduced and simplified metamodel
for further examinations. In parallel, several papers have
addressed the advantages of semantic process modeling
(SPM) [11,26] to reduce the ambiguity of process defini-
tions and allow process contribution by utilizing reasoners
to infer process relevant knowledge. Because most of the
approaches related to SPM have focused on control-flow ori-
entedworkflowprinciples, the data-oriented approaches have
not been combined with a semantic process definition. This
work focuses on combining both methodologies to provide
an ontology and data-driven approach that fits the needs of
KiPs and provides significant process contributions through
a semantic process definition.

Today’s established business process, approaches usually
follow a control-flow-oriented principle. Operational knowl-
edge of a particular domain is often integrated as alternative
routes (splits and joins) through a processmodel, offering just
a limited amount of flexibility (Flexibility by Design). In this
scenario, a rich amount of operational knowledge would lead
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to a very complicated processmodel, which extends the com-
plexity that a process designer can handle. Since KiPs rely on
a wide range of knowledge, these solutions with a limited set
of predefined paths do not cope with the specific demands of
KiPs. To overcome these limitations, the ODD-BP approach
follows a declarative and data-oriented principle where the
process steps are not predefined, but the result of a permanent
process planning procedure. This allows the integration of a
wide-ranging set of rules, reflecting extensive operational,
relevant expert knowledge.

This work presents a full integration of all process affect-
ing knowledge into one joint knowledge base, starting with a
metamodel that provides the essence of data-oriented work-
flow principles. Additionally, domain-specific knowledge is
integrated into the knowledge base defining the overall infor-
mation model and considering further expert knowledge.
Besides this terminological knowledge, the process defini-
tion and the explicit situational facts of a specific process
instance are represented as assertional knowledge.We expect
that such a fully integrated knowledge base can be utilized to
deduce the process states of process elements and can be used
to drive a process instance without the need for a separate
workflow engine. Furthermore, we expect that the integrated
domain knowledge can affect a process execution without
being explicitly part of a process definition and reduce its
overall complexity.

Our work is part of the research project SEMANAS1 [22]
and focusses a KiP in the field of an emergency call cen-
ter. In this paper, we introduce a metamodel, OWL2, and
SWRL-rules as part of the knowledge base and we show how
these rules allow inferring the executability of tasks and the
overall relevance of process elements. We show how such
a permanent process planning procedure, combined with
a data-driven approach, enables a flexible process execu-
tion that supports the requirements of KiPs. The variability
of such flexible process executions is measured and com-
pared with the state-of-the-art static process as a reference.
Additionally, we show that AI inferencing can utilize expert
knowledge within the knowledge base to support users in
their decision-making processes. For evaluation, wemeasure
the quality of the process outcome and compare the results
between state of the art and an enhanced process definition,
which takes advantage of the ODD-BP approach.

Section 2 presents related topics like data-centric and
semantic business process modeling. The application sce-
nario in emergency call centers is described inSect. 3. Section
4 briefly introduces the ODD-BP Model with its main con-
cepts. The rules to deduce executability and relevance of
process elements are defined and explained in Sect. 5. With
the help of use cases, the general feasibility of the new

1 SEMANAS is funded by the Federal Ministry of Education and
Research (BMBF), grant no. 13FH013IX6, duration: 2017–2021.

approach is shown in Sects. 6 and 7. Section 8 presents the
results of the evaluation ahead of conclusion in Sect. 9.

2 RelatedWork

Semantic processmodeling (SPM)uses ontologies to enhance
common semi formal representations of processes. During
SPM, elements of processes (such as tasks) are represented
as instances of ontology classes describing the constructs
of a process language [26]. Research on SPM is often
motivated by easing semantic ambiguity in process mod-
els and focusses mainly on control-flow oriented approaches
[3,11,26]. According to Heinrich et al. [14], an essential
advantage of SPM is accessibility for automated process-
ing. This has been studied in terms of automated creation or
adjustment of process models, and it was observed that rea-
soners can be used to derive facts that are implicitly stated in
process models [3,14,26].

In data-centric business process modeling, processes are
not describedby links between tasks (as in traditional control-
flow oriented approaches like BPMN—Business Process
Model and Notation), but instead, tasks are linked to data
elements that are required for their execution (input) or the
result of it (output). This implies a process logic that focuses
on data availability rather than on predefined sequences of
tasks [23]. Several approaches of data-centric business pro-
cessmodeling consider data in the context of artifacts that are
created, evolved, and typically archived during their lifetime
in businesses [7,27]. Di Ciccio et al. [10] offer an analy-
sis of different data-centric approaches and evaluate their
coverage regarding the characteristics and requirements of
KiPs. CMMN [20] as an example of a well-established and
by the OMG-defined standard steps up to eliminate a signif-
icant drawback of BPMN, the rigid control-flow oriented
characteristic, and offers a flexible process execution. In
fact, CMMN captures work methods that are based on the
handling of cases requiring various activities that may be
performed in an unpredictable order; especially, the concept
of a Sentry represents a core characteristic of a data-centric
approach by defining activities as enabled or active accord-
ing to related data. Nevertheless, CMMNdoes not provide an
assessment regarding the relevance of activities, nor does it
provide a goal-oriented strategy to support users with mean-
ingful guidance. These are essential requirements, but for a
more detailed analysis of different approaches and how they
meet the specific requirements of KiPs, we refer to [10].

Despite these two usually separated research fields, espe-
cially the combination of SPM and data-oriented principles
promises advantageous capabilities. Due to the dynamics of
knowledge-intensive processes and their close relationship
to information and knowledge, it seems promising if a sup-
porting system is based on semantic technologies [9]. Similar
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assessments can be found in [13,17]. In workflow manage-
ment systems, workflow engines may be used to identify
what could be done and who could do it [28]. To the best
of our knowledge, it has not been investigated yet whether
reasoners can take over the job of workflow engines to iden-
tify what could be done next in a process. Additionally, we
could not identify a combined approach that has verified the
expected benefits while executing KiPs.

3 Application Scenario

In general, KiPs are highly dependent on knowledge work-
ers (like managers, researchers, and engineers) who perform
interconnected knowledge-intensive decision-
making tasks [10,27]. Since knowledge workers are the most
significant determinant of theworth of their organizations [8],
supporting them inKiPs is accordingly essential. One of such
a KiP can be found in an emergency call center (ECC), where
operators handle incoming calls. The successful handling of
an emergency call (EC) relies on the operator’s knowledge
and his capability to interpret the data given by the caller,
and thus, they are highly knowledge-intensive processes.

