On the role of feature and signal selection for terrain learning in planetary exploration robots

Angelo Ugenti¹, Fabio Vulpi^{1,2}, Raúl Dominguez³, Florian Cordes³, Annalisa Milella², Giulio Reina¹

¹Department of Mechanics, Mathematics and Management, Polytechnic of Bari, Via Orabona 4,
 70125, Bari, Italy {angelo.ugenti, giulio.reina}@poliba.it

²Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National
 Research Council, via G. Amendola 122/O, 70126 Bari, Italy, {fabio.vulpi,
 annalisa.milella}@stiima.cnr.it

11 ³DFKI RIC, Robert-Hooke-Str. 1, Bremen, 28359 Germany, {raul.dominguez, 12 florian.cordes}@dfki.de

14 Abstract

15 Increasing the terrain awareness of planetary exploration rovers is one key technology for future space

16 robotics to successfully accomplish long-distance and long-duration missions. In contrast to most of

17 the existing algorithms that use visual or depth data for terrain classification, the approach presented

18 in this work tackles the problem using proprioceptive sensing, e.g., vibration or force measurements.

19 The underlying assumption is that these signals, being directly modulated by the terrain properties,

are well descriptive of a given surface. Therefore, terrain signature can be inferred via learning algorithms that are trained on either the signals directly or a signal-derived feature set.

Following the latter approach, first, a physics-based signal augmentation process is presented that

aims at maximizing the information content. Then, a feature selection algorithm based on a scoring

system and an iterative search is developed to decrease the computational cost while preserving high classification accuracy. The resulting most informative feature subspace can be used to train a Support Vector Machine (SVM) classifier. For comparison, the time histories of the selected proprioceptive signals are used to train a deep Convolutional Neural Network (CNN).

27 proprioceptive signals are used to train a deep Convolutional Neural Network (CNN).
 28 Results obtained from real experiments using the SherpaTT rover confirm that proprioceptive sensing

is effective in predicting terrain type with an accuracy higher than 90% for both algorithms in

30 generalization tasks. When the two learning approaches are contrasted in extrapolation problems, e.g.

31 predicting observations acquired at previously unseen velocity or terrain, CNN outperforms the

32 standard SVM. Furthermore, CNN holds the additional advantage of learning features automatically

33 from signal spectrograms, reducing the need of a-priori knowledge at the expense of higher

- 34 computational efforts.
- 35

Keywords: Planetary exploration robots, vehicle-terrain mechanics, proprioceptive sensing, feature
 selection, learning methods, deep learning, terrain classification.

38 I. Introduction

39 This work has been developed as part of the research activity for the project ADE (Autonomous 40 DEcision making in very long traverses) (Ocón et al., 2020), funded by the European Union's Horizon 2020 research and innovation programme. The main goal of ADE is to develop and test a rover system 41 42 capable to achieve autonomous long-range navigation in hostile environments, while guaranteeing 43 consistent data collection. The mobility range of planetary exploration rovers has been up to date limited to few hundreds of meters per sol day (ESA, Robotic Exploration of Mars, 2021; JPL, Mars 44 Exploration Rovers, 2021; Nasa, Mars 2020, 2020). From a purely technical point of view, this 45 limitation has both hardware and software sources. The former and most important is the finite power 46 47 storage of rover locomotion system, that is fixed given a robot design. The latter is reduced skills in 48 terms of autonomous decision-making, that can be improved by artificial intelligence. Improving

49 these capabilities extends the autonomy of the rover across multiple geographical areas and therefore

- 50 expands opportunities of data collection.
- 51 Directly related to long-range navigation is also the safety issue. The importance of sensing hazards
- 52 was highlighted, for example, in April 2005, when the Mars exploration rover Opportunity became
- 53 embedded in a dune of loosely packed drift material (Cowen, 2005). The terrain geometry as

54 reconstructed from a distance via stereovision did not indicate any hazard. However, the high

- 55 compressibility of the loose drift material caused the wheels to sink deeply into the surface. The 56 combination of the drift's low internal friction and the motion resistance due to sinkage prevented the
- 57 rover from producing sufficient thrust to travel up the slope. Opportunity's progress was delayed for
- 58 more than a month while engineers worked to find a way out. A similar embedding event led to the
- 59 end of operations for the twin rover Spirit in 2010.
- 60 Therefore, future generations of planetary exploration rovers will require key technologies suitable 61 to overcome these limitations, performing long traverses while guaranteeing fast reaction, mission 62 reliability and safety, and optimal exploitation of the robot's resources within reasonable costs.
- In this context, the ability to sense and characterize the incoming terrain would represent an enabling
- technology towards long-term autonomy and potential hazard avoidance (Nampoothiri et al., 2021).
- The objective of this paper is to demonstrate the potential of terrain classification via learning algorithms that are trained on proprioceptive features. Here, proprioceptive features refer to statistics

67 that are extracted from the measurement of a physical variable pertaining to the robot-environment 68 interaction, e.g., wheel velocity, forces, body linear and angular accelerations.

- 69 The hypothesis is that, being modulated by the terrain properties, these features are a rich source of
- information from which the specific terrain type can be inferred via learning approaches (Brooks &
- 71 Iagnemma, 2005; Gonzalez et al., 2019).
- 72

One of the contributions of this research refers to the selection of the most informative subset of proprioceptive features derived from the sensor suite integrated onboard of planetary exploration rovers. A range of aspects is addressed that includes feature extraction, feature ranking, multivariate

- feature selection and efficient feature space construction. While feature selection has been largely investigated in other domains e.g., image processing, text processing and gene expression analysis
- investigated in other domains e.g., image processing, text processing and gene expression analysis
 (Guyon & Elisseeff, 2003), it remains largely under investigated for the terrain classification problem
- of planetary exploration rovers, and rough-terrain robots, in general. In contrast to other areas of
- applications where datasets with tens or hundreds of thousands of variables are available forming a
- statistically significant population, data acquired by a rover driving over natural terrain present many
- challenges such as sparseness, presence of unknown and uncontrolled disturbances, dependence on
- 83 the specific time and site of the acquisition.
- 84 The objectives pursued by feature selection include improvement in the prediction performance,
- 85 reduction in training time, computational burden and memory usage of the algorithm and facilitation
- 86 of understanding the underlying process that generated the data.
- 87
- The other contribution of this research is the adoption of a suitable learning algorithm to infer the type of terrain from the selected feature set. This algorithm will have to look for patterns in the data to construct the mapping from the proprioceptive measurements to the corresponding terrain type.
- to construct the mapping from the proprioceptive measurements to the corresponding terrain type.
 The well-known Support Vector Machine (SVM) is contrasted with a deep convolutional neural
- 91 The well-known Support Vector Machine (SVM) is contrasted with a deep convolutional neural 92 network (CNN). While SVM requires in input hand-crafted features that are selected during a pre-
- 92 network (CNN). while SVM requires in input hand-crafted features that are selected during a pre-93 processing stage, CNN uses learned features that are extracted automatically form the signal time
- 94 histories.
- 95 An important goal of the proposed approach is to improve the performance of terrain classifiers for
- 96 two use cases: generalization and extrapolation. Generalization is defined as the performance of an
- algorithm on previously unseen observations (test set) that is extracted from the same distribution as
- 98 the data in the training set, e.g., the same test run. The error measured on the test set corresponds to
- both the on-line performance of the model and the operating conditions included in the training set.

- 100 The second use case, extrapolation, is even more challenging since, in general, learning algorithms
- 101 are known to perform poorly outside the training data population. We compare the performance of
- 102 the two terrain classifiers (SVM and CNN) for both generalization and extrapolation.
- 103

104 After related research is surveyed in Section II, highlighting the novel aspects of this paper, Section

105 III presents SherpaTT, the rover used as test bed, and the learning algorithms implemented in this

106 work. Next, signal augmentation, feature extraction and selection problems are tackled in Section IV.

- 107 The results obtained from the terrain classifiers are presented and discussed in Section V. Conclusions
- 108 wrap up the paper.

109 II. Related Work

Solving terrain-related challenges such as soil identification is an important research area in autonomous robots, alongside trajectory planning, localization and obstacle avoidance (Nampoothiri et al., 2021). The latest developments in terrain classification strategies show that researchers have been focusing on two main categories: visual (or exteroceptive) and visual-independent (or proprioceptive) methods. In both approaches, data collected from sensors are used to train machine or deep learning-based classifiers that enable identification of the traversed terrain.

