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Abstract

Robotics has a special place in AI as robots are connected to the real world and robots increasingly appear in humans
everyday environment, from home to industry. Apart from cases were robots are expected to completely replace
them, humans will largely benefit from real interactions with such robots. This is not only true for complex interaction
scenarios like robots serving as guides, companions or members in a team, but also for more predefined functions like
autonomous transport of people or goods. More andmore, robots need suitable interfaces to interact with humans in a
way that humans feel comfortable and that takes into account the need for a certain transparency about actions taken.
The paper describes the requirements and state-of-the-art for a human-centered robotics research and development,
including verbal and non-verbal interaction, understanding and learning from each other, as well as ethical questions
that have to be dealt with if robots will be included in our everyday environment, influencing human life and societies.
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Introduction
Already 30 years ago, people have learned in school that
automation of facilities is replacing human workers, but
over time people recognized in parallel that working pro-
files are changing and that also new type of work is created
through this development, so that the effect was rather a
change in industry and not a mere replacement of work.
Now, we see that AI systems are getting increasingly pow-
erful in many domains that were initially solvable only
using human intelligence and cognition, thus starting this
debate anew. Examples for AI beating human experts in
Chess [1] or Go [2], for instance, cause significant enthusi-
asm and concerns at the same time about where societies
are going when widely using robotics and AI. However,
we see at the same time with a closer look, that although
the performance of AI in such selected domains may
outrun that of humans, the mechanisms and algorithms
applied do not necessarily resemble human intelligence
and methodology, and may even not involve any kind
of cognition. In addition, AI algorithms are application
specific and their transfer to other domains is not straight-
forward [3].
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Robots using AI means an advancement from pure
automation systems to intelligent agents in the environ-
ment that can not only work in isolated factory areas, but
also in an unstructured or natural environment as well
as in direct interaction with humans. Then, the applica-
tion areas of robots are highly diverse, such that robots
might influence our everyday life in the future in many
ways. Already without direct contact to a human being
required, robots are sought to support human ambitions,
e.g. for surface exploration or installment, inspection or
maintenance of infrastructure in our oceans [4, 5] or in
space [6–8]. Everywhere, the field of robotics is an inte-
grator for AI technology, since complex robots need to
be capable in many ways, because they have the ability to
act and thus have a physical impact on their environment.
Robots therefore create opportunities for collaboration
and empowerment that are more diverse than what a
computer-only AI system can offer. A robot can speak or
show pictures through an embedded screen, but it can
also make gestures or physically interact with humans
[9], opening many possible interactions for a wide variety
of applications. Interactions that can benefit to children
with autism [10, 11] or elderly [12] have been shown with
robots that are called social[13, 14] as they put a strong
emphasis on robot social skills. Mechanical skills are also
important for empowering humans, for instance through
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a collaborative work in teams involving both robots and
humans [15, 16]. Such robots are called cobots: collab-
orative robots that share the physical space of a human
operator and can help to achieve a task by handling tools
or parts to assemble. Thus cobots can help the operator to
achieve a task with a greater precision while limiting the
trauma associated to repetitive motions, excessive loads
or awkward postures [17]. Similar robots can be used in
other contexts, for instance in rehabilitation [18, 19].
If humans and robots work together in such a close

way, then it is required that humans have a certain trust
in the technology and also an impression of understand-
ing what the robot is doing and why. Providing robots
with the ability to communicate and naturally interact
with humans, would minimize the required adaptation
from the human side. Making this a requirement such
that humans can actually work and interact with robots in
the same environment, complements the view of Human-
Centered AI as a technology designed for collaboration
and empowerment of humans [20].
After examining the specificity of robotics from an AI

point of view in the next section, we discuss the require-
ments of human-centered robotics and, in the light of the

current research on these topics, we examine the follow-
ing questions: How can a robot interact with humans?
How can it understand and learn from a human? How can
the human understand the robot? And finally what ethical
issues does it raise?

AI and robotics
A robot is a physical agent that is connected to the real
world through its sensors and effectors [21]. It perceives
the environment and uses this information to decide what
action to apply at a particular moment (Fig. 1). These
interactions of an autonomous robot with its environment
are not mediated by humans: sensor data flows shape per-
ceptions which are directed to the decision or planning
system after some processing, but without any human
intervention. Likewise, when an autonomous robot selects
an action to apply, it sends the corresponding orders
directly to its motors without going through any human
mediated process. Its actions have an impact on the envi-
ronment and influence future perceptions. This direct
relation of the robot with the real world thus raises many
challenges for AI and takes robotics away from the fields
in which AI has known its major recent successes.

Fig. 1 A typical AI system interacts with a human user (search engine, recommendation tool, translation engine ...). The human user launches the
request and the result is intended to be perceived by him or her and there is in general no other connection to the real world. The system is thus
not active in the real world, only the human is. A robotic system is active. It directly interacts with its environment through its perceptions and
actions. Humans may be part of the environment, but otherwise are not involved in robot control loop, at least for autonomous robots
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When it was first coined in 1956 at the Dartmouth Col-
lege workshop, AI was defined as the problem of “making
a machine behave in ways that would be called intelli-
gent if a human were so behaving” [22]. This definition has
evolved over time, with a traditional definition now that
states that “AI refers to machines or agents that are capable
of observing their environment, learning, and based on the
knowledge and experience gained, taking intelligent action
or proposing decisions”[23]. This view of AI includes many
of the impressive applications that have appeared since
Watson’s victory at the Jeopardy! quiz show in 2011, from
recommendation tools or image recognition to machine
translation software. These major successes of AI actu-
ally rely on learning algorithms and in particular on deep
learning algorithms. Their results heavily depend on the
data they are fed with. The fact that the design of the
dataset is critical for the returned results has been clearly
demonstrated by Tay, the learning chatbot launched in
2016 by Microsoft that twitted racist, sexist and anti-
Semitic messages after less than 24 h of interactions with
users [24]. Likewise, despite impressive results in natural
language processing, as demonstrated by Watson suc-
cess at the Jeopardy! show, this system has had troubles
to be useful for applications in oncology, where medical
records are frequently ambiguous and contain subtle indi-
cations that are clear for a doctor, but not straightforward
to extract for Watson’s algorithm [25]. The "intelligence"
of these algorithms thus again depends heavily on the
datasets used for learning, that should be complete, unam-
biguous and fair. They are external to the system and need
to be carefully prepared.
Typically, AI systems receive data in forms of images