Today, in these calls, the operators follow a predefined set
of questions according to an emergency call guideline (ECG),
realized within an ECC-software. While the ECG ensures
that the most important questions are asked (who, where,
how many), the guideline lacks in supporting the operator
to achieve a detailed insight about “what happened.” Cur-
rent ECGs follow decision trees’ principles and thus have
the same characteristics as control-flow-oriented business
process models. As a result, the operator has to follow the
questions in a fixed order. Flexibility is only integrated to
a small amount and one specific case leads to exactly one
path through the decision tree. The manifold possible situ-
ations about “what happened” cannot be covered by such a
static system as it would end in a decision tree with immense
size, impossible to design and maintain. This ends up in the
situation that the ECGs are just supportive of covering an ini-
tial part of an emergency call, offering no flexibility, and the
operators must fill the gap with their knowledge. Since the
operators have a different amount of experience, different
backgrounds (paramedic, firefighters), and even each per-
son’s individual performance varies over the work-time, the
outcome of an emergency call procedure (ECP) is not con-
sistent.

With today’s inflexible ECGs in mind, operators cannot
transfer significant facts, often given by the caller’s open-
ing statement, to the system. In fact, the operator has to
come back to such initial given data afterward. With a view
to the rising cases where emergency calls are initiated or
executed by IoTdevices, the need for a data-oriented andflex-
ible approach becomes even more important. With the eCall,

modern cars can perform an emergency call in case of an
accident and transfer relevant data to theECC.Modern smart-
watches can detect a fall, call the ECC, and initially deliver
answers to seven out of the operator’s nine most important
questions.We demonstrate that a system following theODD-
BP approach can accept and integrate such datasets into the
ECP at any time. In the following, it can adapt the process
according to the already received and additionally required
data and can offer a significant advantage compared to state
of the art. Additionally, we will show how the new approach
integrates expert knowledge, supporting the operator while
dealing with the “what happened” aspects. With the help of
an inferring artificial intelligence, we demonstrate how the
expert knowledge is utilized to consider the current state of
facts and deduces which further questions are worth asking
to gain more valuable data. Finally, we show how the opera-
tor can be supported to choose appropriate rescue resources.
The evaluation (Sect. 8) will demonstrate that the ODD-BP
approach offers a flexible and adaptive process execution
and supports a consistent and improved process outcome of
ECPs.

4 ODD-BP—Ontology- and Data-Driven
Business Process Model

The first and foremost difference between the established
process executing systems and ODD-BP is the semantic
integration of all process-relevant knowledge into a unified
knowledge base. Usually, knowledge from different sources
affects a process execution, and these sources are located
in separated segments. Typically, a workflow engine con-
tains the knowledge on how to execute a process and thus
defines a metamodel, which developers implicitly manifest
in program code. The data model and customizations reflect
domain knowledge and are often defined by the ER-model
of a database or individualized scripts. A process definition
specifies a template of how a certain kind of processes can be
executed and is often described with a specialized language.
Additionally, each process instance carries situational knowl-
edge, reflecting as a digital twin some relevant facts about the
real world. As shown on the left side in Fig. 1, these knowl-
edge sources are usually embedded in separated segments,
and each has a significant impact on the execution of a pro-
cess.

Opposed to this, theODD-BP approach follows the idea of
semantic process modeling [11] and integrates these knowl-
edge parts semantically into one unified knowledge base as
presented in Fig. 1 at the right side. The foundation is built by
a base ontology that defines the core elements of a process and
the possible relations and rules. The domain ontology defines
the data model for a specific domain and generalized domain
knowledge with essential or useful expert knowledge. Both
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Fig. 1 Process relevant
knowledge and it’s influence to
process execution

define a set of conceptualizations in the T-Box, a finite set of
terminological axioms. The process definitions and the situ-
ational knowledge of process instances are reflected by sets
of linked individuals in the A-Box, a finite set of assertional
axioms. This unified knowledge base allows taking advan-
tage of a reasoner to deduce process-relevant facts to support
a process execution (Sect. 5).

4.1 Metamodel

All established workflow approaches follow a specific and
predefined metamodel [25]. According to a wide range
of publications [12,19], a metamodel defines “the frames,
rules, constraints, models, and theories applicable and useful
for modeling a predefined class of problems.” Knowledge-
intensive processes (KiPs) and their specific demands [10]
can be considered as such a predefined class of problems.
Within the ODD-BP approach, we define a data-oriented
workflow metamodel aligned to the requirements of KiPs.

The centerpiece of ODD-BP is the base ontology, which
defines all concepts and relations to build the metamodel to
define and execute processes. Themost fundamental artifacts
of a process are Tasks, Dataobjects, and Documents and are
usually represented in one or another way in all workflow
approaches. The metamodel manifests its specific character
through the kind of relations between these artifacts. Accord-
ingly, the data-oriented character of the ODD-BP approach
is created by the relations between Tasks at the one side and
Documents,Dataobjects, andAttributes on the other side. An
excerpt from the base ontology, which is implemented using
OWL2,2 is depicted in Fig. 2, where circles with dashed lines
represent classes and directed edges represent object proper-
ties between classes.

According to this metamodel, a Document can be
demanded_by a Task as input or a Task can produce a Doc-
ument as the outcome of its execution. Analogous to this, a
Dataobject or anAttribute can be required_by a Task as input
or a Task can deliver such elements as output. The deeper

2 OWL 2 spec: https://www.w3.org/TR/owl2-syntax.

meaning ofDataobject and Attributewill be explained more
in detail in the following, but the general importance of data
for a process execution is already apparent.

All in all, the metamodel defines how a process can
be designed and executed, and these general rules are the
same for process definitions PD and process instances PI,
which are defined as a specialization of the concept Process.
A process is modeled and described by individuals of the
introduced concepts and by links between these individu-
als according to the base ontology relations. Since process
instances represent the ongoings in a business process and
are meant to hold data about the process state [28], they are
relevant for inferring facts to drive the process execution.

Fig. 2 Base ontology of the ODD-BP model
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4.2 Data Objects and Attributes

The general data-orientation of themetamodel can be seen by
the manyfold relations between Tasks and the data-carrying
elements Dataobjects, Attributes, and Documents, in certain
ways similar to artifact centric approaches [4,5,7]. However,
the ODD-BP approach is not only placing data into a more
central position; the data are integrated with the intention to
drive a process.

