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Fig. 1. Left: System overview. The cumulative fatigue reward Rp is calculated using the target load (TL) and is added to the environment rewards Rg. TL is the

current torque used. Middle: Environments. Right: Phase-portraits.

Modern deep reinforcement learning (RL) methods allow simulated charac-
ters to learn complex skills such as locomotion from scratch. To generate
realistic and smooth movements, domain-specific knowledge, such as mo-
tion capture data, finite state machines or morphology-specific attributes
are needed to guide the motion generation algorithms. Here we investigate
biomechanical fatigue to improve symmetry and periodicity of the generated
locomotion movements compared to methods found in previous literature.
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1 INTRODUCTION

It is a long standing task in computer animation to make characters
walk on their own. In this context, Deep Reinfocement Learning
(DRL) has become a promising method for automatic generation of
movement controls for interactive, physics-based characters. How-
ever, in many cases the resulting motions are still not perceived
as natural [Schulman et al. 2017]. A common approach to mitigate
this is to use motion capture or animation data [Bergamin et al.
2019; Peng et al. 2018, 2021; Won et al. 2020]. Nevertheless, such
approaches are limited to characters and movements to which data
is readily available. Furthermore, obtaining qualitatively good data
is oftentimes expensive, and many biomechanical constrains that
are implicit in captured motions are not preserved during editing
and retargeting — which is often required when data is limited.
Another method for improving motion quality is to optimize for
movement characteristics that shape the motion such as symmetric
gait properties [Abdolhosseini et al. 2019; Yu et al. 2018] or minimal
energy consumption and task goals. While such methods overcome
the need of motion capture data, the absence of biomechanical con-
straints still may lead to unwanted behaviour and unnatural torque
patterns. Another group of methods that have emerged come from
bio-mechanical literature, which include musculoskeletal models
and other forms of biological constraints. Previous works [Geijten-
beek et al. 2013; Lee et al. 2014; Wang et al. 2012] in this direction
have explored biomimetic muscles and tendons to simulate a va-
riety of human and animal motions. However, such muscle-based
methods are usually computationally expensive, especially under
a reinforcement learning framework [Kidzinski et al. 2018]. In this
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research we work towards developing a cumulative fatigue reward,
akin to [Cheema et al. 2020], based on biomechanical literature
to account for a computationally efficient way to include motion
constraints that are implicit in articulated figures driven by muscu-
lotendon units, in the context of locomotion. To improve on quality
we further incorporate movement characteristics, such as gait sym-
metry [Abdolhosseini et al. 2019; Yu et al. 2018].

2 PROPOSED METHOD

Previous work in computer animation, robotics and standard RL
[Peng et al. 2018; Yu et al. 2018] uses instantaneous squared joint
torques as a simple measurement to minimize the effort of a given
task. However, such a measure is not very biologically accurate as
it does not take the duration of the given task into account and the
increasing amount of perceived fatigue the longer a task is sustained.
We therefore propose a reward built on cumulative fatigue based on
biomechanical literature [Xia and Frey Law 2008] to mitigate this
discrepancy. An overview of our proposed system can be seen in Fig.
1 (left), where the target load (TL) in torque is used to compute the
cumulative fatigue reward Rr, which is added to the environment
reward(s) Rg. For the Fatigue Model the Three-Compartment Model
(3CC) by [Xia and Frey Law 2008] is used. The model overview
can be seen in Fig. 2. Resting motor units (Mg) become activate
units (M4) during contraction. Active motor units become fatigued
(MF) over time with the rate of F. When stopping contraction, they
become rested units with the rate of R. The behaviour of the 3CC-
model can be seen in Fig. 3. The rate of these motor units is computed
by % of Maximum Voluntary Contraction (%MVC), which can be the
percentage of maximum torque or forced used. Since locomotion
can be sustained for a long time, we assume that the target load
(TL) is always TL < % (see Fig. 3 right) and normalize the fatigue
function in such a way. We then use the fatigued motor units (2 per
DoF for each opposing direction) as a reward by negating their rate.
We further add the mirror symmetry loss function first proposed by
[Yu et al. 2018] into our model for improved movement quality by

assuring a symmetric gait.
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Fig. 2. Three Compartment Controller Model

3 EXPERIMENTAL RESULTS

We test our method on the Walker2D, Walker3D and Stepper environ-
ments by [Abdolhosseini et al. 2019] (Fig. 1 middle) by comparing
phase-portraits to investigate gait symmetry. Our results can be
seen in Fig. 1 (right). We compare our method against [Abdolhos-
seini et al. 2019; Yu et al. 2018] who only use the symmetry loss,
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Fig. 3. Behavior of the 3CC model at (a) 50% Maximum Voluntary Contrac-
tion (MVC) and at (b) 13% MVC < %‘ Note how the full load cannot be
held any longer after 20s in (a) (yellow dashed line), while the load in (b)
can be held indefinitely.

and against [Schulman et al. 2017] who does neither and found ours
to produce more symmetric and qualitatively better results.
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