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Abstract— Typically, the problem of robotic manipulation is
divided among two sequential phases: a planning one and an
execution one. However, since the second one is executed in
open loop, the robot is unable to react in real time to changes
in the task (e.g. moving object). This paper addresses the
mobile manipulation problem from a real-time, closed loop
perspective. In particular, we propose a generic optimization-
based Cartesian controller, that given a continuous monitoring
of the goal, determines the best motion commands. We target
our controller to a robotic system comprising an arm and a
mobile platform. However, the approach can in principle be
extended to more complex mechanisms. The approach is based
on shifting the problem to velocity space, where end effector
velocity is a linear function of joint and base platform velocities.
Our approach was quantitatively evaluated both on simulation
and on a real service robot. It was also integrated into a
mobile service robot architecture targeting domestic tasks and
evaluated on the RoboCup@Home scientific competition. Our
results show that the controller is able to reach random arm
configurations with a high probability of success.

I. INTRODUCTION

A. Motivation

Object grasping in robots is typically approached by
using separate offline path planning and open loop execution
methods, which expose some disadvantages. For instance,
during trajectory execution, the robot is not sensitive to
changes in the task. For instance, if the target object pose
is changed, the robot should ideally deal successfully with
those situations by adjusting accordingly. Moreover most off-
the-shelf methods typically control only the arm and do not
take into account the robot base. These limitations motivated
finding a simple but effective approach to both control the
joint arm and base robot system in real-time, in close loop
with the robot perception pipeline.

B. Problem Statement

In this paper we consider a robotic arm mounted on top
a mobile robot base. The arm may be either under-actuated
(less than 6 DoF) or with redundancy (more than 6 DoF).
Also, the robot base may be or not omnidirectional. The
problem is defined as, given a 6D target pose (position and
orientation), the determination of the best joint velocity for
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both the arm and the base. Even though the developed solu-
tion was integrated and tested on the MBot robot [4] (Fig.
1), it can be easily applied to different robot configurations.

Fig. 1: Robot attempting to grasp dishwasher handle.

C. Contribution

Contributions of this paper are:
• a generic real time base and arm closed loop Cartesian

velocity controller that is able to achieve a target pose,
by moving the robot base and the arm jointly.

• an experimental evaluation of the developed controller
both in simulation and in a real robot.

• a ROS based open source implementation available
under1.

II. RELATED WORK

Many research groups currently focus on the development
of safe compliant systems for mobile manipulation in un-
structured collaborative environments. A prominent example
can be found in the work presented by Nimbro@Home
team [7], which developed an arm controller based on a
differential inverse kinematics method to follow computed
trajectories. The team solution for the inverse kinematics
redundancy problem uses null-space optimization of the
previously implemented cost function. Optimization criterion
include convenient joint angles configuration and a penalty
function for getting close to the joints limits.

Nieuwenhuisen et al. [5] use the kinodynamic motion
planning by interior-exterior cell exploration algorithm [9]
for the motion planning. They filter grasp poses and motion

1https://github.com/EmiliaBrzozowska/
optimisation_cartesian_controller
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paths before execution against a height map, finding a
collision-free solution of the inverse kinematics.

Chitta et al. [2] use randomized sampling based mo-
tion planners from the Open Motion Planning Library
(OMPL) [8]. The approach for trajectory execution includes
a state machine concept, that involves moving the sensors
of the robot to maintain visibility of the robotic arm, which
is executing the planned motion. The controller tracks and
executes the desired motion simultaneously.

In the work presented by Stuckler et al. [6] mobile manip-
ulation and motion control problem is approached separately
for the robots wheeled mobile base and for the robotic arm.
Control directions of individual wheel velocities are coming
from inverse kinematics analytic solutions. For the arms they
developed a compliance controller with the servo actuators
having a limited torque. Collision free path is obtained with
implemented differential inverse kinematics.

Ciocarlie et al. [3] research is another example of kin-
odynamic motion planning usage by interior-exterior cell
exploration algorithm from the OMPL Library. In this ap-
proach, collision awareness is also provided with an inverse
kinematics based method. The motion planner generates
paths that are processed by a trajectory optimization planner.
In this study, they pass a previously generated path from the
OMPL as an initial condition for the optimization problem.
The controller is responsible for eventual re-planning of the
motion path.

III. APPROACH

Before an object can be manipulated, the robot needs to
perceive the object 6D pose by using a perceptual module.
The perception problem on itself, including the object detec-
tion, 6D pose estimation from (noisy) sensor data and object
classification are considered out of the scope of this work.
For the experimental part we use an off-the-shelf solution.

Fig. 2: MBot: 1) Head camera used in this project
2) Robot manipulator used in the experimental part of this

work

In order to address the proposed challenges, we developed
a solution that closes the loop between perception and the
robot actuation. Our approach allows the robot to overcome
problems such as changing the object goal pose in real time.
Controller design details are provided in the next section.