or texts generated or selected by humans and send their
result directly to the human user. Contrary to robots, such
AI systems are not directly connected to the real world
and critically depend on humans at different levels. Build-
ing autonomous robots is thus part of a more restrictive
definition of AI based on thewhole intelligent agent design
problem: “an intelligent agent is a system that acts intel-
ligently: What it does is appropriate for its circumstances
and its goal, it is flexible to changing environments and
changing goals, it learns from experience, and it makes
appropriate choices given perceptual limitations and finite
computation” [26].
The need to face the whole agent problem makes

robotics challenging for AI, but robotics also raises other
challenges. A robot is in a closed-loop interaction with its
environment: any error at some point may be amplified
over time or create oscillations, calling for methods that
ensure stability, at least asymptotically. A robot moves in a
continuous environment, most of the time with either less
degrees-of-freedom than required – underactuated sys-
tem, like cars – ormore degrees-of-freedom than required
– redundant systems, like humanoid robots. Both condi-

tions imply the development of special strategies to make
the system act in an appropriate way. Likewise, the robot
relies on its own sensors to make a decision, potentially
leading to partial observability. Sensors and actuators may
also be a source of errors because of noise or failures.
These issues can be abstracted away for AI to focus on
high level decision, but doing so limits the capabilities
that are reachable for the robot, as building the low-level
control part of the robot requires to make decisions in
advance about what the robot can do and how it can
achieve it: does it need position control, velocity control,
force control or impedance control (controlling both force
and position)? Does it need a slow but accurate control
or a fast and rough one? For a multi-purpose robot like a
humanoid robot, deciding it a priori limits what the robot
can achieve and considering control and planning or deci-
sion in a unified framework opens the possibility to better
coordinate the tasks the robot has to achieve [27, 28].
In the meantime, robotics also creates unique opportu-

nities for AI. A robot has a body and this embodiment
produces alternative possibilities to solve the problems
it is facing. Morphological computation is the ability of
materials to take over some of the processes normally
attributed to control and computation [29]. It may drasti-
cally simplify complex tasks. Grasping with rigid grippers
requires, for instance, to determine where to put the fin-
gers and what effort to exert on the object. The same task
with granular jamming grippers or any other grippermade
with soft and compliant materials is much simpler as there
is basically just to activate grasping without any particu-
lar computation [30]. Embodiment may also help to deal
with one of the most important problems in AI: symbol
grounding [31]. Approaches like Watson rely on a huge
text dataset in which the relevant relations between sym-
bols are expected to be explicitly described. An alternative
is to let the robot experience such relations through inter-
actions with the environment and the observation of their
consequences. Pushing an object and observing what has
moved clearly shows object boundaries without the need
to have a large database of similar objects, this is called
interactive perception [32]. Many concepts are easier to
understand when interaction can be taken into account: a
chair can be characterised by the sitting ability, so if the
system can experience what sitting means, it can guess
whether an object is a chair or not without the need to
have a dataset of labelled images containing similar chairs.
This is the notion of affordance that associates perception,
action and effect [33]: a chair is sittable, a button pushable,
an object graspable, etc.
Robots are a challenge for AI, but also an opportunity to

build an artificial intelligence that is embodied in the real
world and thus close to the conditions that allowed the
emergence of human intelligence. Robots have another
specificity: humans are explicitly out of the interaction
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loop between the robot and its environment. The gap
between robots and humans is thus larger than for other
AI systems. Current robots on the market are designed
for simple tasks with limited or even no interactions (e.g.
vacuum cleaning). This situation can be overcome only if
the goal of a human-centered robotic assistant is properly
addressed, because the robot has to reach a certain level
of universality to be perceived as an interaction partner.
One component alone, like, e.g., speech recognition, is not
enough to satisfy the needs for proper interaction.

Requirements of human-centered AI and robotics
All humans are different. If they share some common
behaviours, each human has their specificities that may
further change along time. A human-centered robot
should deal with this to properly collaborate with humans
and empower them. It should then be robust and adap-
tive to unknown and changing conditions. Each robot is
engaged in an interaction with its environment that can be
perturbed in different ways. A walking robot may slip on
the ground, a flying onemay experience wind gusts. Adap-
tation is thus a core objective of robotics since its advent
and in all fields of robotics, from control to mechanics or
planning. All fields of robotics aim thus at reaching the
goal of a robot that can ultimately deal with the changes
it is confronted with, but these changes are, in general,
known to the robot designer that has anticipated the
strategies to deal with them. With these strategies one
tries to build methods that can, to some extent, deal with
perturbations and changes.
Crafting the robot environment and simplifying its task

is a straight-forward way to control the variability the
robot can be subject to. The application of this prin-
ciple to industry has lead to the large deployment of
robots integrated in production lines built explicitly to
make their work as simple as possible. New applications of
robotics have known a rapid development since the years
2000: autonomous vacuum cleaners. These robots are not
locked up into cages as they move around in uncon-
trolled environments, but despite the efforts deployed by
engineers, they may still have some troubles in certain
situations [34]. When a trouble happens, the user has to
discover where the problem comes from and make what-
ever change to its own home or to the way the robot is
used so that the situation will not occur again. Adaptation
is thus on the human user side. Human-centered robotics
aims at building robots that can collaborate with humans
and empower them. They should then first not be a bur-
den for their human collaborators and exhibit a high level
of autonomy [35].
The more variable the tasks and the environments to