Usually, an information system organizes data about
the real world with entities and relations. With a view to
databases, entities are managed as entries into a table, while
a knowledge store manages entities as individuals of a spe-
cific class. Such an individual represents an object of the
real world, while its object characteristics are stored as
data properties of the individual. This realization lacks in
expressiveness, as the knowledge store cannot express depen-
dencies between tasks and data-properties, and thus, the data
properties could not be used to drive the process.

This leads us to a conceptualization in which object
characteristics are represented through a separate concept,
Attributes. They can be understood as key–value pairs, while
an individual of this type represents a single characteristic of
an entity. The existence of such Attributes can now be used
to infer further facts about the process state and thus can be
used to drive the process.

4.3 Process Example Utilizing theMetamodel

Figure 3 depicts an excerpt of a process instance of an emer-
gency call procedure, which is modeled using the presented
base ontology. The process instance contains a dataobject
representing a Personwith three attributes self-affected, con-
scious, and breathing. The Attribute self-affected is used to
perform a Conscious Check to determine if the caller is also
the affected person. If this is the case, the person is obvi-
ously conscious, which makes the question-task Is Person
responsive irrelevant and can be skipped.

The shape of the elements represents different concepts
of the metamodel, as shown by the legend. Process states in
the ODD-BP model are represented by marking unavailable
data elements and unexecuted tasks as so-called Placehold-
ers, an additional concept that will be introduced in detail
in the next section. Initially, a process instance only con-
tains elements with Placeholdersmarkings that are removed
as the process proceeds, which leaves only elements behind
that describe existing (meaningful) data elements and exe-
cuted tasks. All white elements of the excerpt are marked as
placeholder elements so that only the dataobject Person, the
attribute self-affected, and the user task Who is affected are
known. This simple excerpt may not represent all character-
istics of KiPs, but it illustrates how data-driven aspects can
be modeled using the ODD-BP approach.

Fig. 3 Process instance modeled using the base ontology

The metamodel basically defines a declarative workflow
approach where processes are designed by describing the
general dependencies between data and task elements. This
leads to a flexible and adaptive process execution com-
pared to classic imperative control flow-oriented approaches
like BPMN. Nonetheless, sometimes dependencies between
tasks can be described more easily by control flow-like
expressions like the precedes and setGoal relation (see
Fig. 2), which allow direct connections between tasks. The
excerpt in Fig. 3 is using a precedes constraint to ensure that
the system task Conscious Check is executed before the user
task Is Person responsive can be executed. Especially Logic
Tasks, which offer the possibility to prove against predefined
conditions, lead to an imperative segment within the overall
declarative process definition.We do not discuss this more in
detail since this paper’s focus lies in the possibilities to utilize
inference mechanisms for process execution, rather than the
pros and cons of concurrent workflow principles, which are
addressed within [7,23,24].

5 Inferring Process-Relevant Facts

This section presents an inference mechanism that aims at
supporting knowledge workers by providing execution rel-
evant information about all process elements, illustrated in
Fig. 4. For doing so, the mechanism is inferencing in and
against the execution direction process-relevant facts. It is
worth noting that even without a control-flow-oriented prin-
ciple, a flexible data-oriented approach like ODD-BP still
has an execution direction in the graph along with the rela-
tions between the process elements. At first, the mechanism
is inferencing in execution direction the states of data depen-
dencies of unexecuted tasks to determine the executability
1© of tasks. In a second step, the mechanism is inferenc-
ing in execution direction the execution relevance 2© by
considering if the possible outcome of a task provides any
process contribution like new data elements. Additionally,
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Fig. 4 Inferencing concept

Fig. 5 Extension of the base ontology

the mechanism considers process goals and deduces against
the execution direction the goal relevance 3© for each process
element. These three parts of the inference mechanism will
be introduced in the following three individual subsections.

As a first step, the base ontology requires additional con-
cepts that can be used to express process relevant facts. Figure
5 presents an extension of the base ontology, and one concept
(Placeholder) was alreadymentioned briefly. Any individual
representing one of the introduced process elements can also
be assigned to the class Placeholder to define the specific
element as not-meaningful in regard to the process state of a
process instance. In creating a new PI as a copy of a PD, any
process element will be initialized this way. Once an element
becomes meaningful or a task is executed, the Placeholder
assignment of the individual will be removed.

While the Placeholder concept is used to express the exe-
cution state of the process elements, the concept Process
Goal is designed to express which elements of a PI must be
achieved. This allows an adaptive and flexible behavior that
fits very well to the demands of KiPs [10], and we support
differentways how a process element also becomes aProcess
Goal assignment as we explain in Sect. 5.5.

To infer process relevant facts, we additionally intro-
duce the concept Execution State and Relevance State. The
first one is exclusively for Task elements and offers three
subclasses (unexecuted, executable, unexecutable). The sec-
ond one offers also three subclasses (goal-relevant, relevant,
irrelevant) and can partially be used for any process element.
The deeper meaning of the State-
conceptswill be explained in detail through the formalization
in the following sections.

5.1 Inferring Executability

Among themany reasoning options of OWL2,most interest-
ing for our purpose is inferring that an individual belongs to
a class—in our case, inferring that a task belongs to the class
of executable tasks. A class in OWL 2 is a set of individuals
described by restrictions on the individual’s characteristics
[6]. In data-centric business process modeling, executable
tasks share the characteristic that all required input data ele-
ments are available [23]. In order to infer executability, we
need to describe this in OWL 2 by a class. Since OWL 2
relies on the open-world assumption (OWA), this is chal-
lenging if the result shall be suitable for practice. The OWA
makes it impossible to tell if something is inexistent until
its inexistence has been stated [15]. If an inference mecha-
nism for executability relies on a class that is restricted by a
statement about “everything,” considerable effort has to be
taken into account in the context of KiPs. For example: If
a class describes the set of tasks whose input elements are
all available, during reasoning, a statement has to tell that a
task has nomore than the known input data elements. Such is
possible by adding statements that restrict the cardinality of
relations between individuals [2] and herewith define a clo-
sure for a specific class. The challenge in this context is that
a task can have a different number of incoming documents,
dataobjects and attributes, and for each possible combination
of these incoming data elements, an individual specialization
of task is required with an according closure definition. This
would lead to a wide range of specialized task concepts with
individual rules to infer executability and yet it still remains
uncompleted. Additionally, since KiPs require substantial
flexibility at design- and run-time [27], data dependencies
often have to be adjusted. As a result, this approach would
be impractical since data dependencies and specialized task
concepts with a corresponding closure rule would need to be
adjusted.