The sensors used for visual perception include RGB cameras (Tai et al., 2017; Wellhausen et al., 2019), RGB-D cameras (Manduchi et al., 2005), LiDARs (Tai et al., 2017), visual cameras (Otsu et al., 2016) and monocular cameras (Barnes et al., 2017). Although visual-based approaches are more common than proprioceptive-based ones, they have limitations as well. The performance of RGB

119 common than proprioceptive-based ones, they have limitations as well. The performance of RGB 120 cameras is limited by difficult environmental conditions (e.g., low, or direct lighting and surface 121 reflectivity). LiDARs struggle to capture the fine texture of objects and terrains, and they also perform 122 poorly in compromised environment conditions (e.g., in presence of dust, hail and smog). 123 Furthermore, vision-based rovers are not able to navigate in unfamiliar surroundings because 124 observing distant terrain patches does not provide information about the mechanical properties that 125 directly impact on vehicle mobility.

126 Therefore, researchers have investigated methods that use proprioceptive sensing for terrain 127 classification. In this case, the sensors used to perceive the incoming terrain include IMU (Inertial 128 Measurement Unit), force-torque sensors, microphones, and wheel encoders. As an example, 129 Hishikawa et al. (Ishikawa et al., 2021) used microphones to support an RGB camera in dark 130 conditions. Brooks and Iagnemma (Brooks & Iagnemma, 2005) measured vibrations via 131 accelerometers, analyzed them in the frequency domain and implemented an online classifier that 132 relies on Principal Component Analysis (PCA) for feature reduction. DuPont et al. (DuPont et al., 133 2008) presented a method based on frequency response and vibration-based transfer function. Giguire 134 and Dudek (Giguere & Dudek, 2011) used a tactile probe combined with accelerometers to account 135 for inertial effects. Dutta and Dasgupta (Dutta & Dasgupta, 2017) pursued a low cost approach using 136 a multi-sensor platform fitted with GPS, IMU and metal detector. A model-based observer grounded

137 in the Cubature Kalman filter was also proposed in (Reina et al., 2020) to predict terrain deformability

- 138 using vertical acceleration measurements.
- 139 The above works based on visual-independent approaches represent a step forward in the direction

of providing a mobile robot with information about the mechanical properties of the terrain. Although

141 they achieved high confidence levels, little effort was spent on feature selection as a mean to reduce 142 the computational burden of the model without penalties in performance. Ultimately, the objective of

- 142 the computational burden of the model without penalties in performance. Ultimately, the objective of 143 researchers that work on robot-terrain interaction is to develop an accurate algorithm that runs online
- while the robot is moving. This algorithm must comply with the limited resources of an autonomous
- 145 vehicle in terms of processing power and memory. A reduction in the number of features used to train
- and test a machine learning classifier would lead to a lighter computational burden in terms of feature
- 147 extraction time, testing time and memory usage. One of the contributions of this paper is to develop

- 148 a feature selection algorithm demonstrating that these benefits can be achieved without compromising
- the accuracy of the model.
- 150 A body of research has been devoted to the feature extraction process, as the quality of the feature
- 151 space directly affects the accuracy of the associated classifier. The feature extraction strategy depends 152 on the machine learning approach chosen for terrain classification. Traditionally, for a supervised
- 153 machine learning algorithm such as SVM, an extraction stage is required where features are hand-
- 154 crafted by experts based on their knowledge in the specific application domain. Attempts have been
- 155 made in various research fields to find effective features, for example in image-processing-related
- applications (Lu & Weng, 2007). However, this approach is not always possible for classifiers and it
- 157 is often practically difficult, for instance when the relationship between input measurements and user-158 defined classes is extremely complex or even completely unknown beforehand. Additionally, features
- that are crafted manually may be not optimal. For this reason, finding more systematic ways to get
- 160 good features has drawn an increasing research interest (Bengio et al., 2013).
- 161 Notable progress has been done recently to find learning techniques that allow models to learn 162 features automatically from data with minimal manual input. Solutions using Deep Neural Networks 163 (NNs) have especially attracted much attention. The effectiveness of deep NNs has been 164 demonstrated in many fields other than image classification, such as audio and natural language 165 processing or transfer learning. The adoption of Recurrent and Convolutional Neural Network was 166 discussed in (Vulpi et al., 2021), in the context of terrain classification using an agricultural robot 167 equipped only with inertial and electrical current sensors. However, although the promising results, 168 it remains challenging to evaluate the effectiveness of learned features contrasted with expert-169 designed ones. The complexity of this comparison resides in the difficulty of determining the 170 descriptive power of hand-crafted features. For this reason, this paper presents a fair comparison 171 between hand-crafted and learned features through a rigid feature scoring and selection process.
- 172 In previous work by the authors (Dimastrogiovanni et al., 2020), a preliminary attempt was presented 173 to select a subset of optimal proprioceptive features to train an SVM-based ground classifier then
- tested over only two terrain types, e.g. rock and sand.
- In this work, several novel additions are made. First, a whole new signal engineering stage is introduced to improve the overall information content. The signal selection strategy is formalized and
- 177 reflected in an explanatory block diagram. Improved robustness has been achieved by increasing the
- 178 number of training repetition for each candidate feature set. Then, the importance of feature selection 179 for terrain classification is shown by comparing a machine learning approach (SVM) with a deep
- for terrain classification is shown by comparing a machine learning approach (SVM) with a deep convolutional neural network (CNN) in terms of model complexity, computational burden, and
- 181 prediction accuracy over a larger terrain set (3 types of terrain against 2 of the previous work).
- Finally, the system is evaluated not only in a standard generalization problem but as well as in two
- 183 more challenging extrapolation contexts that are seldom described in the Literature.

184 III. Materials and Methods

- 185 The first part of this section (III.A) briefly presents the experimental planetary rover used for data 186 gathering, describing the onboard sensor suite and the datasets collected during the field trials for 187 developing terrain classification models. Then, the learning algorithms for terrain classification are 188 presented, providing insights into the theoretical background.
- 189
- 190 III.A. The rover SherpaTT
- 191 The experimental test bed used in the ADE project is the SherpaTT rover (see Figure 1) built by DFKI
- 192 (Cordes et al., 2018). SherpaTT is a hybrid four-wheeled-leg rover, where the wheel-on-leg design
- 193 constitutes an actively articulated suspension system. Flexible metal wheels provide a passive ground 194 adaption on a small scale, while the active suspension fits the wheel positions to larger ground
- 195 irregularities (Cordes & Babu, 2016).

- 196 Each of the four legs of SherpaTT's suspension has five DOF: the rotation of the whole leg about the
- 197 pan axis with respect to the robot body, the two rotations of the inner and outer leg parallelograms,
- 198 the steer and drive angle of the wheel. A unique feature of Sherpa is a 6-axis Force-Torque Sensor
- 199 (FTS) mounted on the flange of each wheel-drive actuator, providing direct measurement of the force
- 200 system exchanged with the ground.
- 201 The rover also features a six degrees of freedom (DOF) manipulation arm. The arm is designed to
- 202 withstand a good portion of the rover's weight to support it during locomotion. However, for the
- 203 experiments described in this article, the arm was not involved in locomotion testing.

204 205 Figure 1. SherpaTT in a sandy trench during the ADE final field tests in spring 2021.

The logging system provides data at a rate of 100 Hz and comprises the following main proprioceptive
 blocks:

- Inertial Measurement Unit (IMU)
- Wheel-mounted 6-axis Load Cell (LC). In this study, we adopt solely the LC mounted on the
 front left wheel.
- Joint Telemetry (JT). Each of the 20 actuated joints of the suspension system delivers telemetry such as supply voltage, supply current, temperatures, PWM duty cycle, position (relative and absolute), and velocity.

The main data set used for this work was generated at the DFKI premises in Bremen, Germany. SherpaTT was remotely controlled to move for approximately 10 m in a straight line over three types of terrain: sand, gravel, and paved ground. This represents a varied dataset with a high traction, low deformability surface (paved ground) at one end, and a surface with low traction and high deformability (sand) on the other end, with gravel in the middle of the two (Figure 2). For each terrain, five runs were repeated in forward and reverse drive, except for gravel for which only four runs are

available. Two different drive speeds of the rover were used, namely 0.1 m/s and 0.15 m/s.