fulfil them, the more difficult it is to anticipate all the sit-
uations that may occur. Human-centered robots are sup-
posed to be in contact with humans and thus experience

their everyday environment, that is extremely diverse.
Current robots clearly have trouble to appropriately react
to situations that have not been taken into account by
their designer. When an unexpected situation occurs and
results in a robot failure, a human-centered robot is
expected to, at least, avoid to infinitely repeat this failure.
It implies an ability to exploit its experience to improve
its behaviour: a human-centered robot needs to possess a
learning ability. Learning is the ability to exploit experi-
ence to improve the behaviour of a machine [36]. Robotics
represents a challenge for all learning algorithms, includ-
ing deep learning [37]. Reinforcement learning algorithms
aim at discovering the behaviour of an agent from a
reward that tells whether it behaves well or not. From an
indication of what to do, it searches how to do it. It is
thus a powerful tool to make robots more versatile and
less dependant on their initial skills, but reinforcement
learning is notoriously difficult in robotics [38]. One of
the main reasons is that a robot is in a continuous envi-
ronment, with continuous actions in a context that is,
in general, partially observable and subject to noise and
uncertainty. A robot that successfully learns to achieve a
task owes a significant part of its success to the appro-
priate design of the state and action spaces that learning
relies on. Different kinds of algorithms do exist to explore
the possible behaviours and keep the ones that maximise
the reward [39], but for all of them holds, the larger the
state and action spaces, the more difficult the discovery
of appropriate behaviours. In the meantime, a small state
and action space limits robot abilities. A human-centered
robot is expected to be versatile, it is thus important to
avoid too strong limitations of their capabilities. A solu-
tion is to build robots with an open-ended learning ability
[40, 41], that is with the ability to build their own state
and action spaces on-the-fly [42]. The perception of their
environment can be structured by their interaction capa-
bility (Fig. 2). The skills they need can be built on the
basis of an exploration of possible behaviours. In a process
inspired from child development [43], this search process
can be guided by intrinsic motivations, that can replace
the task oriented reward used in reinforcement learning,
for the robot to bootstrap the acquisition process of world
models and motor skills [44]. This adaptation capability is
important to make robots able to deal with the variability
of human behaviours and environments and to put adap-
tation on the robot side instead of the human side, but it
is not enough to make robots human-centered.
The main reason is that humans play a marginal role

in this process, if any. A human-centered robot needs
to have or develop human-specific skills. To do so, they
first need to be able to interact with humans. It can be
done in different ways that are introduced, with the chal-
lenges it raises, in “Humans in the loop” section. They
also need to understand humans. “Understanding humans
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Fig. 2 A PR2 robot engaged in an interactive perception experiment
to learn a segmentation of its visual scene [93, 94]. The interaction of
the robot with its surrounding environment provides data to learn to
discriminate objects that can be moved by the robot from the
background (Copyright: Sorbonne Université)

and human intentions” section discusses this topic. Based
on this understanding, robots may have to adapt their
behaviour. Humans are used to transmit their knowledge
and skills to other humans. They can teach, explain or
show the knowledge they want to convey. Providing a
robot with a particular knowledge is done through pro-
gramming, a process that requires a strong expertise. A
human-centered robot needs to provide other means of
knowledge transmission. It needs to be able to learn from
humans, see “Learning from humans” section for a dis-
cussion on this topic. Last but not least, humans need to
understand what robots know, what they can and what
they cannot do. It is not straightforward, in particular in
the context of the current trend of AI that mostly relies
on black-box machine learning algorithms [45]. “Making
robots understandable for humans” section examines this
topic in a robotics context.

Humans in the loop
The body of literature about the interaction of humans
with computers and robots is huge and contains metrics
[46, 47], taxonomies [48] and other kinds of descrip-
tions and classifications trying to establish criteria for
the possible scenarios. Often, a certain aspect is in the
focus, like e.g. safety [49]. Still, a structured and coher-
ent view is not established, such that it remains difficult to
directly compare approaches in a universal concept [50].
Despite this ongoing discussion, we take a more funda-
mental view in the following to describe what is actually
possible. A human has three possibilities to interact with
robots: physical interaction, verbal interaction and non-
verbal interaction. Each of these interaction modalities
has its own features, complexities and creates its own
requirements.

Physical interaction
As a robot has a physical body, any of its movements is
likely to create a physical interaction with a human. It may
not be voluntary, for instance if the robot hits a human
that it has not perceived, but physical interaction is also
used on purpose, when gestures are the main target. Phys-
ical interaction between humans and robots has gained
much attention over the past years since some signifi-
cant advancements have been made in two main areas
of robotics. On the one hand, new mechanical designs of
robotic systems integrate compliant materials as well as
compliant elements like springs. On the other hand, on
the control side, it became possible to effectively control
compliant structures because of increased computational
power of embedded micro-controllers. Another reason is
also the availability of new, smaller and yet very pow-
erful sensor elements to measure forces applied to the
mechanical structures. It has lead to the implementation
of control algorithms that can react extremely rapidly to
external forces applied to the mechanical structure. A
good overview of the full range of applications and the
several advancements that have been made in recent years
can be found in [51].
These advancements were mandatory for a safe use

