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Abstract: Natural user interfaces based on hand gestures are becoming increasingly popular. The
need for expensive hardware left a wide range of interaction possibilities that hand tracking enables
largely unexplored. Recently, hand tracking has been built into inexpensive and widely available
hardware, allowing more and more people access to this technology. This work provides researchers
and users with a simple yet effective way to implement various one-handed gestures to enable
deeper exploration of gesture-based interactions and interfaces. To this end, this work provides
a framework for design, prototyping, testing, and implementation of one-handed gestures. The
proposed framework was implemented with two main goals: First, it should be able to recognize any
one-handed gesture. Secondly, the design and implementation of gestures should be as simple as
performing the gesture and pressing a button to record it. The contribution of this paper is a simple
yet unique way to record and recognize static and dynamic one-handed gestures. A static gesture can
be captured with a template matching approach, while dynamic gestures use previously captured
spatial information. The presented approach was evaluated in a user study with 33 participants and
the implementable gestures received high accuracy and user acceptance.

Keywords: gestures; interaction; natural user interface; gestural input; freehand; hands-free; bare
hands; virtual reality (VR); augmented reality (AR); mixed reality (MR)

1. Introduction

Especially for Augmented (AR), Virtual (VR), and Mixed Reality (MR) research and its
applications, gesture recognition and hand-gesture-based interfaces are becoming increas-
ingly important. In the earlier years of AR, the interaction was mostly based on physical
objects with markers attached to them [1], while more recent applications are using hand
tracking for interaction [2–4]. Hand-tracking technology is becoming more reliable and is
built into various types of Head-Mounted Displays (HMDs) allowing hand interaction out
of the box.

The importance of hand-based interaction is steadily growing, and hand gestures are
more frequently used in various application and research scenarios. It is utilized for design
and engineering by Vinayak et al. [5] to visualize new concepts and ideas through the use of
a hand gesture-driven 3D shape modeling tool for creative expression. Furthermore, hand
gestures are also used in vehicles to access various functions while driving without averting
one’s gaze, as described by Riener et al. [6] and Verma et al. [7]. Medical applications use
touchless hand gesture-based interfaces to guarantee safety or sterility during operation [8].
Hand gestures are also used to improve remote collaboration [9,10]. Grasping virtual
objects is investigated by Vosinakis et al. [11], locomotion solely based on hand gestures
by Schäfer et al. [12], and virtual object manipulation by Song et al. [13]. Recognizing
air-writing is introduced by Chen et al. [14] and a character recognition system-based on
finger-joint tracking is introduced by Alam et al. [15]. Hand gestures also have an important
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role in the the recognition of sign language, as used by Shin et al. [16]. New applications
based on hand gestures are constantly being developed. Commonly available hardware
to detect and track human body parts contributed significantly to the development of
gesture-based interactions and interfaces.

Frameworks from HMD manufacturers usually allow an easy integration of hand
gestures for AR and VR applications. These frameworks, however, are often tied to specific
hardware and have a limited amount of available gestures. Defining new gestures is not
possible or complicated. Additionally, dynamic gestures, such as drawing a sign in the
air, concatenation of gestures, or gestures composed of complex hand movements, are
not supported.

Researchers implement various gestures with rather complex methodology and re-
quire many training samples in order to implement a reliable gesture. One of the most
used approaches is the Hidden Markov Model (HMM), which requires many samples to
complete graph optimization, and the process of training is relatively complicated. Many
existing frameworks are therefore either not generalizable, complex to use, or tied to
specific hardware.

This paper proposes a solution with a simple yet effective way to record and recog-
nize any one-handed gesture. The gestures that can be implemented with the proposed
framework are ready to be used for many different applications. This contribution has
the intention of supporting a variety of hardware and should be seen as a complementary
solution and not as a replacement of existing frameworks and toolkits. Part of this work
was inspired by the $1 recognizer from Wobbrock et al. [17] in the sense that defining and
recognizing gestures should be cheap, easy, and flexible to design. In order to evaluate the
proposed methodology, a user study was conducted.

The contributions of this paper are:

• The possibility to capture arbitrary one-handed static and dynamic gestures via button
press, enabling rapid design, prototyping, testing, and implementation of one-handed
gestures. This includes dynamic gestures with changing hand shape;

• A simple yet unique way to record and recognize dynamic one-handed gestures;
• A comprehensive user study to evaluate the proposed method.

2. Background and Related Work
2.1. Popular SDKs for Hand Gestures

Devices built to support hand tracking usually come with a Software Development
Kit (SDK) that provides visualization and simple interactions with virtual objects using
hands within immersive virtual environments.

The Mixed Reality Toolkit [18] (MRTK) is a popular choice for AR and VR applications,
as there are several sophisticated devices supported. It allows users to manipulate virtual
objects by pinching and other rather simple hand gestures. The MRTK relies mostly on
virtual objects such as menus, buttons, and sliders for interaction. This SDK should not be
considered as a framework for hand gestures but rather a whole toolkit to enable interaction
with virtual objects by using natural input, such as hands or eye gaze.

The Leap Motion SDK [19] can be used with specific hardware to enable hand-gesture-
based interaction in AR, VR, MR, or even desktop-based systems without HMDs. The SDK
provides various options for hand gestures, such as pinching or grabbing. Other gestures
can be defined, but the SDK as it stands is limited to static gestures.

Recently, the Oculus portfolio was extended with HMDs that have built-in hand
tracking support. The SDK [20] to support this hardware enables hand-based interaction
with objects by using simple hand gestures such as pinch, unpinch, and pinch and hold.