Alternatively, reasoning can be realized with the help of
existential quantifiers, which is easier in the OWA context.
During reasoning, a statement using the existential quanti-
fier becomes true if the existence of something is declared. It
cannot be derived as true if the existence is not declared.
Transferred to the discussed use case, we can decide the
opposite—the unexecutability of a task—as soon as a sin-
gle incoming required data element is stated as unavailable.
This canbe realizedwith a single universalTask concept and a
generic rule,which does not require a closure definition and is
muchmore suitable for practical use. Such an alternativeway
of describing executable tasks by examining unexecutability
based on data availability will be introduced in the follow-
ing and utilizes three different technologies, OWL2-rules,
SWRL-rules, and Queries. While OWL2-rules and SWRL-
rules are defined by formulas expressed in description logic,
the Queries are expressed by SPARQL.
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Execution of Knowledge-Intensive Processes by Utilizing Ontology-Based Reasoning 9

In the first step, we define unexecuted tasks as tasks that
are marked as placeholders. Consequently, the class of unex-
ecuted tasks corresponds to the intersection between the
classes of placeholders and tasks (1).

Taskunexecuted ≡ Task � Placeholder (1)

Due to placeholder markings, the class of unavailable data
elements corresponds to the intersection of the classes of
data elements and placeholders (3) and (4) (data element is
abbreviated in formulas with “Data”). Since unexecutable
tasks have at least one unavailable input data element or at
least one unexecuted preceding task element, they can be
described by the existential quantifier (5). Note that “input”
is the super property of the required_by and demanded_by
properties of the base ontology (2).

input � required_by& input � demanded_by (2)

Data ≡ (Document � Dataobject � Attribute) (3)

Dataunavailable ≡ Data � Placeholder (4)

Taskunexecutable ≡ Taskunexecuted �
(∃input−.Dataunavailable �
∃precedes−.Taskunexecuted) (5)

A task can be considered executable if it belongs to the
class of unexecuted task and not to the class of unexecutable
tasks. Since we do not introduce closure axioms, the exe-
cutable tasks are derived with a SPARQL-query (6). In fact,
the query’s execution and interpretation can be seen as a sub-
set of the knowledge-graph, which follows the rules of the
closed-world assumption (CWA).

Taskexecutable(abbreviatedasT _exec)

SELECT ?T_exec WHERE {

?T_exec rdf:type :unexecuted

MINUS { ?T_exec rdf:type :unexecutable }}

(6)

It is important to note that the query is a simplification, and
besides the definition of prefixes, it must be assured that the
underlying system delivers the inferencing results as part of
SPARQL-queries.

Although this alternative description of executable tasks
appears rather cumbersome, it suits very well for practical
use since intersections of classes can easily be queried from
knowledge bases.

While the executability relies on the related input data
element, the following section focuses on the existence of
output data elements to assess a task execution’s relevance.

5.2 Inferring Execution Relevance

In data-centric business processmodeling, multiple tasks can
lead to the same output data element. For example, one could
either make a call or write an email to acquire the same data.
When one makes a call and gets the data, writing an email
becomes irrelevant. Alternatively, if the call did not produce
the desired data, one could choose to write an email addition-
ally. Hence, unexecuted tasks whose execution would lead
to at least one unknown data element or precede at least one
unexecuted task are relevant for execution. The class of such
relevant tasks is expressed with formula (8). Note that “out-
put” is the super property of the “delivers” and “produces”
properties of the base ontology (7). Based on our previous
findings, we can also describe combinations like executable
relevant tasks with the help of another SPARQL-query (9).

output � delivers output � produces (7)

Taskrelevant ≡ Taskunexecuted �
(∃output .Dataunavailable

�∃precedes.Taskunexecuted) (8)

Taskexecutable_relevant (abbreviatedasT _ex_re)

SELECT ?T_ex_re WHERE {

?T_ex_re rdf:type :unexecuted .

?T_ex_re rdf:type :relevant .

MINUS { ?T_ex_re rdf:type :unexecutable }} (9)

An inference mechanism based on the classes above con-
siders tasks as relevant for execution if their output is
unavailable. However, it does not consider that execution can
get obsolete when the data it would generate are not required
to achieve a process goal or milestone since it is only con-
sidering the next step. An extension of the example above
elucidates this: Let us assume writing an email or making a
call is done to acquire data that are needed by another task to
produce a document. The document thereby marks a process
goal. If the document already exists, the tasks of writing an
email ormaking a call are obsolete because the goal forwhich
they would be executed has already been achieved. Since
KiPs are goal oriented as they evolve through the achieve-
ment of intermediate goals or milestones [10], they would
benefit if the inference mechanism considers goal relevance.

5.3 Inferring Goal Relevance

In the following, we regard goals as individuals of tasks and
data elements assigned to the class Process Goal, denoting
a particular purpose for executing or generating them. The
exceptionality in this case is that inferring goal relevance
results in iterating backward through the chain of process ele-
ments, while all process elements (abbreviated as PE) (10)
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10 E. Rietzke et al..

Fig. 6 Determining execution states and relevance states

marked as placeholders (not only Tasks) become goal rel-
evant until the first element without a placeholder marking
occurs. Conversely, all elements not included in the loop are
not goal relevant since their overall contribution does not
support achieving an unfulfilled Process Goal.

In order for the inference mechanism to behave as
sketched above, we need a starting point, which obviously is
an individual marked as Process Goal. This becomes our first
goal relevant (abbreviated in formulas with goalRel) process
element as defined in formula (11). The interdependency and
self-reference forces a reasoner to recursively infer goal rel-
evance (12), which behaves similar to a loop to determine
goal-relevance for all contributing process elements. Since
loops need a defined termination, any executed task or avail-
able data element (not marked as Placeholder) leads to an
end of the recursive reasoning procedure.

