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Abstract
Deep Learning (DL) has consistently surpassed other Machine Learning methods and achieved state-of-the-art performance
in multiple cases. Several modern applications like financial and recommender systems require models that are constantly
updated with fresh data. The prominent approach for keeping a DL model fresh is to trigger full retraining from scratch when
enough new data are available. However, retraining large and complex DLmodels is time-consuming and compute-intensive.
This makes full retraining costly, wasteful, and slow. In this paper, we present an approach to continuously train and deploy
DL models. First, we enable continuous training through proactive training that combines samples of historical data with
new streaming data. Second, we enable continuous deployment through gradient sparsification that allows us to send a
small percentage of the model updates per training iteration. Our experimental results with LeNet5 on MNIST and modern
DL models on CIFAR-10 show that proactive training keeps models fresh with comparable—if not superior—performance
to full retraining at a fraction of the time. Combined with gradient sparsification, sparse proactive training enables very
fast updates of a deployed model with arbitrarily large sparsity, reducing communication per iteration up to four orders of
magnitude, with minimal—if any—losses in model quality. Sparse training, however, comes at a price; it incurs overhead
on the training that depends on the size of the model and increases the training time by factors ranging from 1.25 to 3 in
our experiments. Arguably, a small price to pay for successfully enabling the continuous training and deployment of large
DL models.
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1 Introduction

Deep Learning (DL) is a subfield of Machine Learning
(ML), involving Deep Neural Network (DNN) models,
which has shown huge success in recent years. It has dra-
matically improved the state-of-the-art in many fields, like
speech recognition [1], computer vision [2], and natural lan-
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guage understanding [3]. This success is explained by the
fact that the quality of DL models improves with increasing
dataset sizes, due to their ability to learn representations
directly from data.

However, DL still faces several challenges. First, DNN
results are not easily interpretable [4]. Second, their op-
timization is not theoretically well understood, relying on
non-convex optimization [5]. Third, they are resource-in-
tensive, taking days or weeks to train on expensive GPU
clusters. Training DNN models requires extremely large
datasets and compute resources that are exponentially ris-
ing [6]. Fourth, DL models can be massive in size; recently,
the GPT-3 [3] architecture featured a staggering 175 billion
parameters.

The two last problems of DL (compute-intensive, mas-
sive model sizes) are accentuated in the era of the Internet
of Things (IoT) when we are surrounded by sensory de-
vices (e.g. smartphones, cameras, sensors) that collect and
generate data streams continuously [7]. Although there is
a growing need for continuously updated DL models, cur-
rent systems support periodic full retraining of DL models
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when enough new data are available or the performance of
models degrades [8]. We find this process to be wasteful
and resulting in stale models. Wasteful, because it discards
the previously learned model that has consumed consider-
able amounts of compute-resources. Even if the previously
learned model is not discarded but used for warm-starting,
it still needs several epochs to converge and might not give
state-of-the-art generalization [9]. Model staleness is a di-
rect consequence of continuously arriving data; by the time
a model is retrained, enough new data may be available to
trigger a new retraining. Periodical retraining time grows
as the dataset size increases. The fast arrival of new data
together with an increasingly slow retraining process are
the recipe for stale models in production.

To overcome the staleness of DL models, we propose to
continuously train the previously learned model with proac-
tive training [8]; a strategy for continuous training that per-
forms Stochastic Gradient Descent (SGD) iterations with
batches formed by a combination of new data and samples
of historical data. We continuously update the deployed DL
model residing on a remote machine using the gradient up-
dates obtained by proactive training. For large DL models,
the transmission of gradients over the network can easily
become a communication bottleneck and endanger the pri-
vacy of training data. We opt to adapt our continuous train-
ing approach with an idea from the distributed DL training
domain to reduce the communication cost of model up-
dates among different workers [10–12]. More specifically,
we sparsify the gradients calculated during each training
iteration, keeping an accumulated memory of the unused
gradients of previous iterations. The sparse gradient vec-
tors are not only used for training but also communicated
to the remote machine that handles the model deployment.
The sparsification significantly reduces the communication
needed to deploy model changes (allowing mini-batch level
deployment).

Our contributions are as follows. First, we adapt proac-
tive training to enable continuous training of DL models
(Sect. 3). Second, we extend it with gradient sparsifica-
tion to reduce the deployment cost and enable continuous
deployment of DL models (Sect. 4). Finally, we perform
an extensive experimental analysis on the impact of both
proactive training and sparsification on training time, de-
ployment cost, and model quality (Sect. 5).