of robotic systems in direct contact with human beings
in highly integrated interaction scenarios like rehabilita-
tion. Rehabilitation opens up enormous possibilities for
the immediate restoration of mobility and thus quality of
life (see, e.g. the scene with an exoskeleton and a wheel
chair depicted in Fig. 3), while at the same time promoting
the human neuronal structures through sensory influx.
Furthermore, the above-mentioned methods of machine
learning, especially in their deep (Deep-Learning) form,
are suitable methods to observe and even predict accom-
panying neural processes in the human brain [52]. By
observing the human electro-encephalogram, it becomes
possible to predict the so-called lateral readiness potential
(LRP) -that reflects the process of certain brain regions
to prepare deliberate extremity movements- up to 200ms
before the actual movement occurs. This potential still
occurs in people even after lesions or strokes and can
be predicted by AI-methods. In experimental studies, the
prediction of an LRP was used to actually perform the
intended human movement via an exoskeleton. By pre-
dicting the intended movement at an early stage and
controlling the exoskeleton mechanics in time, the human
being experiences the intended movement as being con-
sciously performed by him or herself.
As appealing and promising such scenarios sound, it is

necessary to consider the implications of having an ’intel-
ligent’ robot acting in direct contact with humans. There
are several aspects that need to be considered and that
do pose challenges in several ways [53]. To start with, we
do need to consider the mechanical design and the kine-
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Fig. 3 An upper-body exoskeleton integrated into a wheel chair can
support patients in doing everyday tasks as well as the overall
rehabilitation process. (Copyright: DFKI GmbH)

matic structure in much deeper way as we would have to
in other domains. First of all, there is the issue of safety of
the human. In no way can it be allowed for the robot to
harm the human interaction partner. Therefore safety is
usually considered on three different levels:

1. On the level of mechanical design we must ensure
that compliant mechanisms are used that absorb the
energy of potential impacts with an object or a
human. This can be done in several ways by
integrating spring like elements in the actuators that
work in series with a motor/gear setting. This usually
allows the spring to absorb any impact energy but on
the other hand it decreases the stiffness of the system
which is a problem if it comes to very precise control
with repeatable motions even under load.

2. on the second level the control loops can be used to
basically implement an electronic spring. This is done
by measuring the forces and torques on the motor
and by controlling the actuators based on these
values instead of position signal only. The control
based on position ensures a very stiff and extremely
precise and repeatable system performance while
torque control is somewhat less precise. It further
requires a nested control approach which combines
position and torque control in order to achieve the
desired position of the joint while at the same time
respecting torque limits set by the extra control loop.
Overall the effect is similar to that of a mechanical
spring as the robot will immediately retract (or stop
to advance) as soon as external forces are measured,
and torque limits are violated. Even though this
sounds like it is a pure control problem and AI-
Technologies are not required. The problem quickly
becomes NP Hard if the robot actually consists of

many degrees of freedom like e.g. a humanoid robot.
In these cases, deep neural network strategies are
used to find approximations to the optimal control
scheme [54]. Yet there are cases when even higher
levels of cognitive AI approaches are required, and
this is in cases where the limitations of torques to the
joints contradict the stability of the robot standing or
walking behavior, for instance, or when it comes to
deliberately surpass the torque limits if e.g. the robot
needs to drill a hole in the wall. In this case some
joints need to be extremely stiff in order to provide
enough resistance to penetrate the wall with the drill.
These cases require higher levels of spatio-temporal
planning and reasoning approaches to correctly
predict context and to adjust the low-level control
parameters accordingly and temporarily.

3. on the level of environmental observation there are
several techniques that use external sensors like
cameras, laser range finders and other kinds of
sensors to monitor the environment of the robot and
to intervene with the control scheme of the robot as
soon as a person enters the work cell of the robotic
system. Several AI technologies are used to predict
the intentions of the person entering the robots
environment and can be used to modify the robots
behavior in an adequate way: instead of just a full
stop if anything enters the area, it is a progressive
approach with a decrease of robot movement speed if
the person comes closer. In most well-defined
scenarios these approaches can be implemented with
static rule-based reasoning approaches, however,
imagine a scenario where a robot and a human being
are working together to build cars. In this situation
there will always be close encounters between the
robot and the human and most of them are wanted
and required. There might even be cases where the
human and the robot actually get into physical
contact, for instance when handing over a tool.
Classical reasoning and planning approaches have
huge difficulties in adequately representing such
situations [55]. What is needed instead is an even
deeper approach to actually make the robot
understand intentions of the human partner [56].

Verbal interaction
“Go forward”, “turn left”, “go to the break room”, it is very
convenient to give orders to robots using natural lan-
guage, in particular when robot users are not experts or
physically impaired [57]. Besides sending orders to the
robot (human-to-robot interaction), a robot could answer
questions or ask for help (robot-to-human interaction) or
engage in a conversation (two-way communication) [58].
Verbal interaction has thus many different applications
in robotics and contrary to physical interactions, it does
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not create strong safety requirements. A human cannot
be physically harmed through verbal interaction, except if
it makes the robot act in a way that is dangerous for the
human, but in this case the danger still comes from the
physical interaction, not from the verbal interaction that
has initiated it.
Although a lot of progress has been made on natural

language processing, robotics creates specific challenges.
A robot has a body. Robots are thus expected to under-
stand spatial (and eventually temporal) relations and to
connect the symbols they are manipulating to their sen-
sorimotor flow [59]. This is a situated interaction. Giving
a robot an order as “go through the door” is expected to
make the robot move to the particular door that is in the
vicinity of the robot. There is a need to connect words
to the robots own sensorimotor flow: each robot has spe-
cific sensors and effectors and it needs to be taken into
account. If the robot needs to understand a limited num-
ber of known words, it can be hand-crafted [57]. It can
also rely on deep learning methods [60], but language is
not static, it dynamically evolves through social interac-
tion, as illustrated by the appearance of new words: in
2019, 2700 words have been added to the Oxford English
Dictionary1. Furthermore the same language may be used
in a different way in distant places of the world. French
as talked in Quebec, for instance, has some specificities
that distinguishes it from the French talked in France.
A human-centered robot needs to be able to adapt the
language it uses to its interlocutor. It raises many differ-
ent challenges [61], including symbol grounding, that is
one of the main long-standing AI challenges [31]. Using
words requires to know their meaning. This meaning can
be guessed from a semantic network, but as the interac-
tion is situated, at least some of the words will need to be
associated with raw data from the sensorimotor flow, for
instance the door in the "go through the door" order needs
to be identified and found in the robot environment. This
is the grounding problem.
The seminal work of Steels on language games [62, 63]