PE ≡ Data � Task (10)

PEgoalRel ≡ Placeholder � ProcessGoal (11)

PEgoalRel ≡ Placeholder � (

∃required_by.PEgoalRel

� ∃delivers.PEgoalRel

� ∃demanded_by.PEgoalRel

� ∃produces.PEgoalRel

� ∃provides.PEgoalRel

� ∃precedes.PEgoalRel) (12)

For a better understanding, Fig. 6 shows an abstract exam-
ple that presents all deduced facts (the Execution States and
the Relevance States) as annotations below each process ele-
ment. According to formula 11, task T3 is defined as Process
Goal. As a result of the introduced inferencing capabilities,
the tasks T1–T6 are categorized into the states unexecutable,
executable and relevant. The dataobject DO1 is the only
meaningful element, while all other process elements are still
Placeholders. T1, T2, and T5 are the only tasks that could

Fig. 7 Logic tasks extension of the base ontology

deliver something beneficial, so they are seen as relevant
while especially T4 is irrelevant as DO1 is already acquired.
T4 and T5 are the only executable tasks in this example,
as required input data is available. Since T3 is defined as
Process Goal, it becomes the first goal-relevant element.
Following the orange arrows backward through the graph,
all process elements also become goal relevant (DO2, T2,
T5, T1, Doc1) until we reach the meaningful element DO1.
As a result, DO1 and T4 are not stated as goal-relevant as
well as DO3 and T6, which do not contribute to the only pro-
cess goal T3. Considering the outcome, the best choice for a
process progress is executing T5, which is executable, rele-
vant, and goal-relevant or acquiring Doc1 as a goal-relevant
and still missing document.

5.4 Logic Task and Condition States

The introduced mechanisms are sufficient to control the
executability of tasks based on the availability of process ele-
ments. However, so far we cannot control the executability
of tasks by considering a specific process element value. As
an example, we can express that we need a meaningful (not
Placeholder) attribute self-affected of the dataobject Person
to proceed, but we cannot express whether the value of the
Attribute self-affected has to be true or false. For this purpose,
we expand our base ontology by Logic Tasks (Condition,
And,Or, Not) and Condition States (satisfied, unsatisfied) as
shown in Fig. 7.
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Fig. 8 Example with a condition element

Most important is the new Condition type, which has a
data property value, exactly the same data property, which is
also used for Attributes to store its item value. As a precon-
dition, a condition element must have precisely one attribute
element as input. If the attribute element is a Placeholder or
both elements’ value is not equal, the condition is considered
unsatisfied. If the value of both elements is equal, the con-
dition is satisfied. Since this exceeds the expressiveness of
OWL2, it requires the use of the Semantic Web Rule Lan-
guage (SWRL), which leads us to the following definitions.

Condition(?con) ∧ required_by(?att, ?con) ∧
Placeholder(?att) → unsatis f ied(?con) (13)

Condition(?con) ∧ value(?con, ?v1) ∧
required_by(?att, ?con) ∧ value(?att, ?v2) ∧

unequal(?v1, ?v2) → unsatis f ied(?con) (14)

Condition(?con) ∧ value(?con, ?v1) ∧
required_by(?att, ?con) ∧ value(?att, ?v2) ∧

equal(?v1, ?v2) → satis f ied(?con) (15)

Unlike other process element types, a condition element is
never explicitly stated asPlaceholder. As soon as a condition
element is inferred as unsatisfied, it automatically becomes a
Placeholder assignment since the concept unsatisfied is also
a subclass of thePlaceholder concept (Fig. 7). Thanks to this,
a condition element fulfills all requirements to support the
previously introduced mechanisms. The other Logic Tasks
(And, Or, Not) serve the purpose to combine several input
elements to expand the general expressiveness of process
definitions and are discussed in more detail in Sect. 5.6.

Figure 8 illustrates the use of a condition element with the
self-affected person example. The diamond-shaped element
C is a condition element, which requires an input attribute
with the same value. If the values are different 1©, the con-
dition is unsatisfied and the condition element also becomes
a Placeholder state. If the values are equal 2©, the condi-
tion is satisfied and the condition element is considered as
executed. Through the already known precedes relation, the

subsequent task can become executable (solid line) or unexe-
cutable (dashed line). The setGoal relation will be explained
in the following section.

Note: For simplification, we explain the mechanism on an
untyped data-property and do not distinguish between differ-
ent value types (like string, int, date), which is reflected by an
abstract comparison expression (unequal, equal) in formula
(14, 15).

5.5 Inferring Process Goals

Until now,wehave seen process goals as an explicit statement
by assigning a process element to the according concept. This
could be the result of a predefined process goal, stated in the
process definition PD and copied to a process instance PI
during instantiation.Alternatively, anyprocess element could
be manually defined by a user as a process goal during the
process execution.Besides this,we can imagine that a process
element is deduced as a process goal through the inference
engine. Actually, we want to be able to design a process
situation in which a specific process element also becomes a
process goal. This expands our Metamodel’s expressiveness
and serves the specific demands of KiPs for a flexible and
goal-oriented process execution [10].

Therefore, we can make use of the condition element, we
introduced in chapter 5.4, together with the setGoal relation
(Fig. 2) to realize this new functionality, which is defined by
formula 16.

Condition(?con) ∧ satis f ied(?con)∧
setGoal(?con, ?target) → ProcessGoal(?target)

(16)

Figure 8 presents an example of inferring a Process Goal.
As soon as conditionC is satisfied, the task “Is person respon-
sive” becomes executable and aProcessGoal, expressedwith
a yellow background color. To better understand, the mech-
anism to infer process goals is explained in Sect. 6 by an
additional example.

5.6 Limitations and Challenges by the OWA

The implementation of an inferencemechanism to realize the
presented functionality has some specific requirements. At
first, all formulas have to be decidable under the open-world
assumption (OWA). This is the case since the formulas (1–
5; 7–8; 10–12) are valid expressions within the OWL 2 DL
language. With the help of the introduced SPARQL-queries
(6, 9), the OWA’s limitations can be overcome through the
interpretation of the query under the CWA perspective. The
formulas (13–16) are valid SWRL DL-safe rules, which
means that all presented rules are part of the decidable frag-
ment of the first-order predicate logic.
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From an academic perspective, this is all we need to know,
but we want to utilize our findings from a practical perspec-
tive. Fortunately, we can process all the rules with the Pellet
reasoner, which in our tests seems to be the only open-source
reasoner that is capable of dealing with the inferencing loop
caused by the goal relevance (12). It is worth noting that the
performance of the Pellet reasoner is not suited for use in a
real application at this stage, since the reasoner always infers
the complete knowledge store and cannot be restricted to the
required subset, which is used to define a specific process. A
possible solution could be an incremental reasoning proce-
dure as evaluated by Reyes-Alvarez et al. [21].

