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Introduction

Goals

decrease the speed and spread of fake news

high-performance software component for fact checking of small- to
medium-sized documents

build upon existing work on COVID-19 fake news detection

Vosoughi et al. 2018, Barrón-Cedeño et al. 2020, Das et al. 2021
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Introduction

Approaches

analytical target: content, source, propagation

fact checking: journalists vs. crowd vs. APIs

language models vs. SVM, Random Forests etc.

claim verification: Wikipedia, knowledge graphs, specific markup

ClaimBuster: outdated, multiple separate tools, out of domain

Srivastava et al. 2017, Rehm 2018, Bourgonje et al. 2017, Rehm et al. 2018,
Vosoughi et al. 2018, Bhatt et al. 2018, Collins et al. 2020, Antoun et al. 2020, Nguyen
et al. 2020, Wise et al.2020, Domingo-Fernández et al. 2020, Vaswani et al. 2017, Li
et al. 2021, Gundapu et al.2021, Chernyavskiy et al. 2021, Schulz et al. 2022;
https://idir.uta.edu/claimbuster/
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Methodology

Definitions

Fake News: false stories that appear to be news, spread on the
internet or using other media, usually created to influence political
views or as a joke

various types of misinformation: satire, parody, ..., manipulated or
fabricated content

veracity and intention (to deceive)

trustworthiness

suspiciousness: claim or statement that contains possibly
false/misleading information, or is proved not to be entirely true

Wardle2017, Viviani et al. 2017, Guess et al. 2020;
https://dictionary.cambridge.org/dictionary/english/fake-news
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Methodology

NLP Tasks

Sentence Classification

Claim Extraction

Claim Verification using external Knowledge Bases
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Methodology

Pipeline

1 segmentation and claim extraction: spaCy

2 binary classification using BERT, DistilBERT, SciBERT, RoBERTa

3 non-suspicious claims are discarded

4 removal of punctuation and stop words

5 GET request to Google Fact Check Tools API

https://spacy.io
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Methodology

Google Fact Check Tools API

ClaimReview markup

GET
https://factchecktools.googleapis.com/v1alpha1/claims:

search?languageCode=en&maxAgeDays=200&query=ginger%

20cures%20corona&key=[YOUR_API_KEY]

mapping of results
▶ 1: “false”, “four pinocchios”, “inaccurate”, “miscaptioned”,

“misattributed”, “scam”
▶ 2: “mostly false”, “three pinocchios”, “misleading”
▶ 3: “mixture”, “two pinocchios”, “biased”, “cherry-picking”, “not the

whole story”, “exaggerates”
▶ 4: “mostly true”, “half true”, “one pinocchio”
▶ 5: “true”, “accurate”, “unbiased”, “correct”

https:

//developers.google.com/search/docs/advanced/structured-data/factcheck
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Methodology

Datasets

1 CORD-19 (COVID-19 Open Research Dataset): >500,000 scholarly
articles about COVID-19 and related coronaviruses −→
non-suspicious sentences (science)

2 FakeCovid: 40 languages (titles mostly English), cross-domain, news,
fact-checked, COVID-19 −→ suspicious sentences

3 CoAID (Covid-19 heAlthcare mIsinformation Dataset): fake news on
websites and social media, incl. users’ social engagement; large
overlap with FakeCovid

4 COVID19 Fake News Detection in English: real and fake news on
COVID-19 −→ non-suspicious sentences (news)

Shahi et al. 2020, Cui et al.2020, Wang et al. 2020, Das et al. 2021
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Methodology

Data Samples

Sentence Suspicious
A rapid antigen changes and recombination of the viral RNA
genome contribute to the reduced effectiveness of vaccina-
tion and anti-influenza drugs.

0

Weed (cannabis) cures coronavirus. 1

We conducted a meta-analysis to assess the prevalence of de-
pression, anxiety, distress, and insomnia during the COVID-
19 pandemic.

0

To add to the knowledge base, we initiated a regional
COVID-19 in pregnancy collaborative observational study
with a coordinating center, standardized data collection and
a shared database.

0

U.S. House Speaker Nancy Pelosi was in Wuhan, China, six
days after the impeachment proceedings against President
Trump ended.

1

Pankovska et al. (TUB & DFKI) COVID-19 Claim Detection & Verification April 10, 2022 10 / 30



Experiments

Hyperparameters: Search Space

Learning Rate: [1e-5, ..., 1e-3]

Number of Epochs: [1, ..., 4]

Seed: [1, ..., 42]

Batch Size: [8, 16]

Warmup Steps: [0, ..., 1000]

Weight Decay: [1e-6, ..., 0.1]
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Experiments

Hyperparameters: Results
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Experiments

Hyperparameters: Importance

(a) Accuracy (b) Cross-entropy loss
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Prototype

Sentence Classifier
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Prototype

Fact Checking
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Prototype

Visualization of Ratings
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Evaluation

Model Comparison

Model Accuracy CE loss F1 Precision Recall
BERT 98.11% 0.0952 0.9805 0.9816 0.9793

DistilBERT 97.89% 0.09849 0.9781 0.9796 0.9773
SciBERT 97.64% 0.1197 0.9755 0.9799 0.9711
RoBERTa 97.61% 0.1006 0.975 0.9818 0.9684
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Evaluation

10-Fold Cross-Validation

Model Accuracy CE loss F1 Precision Recall
BERT 97.7185% 0.1216 0.9769 0.9762 0.9777

DistilBERT 97.692% 0.0966 0.9766 0.9773 0.976
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Evaluation

Most Common Words: Suspicious
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Evaluation

Most Common Words: Non-Suspicious
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Evaluation

Misclassified Samples

Sentence True La-
bel

Predicted La-
bel

There is no one in New Zealand receiving
hospital-level care for COVID-19.

regular suspicious

Even discharged patients could be a long-term
asymptomatic carriers.

suspicious regular
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Evaluation

Summary

integration of suspiciousness detection & claim verification

5-point scale of suspiciousness

multiple datasets with different registers

partial standardization of review data

using language models and fact check API −→ fully automated,
fast, cheap
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