2 RelatedWork

We divide the related work into two groups: model training
when new data arrives, and deployment of DNNs models.

The standard approach for DL model training is to gather
a big dataset and train the DL model over multiple epochs
(passes over the dataset), while reshuffling the dataset be-

fore each epoch. Mini-batch SGD and its variants have sev-
eral properties that are suitable for large scale datasets [13,
14] and are the de-facto optimization methods for DL train-
ing. After the initial training, when enough new data have
become available or the model’s performance has degraded
the training process is restarted from scratch to prevent ex-
cessive model staleness. This is known as full retraining or
batch learning. As opposed to batch learning, online learn-
ing keeps models fresh incrementally as new data arrives.
Online learning for DL has received limited attention [15,
16], but should be highlighted more, as IoT applications
gain more ground and produce streams of data [17]. In
contrast to batch learning methods with expensive retrain-
ing cost whenever new training data arrive, online learning
performs updates only based on the new training data. This
makes online learning highly scalable and suitable for large-
scale applications. However, in many cases, to converge to a
good model, there is merit to continue training on historical
data and not only take into account new data.

In some cases, the previously trained model still has
some value [18] and this is why platforms like Tensorflow
Extended (TFX) [19, 20] allow for the training to be started
with the parameters of the previously trained model, a pro-
cess called warm-starting. Recent work by Derakhshan et
al. [8] shows that when it comes to training ML models,
full retraining is not always required and online learning
is not good enough. They propose to periodically trigger
proactive training, a process that combines new data with
samples of historical data into mini-batches for SGD-based
optimization. This continuous training approach achieves
superior quality to online training. When compared to full
retraining, it achieves similar model quality, while reduc-
ing the total data processing and model training time by
an order of magnitude. While Derakhshan et al. use proac-
tive training to continuously train models with convex loss
functions, such as SVMs and Logistic Regression models,
it has never been tested with DL models until this study.
We define and evaluate the proactive training for continu-
ously training DL models. In a different setting than ours,
this problem is similar to continual learning [21–24]. In that
framework, a model is learning tasks one after another with
the goal to learn the last task without catastrophic forget-
ting [25] that is losing the ability to perform on previous
tasks.

After training, one must deploy the DL model and make
it available for inference. Continuously triggering proactive
training implies the continuous deployment of DL mod-
els. However, modern DL models can have a huge num-
ber of parameters and sizes ranging from several hundred
MBs to several GBs. Naively deploying such big mod-
els continuously is not feasible because of the intractable
communication cost. Work in gradient compression offers
a promising direction for DL deployment. In this area,
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we find approaches that are meant to minimize the com-
munication cost of parallel or distributed training. Instead
of looking to compress the model, gradient compression
is looking to minimize the model changes at each opti-
mization step. Hogwild [26] allows workers to send gradi-
ents asynchronously without any sacrifice in convergence
rates. Alistarh et al. [27] propose a quantized extension of
SGD, called Quantized SGD (QSGD), which provides a
trade-off between convergence rate and compression. Aji
et al. [12] sparsify gradient updates by only considering
the top-k components in every iteration and accumulating
smaller gradients. Deep gradient compression [10] shows
that extreme sparsification reduces communication costs by
99.9% and works well with modern deep learning architec-
tures. Koloskova et al. [28] use it to perform decentralized
training under arbitrarily large sparsification. Stich et al.
[11] prove its good convergence guarantees provided that
a memory accumulates not updated gradients. To the best
of our knowledge, our work is the first to consider such
gradient compression schemes for continuous deployment
of DL models without any loss in model quality.

3 Continuous Training of DLModels

In this section, we describe proactive training [8] as a
method that enables the continuous training for DL models.
In proactive training, an ML model is updated using mini-
batch SGD, where mini-batches are formed by combining
new data with samples of historical data. After the training,
new data become part of the historical dataset.

The proactive training initiates a mini-batch training of
size b after a trigger condition on the data stream is met.
Assuming the number of new elements satisfying the trig-
ger condition is t (also called trigger size), the proactive
training constructs a mini-batch of size b including the t
new elements and .b − t/ elements sampled from the his-
torical data. These mini-batches are used to calculate SGD
gradient updates. At the end of a training iteration, the t
new elements become part of the historical dataset and are
subject to be sampled in future iterations. This procedure
is summarized in lines 1, 2, and 9 of Algorithm 1 with a
regular SGD update in between lines 2 and 9.