A. Controller Design

In our proposed architecture (see Fig. 3) we consider a
real-time closed loop between the perception module and
the arm and base actuation. The pose error between the
current and the target end effector poses is computed first.
Then, the arm controller is responsible for minimizing this
error by determining the feasible joint velocities to do so.
We include in the set of joints both the arm joints and the
mobile base actuation. Since the optimization is done in
velocity space, the transformation between Cartesian space
and joint space is linear, given by the Jacobian matrix of
the direct kinematics transformation, in combination with
the mobile base differential kinematics. The minimization
problem is formulated as a constrained optimization problem,
where the constraints are the joint velocity limits. Since the
optimization is formulated in Cartesian space, our approach
can be classified as a Position-Based Visual Servo (PBVS)
control one [1].
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Fig. 3: System architecture showing the pipeline from per-
ception to actuation, in closed loop with the proposed con-
troller. The blocks covered in this paper are shaded.

Since the minimization is done in velocity space, we chose
to include in the cost function the quadratic error between
the Cartesian velocity resulting from the joint velocities and
an ideal velocity that would achieve the target pose in a
single time step. In addition to this error, we also include
the following penalty terms:

1) a logarithmic barrier on the arm joint angles to avoid
arm configurations close to joint limits,

2) another logarithmic barrier to avoid the robot base to
be oriented opposite to the target goal, and

3) a L1 regularizer term to tune the actuation balance
among all the joints.

All of these three terms are not fundamental to the method,
but contribute to a more smooth and natural behavior by the
robot. The later term is particularly relevant in redundant
kinematic chains, since in that case the optimization problem
is ill-posed (i.e., it has multiple solutions).

B. Optimization Problem

The problem is formulated on local coordinates, that is,
with respect to the kinematic frame of the base robot, hereby
called base frame. Both the arm kinematic chain and the
object target goal of the arm are assumed to be defined with
respect to this frame.

The unknowns in the optimization problem are the joint
velocities. In this paper we consider an omnidirectional base,



controlled in velocity mode, and an arm with N joints. The
base velocity reference is considered Cartesian and expressed
on the base frame, where ḃx and ḃy are the translational
velocity reference in X and Y, and ḃΘ is the angular velocity.
The arm joints are also considered to be controlled in
velocity, with references Θ̇ = (θ̇1, . . . , θ̇N ) for the N joints.

Then, using the Jacobian of the arm, the end effector
velocity, in translational (vx, vy, vz) and angular (ωx, ωy, ωz)
terms, expressed on the base frame, is given by

V =


vx
vy
vz
ωx
ωy
ωz

 =


−ḃΘy
ḃΘx

0
0
0
0

+ J(Θ)Θ̇ +


ḃx
ḃy
0
0
0

ḃΘ

 (1)

where x and y are the projection of the end effector position
on the X-Y plane, on the base reference frame, and J(Θ)
is the arm Jacobian, in function of the current joint angles
Θ = (θ1, . . . , θN ).

Let Pc and Rc be the current end effector position and
orientation, as a rotation matrix, and Pg and Rg be the
goal position and orientation. Let us consider the velocity
reference, that is, the velocity that would attain the target
pose in one time step, to be defined as

Vr =
1

∆t

[
Pg − Pc

log(Rg R
T
c )

]
(2)

where ∆t is the time step of the controller and log() is the
matrix logarithm2

The proposed constrained optimization problem is the
following:

Minimize ||Vr − V ||2 + P (Θ̇) +B(γ)

+W (Θ̇, ḃx, ḃy, ḃΘ)

w.r.t. : Θ̇, ḃx, ḃy, ḃΘ (3)

subject to Θ̇Min ≤ Θ̇ ≤ Θ̇Max

ḃMin ≤ (ḃx, ḃy, ḃθ) ≤ ḃMax

where ḃMin and ḃMax are the bounds for base velocities and
Θ̇Min and Θ̇Min are joint velocity bounds of the arm. The
additional functions P , B, and W are defined below.

Note that adapting this formulation to a different base
kinematics is straightforward, as it only requires adapting
the model (1) and the set of unknowns of the optimization
problem. For instance, in the case of a differential drive base,
ḃy = 0 in (1) and ḃy should be removed from the set of
unknowns.

The function P is defined as a logarithmic barrier at the
joint angle limits:

P (Θ̇) =

N∑
i=1

Pi(θ̇i) (4)

2Since the argument is a rotation matrix, the logarithm can be computed
using the Rodrigues’ rotation formula.

Pi(θ̇i) =


f = θi + θ̇i∆t

−λi log(f − θMin
i ) + βi , θi < θLi

0 , θLi ≤ θi ≤ θHi
−λi log(−f + θMax

i ) + βi , θi > θHi
(5)

where λi is a scaling factor for the logarithmic barrier, βi
is a constant to assure continuity of the function, ΘMin

i and
ΘMax
i are the angle limits of the i-th joint, and ΘL

i and ΘH
i

are the repulsion starting points.
The function B is a penalty term avoiding the base to

orient opposite to the goal. It is also a logarithmic barrier,
defined by

B(γ) = −λB log(−|γ|+ 180) (6)

where γ is the angle (in degrees) between the goal position
and front side of the robotic platform, calculated as follows:

γ = atan2(yg − ḃy∆t, xg − ḃx∆t)− ḃΘ∆t (7)

for Pg = (xg, yg, zg) being the target goal position, and λB
is a constant to scale the barrier.