In contrast to these SDKs, the framework proposed in this paper allows quickly and
easily designing for arbitrary one-handed gestures. Complex dynamic gestures can be
recorded and recognized for usage within an interactive system, which is not possible with
the aforementioned SDKs.
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2.2. Dynamic Gesture Recognition

Several techniques and frameworks for dynamic hand gesture recognition are proposed
by researchers [21–27]. Unlike existing solutions, the framework presented in this paper does
not require data sets, network training, or expert knowledge to create new gestures.

Studies have been conducted on gesture recognition systems and frameworks in the
context of sign language. Galván-Ruiz et al. [28] provide an overview of systems from
1963 to 2020. The discussed papers include a wide variety of different types of devices
used to recognize hand signs, e.g., Wi-Fi, RFID, Vision, and Electromyogram data-based
recognition systems. Cheok et al. [29] provide an overview of systems between 1995 and
2016 and states that the Hidden Markov Model (HMM) appears to be a promising approach
toward dynamic gesture recognition, while Support Vector Machine (SVM) is the most
popular method for static gestures. The survey also highlights the accuracy and sample size
of the individual systems. For additional background regarding hand gesture recognition
systems not necessarily related to sign language, the reader is referred to surveys such
as [30–35].

2.3. Gesture Design Tools with Similar Objectives

This section covers the closest gesture-based interface prototyping tools to AnyGesture.
These works have similar objectives such as creating gestures without expert knowledge
and rapid prototyping of gestures. However, AnyGesture is clearly distinguishable from
existing work. A comparison is depicted in Table 1. As an example, Ashbrook et al.
introduced the tool MAGIC [36], which allows creating and prototyping gestures with a
three-axis accelerometer. Unlike the system presented in this paper, it cannot recognize
hand shapes. Speicher et al. [37] proposes GestureWiz, a system that is capable of recording
and recognizing gestures from video input data. The system allows rapid prototyping for
gestures with a consumer-grade webcam. Compared to this system, AnyGesture works
with hand skeleton data and is mainly focused on egocentric vision, which makes it more
attractive for AR, VR, and MR applications.

Table 1. Comparison and differentiation with similar systems in existing literature. All mentioned
systems have the aim of allowing the rapid design of new gestures. AnyGesture is the only system
that does not require multiple training samples and allows gestures that involve individual finger
movements. The green check mark indicates availability, the red cross no availability.

Easy Design of
New Gestures

Hand Movement
Recognition

Hand Shape
Recognition

Individual Finger
Movement

No Training
Data Required

MAGIC [36] 3 3 7 7 7
GestureWiz [37] 3 3 3 7 7

Gesture Knitter [38] 3 3 3 7 7
AnyGesture 3 3 3 3 3

The system Mogeste is proposed by Parnami et al. [39], which allows prototyping and
testing of gestures realized with inertial sensors on commodity wearable and mobile devices.
Lü and Li [40] propose a system for rapidly prototyping multi-touch gestures. Their system
is able to generate gestures that can then be used for multi-touch gesture-based interfaces.

Nebeling et al. proposes Kinect Analysis [41] to inspect and annotate motion record-
ings obtained from depth cameras that could then potentially be reused to create gestures.
Mo et al. introduced Gesture Knitter [38], a tool which allows users to combine fine and
gross primitives with a visual scripting language. As an example, users are able to combine
a static fist gesture (fine primitive) with a forward movement (gross primitive) to create a
“fist-forward” gesture. The authors of [38] train HMMs to recognize gestures that require
training samples as opposed to AnyGesture. Furthermore, Gesture Knitter uses the hand’s
center of mass to track and detect the movements. This allows only static hand shapes to
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be formed and recognized, while AnyGesture additionally allows movement of individual
fingers to form a gesture. This allows AnyGesture to record and recognize a wider range of
gestures, including microgestures where only small subtle finger movements are involved.

3. Materials and Methods
3.1. Possible Gestures

A distinction between two essential types of gestures is made within the proposed
framework: static and dynamic gestures (similar to the work of Li et al. [21]):

Static Gestures. A gesture that is detected solely by recognizing a specific hand shape
is considered a static gesture. It can be either rotation invariant or tied to a specific
hand orientation. Temporal and spatial information, such as the path of the hand, is not
considered while recognizing this type of gesture.
Dynamic Gestures. A dynamic gesture uses spatial information, such as the path of the
hand or individual joints. This type of gesture is recognized by detecting patterns in
movement. Thus, previously defined behavior can be recognized and used. It is to note
that stroke gesture recognition, such as that conducted in [17,42,43], is a subset of this
category. Dynamic gestures in the proposed system also allow for individual fingers to be
moved and recognized as gesture, which is a unique feature compared to similar work in
the literature.

A typical static gesture would be a “thumbs up” while drawing a circle in the air with
the index finger would be considered a dynamic gesture. Performing a pistol gesture by
only moving the thumb down is a dynamic gesture with an individual finger movement.

3.2. Framework Architecture

This section provides a general overview of the implementation of the proposed
framework. A crucial component of the framework is the hand data provider, which was
implemented to decouple the framework from specific hand tracking hardware and SDKs.
It is designed as a wrapper to allow all relevant framework components access to hand
tracking data without relying on a specific implementation for hand tracking. In essence, it
allows access to hand joints, hand scale, and has support functions to provide data to other
components. It generalizes incoming hand tracking data by only relying on joint positions
as input. Thus, there is no dependency on specific implementations by manufacturers, and
users of the framework only have to make a few adjustments to support a particular device.

The shape of the hand, which is composed of the positions of each individual hand
joint, can be stored for the recognition of a gesture. Common hand tracking devices are able
to track the Distal, Middle, and Proximal Phalanges of the fingers and provide information
about the palm and wrist positions.