A second data set was generated in a sand mine close to Bremen (please refer again to Figure 1, GPS coordinates (DMS format): 53° 18′ 54.9″ N, 8° 41′ 17.3″ E) during the ADE's final testing in April 2021. This independent data set is used to predict terrain labels for observations outside the training data population. In this last environment, the surface traversed was somewhat like the sand case of the previous settings but the terrain was more compact and wetter. It can be directly observed in Figure 1 how humid sand got matted to the wheels while traversing, unlike in the previous

environments (Figure 2).

Paved ground Low deformability High traction

Gravel

- 228 229 Figure 2. Types of surfaces traversed by SherpaTT during the test and development of the system
- 230
- 231 **III.B.** Learning Algorithms
- 232 Support Vector Machine

233 Support Vector Machine is a well-established machine learning solution for soil classification 234 problems (Bellone et al., 2018; Gonzalez et al., 2019; Reina et al., 2017). This section will present a 235 summary of the theory behind SVM classification. For a detailed description of SVM algorithm 236 please refer to (Hastie et al., 2009) and (Vapnik, 2013). An SVM problem is composed of two stages: 237 training and testing. Given two classes A and B (binary classifier), an input training set S composed 238 of *p* samples and *n* features can be defined as:

$$S = \{ (\mathbf{x}_i, y_i) : \mathbf{x}_i \in \mathbb{R}^n, y_i \in \{-1, 1\}, i = 1, 2, ..., p \}$$

where
$$\begin{cases} y_i = 1 & \text{if } \mathbf{x}_i \in A \\ y_i = -1 & \text{if } \mathbf{x}_i \in B \end{cases}$$
 (1)

High deformability

Low traction

239 x_i are referred as predictors, y_i represents the response variable. The purpose of the linear SVM 240 algorithm is to find a decision function D that allows, in the testing phase, to classify any new sample 241 $x \in \mathbb{R}^n$ according to the sign of D(x). This is done by finding the hyperplane that maximizes its 242 distance to the support vectors (i.e., the predictors closest to the hyperplane), while minimizing the 243 loss due to misclassification. The Lagrangian dual of this optimization problem can be formulated as: 244

$$\max_{\alpha} \sum_{i=1}^{p} \alpha_{i} - \sum_{i=1}^{p} \sum_{j=1}^{p} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}$$
subject to
$$\sum_{i=1}^{l} y_{i} \alpha_{i} = 0 \quad and \quad 0 \le \alpha_{i} \le C$$
(2)

where α_i are Lagrangian multipliers and C is a parameter called box constraint. 245

246 The dominant approach for multi-class applications is to reduce the single problem into multiple 247 binary classification problems (Duan & Keerthi, 2005). One of the most common methods for such 248

reduction is the Error-Correcting Output Codes (ECOC) model (Dietterich & Bakiri, 1994). The most

249 important parameter for this method is the coding design, a matrix where elements indicate which

250 classes are trained by each binary learner, reducing the multiclass problem to a series of binary 251 problems.

In this research, SVM is considered as the benchmark approach that is compared against other 252

253 alternatives as a deep Convolutional Neural Network (CNN).

254 Convolutional Neural Network

255 In contrast to SVM that uses handcrafted features manually engineered by data analysts, CNN derives 256 features automatically from inputs throughout a training process, searching for those that better 257 characterize each terrain. However, as input, CNN takes an image-like observation, therefore a first 258 practical issue to solve is how to derive a 3D object from several signals. One possible solution, 259 proposed in this research, is to resort to Fast Fourier Transform (FFT) to construct magnitude 260 spectrograms of the signals then appended into a multichannel object forming the input for the net. 261 So, sensory data can be assembled in 3D shape, namely height, width and depth. The height 262 corresponds to the frequencies (nF) analyzed by the FFT, the width corresponds to the number of 263 time windows (nW) adopted in the spectrogram, and the depth is the number of signals (nCh). Multi-channel

264 265

Figure 3. Architecture of the convolutional neural network

266 The architecture of the Convolutional Neural Network is shown in Figure 3, where the neural 267 dimensions and the learnable variables of each layer are indicated.

The first layer takes as input the multichannel spectrogram, next, the batch-normalization layer 268 269 normalizes inside the mini-batch the value kept by each input neuron. Normalization process follows 270 equation (3) where x_n and y_n are respectively the input and output values of neuron n of this layer, 271 batch mean μ_B and standard deviation σ_B are computed during training, while learnable parameters 272 offset γ and bias β are searched through optimization across the whole training set. Computational constant ε can improve numerical stability when variance σ_B^2 is small. 273

$$y_n = \gamma \frac{x_n - \mu_B}{\sqrt{\sigma_B^2 + \varepsilon}} + \beta$$

$$\forall n = 1 \dots (nW \cdot nF \cdot nCh)$$
(3)

274 The following 2D convolution layer spans the output across time and frequency domain convoluting

the $nW \times nF \times nCh$ batch-normalized spectrograms into *nFilt* objects of dimensions $nW \times nF$. A 275 276 user-specified number of square filters *nFilt* with size *fsz* are here used to perform convolution

process briefly described in equation (4)) where X is the zero-padded neural grid after batch-277

- 278 normalization and Y the output of the convolution process. The learnable parameters of this layer are
- the kernel of filter m, the weights of matrix $_{m}\omega$, and $_{m}\beta$ the corresponding bias. 279

$$Y_{w,f,m} = \sum_{c=1}^{nCh} \sum_{i,j=-fsz/2}^{Jsz/2} {}_{m}\omega_{i,j,c} * X_{w+i,f+j,c} + {}_{m}\beta$$
(4))
$$\forall w = 1 \dots nW, \forall f = 1 \dots nF, \forall m = 1 \dots nFilt.$$

$$\forall w = 1 \dots nW, \forall f = 1 \dots nF, \forall m = 1 \dots nFilt$$

280 The output of the convolution process is passed to the REctified Linear Unit (ReLu) activated neurons 281 in a grid $nW \times nF \times nFilt$, fully connected to nCl neurons where nCl is the number of terrain classes

282 considered. Compared to other activation functions such as the sigmoidal function, ReLu helps in

283 preventing the exponential growth in the neural network computation and the "vanishing gradient"

- problem that is the tendency for the gradient of a neuron to approach zero for high values of the input
- 285 (Kingma & Ba, 2015). The two following layers SoftMax and Classification are standard as output
- 286 layers for classification networks. The function SoftMax is defined in equation (5) where x_n is the *n*-
- 287 th input neuron and y_n is the corresponding output of this layer.

$$y_n = \frac{exp(x_n)}{\sum_{i=1}^{nCl} exp(x_i)}, \forall n = 1 \dots nCl$$
(5)

- The output layer of this network is the classification layer that computes the cross-entropy loss for classification among terrains.
- 290 III.C. Parameters of the learning algorithms
- 291 In this section, the values assigned to the parameters of the learning algorithms are highlighted.
- 292 The parameter set of the SVM-based classifier is indicated in Table 1. It was found empirically to
- 293 give the best balance of sensitivity and specificity (Lin et al., 2002).
- 294

295 Table 1. Parameters of the SVM classifier

PARAMETER	VALUE
C (Box Constraint)	1
Standardize	True
Coding design	one-versus-one

296

As for CNN, during the training stage the learnable parameters are updated at each iteration, whereas the hyper-parameters are defined by the user to govern the training process.