However, there is still a challenge with the Logic Tasks
(And, Or, Not) as shown in Fig. 7 we have to deal with.
For a better understanding, we explain the problem with the
Or Logic-Task. The desired behavior of an Or process ele-
ment is that if at least one of maybe many input elements
is meaningful (not Placeholder), the Or element should be
meaningful as well. This means we need to assign the Or
element to the class Placeholder if ALL input elements are
Placeholder as well. Due to the OWA, this condition can-
not be modeled without introducing an appropriate closure.
The only way to do this is to define several OR-subclasses,
all with a fixed number of input elements, to close OWA’s
assumption that there could be further (yet unstated) input
elements. In combination with specialized SWRL rules for
each of these OR subclasses, the Placeholder assignment
could technically be inferred.As a result, the process designer
would have to choose the right OR-process element, depend-
ing on the number of input elements, which again seems to
be an impractical way. Basically, this is the same challenge
as inferencing the executability of tasks with one differ-
ence. While the SPARQL queries defined by formula (6)
and (9) only have to deliver an output, the classification of
a Logic Task as Placeholder is required for further inferenc-
ing steps. As a result, the assessment of Logic Tasks must
be manifested in the knowledge store. This could be realized
with the help of SPARQL-queries or with the help of dedi-
cated agents, the option we choose. Such agents analyze the
input elements and set or remove the according placeholder-
assignment explicitly to realize the Logic Tasks’ intended
behavior.

5.7 Process ContributionThrough Expert Knowledge

The discussed examples are following a process definition
based on the concepts, relations, OWL2-, and SWRL-rules
given by the base ontology. As an extension to this method-
ology, generalized expert knowledge, embedded by further
rules in the domain ontology, can be used to influence a pro-
cess execution. Such a rule could define a certain process
element as a process goal as soon as some specific precondi-
tions are fulfilled.

Process(?proc) ∧ CUC(?cuc) ∧ conscious(?con)∧
contains(?proc, ?cuc) ∧ contains(?proc, ?con)∧
valueStr(?con, ?val) ∧ swrlb : matches(?val, “no′′)
→ ProcessGoal(?cuc)

(17)

Rule (17) serves as a simplified example of how expert
knowledge can be expressed in a domain ontology. This rule
is focused on the process element ”Cause: Unconscious”
(CUC) and defines any instance of this type as a process
goal, as soon as the same process contains an attribute ”con-
scious” with a value equals to ”no.” Once the CUC element
is deduced as a Process Goal, the already established mech-
anisms are used to transfer the GoalRelevance (rule 11, 12)
to any related process element. In other words, as soon as
the ECP comes to conclusion that we have an unconscious
person, the process adapts to a new and additional process
goal to find out more about the cause. This example will be
picked up in the following section andwill be explainedmore
in detail.

6 Demonstration on Use Cases

The proposed inference mechanism allows using ontologies
to classify unexecuted tasks in data-driven processes in the
dimensions executability and relevance while pursuing goals
and identifying skippable tasks. Since relevance is deter-
mined by the state of output data elements and process goals,
users can choose tasks for execution based on the extent to
which their execution would contribute to process progress.

The capabilities of the inference mechanism are
shown in the following using Protégé 5.2.03 and the ontology
reasoner Pellet4 The demonstration uses an extended excerpt
from the emergency call procedure, as shown in Fig. 9. For a
better reading, the attributes are depicted as rectangles con-
nected to the belonging dataobject, including the value of
their data-property strValue. Moreover, only the most impor-
tant relations are shown to provide a reduced view of this
example’s most relevant aspects.

The upper part of Fig. 9 represents a process instance that
is partially executed (blue-filled elements). The lower part
of the figure shows the corresponding individuals within the
knowledge store with its assigned classes. Additionally, the
deduced classes are pointed out, including a reference to the
utilized rules.

3 Protégé is a free-to-use Stanford University ontology editor, available
online at: https://protege.stanford.edu.
4 Pellet is released underDual Licensing and available online at: https://
github.com/stardog-union/pellet.
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Fig. 9 Example with view to the inference mechanism

The executed part of the PI delivers the facts that the
caller is not self-affected and the affected person is not
conscious. Without any direct relation to element 1© and
with the help of rule (17), the expert knowledge embed-
ded in the domain ontology allows inferring this element
as a ProcessGoal which makes it goal relevant as well. With
the help of the defined OWL2- and SWRL-rules, the states
of further process elements can be deduced. The system
task 2© so far is unexecutable but becomes goal-relevant
since its contribution would support another goal-relevant
element 1©. The same counts for the attribute diabetes 3©
which is also identified as goal-relevant. All tasks which can
deliver attribute 3© become goal relevant as well and with
a view to task 4©, even more states (executable and rele-
vant) can be deduced. Opposed to this, the attribute pain
5© is not input for 2© and thus is not seen as goal-relevant.
Accordingly, the task 6© does not become goal-relevant
either and is just identified as executable, since it can just
deliver something unknown 5© which is not goal relevant.
This small example presents a case where, according to
the given data, a process adapts to a new process goal,
which results in the recalculation of relevance for all process
elements.

Fig. 10 Possible statements about executability and their use

7 Possible Process Support

The proposed inference mechanism allows inferring whether
a task is executable and classifies its execution in terms of
relevance. Figure 10 shows a coordinate system that summa-
rizes which statements along the dimensions of executability
and relevance are possible. Each field in the coordinate sys-
tem represents a possible statement and the heading of each
field describes what we believe this statement could be used
to support KiPs.

Decision-makings in KiPs should be supported by, e. g.,
recommendations, choices, pieces of advice or contextual
information, and knowledge workers should be free to either
follow proposed actions or not [1,10,27]. It is obvious that
executable and goal-relevant tasks are ideal for knowledge
workers to reach their goals as soon as possible while skip-
ping obsolete tasks. Statements about executable tasks on
all relevance levels can be seen as choices for knowledge
workers to either follow the inferred ideal execution path
to achieve goals or deviate from it. If they choose to devi-
ate, the inference mechanism provides them with pieces of
advice about which executions could be beneficial if they
want to generate data. The advantage of using a reasoner
to determine the executability of tasks becomes particularly
clear if tasks are unexecutable. Reasoners can then explain
why they inferred that tasks are unexecutable, generating lists
of unavailable data elements. Since those explanations rely
on the triple syntax, they could easily be transformed into
human language and displayed as contextual information.
Knowledge workers can figure out how they will generate
these data elements to turn unexecutable tasks into executable
ones.This could lead them to adhocplanned tasks that exploit
existing data elements. For example, a known email address
of some person could be used to obtain amissing date of birth
attribute of the same person by writing an email and ask-
ing for it. Such activities are implicitly contained in process
instances and can only be performed when cross-relations
between data elements are detected. Such cross-relationships
could probably be discovered autonomously by agents, tak-
ing explanations of reasoners as an input. Furthermore, they
could find appropriate subworkflows to generate unavail-
able data elements and advise knowledge workers to start
them. This would lead to the ability to make implicit activi-
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ties explicit and allow proactive support to turn unexecutable
tasks into executables as soon as possible.