While a static gesture is recognized with a previously stored hand shape, dynamic
hand gestures need a subset of these points. As an example, a dynamic gesture can be
recorded by tracking the position of single or multiple chosen joints. In the process of
implementing the framework, it was found that the most important joints are the finger
tips, palm, and wrist. Invisible 3D objects are attached to these points in order to allow
more interaction possibilities. These invisible objects are basically spheres attached to key
positions that can be used to record a spatial path or to perform collision detection (e.g.,
detect if something was touched by a joint). Collision detection within the hand was found
to be particularly useful for some gestures, e.g., the pinch gesture, since a pinch can be
reliably detected when the thumb and index finger collide.

To enhance robustness, a subsystem was implemented that observes the movement
state of the key positions. It can be considered a post-processing step for the provided
hand tracking data. While developing the proposed framework, it was found that such a
component is crucial to reliably recognizing gestures since it can prevent many undesired
hand gestures. Such undesired hand gestures often occur if too many possible gestures
are stored in the system, the user is moving the hands, and no preventive measures are
implemented. The position of a hand joint is observed over time, and previously chosen
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criteria determine whether a specific joint is currently moving or not. These criteria define
the following behavior:

• At which threshold a joint position can be considered still. This is necessary to
eliminate noisy data from the hand tracking device.

• How long the joint should be still until it is considered to be not moving.

As mentioned earlier, the motion path of joints is stored. The sampling rate as well as
the amount of stored information can be configured. Depending on the desired behavior,
a gesture can only be recognized if one or multiple joints are not moving. Each joint is
individually observed, but a higher-level component is used to monitor the state of the
whole hand.

A rough overview of the main parts that make up the framework is shown in Figure 1.
The framework supports an easy swap of the Hand Tracker component, allowing many hand
tracking solutions to be used with the framework. The Gesture Recorder allows recording
and saving gestures that are then stored in a set of known gestures. These gestures are
then recognized by the Gesture Recognizer by comparing stored data with live data from
the hand tracker. A Gesture Interpreter is used to communicate with the desired application
using events that inform when gestures are performed.

Figure 1. Overview of the proposed framework.

3.3. Tracking

The hand detection in the proposed framework is realized using a hand tracker built
into an HMD. The tracking part is crucial and serves as an entry point to the gesture
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recognition framework as it is responsible for accurate pose matching. The hand tracker
primarily used in the development of the framework provides 23 points for each hand (see
Figure 2. Other configurations are supported as well. The more points a tracking device
provides, the more fine-grained the gesture recognition is.

Figure 2. Hand points used to capture static gestures.

3.4. Feature Extraction

The proposed framework requires two primary features for recognizing one-handed
gestures:

• Joint Positions for static hand shape detection and matching;
• Finger Tip Positions for recording spatial information required to perform dynamic

gestures.

Hand poses and shapes can be stored for later recognition of static hand gestures, e.g.,
while a user is performing the hand movement, it can be matched against a predefined
set of hand shapes. In order to increase the recognition performance for users with hands
below or above the average human hand size, the hand positions are adjusted by a scaling
factor. This normalization is necessary to increase the recognition accuracy for gestures that
were recorded by a different user than the user performing the gestures. To achieve this,
each joint position is divided by the hand scaling factor.

The raw hand shape does not take hand rotation or orientation into account and
therefore has rotation invariance. Performing a hand shape that resembles a “thumbs up”
will therefore be indistinguishable from a “thumbs down”, but it should likely have a
different meaning. Furthermore, for some gestures, it is necessary to know whether the
hand is facing the user. For example, if a menu should be opened when an open hand
gesture in the direction of the user is performed. To solve this problem, the orientation of
the hand in relation to the head of the user is utilized. The direction the user is looking
at is calculated by using the forward vector of the HMD. Then, the angles between head
direction and the X/Y/Z directions perpendicular to the hand at its current position are
calculated. This feature can clearly identify the orientation of a hand relative to the VR
HMD. This allows for gestures that should be activated when the hand is facing the user or
the palm should be upwards, etc. A static gesture is then formed by storing joint positions
provided by the hand tracker and the hand orientation relative to the user’s facing direction.
Static gestures can be captured by pressing a single button on the keyboard. To be more
precise, the user shapes their hand as the gesture should be defined and presses a key, and
then this shape is added to the set of predefined gestures that can be recognized by the
system (see Algorithm 1).
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Algorithm 1 Capturing Static Gestures.

1: Desired hand shape is formed by the user
2: Gesture capture event is triggered via keyboard press
3: Extract joint positions from current hand pose
4: Create new gesture object
5: for Each joint on the hand do
6: Transform joint position from world space to local space
7: Adjust joint position with hand scaling factor
8: Store joint position in gesture object
9: Calculate the orientation angles of the hand relative to the head direction of the user

10: end for
11: Store calculated hand orientation relative to the users’ facing direction in gesture object
12: Add gesture object to list of known gestures

Dynamic gestures, on the other hand, use spatial information for specific points on the
hand, e.g., finger tip positions or the palm. The proposed framework allows the recording
of spatial information for any joint with arbitrary movements that can be stored for later
recognition. This process is depicted in Figure 3. Each dynamic gesture requires a “start”
shape, i.e., the system needs to know when the user intends to perform a dynamic gesture.
For this reason, each dynamic gesture has a static gesture attached to it, which is later
matched to the hand shape from the tracking device during run time. A dynamic gesture
can be considered a more complex variant of a static gesture. While a static gesture is
performed as soon as it is recognized, it can be used as a cue to activate a dynamic gesture.

Figure 3. The proposed framework allows recording gestures by storing the spatial path of the
desired hand joints as 3D points and represents them as spheres. To help the user redo the desired
gesture, a visual path is shown (can be customized or disabled), which the hand joints should follow.