shows how robots could actually engage in a process that
converges to a shared vocabulary of grounded words.
When the set of symbols is closed and known beforehand,
symbol grounding is not a challenge anymore, but it still
is if the robot has to build it autonomously [64]. To dif-
ferentiate it from the grounding of a fixed set of symbols,
it has been named symbol emergence [65, 66]. A sym-
bol has different definitions. In symbolic AI, symbols are
basically a pointer to a name, a value and possibly other
properties, like a function definition, for instance. A sym-
bol carries a semantic which is different for the human and
for the robot, but enables them to partially share the same
grounds. In the context of language study, the definition

1https://public.oed.com/updates/

of a symbol is different. Semiotics, the study of signs that
mediate communication, defines it as a triadic relation-
ship between an object, a sign and an interpretant. This is
not a static relationship, but a process. The interpretant is
the effect of a sign on its receiver, it is thus a process relat-
ing the sign with the object. The dynamic of this process
can be seen in our ability to dynamically give names to
objects (may they be known or not). Although many pro-
gresses have been made recently on these topic [58, 66],
building a robot with this capability remains a challenge.

Non-verbal interaction
The embodiment of robots creates opportunities to com-
municate with humans by other means than language. It
is an important issue as multiple nonverbal communica-
tion modalities do exist between humans and they are
estimated to represent a significant part of communicated
meaning between humans. Non verbal cues revealed for
instance to help children to learn new words from robots
[67]. Adding nonverbal interaction abilities to robots thus
opens the perspective of building robots that can better
engage with humans [68], i.e. social robots [13]. Nonverbal
interaction may support verbal communication, as lip-
syncing or other intertwined motor actions as head nods
[69], and may have a significant impact on humans [70],
as observed through their behaviour response, task per-
formance, emotion recognition and response as well as
cognitive framing, that is the perspective humans adopt,
in particular on the robot they interact with.
Different kinds of nonverbal communications do exist.

The ones that incorporate robots movements are kinesics,
proxemics, haptics and chronemics. Kinesics relies on
body movements, positioning, facial expressions and ges-
tures andmost robotics related research on the topic focus
on arm gestures, body and head movements, eye gaze
and facial expressions. Proxemics is about the percep-
tion and use of space in the context of communication,
including the notions of social distance or personal space.
Haptics is about the sense of touch and chronemics with
time-experiencing. Sanuderson and Nejat have reviewed
robotics research work on these different topics [70].
Besides explicit non-verbal communication means, the

appearance of a robot has revealed to impact the way
humans perceive a robot and engage in a human-robot
interaction [71, 72]. It has been shown for instance
that a humanlike-shape influences non-verbal behaviors
towards a robot like delay of response, distance [73]
or embarrassment [74]. Anthropomorphic robots signif-
icantly draw the attention of the public and thus creates
high expectations in different service robotics applica-
tions, but the way they are perceived and their acceptance
is a complex function involving multiple factors, includ-
ing user culture, context and quality of the interaction
or even degree of human likeness [75]. The impact of

https://public.oed.com/updates/
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this last point, in particular, is not trivial. Mori proposed
the uncanny valley theory to model this relation [76, 77].
In this model, the emotional response improves when
robot appearance gets more humanlike, but a sudden
drop appears beyond a certain level: robots that look like
humans but still with noticeable differences, can thus cre-
ate a feeling of eeriness resulting in discomfort and rejec-
tion. This effect disappears when the robot appearance
gets close enough to humans. The empirical validation of
this model is difficult. Some experiments seem to validate
it [78], while others lead to contradicting results [79]. For
more details, see the reviews by Fink [80] or Złotowski
et al. [81].

Understanding humans and human intentions

There are situations in which robots operate in isolation,
such as in manufacturing lines for welding or painting,
or in deep sea or planetary exploration. Such situations
are dangerous for humans and the robot task is provided
to it through pre-programming (e.g. welding) or telepro-
gramming (e.g., a location to reach on a remote planet).
However, in many robotic application areas, be it in man-
ufacturing or in service, robots and humans are starting
to more and more interact with each other in different
ways. The key characteristics making these interactions so
challenging are the following:

• Sharing space, for navigation or for reaching to
objects for manipulation

• Deciding for joint actions that are going to be
executed by both the robot and the human

• Coordination of actions over time and space
• Achieving joint actions physically

These characteristics lead to many different scientific
questions and issues. For example sharing space requires
geometric reasoning, motion planning and control capa-
bilities [82]. Deciding for joint actions [83] requires a
mutual representation of human capabilities by the robot
and vice-versa, e.g., is the human (resp. robot) capable of
holding a given object? It also requires a Theory of Mind
on the part of the robot and of the human: what are the
robot’s representations and what are the human’s repre-
sentations of a given situation? What is the human (resp.
robot) expected to do in this situation?
The third mentioned characteristic, coordination of

action, requires in addition to what has been mentioned
above signal exchanges between human and robot to
ensure that each is indeed engaged and committed to
the task being executed. For example gaze detection
through eye trackers enables to formulate hypotheses
about human visual focus. The robot in turn has to
provide equivalent information to the human, since the

human usually cannot determine the robot’s visual focus
from only observing its sensors. In this case, it becomes
therefore necessary that the robot signals explicitly what
is its focus or what are its intentions (see “Making robots
understandable for humans” section).
Now, when it comes to physical interaction, robot and