In one iteration, the network analyses the samples contained in the mini-batch. One epoch consists in the number of iterations necessary to review the entire training dataset. The training stage stops after the network has passed through the entire dataset the number of times specified as the maximum

number of epochs. It is usually preferred to stop the training before this number has been reached,
 not only because it shortens the time required for training, but also because it prevents overfitting on

the training set. Therefore, a percentage of the training data is kept apart as validation set, and the

- 305 network evaluates its loss after the number of iterations specified as validation frequency. The 306 validation patience is the number of times that this loss can be smaller or equal to the previously
- 306 validation patience is the number of times that this loss can be smaller or equal to the previously 307 smallest loss before the training stage stops. The initial learning rate drops by a factor (learn drop
- 308 factor) after a given number of iterations (learn drop period). Part of the hyperparameters is set
- 309 according to the Literature, e.g. the solver and the gradient threshold follows the value suggested in
- 310 (Kingma & Ba, 2015). The remaining parameters have been selected empirically through grid-search
- and they are reported in Table 2.
- 312 Note that for a fair comparison with SVM, the magnitude spectrograms of the signals used as input
- to CNN are obtained from a time window $w_s = 2$ s (please refer to Section IV.B).
- 314
- 315 Table 2. Hyper-parameters of the CNN classifier

PARAMETER	VALUE
Filter size (<i>fsz</i>)	[5, 5]
Number of filters (<i>nFilt</i>)	9
Mini-batch size	160
Maximum number of epochs	150
Validation percentage	15%
Validation frequency	20

Validation patience	15
Initial learning rate	0.005
Learn drop factor	0.2
Learn drop period	10

316

317 IV. Signal engineering

A list of measurements available from the SherpaTT's sensor suite is shown in Table 3, with corresponding sensorial group and Signal ID. From a first analysis of Table 3, some of the signals may appear seemingly correlated. However, if we consider, for example, body acceleration and wheel force, these signals are actually uncorrelated through the flexibility of the suspension system, and therefore they are both relevant for the proposed analysis.

323 Signals that are directly derived from measurements are referred to as direct signals. Conversely, 324 signals engineered with expert knowledge combining direct signals are referred to as indirect, as 325 explained in the next section

325 explained in the next section.

Figure 4 shows a sample time history of the vertical acceleration (gravity-compensated) and drive torque experienced by SherpaTT on different terrains. As seen from this figure, signals show a

328 signature that seems to change according to the specific surface. The goal of this research is to learn

329 this signature to gain terrain awareness. To this aim, it is necessary to select the most relevant signals

330 for building an accurate predictor.

332	Table 3.	List of	available	proprio	ceptive	signals
-----	----------	---------	-----------	---------	---------	---------

SIGNAL	SYMBOL	SENSORS	Signal ID
Longitudinal Force	F_x	LC	S1
Vertical Force	F_z	LC	S2
Drive Torque	T_d	LC	S3
Drive electrical current	C_d	JT	S4
Drive PWM duty cycle	PWM_d	JT	S5
Longitudinal acceleration	a_x	IMU	S6
Lateral acceleration	a_y	IMU	S7
Vertical acceleration	a_z	IMU	S8
Gyro roll rate	gyrox	IMU	S9
Gyro pitch rate	$gyro_y$	IMU	S10
Gyro yaw rate	gyroz	IMU	S11

333 334 335

Figure 4. Vertical acceleration and drive torque (wheel front left) measured while SherpaTT driving straight on different terrains

336 IV.A. Signal augmentation

To improve the information content, an augmentation engine combines multiple direct measurements based on our understanding of the physical mechanisms underlying the wheel-terrain interaction. These are few of the many possible signal combinations that can be implemented, and they are chosen following a trial-and-error approach to provide the best performance over other alternatives. In this way, nine more indirect signals can be obtained (Table 4). The derivation of these signals is detailed in this section, and the rationale behind the choice of these entities is also explained.

Two main motivations support the proposed augmentation stage. First, two or more signals that are useless (not relevant) for themselves can be useful when combined. Then, noise reduction and consequently better class separation may be achieved by adding variables that are seemingly redundant (Guyon & Elisseeff, 2003). This explains why we resort to indirect or combined signals and include redundant measurements of the same physical quantity.

- 348 The first indirect signal is the power loss due to the wheel traction on given terrain. It can be derived
- 349 from a "mechanical" or "electrical" analysis. The mechanical power can be estimated as follows:

$$P_M = T_d \cdot \omega \tag{6}$$

350 where ω is the rotational speed of the wheel. Conversely, the electrical power consumption can be 351 obtained as:

$$P_E = \eta \cdot V_d \cdot PWM_d \cdot C_d \tag{7}$$

- 352 where V_d is the drive voltage, C_d is the wheel drive current, PWM_d is the duty cycle of the wheel drive
- Pulse Width Modulation, and η is the efficiency of the electric motor, assumed to be constant and approximately equal to 0.85.
- 355 Due to the rolling resistance, the direction of the resultant vertical force F_z might not pass through the
- centre of the wheel, with an offset in the direction of the movement (Figure 5). This is especially true
- 357 for soft terrain where the impact of rolling resistance is larger.

Figure 5. Definition of vertical force offset (dx)

Therefore, we can define the vertical force offset dx from the equilibrium of moments around the centre of the wheel, neglecting the contribution of rotational inertia:

$$dx = \frac{T_d - F_x \cdot R}{F_z} \tag{8}$$

362 where *R* is the loaded wheel radius defined as:

$$R = R_N - \frac{F_z}{k_Z} \tag{9}$$

- being R_N (=200 mm) the nominal wheel radius, and k_Z the vertical stiffness of the SherpaTT wheel
- that was experimentally estimated as 69 N/mm.
- The friction coefficient is an important entity related with the traction ability over the traversed surface. In this work, it is estimated in three different ways:

$$\mu_{1} = \frac{F_{x}}{F_{z}}$$

$$\mu_{2} = \frac{T_{d}}{F_{z} \cdot R}$$

$$\mu_{3} = \frac{C_{d}k_{T}}{F_{z} \cdot R}$$
(10)

- 367 where k_T (17.4 Nm/A in our case) is the scale factor taking into account the torque constant of the 368 electric motor and the transmission ratio of the motor reducer.
- 369 Speed deviation is the difference between the angular speed of each wheel ω and the average angular
- 370 speed of the four wheels $\overline{\omega}$. In this work, speed deviation was estimated in two ways:

$$SD = |\omega - \overline{\omega}|$$
$$SD_{normalised} = \frac{\omega - \overline{\omega}}{\overline{\omega}}$$
(11)

- 371 Wheel sinkage is another critical parameter related to rough terrain mobility that can be approximated
- 372 as suggested in (Guo et al., 2020):

$$z = R \cdot \left(1 - \cos\left(2 \cdot \frac{dx}{R}\right)\right) \tag{12}$$

373

374 *Table 4. List of indirect signals*

Signal	SYMBOL	SENSORS	Signal ID
Mechanical Power	P_M	LC, JT	S12
Electrical Power	P_E	MC	S13
Vertical force offset	dx	LC	S14
Friction coefficient 1	μ_1	LC	S15

Friction coefficient 2	μ_2	LC	S16
Friction coefficient 3	μ_3	LC, JT	S17
Speed deviation	SD	JT	S18
Normalised speed deviation	SD_n	JT	S19
Sinkage	Z	LC	S20

375

One important aspect is the general data consistency. As an example, Figure 6 shows the drive torque delivered by the left wheel drive motor, measured by three different sensors. Direct torque measurement from the wheel-mounted LC is denoted by a solid grey line, whereas indirect estimation via the associated electric current drawn by the motor is marked by a black solid line. Finally, an alternative indirect measurement via the LC-derived longitudinal force is also plotted using a dashed black line. As seen in this figure, all three measurements show a good agreement. Similar results were

382 observed on different surfaces.

383

Figure 6. Torque applied by the left front wheel of SherpaTT as obtained from: direct measurement of the load cell (solid grey line), indirect measurement via the electric current drawn by the motor (solid black line), or alternatively via the longitudinal force provided by the load cell (dashed black line).

388 IV.B. Feature extraction

First, each sensory signal is divided in time windows, and then, for each window features are extracted as the four main statistical moments. The size of the window, w_s is a design parameter. It is set as w_s = 2 s corresponding to a traversed terrain patch of about 20 cm (comparable with the wheel radius) at an average travel speed of 0.1 m/s. In previous works by the authors (Vulpi et al., 2021), it was found that this value of window size represents a good trade-off between informative content and spatial resolution.

395 The four statistical moments are mean *E*, variance σ , skewness *Sk* and kurtosis *Ku* and are defined as 396 follows:

$$E_{i} = \frac{1}{N} \sum_{n=1}^{N} x_{n}$$

$$\sigma_{i}^{2} = \frac{1}{N} \sum_{n=1}^{N} (x_{n} - E_{i})^{2}$$
(13)

$$Sk_i = \frac{1}{N} \frac{\sum_{n=1}^{N} (x_n - E_i)^3}{\left(\sqrt{\sigma_i^2}\right)^3}$$
$$Ku_i = \frac{1}{N} \frac{\sum_{n=1}^{N} (x_n - E_i)^4}{\left(\sqrt{\sigma_i^2}\right)^4}$$

397 where x_n is the value of the signal at the n^{th} time step and N is the total number of time-steps for the 398 i^{th} window.

