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A B S T R A C T

Background and Objectives: One principal impediment in successful deployment of Artificial Intel-

ligence (AI)-based Computer-Aided Diagnosis (CAD) systems in everyday clinical workflow is their

lack of transparent decision making. Although commonly used eXplainable AI (XAI) methods pro-

vide some insight into these largely opaque algorithms, yet such explanations are usually convoluted

and not readily comprehensible except by highly trained AI experts. The explanation of decisions

regarding the malignancy of skin lesions from dermoscopic images demands particular clarity, as the

underlying medical problem definition is itself ambiguous. This work presents and evaluates ExAID

(Explainable AI for Dermatology), a novel XAI framework for biomedical image analysis, providing

multi-modal concept-based explanations consisting of easy-to-understand textual explanations sup-

plemented by visual maps justifying the predictions.

Methods: Our framework relies on Concept Activation Vectors (CAVs) to map human-

understandable concepts to those learnt by an arbitrary Deep Learning based algorithm in its latent

space, and Concept Localisation Maps (CLMs) to highlight concepts in the input space. This identi-

fication of relevant concepts is then used to construct fine-grained textual explanations supplemented

by concept-wise location information to provide comprehensive and coherent multi-modal explana-

tions. All decision-related information is comprehensively presented in a diagnostic interface for use

in clinical routines. Moreover, the framework includes an educational mode providing dataset-level

explanation statistics and tools for data and model exploration to aid medical research and education

processes.

Results: Through rigorous quantitative and qualitative evaluation of our framework on a range of

dermoscopic image datasets such as SkinL2, Derm7pt, PH2 and ISIC, we show the utility of multi-

modal explanations for CAD-assisted scenarios even in case of wrong disease predictions.

Conclusions: We present a new multi-modal explanation framework for biomedical image analysis on

the example use-case of Melanoma classification from dermoscopic images and evaluate its utility on

a row of datasets. Since comprehensible explanation is one of the cornerstones of any CAD system, we

believe that ExAID will provide dermatologists an effective screening tool that they both understand

and trust. Moreover, ExAID will be the basis for similar applications in other biomedical imaging

fields.

1. Introduction

In 2016, Ribeiro et al. [36] reported an image classi-

fier that was able to inadvertently classify correctly but for

wrong reasons. They found out that their wolf versus dog

classifier learnt an undesirable correlation between wolf and

background snow and, therefore, would classify a given im-

age as wolf if there was snow in the background. If it were

not due to authors’ vigilance in finding explanations to the

model’s predictions, it would have been difficult to properly

evaluate trustworthiness of this image classifier. Although

this was an inconsequential example of spurious correlations

learnt from a large amount of data, wrong decisions in safety
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critical domains resulting from such misunderstandings can

potentially have grave impact on human lives. The applica-

tion of Artificial Intelligence (AI) methods on medical tasks

has become ubiquitous in the last decade [1, 24, 39]. There-

fore, hesitation of medical practitioners in trusting diagnos-

tic predictions of any automated Computer-Aided Diagno-

sis (CAD) system is understandable since such systems nor-

mally provide little to no cognisance regarding their deci-

sion making process [28]. In addition to evaluating the rea-

sons behind a model’s predictions, explanation methods can

also help in revealing new diagnostic criteria [21] previously

unknown to medical practitioners. The requirement for a

CAD to be explainable arose with early applications of AI

in healthcare and became more relevant with recent ethical

and legal standards [3, 11]. The consequent increase in re-

search activity in the domain of eXplainable AI (XAI) also

reflects the growing interest of the community to provide ex-
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planations for CAD systems [3].

XAI methods for the image-domain come in a variety

of forms and provide explanations using a range of modali-

ties such as feature-relevance visualisations [36, 15, 43, 6],

textual explanations [20, 46], or quantitative relevance mea-

sures for abstract concepts [25, 7]. They differ not only in the

way they are presented to their users but also in their deriva-

tion, resulting in varying levels of insight provided regarding

the decision making of the AI. Furthermore, these methods

can be either ante-hoc (e.g. ProtoPNet [6], MDNet [46]),

with a decision making process that is explainable by design,

or post-hoc, providing explanations for an AI model after

construction and training of the model using model-specific

(e.g. Score-CAM [43], TCAV [25]) or model-agnostic (e.g.