8 Evaluation

In alignment with the presented examples, the ODD-BP
approach was also experimentally evaluated in the domain
of emergency call centers. Section 3 introduces the applica-
tion scenario, which also defines the environment to evaluate
our new ODD-BP approach’s contributions.

8.1 Goal and Hypothesis

As stated before, the introduced approach aims to support
KiPs by enabling a flexible process execution. With its
permanent process planning procedure, the execution of a
process instance is not limited to a predefined path. The
reasoner can deduce process relevant states of each process
element at each process step, which leads to our first hypoth-
esis.

– H1: The ODD-BP approach supports a flexible process
execution that results in higher variability of executed
tasks than a standard workflow engine.

Additionally, we expand the semantic process definition with
expert knowledge. This expert knowledge is used to adapt a
process instance tomeet important process goals by inferring
the relevance of process elements according to the process
instance’s currently available data.As a result, AI inferencing
can play an active role during the process execution and can
support users in decision-making processes, which leads to
our second hypothesis.

– H2: The ODD-BP approach leads to an improved quality
of process outcome compared with a standard workflow
engine.

8.2 Preparation of the Experiment

To evaluate the new approach, the presented methodology
was realized in a prototype with a client-server architecture.
The server is realized as a stateless REST-API web-server
written in Java and handles the knowledge store’s access
using the Apache Jena framework. Furthermore, the server
takes advantage of the Pellet reasoner to deduce the process
state and relevance for any process element according to the
introduced rules. The described gap, caused by the OWA,
is closed by implementing a built-in agent, which manually
checks and classifies all logic elements regarding their exe-
cutability. The client side is realized as awebpage,which uses

the D3-framework to visualize the process and data graph in
any up-to-date browser.

The setup of the system has been done in cooperation with
the ECC in the German city Ludwigshafen (Rhine)—called
”Integrierte Leitstelle Ludwigshafen” (ILS-LU). In the first
step, the ILS-LU’s existing ECG was used as a template to
design an initial process definition for the evaluation. In a
second step, the domain ontology was enriched with medi-
cal expert knowledge from the ILS-LU medical head. Next,
the process definition was enriched by smart process ele-
ments (SPE), regularly connected to other process elements.
The purpose of the SPEs is to enhance the ECG and to sug-
gest essential questions, to acquire further and valuable data
to achieve a better process result. SPEs can be influenced
through the underlying expert knowledge, reflected by rules
in the domain ontology, which define these elements as pro-
cess goals if the available data reaches a predefined state.
Finally, the SPEs can also reach a specific state based on fur-
ther rules and thus reflect a medical assessment, according
to the given data.

To compare the process execution and the process results
between the established base ECG (bECG) and the new
enhanced ECG (eECG), both variants can be performed by
the prototypical system. In fact, both variants were realized
within a single process definition, using a data element to
activate the enhanced capabilities of the eECG in specific
cases, described in 8.4. While the bECG offered the same
process execution as the original model, the eECG offered
an extended and through the SPEs enriched process execu-
tion. Each process instance’s execution was recorded with
all details along with each process interaction (each process
step), including the IDs of the process elements, delivered
data values, and a precise time stamp.

8.3 System Demonstration

A process instance to guide an emergency call looks in its
initial stage as shown at the left box in Fig. 11. All elements
with low relevance are hidden and only the most essential
process elements are visible. In this Emergency Call Process
(ECP), the question tasks (rectangles with speech bubbles)
to run the anamnesis are located on the left side. The data
(circles) acquired by these questions are collected in themid-
dle, while the disposition options (rectangles with flash) are
shown on the right side. They can be executed at any time,
independently from the overall state or progress.

The right box of Fig. 11 shows the ECP in a stage where
the bECG usually would end and the adaption through an
SPE kicks in. 1© are the question-tasks following the bECG.
2© and 3© are the adaptations proposed by the expert sys-
tem to acquire additional details. The yellow element 2© is
the SPE, which represents an aspect, that should be exam-
ined more in detail. This element is deduced as a process
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Fig. 11 Emergency Call Process (ECP)—initial and final stage

goal through the underlying domain ontology, considering
the current situation’s known facts.

Following the same principles as described in Sect. 6, a
system task, which remains hidden in the process visual-
ization, has a predefined set of required (yellow highlighted)
attributes 4©. They all become goal-relevant, which in the fol-
lowing is transferred to the question-tasks 3© that can deliver
these attributes. Based on these inference steps, the elements
2© and 3© are now more relevant for the process execution
and this results in the presentation and recommendation of
the formally hidden elements. If a required attribute is already
known, the related question is less relevant and will remain
hidden to reduce the requested process steps and simplify
the overall process visualization. Once all required attributes
4© are available, the expert system will be utilized to deliver
a system assessment 5© to support and guide the operator
who has the freedom to follow or deviate with his own final
assessment. Based on the final assessment, specific emer-
gency services 6© will be recommended for disposition.

8.4 Experimental Setup

In order to set up the experiment with the operators from
ILS-LU,we prepared three real-worldEC-cases. For this pur-
pose, the medical expert chose common but complex cases
(A, B, C), each with a different underlying story and with
different possible disposition results. Each of the three cases
with their own background stories can be handled with a dif-
ferent combination of 8 available emergency services. The
medical head of the evaluation partner defined the optimal
combination of the eight services for each case. Depending
on the level of collected information about each case, the
operator was expected to decide on a different set of emer-
gency services (a hotline, an ambulance, a rescue vehicle, an
emergency doctor, a rescue helicopter, firefighters, 2 specific
pieces of advice). All 3 cases have in common that the dis-

position of the emergency resources may differ with the help
of the eECG compared to state-of-the-art bECG. They have
also in common that the additional questions result from the
situational knowledge, and the domain ontologywith its inte-
grated medical expert knowledge is used to adapt the eECG
accordingly.

• Case A deals with a situation where someone finds an
unconscious person. With the eECG, the operator should
be supported in figuring out the reason for the uncon-
sciousness. Within the story, the reason is CO poisoning,
which leads to sending out the firefighters aside to the
rescue workers.

• Case B raises the assumption of a potential heart attack.
With the eECG, the operator should collect indications
that the symptoms are caused by a back problem, which
leads to redirection to a medical hotline.