human are not only in close proximity, but they also
exchange physical signals such as force. Consider for
example a robot and a human moving a table together.
Force feedback enables to distribute the load correctly
between them, and enables to coordinate the actions. In
the case of physical interaction, another important aspect
is to ensure human safety, which puts constraints on
robot design and control. Compliance and haptic feedback
become key (see “Physical interaction” section).
In all these interaction scenarios, the robot must already

have all the autonomous capacities for decision-making
and task supervision. Indeed the robot must be able to
plan its own actions to achieve a common goal with
the human, taking into account the human model and
intentions.
Take the simple example of a human handing an object

to the robot. The common goal is that, in the final state,
the robot is holding the object, whereas in the initial
state the human is holding it. The goal must be shared
right from the beginning of the interaction, for example
through an explicit order given by the human. Alterna-
tively the robot might be able to determine the common
goal by observing the human’s behavior, which requires
the robot to have the ability to deduce human intentions
from their actions, posture, gestures (e.g., deictic gestures)
or facial expressions. This cannot be but a probabilistic
reasoning capacity, given the uncertainties of observation
and of prior hypotheses. Then the robot must plan its
actions according to its human model, and this cannot be
but a probabilistic planning process, e.g., using markovian
processes, because of the inherent uncertainties of the
observations – and therefore the robot’s beliefs – and of
action execution. Robot task supervision must also ensure
that the human is acting in accordance to the plan, by
observing actions and posture.
Another essential dimension for complex interactions is

communication using dialogue. The robot can start such
a dialogue for example when it detects that some infor-
mation is needed to complete its model, or to reduce its
uncertainties. Formulating the correct questions requires
the robot to have a self assessment capacity of its own
belief state.

Learning from humans
Using the human as a teacher to train robotic systems has
been around for some time [84]. Many cases and scenar-
ios, like the hybrid team scenario (see example depicted
in Fig. 4) where humans and robots are building cars
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Fig. 4 Examples for humans, robots and other AI agents working in
hybrid teams. Due to the possible applications and scenarios robots
can be configured here as stationary or mobile systems up to even
complex systems with humanoid appearance. (Copyright: Uwe
Völkner/Fotoagentur FOX)

together acting as a team, are too complex to be com-
pletely modelled. Consequently, it is difficult or impos-
sible to devise exact procedures and rule-based action
execution schemes in advance. One example here could
be to formulate the task to have a robot pack a pair of
shoes in a shoebox [85]. Even a task that sounds as simple
as this proved to be impossible to be completely modeled.
Therefore, a learning by demonstration method has been
applied to teach the robot the task by a human demonstra-
tor. In such cases learning, or said differently a step-wise
approximation and improvement of the optimal control
strategy, is the most straightforward option available. In
situations where enough a priori data is available, this can
be done offline and the robotic system can be trained to
achieve a certain task. However, in many cases, data is
not available and therefore online strategies are needed
to acquire the desired skill. The learning by demonstra-
tion approach can already be implemented quite success-
fully by e.g. recording data from human demonstrators
that are instrumented with reflectors for image captur-
ing devices and then feeding skeleton representations of
the human movements as sample trajectories into the
learning system which in turn uses e.g. Reinforcement
Learning techniques to generate appropriate trajectories.
This approach usually leads to quite usable policies on
the side of the robotic system, yet in many cases when
applied in a realistic task scenario it turns out that “quite
good” is not good enough and online optimization has to
be performed. Here it turns out to be advantageous to
include approaches like discussed in the previous section
on understanding human intentions or state of mind.
Using this general idea, it was possible to online improve

the performance of an already trained robot by applying

a signal generated by the human brain on a subcon-
scious level providing it as a reinforcement signal back to
the robot [56]. The signal is the so-called Error poten-
tial. This is an event related potential (ERP) generated by
brain areas when a mismatch between expected input and
actual input occurs. In many real-world situations such a
signal is produced e.g., when a human observes another
human to perform amovement in an obviously wrong way
in the correct context or the correct movement is per-
formed but in the wrong context. The beauty about this
signal is that it is generated on subconscious levels, so
before the human actively is aware of it. This is important
for two reasons:

1. When the human becomes aware of the signal that
means that it was already analyzed and modulated by
other brain regions. This means that a cognitive
classification of the subconscious signal has taken
place which will disassociate the original signal.

2. The second reason why it is important that the signal
occurs before evaluation by other brain areas is that it
does not have to be externalized e.g. by verbalization.
Imagine a hybrid team scenario where the human in
the team has to explicitly verbalize each error that he
or she observes in the performance of the robot.
First, the above mentioned disassociation process
will lead to a blurriness or haziness of the verbalized
feedback to the robot but more importantly as a
second result the human would probably not
verbalize each and every error due to fatigue and
information valuable for interaction is lost.

To summarize, the learning could either happen using
external information available, like getting commands or
watching humans demonstrating a task, or implicit signals
during interaction like evaluation of facial expressions or
by using brain signals like certain ERPs to provide feed-
back. The latter is of course using information from the
human interaction partner that is not directly controlled
by the human and also not per se voluntarily given. This
raises ethical and legal questions that have to be addressed
when using this as a standard procedure for interaction
(see also “Ethical questions” section), underlining the fact
that Human-centered AI and robotics ultimately include
the involvement of disciplines from social sciences. At the
same time, we have outlined that making use of such infor-
mation can be highly beneficial for fluent and intuitive
interaction and learning.