- 399 The extraction of the statistical features brings the size of the SVM-feature space to 80 (20 signals
- 400 multiplied by their 4 statistical moments). The generic feature will be indicated as SiMj, where i
- 401 (*i*=1,...,20) represents the signal ID, whereas *j* represents the statistical moment (*j*=1, ...,4).
- 402
- 403 IV.C. Feature selection

Retaining only the features with the highest information content reduces the computational cost while

- 405 preserving the accuracy of the model. The selection process can be performed via feature scoring 406 using appropriate validity indices. Then, an iterative search algorithm can be followed to select a
- 407 reduced best feature space.
- 40/ reduced best feature space

408 Validity indexing

409 A validity index can be assigned to each feature. This index represents a measure of the information

410 content of the feature. In this work, two validity indices are considered: the Pearson Coefficient (PC)
411 (Hastie et al., 2009), and the WB index (Zhao & Fränti, 2014).

The PC index can be computed through linear regression of a feature against the 3 classes of terrain, e.g., sand, gravel, and paved ground. The higher the PC, the larger the information content of the

414 feature. Although this index can be successfully used for 2-class classification problems

415 (Dimastrogiovanni et al., 2020), it might be difficult to implement it for multi-class cases like the

416 one presented in this work, because the number assigned to each type of terrain is arbitrary. To

- 417 overcome this issue, first, the PC index is computed for each terrain pair (e.g., sand-gravel, gravel-
- 418 paved ground, and sand-paved ground), and then averaged. For example, the PC index of the feature
- 419 SiMj against the classes 1 and 2 (sand and gravel) can be calculated as (Guyon & Elisseeff, 2003):

$${}_{2}^{1}PC_{SiMj} = \frac{cov({}_{2}^{1}F_{SiMj}, {}_{2}^{1}y)}{\sqrt{var({}_{2}^{1}F_{SiMj})var({}_{2}^{1}y)}}$$
(14)

420 where $\frac{1}{2}F_{SiMj}$ is a vector containing all values of the feature *SiMj* for terrains 1 and 2, whereas $\frac{1}{2}y$

421 contains class values (1 or 2) for each element of ${}_{2}^{1}F_{SiMj}$. Similarly, ${}_{3}^{2}PC_{SiMj}$ (PC index of feature

- 422 *SiMj* against the classes gravel and paved ground) and ${}_{3}^{1}PC_{SiMj}$ (PC index of feature *SiMj* against the 423 classes sand and paved ground) follow the same principle.
- 424 The overall PC index for feature *SiMj* can be now computed as follows:

$$PC_{SiMj} = \frac{\frac{1}{2}PC_{SiMj} + \frac{2}{3}PC_{SiMj} + \frac{1}{3}PC_{SiMj}}{3}$$
(15)

425 In addition, the WB index can be computed for feature *SiMj*:

$$WB_{SiMj} = m \cdot \frac{SSW_{SiMj}}{SSB_{SiMj}} \tag{16}$$

426 where *SSW* is the sum of square within classes and *SSB* is the sum of squares between classes, 427 computed as follows:

$$SSW_{SiMj} = \sum_{k=1}^{nCl} \sum_{s=1}^{n_k} (x_s - \mu_k)^2$$
(17)

$$SSB_{SiMj} = \sum_{k=1}^{nCl} n_k (\mu_k - \mu)^2$$

428 where x_s is the *s*th sample of feature *SiMj*, μ_k is the class *k* centroid value, μ is the overall dataset 429 centroid value, n_k is the number of samples in class *k* and *nCl* (=3) is the number of classes. A low 430 value of WB_{SiMj} indicates that classes form compact and distant clusters relatively to feature *SiMj*. 431 Therefore, the score assigned to each feature will be WB⁻¹: the higher the WB⁻¹, the better the feature 432 for classification purposes.

433 The rationale behind using two validity indices is that the WB and PC have two different statistical 434 meanings: the former describes the compactness of classes, the latter shows the correlation between 435 a given feature and the type of terrain. One may think that a feature with a low value of PC index will also have a relatively low value of WB⁻¹ index. However, this is not always true, and exceptions do 436 occur. For example, Figure 7 shows the distribution of PC and WB indices for the 25 features with 437 438 the highest scores. S6M2 is the feature with the third highest value of PC index, but it is only the 21st feature in terms of WB⁻¹. Similarly, S16M2 is the feature with the second highest value of WB⁻¹ 439 index, but it is only the 14th in terms of PC. This shows that the two indices rank the features in 440 441 different ways, therefore they complement each other very well.

Figure 7. PC and WB indices distribution for the most relevant features

445 The proposed selection approach is based on the iterative search scheme presented in the block diagram of Figure 8. The input to the algorithm is the full set of n_{feat} (=80) features. These features 446 447 are then ranked using the output of one of the two validity indices (PC or WB) as a score. The best 448 feature set is initialized with the first n_{min} -1 (=2) features of the ranking. At this point, the objective 449 is to iterate on all the remaining features to find those which provide better classification performance. In each iteration, identified with the index *i* that varies from n_{\min} to n_{feat} , the *i*th feature in the ranking 450 451 is added provisionally to the best feature set. Then, an SVM-based classifier is trained and evaluated 452 in terms of F1 score via 5-fold cross validation. The k-fold cross validation process partitions data 453 into k randomly chosen subsets (or folds) of roughly equal size. Therefore, to improve the robustness 454 of the feature selection algorithm, the training phase is repeated n_{train} (=10) times and the final F1 455 score is computed as the average of the scores obtained at each training phase. If the final F1 score is

- 456 sufficiently higher than the best F1 score obtained so far, the i^{th} feature is kept in the best feature set,
- 457 and the best F1 score is updated. Otherwise, the i^{th} feature is discarded from the best set and not
- 458 considered for training purposes.
- 459 In order to facilitate the reading of the block diagram in Figure 8, the meaning and the numerical
- 460 values of the parameters involved in the selection process are collected in Table 5.

461 Table 5. List of parameters involved in the feature selection approach

Parameter	Description	Value
n _{min}	Minimum number of features	3
F1 _{min}	Minimum F1 score	60%
th	Accepted improvement (threshold) in the F1 score	5%
n train	Number of trainings for each new best feature set	5
<i>n</i> _{feat}	Number of features in the initial full feature set	80

Figure 8. Block diagram of the proposed feature selection algorithm

- The selection process discussed in Figure 8 can be repeated for each one of the two validity indices. Eventually, two best reduced feature spaces will be obtained: one associated with the PC and the
- 466 Eventually, two best reduced feature spaces will be obtained: one associated with the PC and the 467 other with the WB index. To further improve the robustness of the selection algorithm, the union of 468 these two sets is chosen as the best for SVM training purposes. The 18 selected features are listed in
- 469 Table 6. It is worth noting that three features extracted from indirect signals are included as well,
- 470 thus, proving the utility of the signal augmentation phase.
- 471 A 3D plot of the three most relevant features in terms of WB index is shown in Figure 9 to help the
- reader to easily visualize the result of the whole selection process. As shown in this figure, the sand
- data form a quite compact cluster, with relatively low values of all three features. Conversely, gravel
- and paved ground data show higher values of S7M2 (variance of a_y) than sand and differentiate
- 475 prevalently for values of S17M2 (variance of μ_3).
- 476 Table 6. Best feature set

Signal	Statistical moment	Direct or	Feature ID	WB ⁻¹ /WB ⁻¹ MAX	PC
_		Indirect			
μ_3	Variance	Indirect	S17M2	1.00	0.345
a_y	Variance	Direct	S7M2	0.691	0.449
T_d	Variance	Direct	S3M2	0.685	0.308
gyroz	Variance	Direct	S11M2	0.561	0.450
$gyro_x$	Kurtosis	Direct	S9M4	0.549	0.317
F_x	Mean	Direct	S1M1	0.428	0.366
a_z	Variance	Direct	S8M2	0.371	0.350
gyrox	Skewness	Direct	S9M3	0.364	0.307
$gyro_x$	Variance	Direct	S9M2	0.348	0.356
μ_1	Mean	Indirect	S15M1	0.342	0.275
Ζ	Kurtosis	Indirect	S20M4	0.327	0.177
a_x	Variance	Direct	S6M2	0.192	0.385
F_z	Variance	Direct	S2M2	0.192	0.267
$gyro_y$	Variance	Direct	S10M2	0.164	0.295
F_x	Variance	Direct	S1M2	0.143	0.253
a_y	Kurtosis	Direct	S7M4	0.048	0.115
PWM_d	Mean	Direct	S5M1	0.013	0.062
gyroz	Mean	Direct	S11M1	0.011	0.064

492

493

494

Figure 9. 3D plot of the first three features with the highest score of WB^{-1}

480 V. Results and discussion

In this section, the results of the generalization problem are shown on the main dataset. Next, resultsfor two extrapolation cases are presented.