In this setting, a proactive training iteration is triggered
after t new elements arrive from the data stream. By control-
ling the trigger size, the proactive training provides a bal-
ance between online gradient-based optimization and mini-
batch SGD:

� A trigger size equal to zero (t = 0) is equivalent to mini-
batch SGD.

� A trigger size equal to the batch size (t = b) is equivalent
to mini-batch online gradient descent.

It is important to consider the following points when
using proactive training. First, proactive training induces a
bias towards historical data, as new data are expected to
be selected fewer times for training. Second, the indepen-
dent and identically distributed data assumption [29] can
break when we use elements from the stream as they ar-
rive. Third, while simple mini-batch SGD is done in epochs
with contiguous access over the dataset, proactive training
assumes sampling from large datasets, breaking the con-
tiguous access. This does not pose a big challenge, as it
can be solved through smart materialization [8], but still
remains an element to consider.

4 Continuous Deployment of DLModels

After training, a DNN is typically deployed in an envi-
ronment where it will serve prediction queries. Continu-
ous training, as described in Sect. 3, implies continuous
deployment, which in our case means transferring the gra-
dient updates of the DNN’s parameters across the network
after every mini-batch update. This incurs a huge deploy-
ment cost as modern DNNs can have millions if not billions
of parameters. The deployment cost is decomposed as the
sum of the communication cost and the loading cost. The
communication cost is the time it takes to send the model’s
parameters to the deployment server. The loading cost is the
time it takes to update the model given the new parameters.

Typically, the communication cost is much larger than
the loading cost. Thus, in order to reduce the deployment
cost, our work focuses on reducing the communication cost
of sending model changes at every proactive training up-
date. This problem has successfully been addressed for re-
ducing the communication cost of distributed training. Us-
ing sparse SGD with memory [11], at every iteration only k
out of N (k � N ) total gradients are selected for updating
the model while the rest are kept accumulating in memory.
Provided that the gradients are selected with appropriate
operators, sparse SGD offers the same convergence rate as
regular SGD [11]. Assume layer l of the DL model has N
parameters and integer k is given (k � N ). We apply the
following two sparsification operators on the parameters of
all layers of a given DL model:

� Random-k: Selects k out of N parameters uniformly at
random.

� Top-k: Selects k out of N parameters with the largest ab-
solute value.

To facilitate continuous deployment, we extend proactive
training to perform sparse updates at every iteration. This
means at every training iteration, we update only a small
constant percentage of the total model parameters. Algo-
rithm 1 shows how the extended proactive training works.
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The algorithm takes as input a dataset D, the model’s pa-
rameters � , the learning rate ˛, and the mini-batch size
b. Moreover, it receives the selection operator selectork
(randomk or topk) and the memory of gradients which
keeps accumulated unused gradients from past iterations.
We compute the gradients g using mini-batch SGD (Line 3)
and add residual gradients of the past iterations (mgrad) to
it (Line 4). Then, we apply the selection operator selectork
and selects only k gradients to be used for updating the
model (Line 5). We update the parameters of the local
model in the machine that performs the training (Line 6).
We send the k gradients over the network to update the
deployed model (Line 7). We update the residual of the
gradients (Line 8) and add the t data points to the historical
dataset D (Line 9).

This deployment method, however, is not constrained to
run only in the case that we perform proactive training.
With large data streams, one can imagine directly using
online mini-batch SGD, as it has the nice property that it
follows the gradient of the true generalization error. Sparse
continuous deployment can effectively be used in that case
to continuously deploy a model that is learned in an online
fashion.

4.1 Hyper-parameters of Sparse Continuous
Training

There are two important hyper-parameters of the Sparse
Continuous Deployment. The first hyper-parameter is the
selector (topk vs randomk). In theory, both the randomk

and the topk can achieve the same convergence rate. How-
ever, in practice, topk has been shown to achieve better per-
formance [11], as the relative gradient magnitude is thought
to provide a simple heuristics for gradient importance [10].
The second hyper-parameter is the sparsification ratio, i.e.,
the percentage of the enforced sparsity. Previous work has
shown that sparse SGD with memory can converge fast un-
der arbitrarily large sparsification, with Deep Compression

[10] achieving good convergence reducing 99.9% of the
communicated gradients.