Making robots understandable for humans

In “Understanding humans and human intentions”
section, it was discussed how the robot can better under-
stand humans and how this can be achieved to some point.
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It is rather straightforward to equip the robot with the
necessary sensors and software to detect humans and to
interpret gestures, postures and movements, as well as to
detect their gaze and infer some intentions. Even if it is
not the whole complexity of human behavior, these capac-
ities can capture enough of human intentions and actions
to enable task sharing and cooperation. Equally important
however in an interaction is the opposite case, that is how
can the human better understand the robot’s intentions
and actions.
In most scenarios, we can safely assume that the human

does have some a priori knowledge about the framework
of action that the robot is equipped with. That is to say
that the human can infer some of the physical capabil-
ities and limitations of the system from its appearance
(e.g., a legged robot vs. a wheeled robot) but not of its
power e.g., can the robot jump or climb a given slope?
Even if the human could have some general ideas of the
spectrum of robot sensing possibilities, it is not clear
whether the robot perceptive capabilities and their lim-
its can be completely and precisely understood. This is
e.g., a result of the fact that it is difficult for humans to
understand the capabilities and limitations of sensors that
they don’t have e.g., infrared sensors or laser-rangefinders
providing point-clouds. It is fundamentally impossible for
a human being to understand the information process-
ing going on in robot systems with multi-level hierarchies,
from low-level control of single joints to higher levels of
control involving deep neural networks and finally to top
level planning and reasoning processes that all interact
with each other and influence each other’s output. This
is even extremely difficult for trained computer science
experts and robot designers. It represents a complete field
of research that deals with the problems of how to man-
age the algorithmic complexity that occurs in structurally
complex robotic systems that act in dynamic environ-
ments. Actually the design of robot control or cognitive
architectures is an open research area and still a big
challenge for AI-Based-Robotics [86].
Attempts to approach the problem of understanding

robots by humans have been made in several directions.
One attempt is the robot verbally explaining its actions
[16]. This is to say that the robot actually tells (or writes
on a screen) the human what it is doing and why a specific
action is carried out. At the same time, it is possible for the
human to ask the robot for an explanation of its action(s)
and the robot gives the explanation verbally, in com-
puter animated graphics or in iconized form on a screen
installed on the robot. The hope behind such approaches
is that the need for explanations deliberately uttered by
the robot as well as the quest for answers from the side of
the human will decrease over time as learning and under-
standing occurs on the side of the human. Of course this
is difficult to assess as long term studies so far have not

been carried out or could not be carried out because of
the unavailability of appropriate robots. But one assump-
tion that we can safely make is that the explicit answering
or required listening to explanations by the human will
not be highly appreciated when it comes to practical sit-
uations, and the repetitive explanatory utterances of the
robot will quickly bother humans.
Therefore it is necessary to think about more subtle

strategies to communicate robot internal states and inten-
tions to the human counterpart e.g., its current goals,
its knowledge about the world, its intended motions, its
acknowledgement of a command, or its requests for an
action by the human. Examples of such approaches are
to use mimics and gestures. Robots equipped with faces
- either just as computer screens where the face is gener-
ated or by actually actuated motors forming faces under
artificial skin covered robotic heads (if such devices are
deemed acceptable - see “Ethical questions” section - in
order to produce facial expressions which gives some
information about the internal state of the robot. These
approaches could successfully be applied in e.g. home and
elderly care scenarios. However, the internal states being
externalized here are rather simple ones that are meant
to stimulate actions on the human side like in the pet
robot Paro.
However, we can assume that it should be possible in

well known scenarios, such as in manufacturing settings,
to define fixed signals for interaction made from a set of
gestures, including deictic gestures, facial expressions or
simply graphical patterns that can be used to externalize
internal robot states to human partners. Such a model of
communication can be described as the first steps towards
achieving a more general common alphabet [87] as the
basis for a language between humans and robots. It is
likely that such a common language will be developed or
more likely emerge, from more and more robot human
interaction scenarios in real world applications as a result
of best practice experiences.
It is certain that the corresponding challenges on the

robotic side go beyond what was described earlier like the
soft and compliant joints that are used for safety reasons.
It will be necessary to develop soft and intelligent skin
as a cover of the mechanical robot structures that can be
used not just as an interface for expressions -in the case
of facial skin- but also as a great and powerful sensor on
other parts of the robot body for improving and extending
the range of physical interactions with humans [88]. Just
a simple example that we all know is that in a task per-
formed by two humans it is often observed that one of two
partners slightly pushes or touches the other on the shoul-
der or the arm in order to communicate e.g. that a stable
grip has been achieved or to say: ’okay I got it, you can
let it go...’. This kind of interaction could also be verbally
transmitted to the interaction partner, but humans have
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the ability to visualize the internal states of their human
counterparts, because we share the same kinematic struc-
ture and disposition. It is thus in this case not necessary
to speak. Just a simple touch suffices to transmit a com-
plex state of affairs. Yet, the interaction of humans with
robots that are equipped with such kind of advanced
skin technologies can be expected to be a starting
point for a common language. The physical interac-
tion will therefore enable new ways of non-physical
interaction and very likely the increased possibilities
for nonphysical interaction will in turn stimulate other
physical interaction possibilities. In summary, it will
be an interesting voyage to undertake if in fact intel-
ligent and structurally competent robotic systems will
become available as human partners in various every-
day life situation. Like in all other technologies, the
human designer will shape the technology, but at the
same time the technology will shape the human, both as
a user of the technology but also as the designer of this
technology.

Ethical questions
There are several issues which raise questions of ethics
of robotic technologies considered as interaction partners
for humans [89]. To list but a few:

• Transformation of work in situations where humans
and robots interact together. Depending on how it is
designed, the interaction might impose constraints
on the human instead of making the robot adapt to
the human and carry the burden of the interaction.
For example the human is given more dexterous
tasks such as grasping, which end up being repetitive
and wearing when robot speed doing simpler tasks
imposes the pace.

• Mass surveillance and privacy issues when personal
or domestic robots collect information about their
users and households, or self-driving cars which are
permanently collecting data on their users and their
environments.

• Affective bonds and attachment to personal robots,
especially those made to detect and express emotions.

• Human transformation and augmentation through
exoskeletons or prosthetic devices.

• Human identity, status of robots in society (e.g;, legal
personality), especially for android robots mimicking
humans in appearance, language and behavior.