In order to record and store a dynamic gesture, the user shapes their hand as the
gesture should be defined and presses a key to start the recording process. The gesture
recording component attaches itself to predefined points on the hand, such as the index
finger tip, and follows the path of it until the key is pressed again. These predefined points
should be chosen by the user before a gesture is being recorded. A gesture that is primarily
conducted with the index finger should record the index finger, a swipe gesture might be
recorded best if the palm is observed, etc. Which joints should be tracked for which gesture
can be decided by the user of the framework. Recording will save a path consisting of 3D
points for chosen joints. These 3D points are stored by computing the spatial differences
between subsequent points.

The sampling rate of the gesture recording can be freely adjusted (i.e., the number of
3D points stored for a gesture). A high sampling rate means a fine-grained gesture with
many points stored, while a lower rate might be more inaccurate but stores less information.
It should be noted that a hand tracking device with a low frame rate may cause difficulties
in imitating a gesture. This is because hand tracking might introduce stuttering, which
cannot reproduce a fine-grained spatial path. Therefore, a low sampling rate is advisable
if the target device has a low frame rate. Multiple hand joints can be recorded at the
same time. The spatial path is stored as a doubly linked list for each individual joint, i.e.,
each point knows its predecessor and successor. The list is always initialized with a point
at the local coordinates (X,Y,Z) = (0,0,0) set as the first element. This ensures that each
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stored gesture path always starts at the initial position of its associated joint during the
recognition phase.

3.5. Gesture Recognition
3.5.1. Static Gestures

Static gestures are recognized similar to how they were recorded, e.g., current joint
positions are retrieved from the tracking module, hand scaling is applied, and hand orienta-
tion is calculated. The values from each hand frame are then compared to the stored values,
i.e., gestures. A threshold TShape can be used to either relax or increase the constraint to
detect a gesture. To recognize a gesture, the mean difference for each joint position from
the live data and the positions stored inside a gesture are calculated and then compared
with the threshold (Equation (1)).

|(
joints

∑
n=1

CurrentPosn − StoredPosn)| < TShape (1)

The same is conducted with the orientation where OCx, OCy, and OCz represents the
current data from the tracker, and OSx, OSy, and OSz are the stored angles between HMD
facing and hand directions (Equation (2)).

|(OCx −OCy −OCz)− (OSx −OSy −OSz)| < TOrientation (2)

The thresholds TShape and TOrientation can be freely adjusted for each gesture indi-
vidually within the framework and therefore allow various options for the design of an
interactive gesture-based system. For example, a TOrientation = 360◦ value causes a gesture
to be rotation invariant, and the gesture is then detected by shape only, regardless of the
hand rotation. It was found that the threshold values TShape = 0.05 and TOrientation = 15◦

are a good compromise for recognition accuracy of many gestures. A simple algorithm for
detecting a single static gesture among a predefined set of static gestures is described in
Algorithm 2.

Algorithm 2 Recognizing Static Gestures.

1: New hand frame arrives
2: Get current hand frame Hcurrent from hand tracker
3: for Each known gesture in the gesture storage do
4: Set Dminimum to Float.Maximum value
5: for Each joint on the hand do
6: Transform joint position from world space to local space
7: Adjust joint position with hand scaling factor
8: Calculate distance D between stored joint position and current position
9: if D > Threshold then

10: Discard current gesture G (hand shape is not matching)
11: end if
12: Add D to DSum
13: end for
14: if DSum < Dminimum then
15: Set Dminimum to DSum (store the smallest distance)
16: end if
17: end for
18: if G is not discarded AND DSum is the lowest between gestures then
19: Current gesture is detected
20: end if

This algorithm is suitable for recognizing the closest matching rotation invariant
hand shape in a set of known gestures. In the case of similar gestures inside the gesture
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storage, it is a design choice whether the system should take the gesture with the closest
matching shape or the closest matching orientation of the hand. The closest matching
hand orientation as the final decision to decide for a single gesture out of multiple similar
gestures was chosen for the framework. Ultimately, the decision as to which factor (hand
shape or orientation) is decisive is rather negligible. This is because the threshold for both
factors can be chosen more strictly for each individual gesture. If a gesture is designed
more strictly, it will less likely have competing gestures with a similar hand shape.

3.5.2. Dynamic Gestures

In the proposed framework, a dynamic gesture consists of a static gesture and a
predefined spatial path for hand joints. A gesture always starts by recognizing a hand shape
(the static gesture). After that, the spatial path of the joint positions must be reproduced in
order to complete the gesture. A visualization provides the user with information on how
to move the hand accordingly. As mentioned in Section 3.4, the spatial path of hand joints,
such as finger tip positions, can be recorded, which must be imitated in order to complete a
dynamic gesture. This path is reconstructed by placing invisible 3D points in the virtual
environment once the attached static gesture is detected. These points are surrounded by a
collider that allows them to be touched. These colliders are freely adjustable, which means
that a gesture path must be followed quite strictly or the user is allowed to deviate from it.
Each 3D point of the path has a specific joint that it must collide with. Recording the path
of the index finger will result in 3D points that must be touched by the index finger and not
with any other joint, such as thumb, pinky, etc. In order to achieve this, each finger tip on
the hand has an object attached to it (invisible to the user), which allows distinguishing
which finger has touched which point.

As mentioned before, the points are implemented as a doubly linked list, i.e., each
point knows its predecessor and successor. Furthermore, the first point in this list is
always set to the world position of the joint it is supposed to be touched with. This will be
conducted once the start gesture for the dynamic gesture is found, allowing the dynamic
gesture to be performed. After a point is touched, it is marked as such, deactivated, and its
successor is activated. If there is no successor left and the current point has been touched,
the dynamic gesture was reproduced successfully. This implementation provides a simple
yet efficient method for a gesture to be replicated in the correct order. Other constraints are
applied in order to ensure that the user imitates the desired gesture correctly. For example,
once a dynamic gesture is detected, the first point of the spatial path will be enabled. The
system knows which point should be touched next and therefore calculates the distance
between the joint it should be touched with and the next point which should be touched. If
the distance is too large to the next point, the gesture is considered failed. This test is done
for each joint that was used to record the gesture.