LIME [36], EP [15]) techniques [34]. Most methods pro-

vide explanations on a local scale (individual data samples)

while some aim at approximating explanations on a global

scale (holistic model behaviour). However, model explana-

tions given by single XAI methods are usually not sufficient

to provide plausible and easy-to-understand decision justifi-

cation to end users.

Melanoma is the most dangerous skin cancer, leading

to the majority of skin-related deaths in the US while ac-

counting for only 1% of skin cancers diagnosed [37]. Reg-

ular preventive examinations are conducted by physicians

through naked-eye observation or dermoscopic imaging. In

dermoscopic pattern recognition, experts look for dermo-

scopic criteria and apply manual algorithms like the ABCD-

rule [35] or 7-point checklist [2] to judge the malignancy of

a lesion. Currently, AI-based dermatology focuses mostly

on the analysis of dermoscopic images [31, 41, 32]. How-

ever, first approaches towards analysing raw, clinical images

have been proposed as well [5]. The majority of explanation

approaches for dermoscopic skin lesion analysis rely on the

application of visual XAI through saliency maps [44, 45] or

attention mechanisms [17, 4]. Another common approach

is the detection and localisation of dermoscopic criteria as

used by doctors in manual classification. Coppola et al. [10],

for instance, train a multi-task CNN predicting dermoscopic

features with information sharing between different subnet-

works to increase interpretability. In [27], Lucieri et al. ap-

ply the concept-based TCAV method to predict dermoscopic

criteria from a pre-trained network to explain its predictions.

Dermoscocpic criteria localisation has been been approached

by combining TCAV with perturbation-based saliency meth-

ods in [29] and through explicit segmentation of criteria in

[38]. For a complete survey on XAI in Dermatology the

reader is referred to [30].

Several frameworks for AI-based medical imaging have

been proposed in recent years [16, 38, 19, 22]. While some

lack proper and comprehensible explainability, others do not

provide an easy-to-use interface for human-machine inter-

action, impeding the utilisation in diagnostic routines or re-

search. Moreover, first commercial platforms for biomedical

AI exist [40, 12, 13, 18], claiming to provide explanations for

their algorithms.

In this paper we present a novel XAI framework, namely

Explainable Artificial Intelligence for Dermatology (ExAID)1

which is able to provide easy-to-understand textual, visual

and conceptual explanations for automated analysis of der-

moscopic images of malignant and benign skin lesions, while

being adaptable to any other biomedical imaging use case.

ExAID is built upon two of our previous works: [27], which

verifies that deep learning models are able to learn and utilise

similar disease-related concepts as described by dermatolo-

gists and employed by them during manual analysis of skin

images; and [29], which localises these concepts, learnt and

embedded in the latent space of the model, on the original

image. ExAID extends the previously proposed explana-

tion modalities by introducing concept-based textual expla-

nations while integrating all modalities in a unified, intuitive

framework to further enhance intelligibility of AI’s decision

making in a diagnostic setting. In addition to clinical diag-

nosis functionalities, it provides in-depth analysis tools for

medical research and education. Therefore, the framework

offers two distinct interfaces for clinical diagnosis and re-

search purposes, laying the foundation for understandable

and transparent integration of AI in medical workflows. In

contrast to existing XAI frameworks, ExAID emphasises in-

tuitive intelligibility for end users by conveying multi-modal

decision justification centred around standard concepts com-

monly used in the dermatology domain.

The rest of the paper is organised as follows.

Section 2 covers details of the datasets used for training

and evaluation as well as an introduction to the framework

and its components. Experimental setups for the generation

of explanations and their evaluation are described in Sec-

tion 3. Finally, Section 4 discusses the presented results and

elaborates on current limitations of this particular use case

and framework state, before the work is concluded in Sec-

tion 5.

2. Methods

2.1. Datasets
ExAID contains two types of classifiers: Disease-level

classifiers for lesion diagnosis and concept-level classifiers

for detection of dermatological concepts in a given image.

To train these two classifiers, it requires datasets with two

types of labels, namely disease labels (Melanoma and Ne-

vus) and concept annotations (presence or absence of der-

moscopic concepts).