• Sexbots designed to be sexual devices that can be
made to degrade the image of women, or to look like
children

• Autonomous weapon systems - which are not so to
speak "interacting" with humans, but which are
endowed with recognition capacities to target
humans.

If we speak about ethics in the context of robots and
AI technologies, what we fundamentally mean is that we
want to make sure that this technology is designed and
used for the good of mankind and not for the bad. The
first problem is obviously how do we define good and
bad? There are the obvious answers implying that a robot
should not harm a person. No question, but what about a
surgical robot that needs to inject a vaccine into the arm
of a person with a syringe, thus physically injuring her at
the moment, but for her benefit? How can we make the
distinction between these cases in a formal way? This is
the core of the problem.
If we speak about ethics and how to design ethical delib-

eration into technical systems so that the robot decision-
making or control system behaves for "the good", we
are fundamentally required to come up with a formal-
ization of ethics. In some form or the other we will
be required to put down in expressions of logic and
numerical values what is ethical and what is not. In our
understanding this will not be possible in a general form,
because human ethical judgment and moral thinking is
not amenable to algorithmic processing and computa-
tions. For example, how would we define algorithmically
a principle of respect for human dignity? The concept of
dignity itself is complex and has several moral and legal
interpretations.
Ethical deliberation cannot be reduced to computing

and comparing utilities, as we often see in publications
on ethical dilemmas for self driving cars for example. The
car could only make computations based on data acquired
by its sensors, but the ethical choices would have actu-
ally been already made by the designers. Even deciding
that the passengers can customise ethical choices, or to
let the system learn [90], for example in simulations, to
determine values to be optimized is a negation of what
ethical deliberation is. Indeed this would entail an a priori
decision on a situation to come, or to decide that ethical
deliberation is based on statistics of past actions.
We will of course be able to formalize ethical guidelines

(to the designers) for robot design and control if con-
crete well specified domains are regarded. We could e.g.
solve the syringe problem easily if we built a surgical robot
that is used and operated only in hospitals and that has
a clearly defined set of tasks to fulfill in e.g. the vaccina-
tion department of the hospital. And then this becomes
a matter of safety design, similar to any other technical
device. But what about a household service robot that
is designed to clean the floors and wash the dishes...
Wouldn’t we want this robot also to be able to perform
first aid services e.g. if the person in the household suf-
fers diabetics and need insulin injections from time to
time... Cases can be constructed where we come to the
problem that a complete and full formalization of ethics is
impossible.
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Carrying a responsible approach or a value-based design
procedure [91] can help to conceive robots and AI sys-
tems for which ethical issues are actually solved by the
human designers and manufacturers beforehand, during
specification, development and manufacturing. The robot
itself will not be endowed with moral judgment. But we
will have to make sure that the humans will abstain from
misusing the technology.
But more profound questions arise when it comes to

the last three issues listed above. For example, building
android human-like robots can be considered a scien-
tific research topic, or a practical solution to facilitate
human-robot interaction. However, the confusion this
identification of humans with machines provokes requires
a reflection on the nature of human identity as com-
pared to machines, that needs to address all aspects and
consequences of such technical achievements.
A reflection grounded on philosophical, societal and

legal considerations is necessary, beyond sole scholarly
studies, to address the impact of these technologies on
society. Indeed, there are numerous initiatives and expert
groups who have actually already issued ethics recom-
mendations on the development and use of AI and
Robotics systems, including the European High-Level
Expert Group on AI (HLEG-AI), the IEEE Global Initia-
tive on Ethics of Autonomous and Intelligent Systems,
the UNESCO COMEST, and the OECD (see [92] for a
comprehensive overview). As an example of commonly
accepted ethics recommendations are the seven “require-
ments for trustworthy AI2” issued by the HLEG-AI in
2019:

1. “Human agency and oversight”: AI systems should be
subject to human oversight and they should support
humans in their autonomy and decision-making

2. “Technical Robustness and Safety” should be
provided. Systems should be reliable and stable also
in situations with uncertainty, they should be
resilient against manipulations from outside

3. “Privacy and Data Governance” should be guaranteed
during the lifecycle with data access controlled and
managed, and data quality provided.

4. “Transparency”: Data and processes should be well
documented to trace the cause of errors. Systems
should become explainable to the user on the level
appropriate to understand certain decisions the
system is making.

5. “Diversity, Non-Discrimination and Fairness” should
be ensured by controlling for biases that could lead to
discriminatory results. Access to AI should be
granted to all people.

2https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-
trustworthy-ai

6. “Societal and Environmental Well-Being”: The use of
AI should be for the benefit of society and the natural
environment. Violation of democratic processes
should be prevented.

7. “Accountability” should be provided such that AI
systems can be assessed and audited. Negative
impacts should be minimised or erased.

However there are still open issues, mostly related to
how to translate principles into practice, or topics subject
to hard debates such as robot legal personality, advocated
by some to address liability issues. Furthermore, when
considering specific use-cases, tensions between several
requirements could arise, that will have to be specifically
addressed.

Conclusion
Most AI systems are tools for which humans play a criti-
cal role, either at the input of the system, to analyse their
behavior, or at the output, to give them an information
they need. Robotics is different as it develops physical sys-
tems that can perceive and act in the real world without
the mediation of any humans, at least for autonomous
robots. Building human-centered robots requires to put
humans back into the loop and to provide the system
with the ability to interact with humans, to understand
them and learn from them while ensuring that humans
will also understand what they can and cannot do. It also
raises many ethical questions that have been listed and
discussed. Human centered AI and Robotics thus create
many different challenges and require the integration of
a wide spectrum of technologies. It also highlights that
robots assisting humans are not only a technological chal-
lenge in many aspects, but rather a socio-technological
transformation in our societies. In particular, the use of
this technology and how it is accessible, are important
topics involving actors in dealing with social processes,
public awareness and political and legal decisions.
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