3.5.3. Handling Similar Gestures

In a system with arbitrary one-handed gestures, the algorithm to recognize static
gestures described in Algorithm 2 is not sufficient since it can only recognize the closest
matching gesture. In case a similar hand shape is required for multiple gestures, this
algorithm will search for the best match, and therefore, only one gesture will be recognized.
In a system with arbitrary hand gestures, however, there could be many similar gestures
that should be interpreted differently. The Swipe gesture for example can be performed
by swiping left or right with the same hand shape. However, swiping left and right is
performed for different desired actions. In the proposed framework, each swipe with a
different motion direction would be considered as a separate dynamic gesture, e.g., “Swipe
Left” and “Swipe Right” would be recorded separately.

To achieve this, the algorithm described in Section 3.5.1 is adjusted to allow multiple
gestures with the same hand shape to be activated at the same time:

• Instead of choosing the gesture with the lowest joint distance (closest match to the
stored gestures), all gestures are marked as found that fit within the chosen thresholds.
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• If there is more than one gesture found, check if there are gestures marked “Allow
Similar Gestures”. If yes, then allow all gestures marked as such to be performed. If
visualization is enabled, the user receives visual cues for the different motion directions
the hand joints can follow.

• If there is more than one gesture found, but no gesture is marked as “Allow Similar
Gestures”, then only allow the closest match to be performed.

3.5.4. Further Refinement of Dynamic Gestures

To this point, gesture recognition can be refined by comparing stored information
with information obtained from current frames. This includes hand shape, orientation, and
the recorded dynamic hand path. This is not sufficient for covering arbitrary one-handed
gestures. A “pistol” gesture, for example, would require the hand to be still and the thumb
to be moved in a specific way, as shown in Figure 4A–C. This can be leveraged by the user
by following the expected thumb path with the whole hand instead of moving only the
thumb (Figure 4D–F). The framework allows for an option that forces the user to hold
the hand still if a specific gesture should be conducted. If a dynamic gesture is detected
and this option is enabled, the position of the hand where the gesture was first found is
stored. If the distance of the hand is too far from its original point, the gesture will be
canceled. This refines the recognition in a way that undesired hand movements no longer
fulfill a dynamic gesture path, as depicted in Figure 4D–F. The various refinement options
provided by the framework are shown in Table 2.

Figure 4. Images (A–C) show the desired behavior for performing a “pistol” gesture. (D–F) shows
wrong movement that is still accepted by the system if no proper constraints are applied. In this case,
the user follows the gesture path by moving the whole hand instead of only the thumb. This can be
solved by applying constraints to the palm position of the hand.

3.6. Gesture Interpretation

A gesture in the proposed framework has various events, which enables customizable
interpretation. An event can be considered as a callback function that is called when certain
conditions are met. These conditions include completing the gesture, canceling the gesture,
executing a gesture incorrectly, and gesture progress.

3.6.1. Gesture Completed

This event is called once a gesture is considered performed. For static gestures, this
simply means that the current hand frame data matched the stored static hand shape and
orientation, and therefore, the gesture was recognized. Dynamic gestures are completed
if all constraints attached to the gesture are met. These constraints include following the
stored spatial path and others that were mentioned in Section 3.5.4.
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Table 2. Various options can be applied to refine gestures in order to implement desired behavior.

Refinement Effect

Spatial Path Requires the user to follow a predefined path with specific joints.

Hand Lock In order to correctly perform the gesture, the user is only allowed to move fingers
(see Figure 4).

Allow Similar Gestures Allows multiple dynamic gestures to begin with the same hand shape.

Pose Threshold A value that represents how close the current hand shape must match a stored shape.

Orientation Threshold
A value that represents how strict the hand direction should be with respect to the stored

values. A high chosen value causes a gesture to be rotation invariant, and it will be
detected regardless of the hand rotation.

Visualization This option enables a visual path that is shown once a dynamic gesture starts in order to
help the user perform the gesture correctly.

3.6.2. Gesture Failed

A dynamic gesture can fail due to various reasons, such as not following the spatial
path, moving the hand too far away, performing a different static hand shape, etc. Once the
system detects that the user violated one of these constraints while a dynamic gesture is
active, the framework triggers a callback, which informs other components of the failed
gesture and the reason. In the proposed framework, a static gesture cannot fail. This is
because it is either being performed or not performed. Once the hand shape and orientation
match, a static gesture is already considered complete.

3.6.3. Gesture Progress

Dynamic gestures can notify other components about the percentage of how far the
gesture has progressed. This value is coupled to the number of points that were stored
during the recording of the gesture. More points in the stored spatial path will result in a
finer-grained progress reporting by the gesture. Static gestures do not support progress.

3.6.4. Gesture Activated/Deactivated

Static gestures by default will trigger a Completed event for each hand frame found.
If this behavior is not desired, additional framework components can be attached to
implement custom behavior. These components will listen to the Gesture Completed event
and will trigger an Activation event once. As long as the Gesture Completed event is being
triggered, no further Activation event will be sent out by the component. If there was no
Completed event for a certain amount of time (can be freely changed and the default value
is 0.5 s), a deactivation event is triggered. This is particularly useful to use static gestures to
enable and disable certain elements in a virtual environment, such as showing menus or
enabling tools.