We show the impact of these hyper-parameters in the
evaluation section.

5 Evaluation

We conduct experiments to compare the three training ap-
proaches, i.e., full, online, and proactive in terms of quality
and training time. Furthermore, we investigate the impact
of trigger size in proactive training. Lastly, we study the
impact of sparsification on model quality and deployment
overhead.

To meet this goal, we simulate a scenario in which an
initial dataset is available for the initial training and the rest
of the data become available in a streaming fashion. The
initial training happens on the initial dataset for a constant
number of epochs.

Then, we compare the different training approaches:

� For the full retraining approach, a full retraining is trig-
gered periodically whenever c new elements are avail-
able. Each retraining is restarted from scratch and exe-
cuted for e epochs, like the initial training.

� For the online training approach, the model is warm-
started with the generated model from the initial train-
ing. An online training iteration is triggered once b new
elements are available in order to perform a mini-batch
SGD iteration.

� For the proactive training approach, similar to online
training, the model is warm-started with the generated
model from the initial training. As presented in Sect. 3,
a proactive training iteration is triggered once t new el-
ements are available. We investigate the impact of the
trigger size t on training time and model accuracy. In
addition, we use sparsity and examine how the sparsi-
fication ratio and the choice of the selection operator
affect the overhead training and the model quality of the
deployed model.

To evaluate and compare these approaches we use the
prequential evaluation [30], which is a common method
to evaluate ML algorithms on data streams. In prequential
evaluation, every example in the stream is first used to test
the model, and then to train it.

5.1 Setup

5.1.1 Hardware & Software.

We run all experiments on a server with an Intel Xeon E7
with 128 GB of main memory and an NVIDIA TESLA
GPU K40 with CUDA 10.2. The code for training and us-
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ing DL models leverages the GPU and has been written
in Python 3.5, using the PyTorch [31] framework (version
1.2.0). The state-of-the-art DNN architectures that are used
in the experiments have been imported from the torchvision
[32] library (version 0.4.0).

5.1.2 Datasets.

We run our experiments on two common computer vision
datasets for benchmarking DL models, namely MNIST [33]
and CIFAR-10 [34]. We present only the main results of the
MNIST experiments as they were initially used to validate
our methods. The CIFAR-10 experiments are then given in
detail.

5.1.3 Models.

For the MNIST experiments, we use the LeNet-5 [35] ar-
chitecture, which represents a seminal CNN architecture.
For the CIFAR-10 experiments, we use modern DL models
with different sizes and features. Mobilenet_v2 [36] is cho-
sen as a compressed DL architecture with around 2 million
parameters that is meant to run on mobile devices. We are
interested to see the effect of continuous training and its
sparse variants for such a compact model. Resnet18 [37]
is chosen as a medium-sized model with around 11 mil-
lion parameters that includes many state-of-the-art (SOTA)
features, such as batch normalization and skip connections.
Resnet50 [37] is chosen as a deeper alternative of Resnet18
with slightly more than 23 million parameters. Densenet161
[2] is chosen as a very deep SOTA model with around 26.5
million parameters that is in a different family than the
residual networks selected. We start the training for each
of the models with pre-trained weights on Imagenet [38]
in order to reduce the time needed to converge to good
solutions. This underestimates the time needed for the full
retraining in the general case, but allows to iterate over our
experiments much faster.

5.1.4 Hyper-parameters.

This work proposes a general framework for continuously
training and deploying DL models. To strengthen the gen-
erality of our work, we choose to refrain from rigorous
hyper-parameter tuning. For all of our experiments, we use
the same training configuration:

� We use ADAM optimizer [39] with its default parameters
(learning rate 0.001, ˇ1 0.9 and ˇ2 0.999).

� For the proactive and online training approaches when
we warm-start the model, we also warm-start the learned
parameters of the ADAM optimizer.

� We set the batch size to 128, which has successfully
been used to obtain SOTA performance on the CIFAR-
10 dataset (which we extensively use in our experiments)
for several DL models [40].

5.1.5 Evaluation metrics.

We use the prequential evaluation technique and report the
total training time and the cumulative prequential accuracy
for each one of the experiments. We also capture the number
of parameters that must be transferred at each case as a
proxy for the communication cost.