2.1.1. Datasets for Disease-level Classification

The training set for disease-level classification consists

of Melanoma and Nevi images taken from ISIC 2019 as well

as PH2 [33] and derm7pt [23] datasets. ISIC 2019 dataset

is a public collection of 25,331 images of different prove-

nance divided into eight different classes. This dataset is a

coalition of three datasets, HAM10000 [42], BCN20000 [9],

and MSK [8]. Since the common denominator of ISIC2019,

PH2, and derm7pt datasets are Melanoma and Nevi classes,

we assembled a subset of the three datasets consisting of im-

1A demo will be soon available under https://exaid.kl.dfki.de/.
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Table 1

Distribution of data in training, validation and test splits for
disease-level classification.

Split Dataset
Lesions

Melanoma Nevi Total

Train

ISIC2019 1250 2894 4144
Derm7pt 158 368 526
PH2 26 102 128

Validate

ISIC2019 313 723 1036
Derm7pt 40 92 132
PH2 6 26 32

Test

ISIC2019 391 904 1295
Derm7pt 50 115 165
PH2 8 32 40

Total

ISIC2019 1954 4521 6475
Derm7pt 248 575 823
PH2 40 160 200

Table 2

Distribution of data in training, validation and test splits for
concept-level classification with D7PH2 dataset.

Split Dataset
Lesions

Melanoma Nevi Total

Train
Derm7pt 158 368 526
PH2 26 102 128

Validate
Derm7pt 40 92 132
PH2 6 26 32

Test
Derm7pt 50 115 165
PH2 8 32 40

Total
Derm7pt 248 575 823
PH2 40 160 200

ages from these two classes only, and manually cleansed the

dataset for duplicates and samples with low quality (e.g. sys-

tematic artefacts), resulting in a total of 6,475 images. As

PH2 and derm7pt will be used for training the concept-level

classifiers, a custom dataset split is assembled from a combi-

nation of all three stratified datasets to avoid covariate shifts

between disease-level and concept-level training stages. The

distribution of images in training, validation and test sets for

disease-level classification is given in Table 1. The gener-

alisability of the model is moreover evaluated on a range

of other datasets including 2016 and 2017 ISIC challenge

datasets and SKINL2 [14] dataset as shown in Table 3.

2.1.2. Datasets for Concept-level Classification

Training of concept classifiers requires annotations re-

garding presence or absence of specific dermoscopic con-

cepts. These annotations are not usually available with der-

moscopic image datasets, which limits our selection of train-

ing and evaluation datasets primarily to PH2 and derm7pt.

The PH2 dataset is a small dataset of only 200 dermoscopic

images containing 80 common nevi, 80 atypical nevi, and

40 melanoma. For each image, the dataset provides colour

and lesion segmentation masks and extensive, well-curated

annotations with respect to presence or absence of various

concepts. The derm7pt dataset contains 1,011 clinical and

dermoscopic images divided into four diagnosis classes and

one miscellaneous class. Two of these diagnosis classes,

Melanoma and Nevi are further divided into 13 sub-classes.

From this dataset, 823 images belonging to only Melanoma

and Nevi samples have been considered. The combination

of derm7pt and PH2 used for concept classification is subse-

quently referred to as D7PH2. Table 2 shows the distribution

of images used in the concept-level classification task. ISIC

2016 and 2017 challenge datasets are moreover used for the

evaluation of concept classifier generalisability. However,

both datasets only include annotations of two dermoscopic

concepts each, namely Pigment Networks and Streaks as well

as Dots & Globules and Streaks, respectively.

2.2. ExAID Framework
At its core, ExAID is a generic toolbox for human-centred

post-hoc explanations able to explain arbitrary DL-based mod-

els even beyond applications in dermatology. In addition to

the DL model to be explained, its computational foundation

consists of three basic components, namely Concept Iden-

tification, Concept Localisation and Decision Explanation

modules as depicted in Fig. 1.

2.2.1. Concept Identifier

The Concept Identifier maps disease-related dermatolog-

ical concepts to their corresponding representation learnt by

the DL-based model in its latent space using Concept Acti-

vation Vectors [25] (CAVs). For each pre-defined concept a

linear binary classifier is trained on the detection of said con-

cept from the model’s activation space, resulting in a CAV

which represents the main concept direction in this latent

space. CAV training can be executed on arbitrary model lay-

ers, automatically selecting each concept’s best performing

activations for inference.