483 V.A. Generalization

In the generalization problem, only the main data set is used (e.g., experiments on paved ground, gravel, and sand). The algorithms are tested via 5-fold cross validation. The data set comprises of 1204 samples, where a sample corresponds to a 2-second time window. Of these 1204 samples, 443 are collected on paved ground, 338 on gravel and 423 on sand.

488 One of the objectives of this paper is to demonstrate how a proper feature selection algorithm can 489 reduce the computational and memory cost of the model, while maintaining a similar accuracy in 490 prediction. Table 7 shows comparison between the two machine learning algorithms in terms of 491 accuracy and computational burden. Moreover, SVM is tested with three different feature sets:

- Direct feature set (44 features)
- Full feature set (80 features)
- Best feature set (18 features)
- 495 while CNN is tested with three different signal sets:
- Direct signal set (11 signals)
- Full signal set (20 signals)
- Best signal set (13 signals)

The signals used for training CNN correspond to those used to compute SVM features. In fact, the 44 direct features are the 4 statistical moments of the 11 direct signals and the full 80-feature set is composed by the 4 statistical moments of the full 20-signal set. Furthermore, the training set for CNN includes the signals used to derive the features in the best feature set. Namely, the 13 best signals are: friction coefficients 1 and 3, longitudinal, lateral and vertical accelerations, drive torque, yaw, pitch and roll rates, longitudinal and vertical forces, sinkage, drive PWM.

505 The accuracy of the SVM model trained with the direct and full feature sets is 89.8% and 90.8%, 506 respectively. With the full feature set, more samples are correctly classified by SVM, but memory 507 usage has increased by 82%, training time by 32%, testing time by 71% and feature extraction time

508 by 50%. This proves the effectiveness of the signal augmentation in terms of accuracy and shows the

509 drawbacks in terms of computational burden. The purpose of feature selection is to reduce the 510 computational cost, without losing classification accuracy. The results presented for SVM trained

511 with the best feature set, prove that the feature selection algorithm proposed in this work is effective.

512 In fact, the accuracy reaches 90.9% and when compared to the SVM trained on the full feature set,

513 while the model memory usage is reduced by 77%, training time by 6%, testing time by 29%, feature

514 extraction time by 33%.

515 The effectiveness of both input signal augmentation and feature selection is also confirmed by the

516 results presented for CNN. This deep learning algorithm gains in terms of accuracy from signal

517 augmentation reaching 96.4%. Using the full signal set still results for CNN in the same drawbacks

518 presented for SVM: model memory usage increased by 18%, training time by 36%, feature extraction 519 time by 77%. In contrast with SVM, testing time for CNN with full signal set is reduced by 22%.

520 Training CNN with the best signals resulting from feature selection leads to an accuracy of 96.2%

521 and when compared to the full-signal CNN, the model memory usage is reduced by 14%, training

522 time by 27%, testing time by 4%, feature extraction time by 41%.

523 Feature extraction times presented in the last row of Table 7 are suitable for online application for

524 both SVM and CNN, even if construction of multichannel spectrograms from best signals for CNN

525 takes about 2.1 ms more than construction of best features for SVM. It should also be noted that

526 feature extraction time for both SVM and CNN can be further improved by optimizing the current

527 MatLab code using vectorization or processing the data directly with a C++ code. Note that at the

528 time of writing of the paper, the algorithms and the dataset are under revision in a private Github 529

repository that will be made available to the interested readers upon paper publication.

530 Confusion matrixes for both SVM and CNN are shown in Figure 10 only for best feature and best 531 signal sets. Sensitivity results for each class are contained in the diagonal elements of each confusion

532 matrix. The performance of both models in terms of precision, recall and F1 score are shown in Table

533 8. Both models perform good in generalization of data, with CNN being slower but significantly more

534 accurate. This increase in classification accuracy is not the main advantage for CNN classification

535 model with respect to SVM. Where the two models show the greatest difference in classification

536 performance is indeed extrapolation, as shown in the next section.

537

538 Table 7. Performance comparison between terrain classifiers trained on different feature sets: direct, 539 full, best feature set

		SVM		CNN		
Feature and signal sets	Direct	Full	Best	Direct	Full	Best
Accuracy [%]	89.8	90.8	90.9	95.6	96.4	96.2
Model memory usage [kB]	547.6	996.9	228.0	44.9	53.2	45.8
Training time [ms]	118.9	157.7	148.0	1.07 e4	1.46 e4	1.06 e4
Testing time [ms]	17.4	29.8	21.2	153.0	119.4	114.7
Feature extraction time [ms]	0.6	0.9	0.6	2.6	4.6	2.7

541542 Figure 10. Generalization Results for best features SVM and best signals CNN

543	Table 8. Accuracy,	Precision,	Recall an	d F1	score for	SVM and	CNN in	generalization
-----	--------------------	------------	-----------	------	-----------	---------	--------	----------------

		SVM		CNN			
Class	Gravel Paved Ground		Paved Sand Ground		Paved Ground	Sand	
Precision [%]	89.1	82.4	100	80.3	82.2	100	
Recall [%]	81.0	90.1	99.8	92.3	95.7	100	
F1 score [%]	84.9	86.1	99.9	85.9	88.4	100	

540

545 V.B. Extrapolation

546 In the extrapolation problem, the operating conditions of training and testing sets are different, 547 therefore these sets do not come from the same population. In this work two extrapolation cases are 548 presented. The first one deals with varying rover speed, whereas the second one assesses the 549 performance of the algorithms on a terrain unseen in the training phase.

550 Testing on a new vehicle velocity

551 During the experiments with SherpaTT, the rover was controlled at two different speeds: 0.1 m/s and

552 0.15 m/s. Of the 14 runs, 7 were conducted at low speed (0.1 m/s) and 7 at high speed (0.15 m/s).

553 Data collected at low-speed form the low-speed distribution, whereas data collected at high-speed 554 belong to the high-speed distribution. In the extrapolation problem presented here, low-speed data 555 are used as training set, while high-speed data are used as testing set. Both sets belong to the main

556 dataset (paved ground, gravel, and sand).

557 Proprioceptive sensorial data are very useful for terrain classification but also show a strong 558 dependency from traversing speed (Bai et al., 2019). Most terrain classification algorithms analyse

and classify proprioceptive data acquired at constant traversing velocity on different terrains. Studies

560 have been also conducted to show dependency of terrain classification performances from rover's

- traversing speed, searching for the velocity that maximizes classification performance. For being able
- to classify the traversed terrain at any travelling speed a rover should be equipped with a model trained
- on a vast variety of possible traversing speeds or could only use speed independent features that are

difficult to construct and may not be well suited for terrain classification. Another way of achieving 564 565 the goal of sensing and classifying the terrain at any travelling speed is using a model that shows 566 good results when tested on data acquired at a traversing velocity different from the one used for training. Figure 11 contains the confusion matrixes for both SVM and CNN when trained on low-567 speed data and tested on high-speed ones. As can be seen, despite both models showed good results 568 569 in generalization only CNN is also capable of extrapolating the information of the traversed terrain 570 from data acquired at a different speed. The two models were still trained and tested using only best 571 feature set for SVM and corresponding signal set for CNN. While CNN keeps classification accuracy 572 as high as 89.5%, SVM becomes unreliable achieving only 55.7% of correctly classified data samples. The performances of both models in terms of precision, recall and F1 score are shown in Table 9. 573

It should also be pointed out that high-speed data used as testing constitute 50% of available data, representing therefore testing set larger than the one usually used (20-30%). The robustness of CNN's classification performance on a large testing set composed by data acquired at a different speed suggests that this model is well suited for terrain classification purposes. Moreover, the features automatically learned from signal spectrograms appear to be more reliable than statistic ones and represent a better choice to be able to classify the traversed terrain at various travelling velocities.