5.2 Early experiments onMNIST

To initially validate our approach, we started with some
early experiments on a simple dataset (MNIST) and a sim-
ple DL model (LeNet-5). Compared to full retraining and
online training, we found proactive training to achieve the
best prequential evaluation with data arriving in a stream-
ing fashion. Controlling the trigger size allows proactive
training iterations to be triggered batch size

trigger size times more of-
ten than online training. Even when using a trigger size that
triggers proactive training 32� more than online training,
proactive training still needs a fraction of the time of full
retraining. Meanwhile, sparse training allows us to achieve
comparable performance to the non-sparse variant under a
large sparsification ratio, i.e., transferring only about 0.01%
of the total parameters per iteration. We identify that sparse
training using the randomk selector is not stable at the be-
ginning of the training, confirming results from Lin et al.
[10] that the topk selector offers a good proxy for the im-
portance of gradient updates.

We refer the reader to the supplementary materials (On-
line Resource 1) for a detailed analysis of the MNIST ex-
periments.

5.3 DLmodels on CIFAR-10

We conduct experiments on CIFAR-10 [34], which is a
more complex dataset than MNIST, and train on it sev-
eral SOTA DL models: mobilenet_v2 [36], resnet18 [37],
resnet50 [37], and densenet161 [2].

The first 10,000 examples are used for the initial train-
ing which is done for 25 epochs. In order to achieve a good
performance in a reasonable time, we warm-start all the
models with weights of pre-trained models on Imagenet
[38]. Full retraining is triggered every 10,000 new data
points that become available and is done for 25 epochs
starting from weights of pre-trained models on Imagenet.

Online training triggers one mini-batch SGD iteration
once mini-batch size (b = 128) new elements are available.
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Fig. 1 Prequential evaluation for SOTA DL models on CIFAR. Comparison between full retraining (FR), online training (OL) and proactive
training (PR-t lines for trigger size t = 64, 32, 16, 8)

According to the prequential evaluation, each mini-batch is
first used for evaluation and then to train the model. No
data point is revisited in online training.

Proactive training triggers one mini-batch SGD itera-
tion once trigger size t new elements are available. Ac-
cording to the prequential evaluation, the new elements are
first used for evaluation and then to train the model. After
new elements are used for a first training iteration, they be-
come part of the historical dataset and are subject to being
sampled for future training iterations. For proactive train-
ing we experiment with i) different trigger sizes (t = 64, 32,
16, 8), ii) and different sparse selection ratios (1%, 0.1%,
0.01%) only using the sparse selector topk that proved more
promising in the early MNIST experiments.

5.4 Full Retraining vs Online Training vs Proactive
Training

Figure 1 shows the results of the prequential evaluation for
each model and training approach (full retraining, online,
proactive). Table 1 shows the corresponding total training
times.

The online training is the fastest method and the proac-
tive training finishes approximately batch size

trigger size more slowly
than online. Full retraining is the slowest method, needing
around 3 times more training time. Concerning the pre-
quential evaluation, we see that generally, online training is
the worst method, followed by full retraining and proactive
training which offers the best approach with increasing per-
formance as more iterations are triggered (smaller trigger
size).

Table 1 Total training time in
seconds for full retraining (FR
column), online training (OL
column) and proactive training
(PRt columns for trigger size t
= 64, 32, 16, 8)

Model FR OL PR 64 PR 32 PR 16 PR 8

mobilenet_v2 1,381.2 31.6 57.6 129.2 214.9 442.2

resnet18 493.8 13.1 21.1 42.1 94.2 169.8

resnet50 3,672.4 65.7 131.7 261.5 524.6 1,042.5

densenet161 6,864.4 122.1 242.4 486.4 952.1 1,923.3

These are the general trends, but there is more info hid-
den in the details. For all models, it is evident that at the
very beginning of the online and proactive training they per-
form worse than the initial model. Online training takes the
longest to recuperate. Proactive training recuperates faster
when the trigger size is smaller. For mobilenet_v2, there is
no clear winner among the proactive training approaches,
with respect to the trigger size. Until the 30,000th point,
lower trigger size is better, but then all methods seem to
converge at a performance slightly better than full retrain-
ing. Except for resnet18, where we see that the proactive
training outperforms the full retraining approach, we do
not see large gaps in final cumulative accuracy between
proactive training and full retraining. More specifically, for
densenet161, resnet50, and mobilenet_v2, we see the proac-
tive training performing better after stabilizing at the begin-
ning of the training, but then converging to a comparable
cumulative accuracy with full retraining.