3.7. Combining Gestures

Gestures can be combined in order to further reflect the desired behavior. As an
example, a static gesture can be used to activate and deactivate a hand interaction tool,
while a dynamic gesture allows triggering interactions while this tool is available. In
Figure 5, a prototypical implementation of a selection tool is shown. The tool is activated
by performing a static variant of the “pistol” gesture shown in Figure 4A. Once activated, a
visible ray will be shown from the finger tip to the direction the finger is pointing. Enabling
this ray also enables the option to perform the dynamic variant of the “pistol” gesture, as
shown in Figure 4A–C, which will select an object the ray intersects with.

Besides this example, there are various other implementations possible with the
proposed framework to combine and concatenate gestures that allow for truly arbitrary
single hand gestures.
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Figure 5. Exemplary implementation of a selection tool using the framework. A recognized static
gesture (A) activates a visible ray and a dynamic gesture (B). If the dynamic gesture is performed by
moving the thumbs down, an object is selected that intersects the ray (C).

3.8. Choosing Relevant Gestures for the Evaluation

Since the framework supports an arbitrary number of possible gestures, a subset of
gestures must be chosen in order to evaluate the framework. It was decided to include
a total number of 25 gestures for the evaluation. An overview of all gestures is given in
Figure 6. The number of gestures lines up with some existing work that evaluates the
recognition of the American Sign Language alphabet, which is usually about 24 distinct
gestures. The gestures that denote Z (D3) and J (D4) in the American Sign Language
alphabet are usually not evaluated by other works since they are not able to recognize
dynamic gestures. It was decided to include a variety of gestures in the evaluation to cover
a range of possible use cases. Gestures from the American Sign Language alphabet are
included (S1, S5, S15, S16, D3, D4). Some gestures were added due to their complex hand
configuration (S3, S12, S16, S17). Furthermore, some gestures were included because they
are almost universally understood gestures, such as swiping left and right (D5, D6) and
thumbs up and down (S18, S19). Additionally, existing SDKs from hardware manufacturers
usually provide a small set of gestures, which were also included in the evaluation, such as
an open palm or pointing (S7, D1, D2).

3.9. Choosing a Relevant Assessment

One difficulty in selecting an appropriate assessment is that the existing literature
for gesture recognition mostly uses labeled data sets, which allows easily calculating the
accuracy of a proposed system within a certain data set. Thus, it can be directly compared
to other approaches by using benchmark tests. Since the framework proposed in this article
does not use data sets and ground truth data for recognition, calculating the accuracy of
gestures within a certain data set is not possible. In a first pilot study, users had to perform
a gesture that was shown to them to find out if the approach works as intended. It was
observed that users often made a wrong gesture before actually conducting the desired
gesture. For example, a participant performed swiping left instead of right or a thumbs up
instead of thumbs down. One reason for this is that the participants were eager to finish
the test as quickly as possible or were simply inattentive. Hence, a quantitative analysis
that can be represented in confusion matrices would be not accurate and therefore not
applicable in this case.

For an appropriate assessment of the framework, it is assumed that gestures that are
well recognized can also be recognized quickly. Therefore, it was decided to include a
task that shows gestures and users should try to perform them as quickly as possible. If a
gesture is not well recognized by the framework, it is reflected in the time taken between
showing and recognizing the gesture. To further investigate the robustness of the proposed
approach, it was decided to include a second part to the experiment. The aim of this task is
to investigate how the framework performs when multiple different gestures should be
performed in a row. This is interesting for interfaces that require successive gestures to
achieve a certain task. For example, a pointing gesture to select something followed by a
thumbs up to confirm the selection. For that reason, it was decided to include an additional
experiment that involves the user performing multiple successive gestures, namely gesture
sets. All gestures from the previous experiment are active in the background (see Figure 6).
The number of falsely recognized gestures within a gesture set is recorded. This metric
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gives insight how the proposed approach performs when many different gestures should
be recognized.

Figure 6. The 25 gestures that were used in the evaluation. S1–S19 are static gestures, and D1–D6 are
dynamic gestures.

3.10. Experiment Overview
3.10.1. Objectives

In order to evaluate the framework, a user study is conducted. The reliability of the
gestures and whether the gestures can be imitated without difficulty should be investigated.
This is especially important since the gestures were recorded and designed from a single
user who did not participate in the study. Many different gestures are performed by
multiple users. Therefore, it can be investigated if gestures recorded from one user can
be reproduced reliably by any other user. Furthermore, it will be assessed how the users
perceive the gestures generated by the system. This is a particularly useful insight as end
users are often the decisive factor when it comes to selecting a gesture for a task. Subjective
questionnaires have also been used in relevant previous work, such as [37,38].

3.10.2. Users

A total of 33 participants were recruited (18 male, 15 female). The participants’ ages
ranged between 19 and 61 years old (µ = 28.6). The technology affinity of the users was
assessed with the Affinity for Technology Interaction (ATI) questionnaire [44,45]. The mean
score for the ATI of the participants is 4.30.

3.10.3. Apparatus

The evaluation was performed using a gaming notebook with an Intel Core I7-7820HK,
32 GB DDR4 RAM, Nvidia Geforce GTX 1080 running a 64-bit Windows 10. Hand tracking
was realized using the Oculus Quest 2 VR HMD. No controllers were used.
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3.10.4. Experimental Task

Participants had to perform gestures in front of a virtual screen while wearing a VR
HMD (see Figure 7). After the shown gesture was recognized by the system, a visual
confirmation was displayed for one second. Experiment part one required the user to
imitate 25 different hand gestures, which were shown one after another. The different
gestures are shown in Figure 6. This procedure is repeated five times, i.e., each gesture was
performed five times from each participant. The order of gestures was randomized for each
repetition and participant. After five repetitions, part two started. For that, ten gesture
sets are to be performed by the user. A gesture set is a concatenation of 2–3 gestures that
have to be performed in specific order. Gestures that were recognized but were not part of
the current gesture set that needed to be performed were recorded as a falsely recognized
gesture. (All 25 gestures from experiment part one are enabled in the system during this
task.) The gesture sets are described in Appendix A.