Once trained, the concept classifiers allow to predict pres-

ence or absence of single concepts on unseen images, based

on the model’s latent activation patterns. CAVs addition-

ally allow for computation of the global TCAV metric, esti-

mating a concept’s overall contribution to the prediction of

a certain target class. Further details on the Concept Iden-

tifier module and the CAV training procedure can be found

in [27].

2.2.2. Concept Localiser

Concept Localisation Maps (CLMs) [29] extend CAVs

by localising regions pertinent to a learned concept in the

latent space of a trained image classifier. They provide qual-

itative and quantitative assurance of the model’s ability to

learn the right interpretation of a concept by indicating the

exact spatial location that contributed to a concept prediction

and moreover enable the visualisation of other, potentially

abstract concepts.

Given an input image x ∈ X, a linear concept clas-

sifier gC generates a concept score for a concept C based

on the trained model’s latent vector fl(x; �) at layer l with

optimal weights �. The Concept Localiser implements the

perturbation-based concept localisation technique from [29]

to generate spatial importance values based on variation of

Lucieri et al.: Preprint submitted to Elsevier Page 3 of 12
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Figure 1: ExAID Framework architecture. The schematic drawing shows the in-, output and flow of information through ExAID
as well as the relationship between its components.

the concept scores gC (fl(x; �)). The resulting map mCl cor-

responds to the input region contributing most to conceptC .

Instead of occlusion by means of black patches, in this work

a radial Gaussian mask is applied to a blurred image patch

to mitigate distribution shift in perturbed images stemming

from sharp edges and colour gradients in the perturbed im-

ages.

2.2.3. Decision Explainer

The Decision Explainer receives all concept prediction

scores for a given image from the Concept Identifier. A rule-

base is derived from a calibration dataset and applied to the

translation of single concept scores into a textual decision

explanation grounded in human-understandable conceptual

evidence. An explanation sentence conveys graded infor-

mation about the conceptual evidence detected by a given

model, as well as its influence to the given prediction. An

example for a textual explanation along with the correspond-

ing input image is given in Fig. 2.

The explanations derived from concept detection are com-

posed into coherent and easy-to-understandexplanation texts.

An explanation sentence is constructed based on concept

scores and directional derivatives computed during concept

detection under discrimination between absence, moderate

evidence and strong evidence of concepts to reflect the fuzzy

nature of concepts’ appearance. Manifestation of a concept

is decided by means of thresholds derived from the con-

cept training data. This is achieved by first scaling the un-

bound concept prediction using a two-sided normalisation

scheme to obtain a centred probability of concept presence.

Thresholds are then derived by maximising False Positive

Rate (FPR) and True Positive Rate (TPR) among all positive

predictions on the training dataset for moderate and strong

evidence thresholds, respectively. The directional deriva-

tives of the predicted class along the individual CAV is used

to indicate positive or negative influence of concept to the

prediction. Conceptual evidence is listed after the key word

“despite” in case of negative class influence to signalise con-

traindication (see Figure 5).

2.3. Operation Modes
ExAID offers two complementary operation modes that

are meant for different use cases. A diagnostic mode pro-

vides functionality meant to support dermatologists during

clinical examination of patient’s skin lesions. For research

and education purposes, ExAID offers an educational mode

including a collection of tools for holistic analysis of the deep

model’s behaviour as well as the collected case data.

2.3.1. Diagnostic Mode

The majority of a dermatologist’s clinical routine con-

sists of visual examination of patients’ skin lesions to reach a

decision regarding further investigation of a potentially ma-

lignant lesion. Provided enough evidence for malignancy,

Lucieri et al.: Preprint submitted to Elsevier Page 4 of 12
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Figure 2: Diagnostic Mode of ExAID can be used as Decision Support System in routine clinical workflow.

the suspicious tissue may be excised under local anaesthe-

sia. Physicians with considerable experience in dermoscopy

develop an intuition which enables them to promptly reach

to a conclusion while novices initially need to pay greater

attention to the assessment of a particular skin lesion. This

is among other things owed to the disarray of dermoscopic

terms and concepts and their usage in different schools of

thought. Having developed a routine and diagnostic intuition

not only bears the risk of subjective bias in a decision, but it

might also lead to negligence in the identification of impor-

tant diagnostic details, which is furthermore aggravated by

emotional stress and time constraints.