5.5 Sparse ContinuousDeployment

Figure 2 shows the results of the prequential evaluation for
each model with sparsification. We use the topk sparse se-
lector with selection ratios 1%, 0.1%, and 0.01% always
using proactive training with trigger size equal to 8. The
left part of Table 2 displays the average numbers of pa-
rameters changed per iteration for each one of the selection
approaches and the corresponding non-sparse variant. The
right part of Table 2 displays the corresponding total train-
ing times together with the full retraining and non-sparse
proactive training for comparison.
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Fig. 2 Prequential evaluation for SOTA DL models on CIFAR. Comparison between full retraining (FR), and proactive training with a trigger size
of 8 (PR-8) and various topk selection ratios (Topk for k = 1%, 0.1%, 0.01%)

Table 2 Left: Average number of parameters changed per iteration for the non-sparse variants (full retraining (FR) and non-sparse proactive
training (PR 8)) and with varying topk selection ratios (“topk%” columns for k = 0.01, 0.1, 1). Right: Total training time in seconds for full
retraining (FR column), non-sparse proactive training (PR8 column) and with various topk selection ratios (topk% columns for k = 0.01, 0.1, 1)

Avg number of params changed per iteration Total training time (sec)

DL Model FR/PR8 top 1.0% top 0.1% top0.01% FR PR 8 top 0.01% top 0.1% top 1.0%

mobilenet_v2 2,110,358 22,305 2,287 333 1,381.2 442.2 560.1 679 726.9

resnet18 4,068,411 111,800 11,201 1,146 493.8 169.8 288.3 279.2 305

resnet50 15,810,578 235,192 23,567 2,425 3,672.4 1,042.5 3,001.1 3,159.1 3,266.5

densenet161 15,991,847 264,641 26,498 2,886 6,864.4 1,923.3 3,870.3 4,032 4,154.2

With respect to the training time, it is evident that the
topk selector induces a non-negligible overhead in the train-
ing process that depends on the size of the model. For mo-
bilenet_v2 and resnet18, the sparse training times are on
average larger by a factor of 1.48 and 1.7 respectively com-
pared to their non-sparse variant. Sparse training on mo-
bilenet_v2 has the largest variance among different sparse
selection ratios with the overhead becoming slightly smaller
when fewer parameters are selected for all the networks.
For resnet50 and densenet161, the sparse training times are
larger than the non-sparse variant by a factor of about 2
and 3, respectively. While the two networks have about the
same number of parameters, the effect of running the topk

selection is much bigger for resnet50. This is explained by
the fact that resnet50 has more parameters per layer. Still,
even with this overhead, the training time of sparse proac-
tive training remains well below the total training time of
full retraining. However, this overhead is deemed negligi-
ble as sparse training reduces the deployment cost by orders
of magnitude. For exact numbers, the reader is referred to
Table 2.

In general, sparse variants of proactive training follow
closely the cumulative accuracy curve of the non-sparse
variant. An exception to this is the sparse proactive train-
ing of resnet50 (Fig. 2) with a 1% selection ratio, which
falls behind all the other approaches. In this set of exper-
iments, we notice that greater sparsification values (fewer
gradients used per iteration) lead to better prequential per-

formance, even better than the non-sparse variant, forming
a larger gap with the full retraining. We believe that this
phenomenon is the result of the topk operator selecting the
most “important” gradients per iteration, ignoring non-im-
portant ones. As a result, the sparsification provides some
kind of regularizing effect in the training process.

As expected, Table 2 shows that with selection ratios of
1.0% 0.1%, 1.0% and 0.1% of the gradients per layer are
changed per iteration accordingly. However, we see that
for selection of 0.01%, the number of selected parameters
is slightly larger than 0.01% of the total parameters. This
difference is due to the fact that our implementation selects
at least one parameter per layer, which accounts for this
difference for layers that have less than 10,000 parameters.
We discuss in detail the effect of the sparsification on the
deployment cost in Sect. 5.7.