Figure 7. Experiment part one. A gesture is displayed to the participant (left) that should then be
imitated (right). This test is to ensure that gestures can be recognized correctly.

3.10.5. Procedure

Each trial session was conducted individually with the subject. Subjects were naive
to the purpose of the experiment. The experimenter explained the trial session procedure,
followed by handing out the informed consent. After that, the subjects put on the VR HMD
and performed the experimental task. After the task was completed, a questionnaire for
the perceived usefulness of the gestures is handed to the participant as well as the ATI
questionnaire. The total execution time for one user session was about 30 min.

3.11. Results

A total of 125 gestures from experiment part one and 28 from experiment part two
were performed by each participant. With 33 participants, this corresponds to a total
number of 5049 gestures performed for the evaluation.

3.11.1. Quantitative Evaluation

Experiment Part One. As a first assessment of whether the gestures produced by the
framework are useful, the time required to perform a gesture is measured. The time between
displaying the gesture and recognizing it is measured. The mean time to complete the
gestures for all participants is depicted in Figure 8. The time until recognition is particularly
interesting to find out which gestures were not easy to imitate by users. For example,
gesture S17 took longer than most of the gestures, as shown in Figure 8. This might be an
indication that gesture recognition configuration was too strict for this particular gesture
and could be loosened in order to improve recognition time. A trend that gestures are
recognized more quickly with the fifth repetition is noticeable, as depicted in Figure 8. The
figure shows graphs for the first, last, and average time for five repetitions. Overall, most
static gestures were recognized about one second after being displayed to the user in the
fifth repetition.
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Figure 8. Mean time required by the subjects to perform the individual gestures. The time given
refers to the moment when the gesture was recognized by the system after it was displayed to the
participant. Mean time for the first time a gesture was performed in yellow, five repetitions of a single
gesture is shown in blue, and the last repetition in green.

Experiment Part Two. In the second evaluation phase, the number of times a gesture
was falsely recognized is assessed. Participants had to perform gesture sets consisting of
two to three gestures that should be performed in a row (see Figure 9). The results are
useful in two ways: First, it can be assessed how many falsely recognized gestures are
in between each gesture set. Secondly, the framework’s capability to produce gestures
that can be concatenated. Ten gesture sets are shown consecutively to the user. They are
displayed on a virtual screen with visual feedback once a gesture was recognized.

For the ten gesture sets, a total of 28 gestures are to be performed by each participant.
This corresponds to a total of 924 performed gestures by participants in this phase. A
total number of 51 falsely recognized gestures were recorded during the second phase.
This leads to 5.52% of falsely recognized gestures between gesture sets. The results in the
second evaluation phase should be treated with caution. During the evaluation, it was
found that the test persons often made a wrong gesture because they tried to solve the
task as quickly as possible. For example, a “Swipe Left” was often performed until the test
persons realized that a “Swipe Right” should actually be performed. Nevertheless, there
are some falsely recognized gestures, for example, gesture S1 and S12, because they require
forming a similar hand shape. After subtracting the supposedly correctly recognized but
incorrectly performed gestures, about 2% of falsely recognized gestures remain. Out of
330 gesture sets performed, seven gesture sets were interrupted with falsely recognized
gestures in between.

Figure 9. Experiment part two. A gesture set is displayed to the participant to be imitated. The aim is
to test whether gestures can be concatenated easily and therefore allow more complex interactions.
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3.11.2. Qualitative Evaluation

A questionnaire was handed out to the participants to ask for their subjective opinion
of the system. The results of the questionnaire are shown in Figure 10. Three questions
were asked:

Q1 The system was able to recognize the gestures I made.
Q2 Dynamic gestures, such as Z or SWIPE, were easy to perform.
Q3 I had the feeling that the gestures I made were immediately recognized.

Participants were overall very satisfied according to the questionnaire. Most users
gave either the best possible rating or the second best.

Figure 10. Answers from participants to the given questionnaire. SA = Strongly Agree, A = Agree,
N = Neutral, D = Disagree, SD = Strongly Disagree.

4. Discussion

The system implemented with the proposed framework received positive ratings from
the participants. The lowest scores in the questionnaire also match with the highest time
required to recognize some gestures. For example, a participant gave a neutral rating for
Q2 because he had difficulties replicating the Z gesture. Another participant had difficulties
performing S9 and gave a neutral rating to Q1. As shown in Figure 8, most static gestures
were detected about 1 s after being displayed to the participant. Dynamic gestures require
a longer time to complete than static gestures, which is due to the fact that there is hand
motion involved. Furthermore, in order for the participant to understand which gesture to
perform, a short video is displayed, which needs to be understood first.

Additionally, some recognition times are impacted by the hand configuration itself. For
example, some subjects had problems shaping the hand properly due to either congenital
characteristics of the hand or previous injuries (especially S3, S10, and S17). Along with the
settings that a gesture had to correspond quite closely to the recorded gesture, this resulted
in an overall longer recognition time. However, all participants were able to perform the
desired gestures, and the questionnaire results are overall very positive. The measurements
from the first part of the experiment helped reveal some potential problems with certain
gestures. S1, for example, took a surprisingly long time to recognize. The participants had
problems turning the hand exactly as it was shown to them in the video.