580 Similar results are obtained when trained on high-speed data and tested on low-speed data, and they 581 are omitted for brevity sake.

	SVM			CNN			
Class	Gravel	Paved Ground	Sand	Gravel	Paved Ground	Sand	
Precision [%]	54.8	46.8	100	80.3	82.2	100	
Recall [%]	40.3	83.9	47.5	82.1	81.0	99.5	
F1 score [%]	46.4	60.1	64.4	81.2	81.6	99.7	

585

586 Testing on an independent dataset

587 The second extrapolation use case aims to evaluate the system response when labeling observations 588 collected on a terrain different from those used in training (independent dataset). To this aim, the

- 589 ground classifier previously trained on the main data set (formed by paved ground, gravel, and sand) 590 is further validated on a representative dataset gathered from a second field test campaign run in a 591 planetary analogue terrain in a sand mine near Bremen (see Figure 12).
- 592 For this extrapolation challenge, we have tried to generalize the classification problem at hand by 593 referring to terrain difficulty labels rather than specific terrain classes, as explained in Table 10. 594 Adopting the proposed terrain difficulty scale, paved ground and sand can be seen as the opposite 595 extremes. Firm ground offers better traction and less compressibility, therefore a low difficulty label 596 can be assigned to it. Conversely, soft ground poses more challenges, and it is scored as a highly 597 difficult surface. Then, the difficulty degree associated with an unknown observation can be 598 considered as inversely proportional to the distance from the class sand. One should note that such a 599 generalization effort can be useful or necessary for the practical implementation of planetary exploration terrain classifiers that can be only trained on Earth using representative analogue surfaces, 600 601 and then applied to unknown planetary surfaces via extrapolation.
- 602
- 603 The sand mine independent dataset consists of 302 samples, where, again, a sample corresponds to a
- 604 2-second window. It should be also underlined that, although ground-truth data is not available for
- 605 this extrapolation problem, the terrain in the sand mine can be expected as a surface with medium-
- high difficulty, like the sand type of the main dataset (Figure 2) but somewhat more compact and
- 607 humid. As an indicative measure, sample tracks left by the wheels on the sand mine terrain are shown
- 608 in Figure 12(b).

612 Figure 12. (a) Sherpa TT during the sand mine testing; (b) a close up of the tracks left by the wheels

- 613
- 614 *Table 10. Category of difficulty assigned to each terrain type of the training set.*

Terrain type	Equivalent Category of Terrain difficulty
Sand	High
Gravel	Medium
Paved Ground	Low

- 616 The classification results obtained from SVM and CNN are collected in Table 11 showing predicted
- 617 labels of terrain difficulty. Out of the 302 samples, the SVM-based algorithm classifies 71.2% as high
- 618 difficult terrain, 17.2% as medium and 11.6% as low. CNN performs similarly, classifying 69.9% of
- the new terrain samples as highly difficult, 24.2% as medium and 5.9% as low. A relatively low for sub-field for SUD for SUD for SUD for SUD for SUD for SUD for the low for the low for the low for sub-field for the low for the low for the low for sub-field for the low for the low for the low for sub-field for the low for the lo
- 620 percentage of the test samples (about 12 % for SVM and 6% for CNN) is classified as hard soil.

621	Table 11.	Terrain	difficulty	predictions	as obtained	from SV	M and	CNN ir	1 the san	d mine tes	t
-----	-----------	---------	------------	-------------	-------------	---------	-------	--------	-----------	------------	---

Terrain Difficulty labels	SVM	CNN
High	215	211
Medium	52	73
Low	35	18

623 For an easier visualization, the results obtained from the CNN-based classifier are presented in Figure

624 13 during a sample straight run using a semantic labelling where the successive terrain patches 625 traversed by the rover are marked according to a color map that reflects the terrain difficulty scale of 626 Table 10 (color data and color data) We color map that reflects the terrain difficulty scale of

Table 10 (see also to the inset of Figure 13b). We recall that three discrete levels of terrain difficulty are considered: low, medium, and high.

Figure 13a shows the 3D stereo-generated map of the environment with overlaid a CAD model of

629 SherpaTT and the path followed by the rover denoted with a dashed white line, whereas in Figure

630 13b the corresponding terrain labeling is reported with terrain patches marked respectively in red,

631 yellow, and green, for high, medium, and low difficulty. In this test that was performed on fairly

632 homogeneous terrain, the system mostly classifies the sand mine surface as of medium-high difficulty

633 with two erroneous predictions (low difficulty) between 2 and 3 m.

638 Figure 13. Semantic labeling using discrete terrain difficulty categories: (a) 3D stereo-generated 639 map of the environment with overlaid the path (dashed white line) followed by the rover, (b) 640 corresponding terrain difficulty visualization. Terrain patches are marked respectively in red, vellow, 641 and green, for high, medium, and low difficulty.

VI. Conclusions 642

643 This work presented an approach to soil classification that relies on proprioceptive sensing only, e.g. 644 accelerations, forces, torques, and electrical currents. The algorithms developed are validated on data collected during tests performed with the hybrid wheeled-legged rover SherpaTT. The physics-based 645 646 signal augmentation process presented in this paper uses 11 proprioceptive measurements to produce 647 a large set of 80 features for SVM and 20 signals for CNN. This improved the information content as 648 proved by the high classification accuracy obtained in generalization (90.8% for SVM and 96.4 % 649 for CNN). The proposed feature selection algorithm allows SVM to retain a high classification 650 accuracy with only a portion of the full set (18 features), with successful reductions in memory usage

- (-77%) and required time for training (-6%), testing (-29%) and feature extraction (-33%). The same
 benefits also apply for CNN when using a reduced set of 13 signals related to the 18 best SVM
 features, improving memory usage (-14%), training time (-27%), testing time (-4%) and feature
- 654 extraction time (-41%). The comparison between SVM and CNN shows good capabilities of both
- models in generalization, with accuracy higher than 90%. More challenging extrapolation problems
- have been tackled as well to evaluate the impact of varying operating conditions and site of the
- acquisition. In these tests, CNN outperformed the SVM counterpart. When tested on a new vehicle velocity, CNN reached an accuracy of 89.5%, against 55.7% held by SVM. When tested on a new
- 658 velocity, CNN recognized its deformability class more frequently than SVM, correctly classifying 6%
- 660 more of the available samples. Based on these results, the proposed CNN qualifies as a good
- 661 algorithm for soil classification even in the presence of disturbances and unknown conditions.
- 662 This work proved that is possible to use only proprioceptive features to infer the signature of a
- 663 particular surface via learning algorithms. Moreover, the presented promising results suggest the 664 possibility to extend rover travelling distance thanks to on-board integration of the developed learning 665 algorithms.
- 666 Future developments of this research refer to: i) continuous training of the system by incorporating
- 667 instances of "new terrain" classes during normal operations, therefore making the system adaptive, 668 ii) augmenting the classifier with new special classes; for example, instances of excessive wheel
- 669 slippage (close to 100%) can be used to train a hazard class to inform the rover of impending
- 670 immobilization conditions, iii) combining the proposed framework using proprioceptive signals with
- 671 exteroceptive signals. The latter would enable the vehicle to predict hazards or trapping conditions
- 672 before driving through the ground, e.g., based on non-contact information coming from vision
- 673 sensors.
- 674 *Software repository*
- The codes and data used for this research will be made publicly available at a Github repository.

676 Acknowledgements

- 677 The financial support of the projects: Autonomous Decision making in very long traverses (ADE),
- H2020 (Grant No. 821988), Agricultural inTeroperabiLity and Analysis System (ATLAS), H2020
- 679 (Grant No. 857125), and multimodal sensing for individual plANT phenOtypiNg in agriculture
- 680 rObotics (ANTONIO), ICT-AGRI-FOOD COFUND (Grant No. 41946) is gratefully acknowledged.