ExAID’s diagnostic mode aims at mediating subjectivity

by offering a supplement to the experienced physician’s first

impressions, serving as a second opinion which stimulates

physician’s thought and breaks the routine. Through this ad-

ditional information it is made sure that cues vital for suc-

cessful identification of malignant conditions are not over-

seen during manual examination. The user interface of the

diagnostic mode is presented in Fig 2. While allowing physi-

cians to examine the dermoscopic image manually, an ini-

tial diagnosis suggestion is provided, supported by concept-

based textual, quantitative and visual explanations. Through

its neutral design, the interface assures that users are not bi-

ased towards the proposed diagnosis but are free to recon-

struct the AI’s decision process by considering and validat-

ing biomarker scores along with their optional localisations

provided in the form of CLMs.

2.3.2. Educational Mode

Explanation of classifiers’ decisions has further utility

beyond mere information and guidance of the algorithm’s

users. It is of central importance for the validation of indi-

vidual automated decisions, verification of plausibility of a

model’s global generalisation behaviour and can addition-

ally aid the decryption of unintelligible, decision relevant

concepts learned by the AI. With its educational mode, as

presented in Fig. 3, ExAID offers an extensive toolbox for

the investigation of model behaviour and data distribution.

Dataset-level model behaviour analysis is enabled through

a combination of class-wise performance evaluation metrics

and concept-wise global explanation metrics in combination

with tools for facilitated overview of individual decision out-

comes and explanations. Some of the most salient interac-

tive features of ExAID framework are introduced below.

Filtering The filtering option allows to filter arbitrary sub-

sets of samples by metadata such as age, concept presence,

concept prediction or correct prediction. An adaptive data

distribution plot helps to quickly identify important statisti-

cal characteristics related to biomarker presence as well as

certain failure modes of the model.

Highlighting A highlighting feature allows to spotlight cer-

tain useful properties of samples to further facilitate review

of model behaviour and data. This feature allows the high-

lighting of not only binary attributes such as the correct tar-

get class prediction, but also more complex relationships such

as the presence of classes or concepts in the annotations as

Lucieri et al.: Preprint submitted to Elsevier Page 5 of 12
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Figure 3: Educational Mode of ExAID can help in training of resident dermatologists by allowing them to explore many of its
interactive features.

well as the class and concept prediction by the model. Com-

plex highlighting is always supported by visual cues indicat-

ing the accordance of attribute prediction with expert anno-

tations.

Localisation In addition to individual localisation of con-

cepts in data samples, ExAID allows to visualise concept lo-

calisation simultaneously for all samples of a dataset. This

allows for quick examination of a model’s concept locali-

sation behaviour, aiding the validation of system behaviour

and identification of potential systematic errors in dataset or

model by revealing patterns in the localisation process.

Latent Inspection Examination of the model’s latent space

structure gives further insight into the disentanglement of

data representations and potential biases captured by the model

parameters. A latent view functionality based on Tensor-

board’s projector2 allows to intuitively examine the latent

distribution of data samples by means of dimensionality re-

duction techniques.

3. Results

3.1. Classifier Training & Evaluation
To demonstrate the utility of the proposed framework, a

deep network for binary classification of Melanoma and Nevi

from dermoscopic skin lesion images is trained. Among var-

ious architecture, learning rate and optimiser combinations3,

2https://projector.tensorflow.org/
3Experimentation included VGG16, ResNet, DenseNet, NASNet,

SEResNeXt architectures with Adam, SGD and RMSprop optimisers us-

ing learning rates ranging from 1e-3 to 1e-4

Table 3

Performance evaluation of lesion classifier on various datasets.

Datasets N
Accuracy Precision Recall

AUC
(%) (%) (%)

Derm7pt (Test) 165 83.6 81.7 78.0 0.85
PH2 (Test) 40 100.0 100.0 100.0 1.00
ISIC2019 (Test) 1295 88.9 88.2 84.9 0.91
ISIC2017 (Test) 510 78.4 68.5 62.3 0.70
ISIC2016 (Test) 379 89.7 83.7 84.0 0.92
SkinL2 55 90.9 89.9 90.7 0.99

best results have been achieved using SEResNeXt architec-

ture with RMSprop optimiser and a learning rate of 1e-4

trained for 100 epochs. Training images were augmented by

random horizontal and vertical flip as well as random crop-

ping to 85% of the image size, resulting in input images of

size 224 × 224.