5.6 Final model quality

Having seen the superior performance of continuous train-
ing in a streaming setting, we would like to quantify the
final model quality that each approach achieves. To this
end, we measure the accuracy of each final model on the
reserved test set of 10,000 images. We compare the mod-
els after the full retraining which uses the whole dataset
(FRwhole) and the last full retraining (FRlast) which has
not seen the last 10,000 elements, with the models after the
end of online training and proactive training with a trigger
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Table 3 Test accuracy of the final models for full retraining with the whole dataset (FRfull), the last full retraining (FRlast) that has been used for
prequential evaluation, online training (OL) and proactive training with trigger size 8 without sparsity (PR8 column) and with different levels of
sparsification using the topk sparse selector (Topk% columns with k = 1, 0.1, 0.01). Highest accuracy achieved for each model is shown in bold,
FRwhole ignored as it is considered the upper limit

DL model FR whole FR last OL PR 8 top 1.0% top 0.1% top 0.01%

mobilenet_v2 0.8275 0.8173 0.7995 0.8129 0.8149 0.8196 0.8087

resnet18 0.8232 0.8047 0.7999 0.8041 0.8003 0.8081 0.8135

resnet50 0.8405 0.8217 0.8146 0.8216 0.8211 0.8224 0.8273

densenet161 0.8581 0.849 0.8323 0.8428 0.8413 0.84 0.8464

size of 8 with and without sparsity for different topk se-
lection ratios (1%, 0.1%, and 0.01%). Table 3 shows the
results.

In all cases, full retraining that has access to the whole
dataset (FRwhole) achieves the best performance, and is
considered an upper limit for our methods. We see that non-
sparse proactive training consistently achieves comparable
but slightly worse accuracy than the last full retraining, with
online training providing the worst final model quality in
all the cases. Sparse proactive training with sparse selec-
tion 1.0% is generally very close to its non-sparse variant,
except for the case of resnet18 where it falls by about 0.04,
achieving an accuracy closer to online training. Higher spar-
sification (top0.1% and top0.01%) training outperforms not
only the non-sparse variant in most cases but also the full
retraining with all models except for densenet161. This is
probably due to the regularizing effect of the topk sparse
selector as we described in the previous section. Among the
sparse variants, the one with the most extreme sparsification
(top0.01%) consistently outperforms the others, except for
mobilenet_v2, where the sparse training with selection ratio
0.1% is the best. We suspect that this is due to the com-
pactness of mobilenet_v2, which makes the sparsification
above a certain threshold converge slower. It is out of the
scope of this study to compare the differences in accuracy
between the different models.

In short, these experiments confirm that the model qual-
ities achieved by proactive training are comparable, if not
superior to the ones we get from the last full retraining.
When comparing with full retraining that has access to the
whole dataset, we should consider it as the upper limit in
terms of performance, but keep in mind that it will result
in stale models in production most of the time, as in real
streaming scenarios there is no time to do multiple passes
on newly arrived data.

5.7 Findings

Our experiments find the sparse proactive training method
to be suitable for continuous training and deployment. In
all of our experiments, online training provides the worst
prequential accuracy at the fastest training time. The proac-
tive training approach consistently achieves comparable or

superior performance than full retraining at a fraction of the
time. The topk sparse selector can keep a model updated
with sparse proactive training. Sparse proactive training fol-
lows closely the prequential curve of the non-sparse variant,
reducing the number of changed parameters per iteration by
10,000�; thus, enabling the continuous communication of
the gradients to a deployed model.

At the beginning of the prequential accuracy curves, both
online and proactive training perform worse than the ini-
tially trained model. The problem can be attributed to the
warm-started values of the ADAM optimizer. It can be fixed
by allowing for a warmup period before deploying updated
models in place of the initial model.

We now analyze how much the sparse selector topk

reduces the deployment cost for densenet161, the largest
model in our experiments. For the sake of simplicity, we
assume that the total training time using the topk selec-
tor is 4000s for all the selection ratios (the actual train-
ing times are 3870s, 4032s, and 4154s for selection ratios
1.0%, 0.1%, and 0.01%, respectively). With a trigger size
of 8, it performs 40,000

8 = 5,000 iterations. Therefore, a
training iteration is performed roughly every training_time

# iterations '
4,000 s
5,000 = 800ms. Assuming each parameter is a 32 bit float,
we compare the bandwidth consumed when sending param-
eters equal to the number of the selected gradients by topk

and its non-sparse variant:

� The non-sparse proactive training deploys a model (i.e.,
transferring all the parameters) about every 800ms, con-
suming a bandwidth of

26,494,090 � 32 bits

800ms
= 132.47MBps:

� The topk 1.0% transfers 618 parameters plus their in-
dices, which we assume are 32 bit each, every 800ms.
This consumes a bandwidth of

2 � 264,641 � 32 bits

800ms
' 2.65MBps:

� The topk 0.1% transfers 67 parameters plus the indices
every 800ms, consuming a bandwidth of

2 � 26,498 � 32 bits

800ms
= 264.98kBps:

K
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� The topk 0.01% transfers 13 parameters plus indices ev-
ery 800ms, consuming a bandwidth of

2 � 2,886 � 32 bits

800ms
= 28.86kBps:

We see that for a DL model like densenet, the bandwidth
needed for naive continuous deployment is 132.47MBps,
which would be hard to reliably maintain in real-world ap-
plications. It would also consume much of the bandwidth
needed to receive and answer prediction queries. Sparsifi-
cation can greatly reduce the communication cost of trans-
ferring model updates over the network to a mere 28.86
kBps without any loss in model quality. In reality, this cost
can be much higher, because we use a slow GPU (Nvidia
K40) by modern standards. Nvidia K40 has a theoretical
FP32 performance of 5.046 TFLOPS while a more mod-
ern NVIDIA GeForce RTX 2080 Ti has a theoretical FP32
performance of 13.45 TFLOPS1.

A counter-intuitive finding is that at times sparse training
has achieved better prequential performance than its non-
sparse variant. We believe that large models are highly re-
dundant and the topk operator manages to select the less
redundant changes per iteration, ignoring the non-important
ones. In that way, sparsification provides a “regularizing ef-
fect” in the training process.

Sparse training is not all about advantages; there is a
price to pay when using it. More specifically, the topk

sparse selection incurs a non-negligible overhead that in-
creases the proactive training time by 2� and 3� times
for the larger models that we experimented with. How-
ever, sparsification reduces the deployment cost by orders of
magnitude rendering its overhead on training cost negligi-
ble in end-to-end applications that comprise of training and
deployment. Furthermore, we can improve the overhead of
the sparsification by using fast ordered data structures (such
as max-heaps or B-trees) that makes the topk operator more
performant. Note that even with the extra overhead of the
sparsification, the training times of sparse proactive training
remain well below the full retraining. Although it does not
alter the conclusions of our analysis, we should note that
our reported full retraining times are wildly underestimated
since we train the models for 25 epochs, instead of a few
hundreds of epochs that the models require to achieve SOTA
performance. For example, Densenets need 300 epochs to
achieve SOTA performance on CIFAR-10 [2]. However, to
achieve better accuracy in that many epochs one needs to
rigorously tune the training hyper-parameters and learning
rate schedules, which we refrained from doing in this work
for all of the approaches for our simple choice of the hy-
perparameters.

1 https://www.techpowerup.com/gpu-specs.

6 Conclusion

Our work proposes to continuously train DL models with
proactive training, as soon as new training data become
available. Meanwhile, we enable the continuous deploy-
ment of very large DL models borrowing ideas from dis-
tributed DL training to sparsify weight updates per iteration
in order to reduce the deployment cost. We reveal a regular-
izing effect of sparse training that at times allows achieving
a better model quality than the non-sparse training variant.
More importantly, it enables the continuous deployment of
very large models and opens a new avenue for continuous
DL model training and deployment in streaming settings.

In the future, we plan to investigate the following topics.
First, we plan to study the impact of learning rate schedul-
ing and more complex trigger conditions for the continuous
training in order to compare against state-of-the-art per-
formance. Second, we want to deeply explore the reasons
for the instability at the very beginning of the continuous
training, which in this study we attributed to the warm-up
of the ADAM optimizer. Third, we plan to analyze real
deployment scenarios and test the continuous deployment
approach under unstable network connection with miss-
ing, delayed or corrupt model changes. Fourth, we want
to test our methods with more datasets, and different fla-
vors of DL models (e.g., Generative Adversarial Networks,
Recurrent Networks), applied in a variety of domains(e.g.,
audio recognition, language modelling, time-series under-
standing). Fifth, we aim to test our methods on datasets that
exhibit some concept drift, where we find that methods for
continuous training and deployment are mostly needed.
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