⁶⁸¹ VII. Bibliography

- Bai, C., Guo, J., Guo, L., & Song, J. (2019). Deep multi-layer perception based terrain classification
 for planetary exploration rovers. *Sensors (Switzerland)*, 19(14), 3102.
 https://doi.org/10.3390/s19143102
- Barnes, D., Maddern, W., & Posner, I. (2017). Find your own way: Weakly-supervised segmentation
 of path proposals for urban autonomy. *Proceedings IEEE International Conference on Robotics and Automation*, 203–210. https://doi.org/10.1109/ICRA.2017.7989025
- Bellone, M., Reina, G., Caltagirone, L., & Wahde, M. (2018). Learning Traversability from Point
 Clouds in Challenging Scenarios. *IEEE Transactions on Intelligent Transportation Systems*, *19*(1), 296–305. https://doi.org/10.1109/TITS.2017.2769218
- Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new
 perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(8), 1798–
 1828. https://doi.org/10.1109/TPAMI.2013.50
- Brooks, C. A., & Iagnemma, K. (2005). Vibration-based terrain classification for planetary
 exploration rovers. *IEEE Transactions on Robotics*, 21(6), 1185–1191.
 https://doi.org/10.1109/TRO.2005.855994
- 697 Cordes, F., & Babu, A. (2016). SherpaTT: A Versatile Hybrid Wheeled-Leg Rover. Proceedings of
 698 the 13th International Symposium on Artificial Intelligence, Robotics and Automation In Space,
 699 (ISAIRAS-16).
- Cordes, F., Kirchner, F., & Babu, A. (2018). Design and field testing of a rover with an actively
 articulated suspension system in a Mars analog terrain. *Journal of Field Robotics*, 35(7), 1149–
 1181. https://doi.org/10.1002/rob.21808
- Cowen, R. (2005). Oppurtunity rolls out of Purgatory. Science News, 167(26), 413.
- Dietterich, T. G., & Bakiri, G. (1994). Solving Multiclass Learning Problems via Error-Correcting
 Output Codes. *Journal of Artificial Intelligence Research*, 2, 263–286.
 https://doi.org/10.1613/jair.105
- Dimastrogiovanni, M., Cordes, F., & Reina, G. (2020). Terrain estimation for planetary exploration
 robots. *Applied Sciences*, 10(17), 6044. https://doi.org/10.3390/app10176044
- Duan, K. B., & Keerthi, S. S. (2005). Which is the best multiclass SVM method? An empirical study.
 International Workshop on Multiple Classifier Systems, 278–285.
 https://doi.org/10.1007/11494683_28
- DuPont, E. M., Moore, C. A., Collins, E. G., & Coyle, E. (2008). Frequency response method for
 terrain classification in autonomous ground vehicles. *Autonomous Robots*, 24(4), 337–347.
 https://doi.org/10.1007/s10514-007-9077-0
- Dutta, A., & Dasgupta, P. (2017). Ensemble Learning with Weak Classifiers for Fast and Reliable
 Unknown Terrain Classification Using Mobile Robots. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 47(11), 2933–2944. https://doi.org/10.1109/TSMC.2016.2531700
- 718 ESA, Robotic exploration of Mars. (2021). http://exploration.esa.int/mars/

- Giguere, P., & Dudek, G. (2011). A simple tactile probe for surface identification by mobile robots.
 IEEE Transactions on Robotics, 27(4), 534–544. https://doi.org/10.1109/TRO.2011.2119910
- Gonzalez, R., Chandler, S., & Apostolopoulos, D. (2019). Characterization of machine learning
 algorithms for slippage estimation in planetary exploration rovers. *Journal of Terramechanics*,
 82, 23–34. https://doi.org/10.1016/j.jterra.2018.12.001
- Guo, J., Guo, T., Zhong, M., Gao, H., Huang, B., Ding, L., Li, W., & Deng, Z. (2020). In-situ
 evaluation of terrain mechanical parameters and wheel-terrain interactions using wheel-terrain
 contact mechanics for wheeled planetary rovers. *Mechanism and Machine Theory*, *145*, 103696.
 https://doi.org/10.1016/j.mechmachtheory.2019.103696
- Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. *Journal of Machine Learning Research*, *3*, 1157–1182. https://doi.org/10.1162/153244303322753616
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: data mining,
 inference, and prediction. In *Springer Science & Business Media* (Second).
- Ishikawa, R., Hachiuma, R., & Saito, H. (2021). Self-Supervised Audio-Visual Feature Learning for
 Single-Modal Incremental Terrain Type Clustering. *IEEE Access*, 9, 64346–64357.
 https://doi.org/10.1109/ACCESS.2021.3075582
- 735 JPL, Mars Exploration Rovers. (2021). http://marsrovers.jpl.nasa.gov/home/index.html
- Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International
 Conference on Learning Representations (ICLR).
- Lin, Y., Lee, Y., & Wahba, G. (2002). Support vector machines for classification in nonstandard
 situations. *Machine Learning*, 46, 191–202. https://doi.org/10.1023/A:1012406528296
- Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving
 classification performance. *International Journal of Remote Sensing*, 28(5), 823–870.
 https://doi.org/10.1080/01431160600746456
- Manduchi, R., Castano, A., Talukder, A., & Matthies, L. (2005). Obstacle detection and terrain
 classification for autonomous off-road navigation. *Autonomous Robots*, 18(1), 81–102.
 https://doi.org/10.1023/B:AURO.0000047286.62481.1d
- Nampoothiri, M. G. H., Vinayakumar, B., Sunny, Y., & Antony, R. (2021). Recent developments in terrain identification, classification, parameter estimation for the navigation of autonomous robots. *SN Applied Sciences*, *3*, 480. https://doi.org/10.1007/s42452-021-04453-3
- 749 Nasa, Mars 2020. (2020). https://mars.nasa.gov/mars2020/
- Ocón, J., Dragomir, I., Coles, A., Green, A., Kunze, L., Marc, R., Perez, C. J., Germa, T., Bissonnette,
 V., Scalise, G., Foughali, M., Kapellos, K., Dominguez, R., Cordes, F., Paar, G., Reina, G., &
 Kisdi, A. (2020). Ade: Autonomous Decision Making in Very Long Traverses. 15th
 International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS '20).
- Otsu, K., Ono, M., Fuchs, T. J., Baldwin, I., & Kubota, T. (2016). Autonomous Terrain Classification
 with Co-and Self-Training Approach. *IEEE Robotics and Automation Letters*, 1(2), 814–819.
 https://doi.org/10.1109/LRA.2016.2525040

- Reina, G., Leanza, A., & Messina, A. (2020). Terrain estimation via vehicle vibration measurement
 and cubature Kalman filtering. *Journal of Vibration and Control*, 26(11–12), 885–898.
 https://doi.org/10.1177/1077546319890011
- Reina, G., Milella, A., & Galati, R. (2017). Terrain assessment for precision agriculture using vehicle
 dynamic modelling. *Biosystems Engineering*, 162, 124–139.
 https://doi.org/10.1016/j.biosystemseng.2017.06.025
- Tai, L., Li, S., & Liu, M. (2017). Autonomous exploration of mobile robots through deep neural
 networks. *International Journal of Advanced Robotic Systems*, 14(4).
 https://doi.org/10.1177/1729881417703571
- Vapnik, V. N. (2013). The Nature of Statistical Learning Theory. In Springer science & business
 media (Second). https://doi.org/10.1007/978-1-4757-2440-0
- Vulpi, F., Milella, A., Marani, R., & Reina, G. (2021). Recurrent and convolutional neural networks
 for deep terrain classification by autonomous robots. *Journal of Terramechanics*.
 https://doi.org/10.1016/j.jterra.2020.12.002
- Wellhausen, L., Dosovitskiy, A., Ranftl, R., Walas, K., Cadena, C., & Hutter, M. (2019). Where
 should i walk(Predicting terrain properties from images via self-supervised learning. *IEEE Robotics and Automation Letters*, 4(2), 1509–1516. https://doi.org/10.1109/LRA.2019.2895390
- Zhao, Q., & Fränti, P. (2014). WB-index: A sum-of-squares based index for cluster validity. *Data & Knowledge Engineering*, *92*, 77–89. https://doi.org/10.1016/j.datak.2014.07.008