Evaluation on a variety of datasets is presented in Ta-

ble 3. It can be observed that the lesion classifier achieved

AUCs above 0.85 for five out of six datasets with two datasets

scoring almost perfectly. ISIC2017 achieved a slightly lower

AUC with 0.70, which is also reflected in lower Precision

and Recall.

3.2. Explanation Training & Evaluation
For the explanation of the final DL-based classifier’s de-

cisions, the procedure outlined in [27] is followed. To this

end, concept annotated samples from D7PH2 have been utilised

to assure generalisation while learning CAVs. In each run,

the data is internally split into folds for concept training and

validation under stratification of both concept and disease la-

Lucieri et al.: Preprint submitted to Elsevier Page 6 of 12
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(a) Streaks. (b) Pigment Network.

Figure 4: Positive and negative examples of visual explanations provided by ExAID along with the corresponding samples and
ground truth concept masks.

Table 4

Performance evaluation of concept classifiers on various
datasets. Results are given as Macro Average F1-Scores to
account for class imbalance.

Datasets Streaks
Pigment Dots & Regr. Blue-Whit.

Netw. Glob. Struct. Veils

D7PH2 (Test) 70.91 78.74 63.14 59.41 71.66
ISIC2017 51.75 50.37 - - -
ISIC2016 56.53 - 53.03 - -

bels. For each concept, linear concept classifiers are trained

for 200 runs using stochastic gradient descent with early stop-

ping.

3.2.1. Concept Detection

The final CAV for a concept is chosen based on the av-

erage concept direction over all runs. Due to concept anno-

tation requirements, concept detection performance is eval-

uated only on ISIC2016 and ISIC2017 datasets as well as

D7PH2 test set. Due to the lack of annotation, the two ISIC

datasets allowed evaluation of only two concepts each. Ta-

ble 4 presents Macro Average F1-Scores for concept detec-

tion.

For D7PH2 test set, all concept detectors were able to

discriminate concepts better than random guessing, with Pig-

ment Network achieving the best F1-Score of 78.74%. Same

holds for the evaluation on ISIC2016 for concepts Streaks

and Dots & Globules. Similar to the results for lesion clas-

sification on ISIC2017, concept detectors failed to classify

Streaks and Pigment Networks, yielding F1-Scores of 51.75%

and 50.37%, respectively.

3.2.2. Visual Explanation

Fair quantitative evaluation of a network’s CLMs for skin

lesions poses a number of difficulties including the selec-

tion of a suitable binarization scheme, subjectivity of con-

cept annotations as well as lack of representative metrics for

fuzzy localisation tasks. Proper binarization is specially dif-

ficult as it depends on the size of a particular Region of In-

terest (ROI), its significance to the prediction score as well

as further noise stemming from the saliency method used.

Moreover, evaluation is limited by the availability of anno-

tated concept segmentation maps. ISIC2016 and ISIC2017

challenge datasets each provide concept segmentation maps

for two concepts which are used to provide a qualitative as-

sessment of the trained model’s concept localisation ability.

CLMs were binarized using variable percentiles, manually

chosen based on the size of the respective ROI in a specific

image. Figure 4 shows examples of the model’s concept lo-

calisation ability for classes Streaks and Pigment Network

using an adaptation of the method proposed in [29]. Inter-

pretation of the results is provided in Section 4.3.

3.2.3. Textual Explanation

Quantitative evaluation of textual explanation results is

covered by the performance evaluation for concept detection

presented in table 4. Figure 5 shows qualitative examples of

images along with correct and incorrect textual explanations

provided by ExAID. These results are further discussed in

Section 4.4.

4. Discussion

The results presented in Section 3 show that ExAID is

indeed able to produce theoretically correct explanations for

a classifier’s decisions. In the following, previous insights

are discussed and qualitative results are analysed in detail.

Finally, a detailed discussion about the limitation and future

work is provided.

4.1. Lesion Classification
Lesion-level results clearly show the strong generalisa-

tion ability of the model, even on unseen datasets as SKINL2

consisting of 20 Melanomas and 35 Nevi of high quality.