The proposed implementation shows promising results for recognizing one-handed
gestures. To the best of our knowledge, there is no one-handed gesture that cannot be
designed, performed, and recognized with the framework. In addition, recording static
and dynamic gestures is as simple as performing the desired gesture and subsequently
pressing a key. The simplicity of the framework was confirmed when the gestures for the
experiment were defined. It took no more than five minutes to design and implement
the 25 gestures used in the evaluation. The framework can be used to implement various
applications and is not bound to specific hardware. In order to support other hand tracking
devices, the hand data provider has to be adjusted to support the target hand tracking SDK.
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4.1. Key Takeaways from the Experiment

From the analysis of the results, interviews, and the observation of the participants,
the following conclusions can be drawn:

• Hand gestures should be defined in such a way that they can be performed as easily
as possible. For gestures S3, S10, and S13, subjects were asked to turn their hand about
180 degrees, which made some subjects uncomfortable. Gesture S3 was also very
difficult for one subject to perform because the little finger could not be extended as
required for the gesture. When designing gestures, it should be taken into account
that people can extend their fingers to different extents.

• The spatial understanding of the test persons differed. The tracing of a letter in the air
with the index finger (the Z gesture D3) was sometimes performed incorrectly, which
led to frustration for some people. The gesture was aborted if the finger left the path
and had to be performed again. This often happened because people underestimated
or overestimated the depth of the required path and thus left the gesture path. In
general, mistakes should be allowed when users have to follow a path with the finger
or a whole hand in order to provide a good user experience with little frustration.

• By observing and interviewing the participants, it can be said that users learned to
perform the gestures rather quickly. Looking at the results presented in Figure 8
underlines this argument. Especially within the last repetition, users seemed to be
faster at performing gestures. This learning process should be taken into account when
evaluating hand-gesture-based interactions. It is therefore recommended to conduct a
trial session before the experiment, where users can test and learn the gestures.

• It should always be considered that users perform gestures incorrectly. Regardless
of the fact that the experiment was timed, some subjects tried to finish the test as
quickly as possible. This led to some gestures being performed incorrectly, such as the
thumbs up gesture instead of thumbs down or palm up instead of palm down. This
should be taken into account when designing an experiment and recording results to
be analyzed.

4.2. Limitations and Future Work

Although both hands can be used to recognize gestures, each hand has its own
gesture recognition system attached to it. This means that each hand can perform gestures
individually but do not take the other hand into account. Allowing gestures that involve
monitoring both hands simultaneously is planned future work. Furthermore, the proposed
framework is heavily dependent on the accuracy of the hand tracking data that are fed
into the feature extraction component. Highly accurate hand tracking will result in better
gesture recording/recognition, while a poorly performing hand tracking device leads to
corresponding results. In addition, a gesture recognition system should not only use the
hands but other signals of the human body, such as eye gaze, limb movement, and face
mimic. Integrating more input modalities is part of future work. A subset of 25 hand
gestures was evaluated. The gestures were chosen in order to include some similar and
some rather complex hand configurations. Many more gestures are possible with the
proposed technique, but the experiments were conducted in order to ensure that the
framework works as intended.

As part of future work, it is planned to implement various applications and scenarios
that use one-handed gestures. These applications are then evaluated with a focus on the
usefulness of specific gestures. Furthermore, automatic detection of similar gestures should
be explored in order to eliminate conflicting gestures. Additionally, automatic classification
of recorded gestures (whether it is a static or dynamic gesture) would further help gesture
designers to record gestures. In the current system, the gesture designer has to manually
choose whether to record a static or dynamic gesture. It is also necessary to select which
joints of the hand are to be tracked to form a dynamic gesture.
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5. Conclusions

In this work, a framework for the design and implementation of one-handed gestures
is proposed. It can be used to implement natural user interactions within a wide variety of
immersive AR, VR, MR, and desktop applications. Existing hand tracking solutions serve
as an entry point to the framework, and the necessary data are redistributed to internal
components. These components are responsible for recording, storing, recognizing, and
interpreting gestures. The detected gestures can be integrated into applications with events,
such as gesture completion, activation, deactivation, failed, and progress.

The goals of the framework are a simple gesture creation process and the recognition of
any one-handed gesture. The evaluation confirms that the main objectives of the framework
have been achieved. Static and dynamic gestures can be recorded by performing the desired
gesture and subsequently pressing a key. For static gestures, hand shape and orientation is
stored. Dynamic gestures can be recorded by monitoring joint positions and storing the
spatial differences into a doubly linked list. To allow a wide range of complex gestures,
several solutions are proposed to enhance and improve gesture recognition. Furthermore,
a system to evaluate the framework was built. A user study with 33 participants was
conducted, and gestures designed with the framework were evaluated. Overall, the
system showed promising results. Gestures designed and implemented by a single person
can be reliably reproduced by others without the need for elaborate data sets to define
new gestures.

The core of this work is the ease of adding new gestures that are reliably recognized and
directly applicable. By not requiring data sets, training, or expert knowledge to implement
new gestures, it allows integration into a variety of applications. Even complicated gestures
can be easily recorded and tested for usability. The multitude of possible gestures is
only limited by the creativity of the users. This work aims to encourage researchers to
create gesture-based applications and then examine them for usability, feasibility, and
other measures. It paves the way for systems to design, prototype, evaluate, and support
arbitrary gestures.
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Appendix A

Table A1. Gesture Sets to be performed by users in evaluation phase 2. The corresponding gestures
to the acronyms in the table can be found in Figure 6 of the paper.

Gesture Sets

Gesture 1 Gesture 2 Gesture 3

S16 S19 -
D6 S2 S12
S6 S11 S12
D5 S19 -
S8 S14 S13

S11 S16 S8
S13 S18 -
S3 S17 S19
S2 S4 S6
S1 S6 S7
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