• In Case C, a man was hurt in a car accident. While the
story starts with a harmless description of the situation,
the eECG should support the operator in asking questions
to unveil some serious conditions, which leads to sending
out an emergency doctor.

The introduced prototypical system and the threemodeled
cases (A, B, C) build our experimental setup. The three cases
were executed as regular emergency calls with professional
operators from the evaluation partner ILS-LU, following a
predefined fixed story. The operators were only using the
prototypical system and each case was performed as a single
process instance.

To compare the process execution and the process results
between the bECG and eECG, both variants had to be per-
formed for all 3 cases. As a result, each operator executed
one case following the established bECG and the subsequent
two cases following the new eECG. To obtain results for
both variants for all three cases, the order of the cases A,
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B, C was mixed between different participating operators.
This way, we collected the data that defines the baseline for
the established bECG and the data to measure the expected
improvements with the eECG.

– To examine the validity of H1, each process step of the
process instances is used to examine the different process
executions variability.

– To examine the validity of H2, the dispositions between
different process executions are used to compare the qual-
ity of the process outcome.

Within one week, the experiment was performed with 21
professional emergency operators of the ILS-LU. We had 16
male and 5 female operators with professional experience
between 0 and 28 years (average 9). Within approx. 45 min-
utes, each operator got a short introduction on using the new
user interface and performed the three prepared cases (A, B,
C). This results in 63 performed and recorded ECP execu-
tions. Since the three cases were performed in mixed order,
the cases are presentedwith a letter (case) and number (order)
like A1 in the following.

8.5 Experimental Results and Analysis of H1

Besides the fact that flexibility is often described as a signif-
icant capability for KiPs, we could not find any established
methodology to quantify flexibility for a process. Especially
with a view to the ODD-BP approach, we cannot calculate
one single number for a whole process since a process is not
predefined classically but results from a permanent process
planning procedure. Alternatively, we can think about flex-
ibility (Flex) as the number of execution options (ExOpts),
which are offered at one specific process step (S).

While flexibility expresses the number of execution-
options for a process step, we also need to define a terminol-
ogy to express the number of the utilization of such flexibility
over a set of process executions. For this purpose, we use the
term variability (Var) to express the intensity in which the
users have taken advantage of the offered flexibility. Var(S)
has a range between 1, no variations occurred, and Flex(S)
as maximum, when all execution options were used equally
over a set of executed processes. With these definitions in
mind, we define the following formula:

Var S =
|ExOpts(S)|∑

i=1

numOccur(ExOpti , S)

maxOccur(S)
(18)

Formula 18 defines the average variability of a certain
process step Var S over a set of process executions.

Fig. 12 Measured average variability Var(S) for each process step S

– |ExOpts(S)| returns the number of different execution-
options performed at a certain process step S.

– ExOpti represents one specific execution option.
– numOccur(ExOpti , S) returns the number of execu-

tions of an ExOpt at a certain process step S.
– maxOccur(S) returns the number of the most frequent
performed ExOpt for a process step S.

Figure 12 presents the measured average variability for
all process steps and all cases. Since A1, B1, and C1 were
executed according to the established bECG, no flexibility
was offered and thus, the measured variability is exactly 1.
In the experiments where the cases were executed with the
eECG(A2,A3,B2,B3,C2,C3), the operators took advantage
of the offered flexibility to a certain degree that results in
the measured average variability. It is worth noting that the
initial steps (1–9 for case A and 1–11 for case B and C)
offered some flexibility in the eECG, but the operators in the
majority followed their well-trained path. After these initial
steps, the bECG offered no further process support, while in
the eECG, the SPEs appeared. Since the SPEswere unknown
to the operators, they had no pre-trained path to follow. As a
result, the offered flexibility turned into a higher measurable
variability.
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Fig. 13 Process outcome—quality of disposition

The evaluation of the recorded process instances veri-
fies H1 and confirms that the ODD-BP approach supports
a flexible process execution compared with the state-of-the-
art approach.

8.6 Experimental Results and Analysis of H2

As stated in Sect. 8.4, each case (A, B, C) has its own optimal
set of 8 possible emergency services.We calculated the qual-
ity of the process outcome by comparing each case’s selected
emergency services with the optimal service set. Each align-
ment counts with 1, while any misalignment counts with 0.
Added up, a perfect service disposition always has a qual-
ity of the outcome of 8, while any lower value indicates an
increasing distance to the optimal result.

Figure 13 presents the measured quality of outcome for
each of the three cases (A, B, C). Each bar’s width (x-axis)
indicates how many process instances of a particular type
reached a specific quality level (y-axis). Overall, the cases
performed at first (A1, B1, C1—blue bars) following the
bECG, often reached a less optimal result than the cases (A2,
A3, B2, B3, C2, C3). This second group of cases used the
eECGwith the support of adapted process goals and the guid-
ance of the SPEs and thus reached more often a higher rated
process result.

The evaluation of the ranked process outcome supports
the second hypothesis H2.

9 Conclusion

This paper describes an approach that combines the process
metamodel with domain-relevant knowledge and data about
process definitions and situational facts of process instances.
As a result, all knowledge that somehow influences a process
execution is semantically integrated into one unified knowl-
edge base. We have shown that the approach allows us to
infer the executability of tasks and the relevance of process
elements utilizing OWL2 and SWRL rules. Thus, a typical
workflow engine is not required and can be replaced by a rea-

soner. Limitations caused by the OWA can be overcome with
SPARQL-queries and specialized agents and are subject to
further research. As a confirmation of its name, the ODD-BP
approach is driven by data and by an ontology.

The new approach was evaluated in an emergency call
center, where 21 operators used an enhanced emergency call
guideline to execute 63 simulated emergency calls. In this
use case, the evaluation verifies a flexible process execution
while operating data driven by considering the evolving state
of process knowledge. Additionally, we can confirm that the
process results’ quality canbe significantly improved through
an AI contribution based on an expert system embedded into
the domain ontology.

With our ongoing evaluation of the presented use case,
we will examine further capabilities of ODD-BP like its
adaptability to deal with the emergent, non-repeatable, and
unpredictable characteristics of such KiPs. Besides these
more functional aspects, the user’s acceptance of such an
AI-supported process execution is essential, especially when
the amount of knowledge in the embedded expert system
increases and the behavior appears unpredictable to the user.
An ontology-driven approach like ODD-BP offers the base
to explain its behavior (XAI), which can be utilized to gain
user acceptance, an aspect we also intend to address with our
future work.
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