Poor performance on the ISIC2017 test dataset can be ex-

plained by the large fraction of artefacts present in the im-

ages, which have been intentionally left out of the training

Lucieri et al.: Preprint submitted to Elsevier Page 7 of 12
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(a) Correct concept prediction. (b) Incorrect concept prediction.

Figure 5: Positive and negative examples of textual explanations provided by ExAID along with the corresponding skin lesion
samples. The ground truth class of the sample is given below the image.

procedure (through manual cleansing) to restrict the use case

to a realistic, controlled diagnostic environment based on

an image acquisition procedure specifically built for AI pro-

cessing.

4.2. Concept Detection
In contrast to the concept detection performance on the

D7PH2 test set, concept generalisation to unseen datasets

such as ISIC2017 and ISIC2016 is worse. This is most likely

a consequence of diverging annotation standards between

derm7pt and PH2 datasets used for CAV training and other

datasets. The distribution shift partially caused by artefacts

present in the challenge test sets aggravates this divergence

further. Moreover, results show the superiority of coarse-

grained biomarkers such as Streaks, Pigment Networks and

Blue-Whitish Veils over more fine-grained ones such as Dots

& Globules.

4.3. Visual Explanation
Whereas in some cases, CLM localisation aligned very

well with the concept annotation, most of the time CLMs

highlighted slightly different regions. However, these high-

lights often depict areas that could plausibly count as con-

cept regions, as can be seen in the second row of Figure 4.

Qualitative evaluation confirmed the quantitative results and

showed that the network performed better localising con-

cepts Streaks and Pigment Networks as compared to the more

fine-grained Dots & Globules concept. Scattered spots in

CLMs outside the lesion regions highlights noise problems

inherent in perturbation-based CLM computation and the

dependence on a proper binarization scheme.

4.4. Textual Explanation
Examples in Figure 5a depict instances with correct con-

cept predictions, which showcase the simplicity and intel-

ligibility of the generated explanations. Explanation texts

briefly reflect the most important criteria necessary for ex-

perts to understand the network’s decision. Interestingly, it

appeared that although correct concept predictions where

given, the network sometimes misclassified the underlying

disease as seen in the third row of Figure 5a. This could be

due to the presentation of an ambiguous borderline case or

a result of wrong ground truth annotation for either lesion

class or concepts. However, the explanation explicitly ex-

poses Streaks, Irregular Dots & Globules and Blue-Whitish

Veil as contraindications for the prediction of Nevus. In a

clinical setting, such contraindication would raise the sus-

picion of a user, possibly initiating a more thorough review

of the case. This particularly emphasises the utility of such

a system, as a correct explanation will allow physicians to

scrutinise a given prediction, not solely relying on an auto-

mated, opaque categorical output value.

Figure 5b on the contrary shows failure cases where the

network confused different visual cues for concepts. While

Irregular Dots & Globules have been correctly detected in

the top right image, the middle right image contains white

blobs which might have been confused as Dots & Globules

by the model. The bottom right case shows a Blue Nevus

which has been confused by the network as a Melanoma

showing signs of Blue-Whitish Veil although containing Reg-

ular Dots & Globules. It is notable that samples with incor-

rect concept predictions already expose a certain uncertainty

by exhibiting moderate concept detections more frequently

as compared to the samples from Figure 5a as well as their

prevalence of contraindications. This clearly shows that ir-

respective of the model used for prediction, ExAID is able
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to provide well-founded justifications which help to express

model uncertainty, encouraging closer examination of rare

and edge cases.

4.5. Limitations
This proof-of-principle study primarily focuses on the

current state of the proposed framework with its comprehen-

sible user interface, conveying textual, visual and concep-

tual explanations for trustworthy computer-aided decision

support in medicine. The development of the framework is

an ongoing Co-Design process which holistically includes a

wide variety of stakeholders with different needs to assure

not only practical but also ethical aspects early on [47]. Al-

though, concept classification, localisation and textual ex-

planation abilities of ExAID are remarkable given the fact

that the DL model has not explicitly been trained on those

tasks, some challenges must be first solved before an appli-

cation in real clinical settings becomes feasible.

Current public datasets often suffer from the low sam-

ple quality attributable to a lack of process standardisation4,

missing histological diagnosis confirmation and subjective

annotation. Together with the low number of overall avail-

able images, in particular the ones with detailed concept an-

notation, this results in significant shift of data distributions

between different datasets, constituting the major reason for

sub-optimal generalisation of the proposed concept classi-

fiers to other datasets.

ExAID’s concept localisation ability yet suffers from lim-

itations due to the perturbation-based nature of saliency map

generation which results in noisy heatmaps and high sensi-

tivity to hyperparameters, specially in case of varying sizes

of biomarkers. Future work applying optimisation-based per-

turbation methods for concept localisation will mitigate those

issues, resulting in more flexible and robust heatmaps. Tex-

tual explanations are generated based on concept predictions

as well as directional derivatives as used in TCAV scores.

Lacking a meaningful scaling of gradients, only the direction

and not the magnitude of a concept’s influence is currently

used to improve the explanation text. Incorporation of more

robust concept influence measures could add another level of

details to the rule-base, making the explanations more differ-

entiated and rendering the system even more useful in prac-

tice.

Quantitative evaluation of concept detection or localisa-

tion is still limited due to lack of similarly and sufficiently

annotated data from other sources. To solve this issue, an

agreed upon definition and consensual annotation of a large

number of representative images is required, which will re-

flect in higher quality explanations. Moreover, evaluation

of CLMs is aggravated by noise artefacts emerging during

binarisation and lack of definite measures for fuzzy localisa-

tion tasks. A qualitative evaluation in real-world setting by

medical experts is of extreme value for the evaluation of the

explanations’ utility to the diagnostic workflow and will be

4Different camera setups, operators and techniques like polarised and

non-polarised dermoscopy resulting in varying image quality, lighting,

alignment and artefacts.

realised as soon as may be.

The influence of subjectivity not only reflects in the data

annotations, but also in the general uncertainty surrounding

the field of dermoscopy. Despite first attempts towards stan-

dardisation of dermoscopic terminologies and concepts [26],

no general consensus has yet been broadly established among

physicians. Thus, a variety of diagnostic schools prevail and

interpretation of terms and concepts is still largely depending

on the education, preference and experience of the individual

physician. This work focuses on the 7-point checklist crite-

ria [2] as well as further dermoscopic concepts from [33],

due to the public availability of annotated data. The com-

mitment to a specific set of concepts prior to the decision

of a standard consensus might hamper the acceptance of the

framework by physicians accustomed to different methods

and the mixture of different schools and interpretations of

concepts bears the risk of contrasting labelling. Productive

deployment of such a system requires diligent assessment

through medical practitioners in real-world environments,

providing their valuable feedback to evaluate and improve

such a system. Prior to performing clinical trials, the system

should be fed with carefully selected data properly represent-

ing a set of meaningful and unambiguously defined dermo-

scopic concepts as agreed by a committee of dermatology

experts.

5. Conclusion

Since the advent of modern DL-based systems and their

industrious applications in medical domains, there have been

remarkable strides in the explanation of these complex sys-

tems that, in some cases, already led to correction and veri-

fication of AI as well as disclosure of new potential diagnos-

tic criteria. However, sensible and comprehensible explana-

tions is still one of the greatest challenges related to medical

image diagnosis, which should be addressed by concerted

efforts from AI researchers, medical practitioners and regu-

latory authorities.

With ExAID, this article presents a framework which

consolidates and builds upon our previous works on detec-

tion of human-defined concepts for skin lesion diagnosis in

DL model’s latent space and their localisation on the input

image to provide intelligible textual explanation of model’s

predictions. We showed that, despite severe limitation in

terms of data and annotation availability, the system already

provides useful insights into DL classifier’s decision mak-

ing, even in case of wrong predictions. When properly ad-

dressing the current limitations, this framework will not only

play a useful assistive role in reliable, efficient and objective

screening of melanoma, which is one of the most serious skin

cancers, but also help train new dermatologists efficiently

and effectively.

The generality of the framework allows its adaptation to

various other image-based domains like radiology or histol-

ogy. In view of future deployment of the system in clini-

cal practice, its under-lying general purpose DL architecture

will be further specialised to the respective domain, includ-
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ing improvements to the processing pipeline such as lesion

segmentation and hair removal.
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