Finally, function W is a regularizer over the actuation,
defined by a weighted L1 norm of the joint velocities

W (Θ̇, ḃx, ḃy, ḃΘ) =

N∑
i=1

wi|θ̇i|+wxḃx +wy ḃy +wΘḃΘ (8)

where (w1, . . . , wN , wx, wy, wθ) are the weights.

C. Implementation Details

The implementation is based on the well known middle-
ware ROS (Robot Operating System). The Jacobian matrix
was obtained using the open-source package PyKDL3, which
loadw A kinematic chain from an URDF4 file, to then
compute the Jacobian matrix based on the current joint state.

For numerical optimization we used the open-source pack-
age SciPy5. SciPy is an open source software package
providing various numerical algorithms, namely optimization
solvers. In this work, we use the Sequential Least SQuares
Programming (SLSQP) constrained optimization solver.

IV. EXPERIMENTAL EVALUATION

A. Real robot

For the real robot experiments, we used the Mbot robot [4]
extended with a Robai 7-DOF Cyton Gamma 1500 Arm
(N = 7). The base platform has an omnidirectional kinemat-
ics. To close the loop between perception and manipulation
modules we use a marker detection off-the-shelf component.
For this purposes, we used the camera located on top of
Mbot head and a marker was printed and placed on top of
the object to be grasped.

The parameters used in the experiments were:
sampling period ∆t = 0.1s, joint velocity limits
Θ̇Max = −Θ̇Min = (0.2, . . . , 0.2), base velocity limits
ḃMax = −ḃMin = (0.3, 0.3, 0.2), barrier parameters

3http://wiki.ros.org/python_orocos_kdl
4http://wiki.ros.org/urdf
5https://www.scipy.org/
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(a) Candle (b) Pregrasp

Fig. 4: Starting arm configurations.

θH = −θL = (0.1, . . . , 0.1, 2.5), λi = 0.25 and
βi = 0.1 for i = 1, . . . , 7, and λB = 1.25, and
regularizer parameters (w1, . . . , w7, wx, wy, wθ) =
(0.03, 0.025, 0.025, 0.02, 0.15, 0.01, 0.001, 4, 4, 8)/100.

Due to the low dimensionality of the optimization prob-
lem, the solver was able to run in a significantly lower time
than the sampling period ∆t in common computers, thus
allowing real-time execution.

We performed 30 experiments by using only the arm and
20 for base + arm combined. We varies both the initial
arm configuration (see Fig. 4), and the target random pose,
randomly generated between specific bounds.

B. Simulation

For simulation we used the Gazebo v7 physics simu-
lator configured with ROS Control. For simulation testing
purposes we ran the algorithm that generates random goal
poses. In the test case when base movement is not required,
we predefined area of generated poses, to increase the
probability of pose being feasible (Fig. 5).

(a) Front view (b) Top view (c) Side view

Fig. 5: The volume in which the goal poses were generated.

The predefined areas have the following dimensions:

Front area (green) Side area (blue)
Dimensions [m]: 0.25 x 0.8 x 0.35 0.8 x 0.35 x 0.4
Distance from ground [m]: (Z-axis) 0.3 (Z-axis) 0.35
Distance from baselink [m]: (X-axis) 0.35 (Y-axis) 0.45

The decision on the dimensions of the random randomly
generated pose areas was based on the robot use case
scenarios. The realistic use case scenario for this particular
robot is placing or fetching objects from the small table
or chair, therefore our experiments were adjusted to these
requirements.

C. Static base

The first experiment carried out in the simulation envi-
ronment was based on random (but realistic) target poses
within the predefined position area, not requiring base motion
(Fig. 5). In this experiment base motion is disabled and
we use only arm control. Taking into consideration that
the developed controller is not aiming to reach the final
grasping pose, but is targeting the pregrasp pose (the output
of the grasp planning module), we set the following errors
tolerances:

Position error :
√
e2
x + e2

y + e2
z = 0.01m (9)

Orientation error :
√
e2
r + e2

p + e2
y = 0.05rad (10)

where:
ex, ey, ez - error between current position and goal position
accordingly on X,Y,Z axes
er, ep, ey - error between current orientation and goal
orientation accordingly on roll, pitch, yaw Euler angles

In the experimental part with realistic orientation of
the generated pose, we restricted the roll and pitch rotation
limits. The limitation of the yaw rotation was increased
in comparison to the suggested reasonable limitations as
followed:

roll axis pitch axis yaw axis
between 0◦and 0◦ between -3◦and 3◦ between -90◦and 90◦

In the experiments with the real robot, the goal pose comes
from the robot perceptual module. In these experiments,
we close the loop between perception and manipulation, by
using head camera of the Mbot for marker detection, thus
obtaining the goal pose. Due to pregrasp planner module

(a) Goal pose above
the table

(b) Goal pose on the
table

(c) Goal pose on the
floor

Fig. 6: Different goal poses on real robot testing.

being under development process, we used fixed realistic
front grasp orientation6 for this test. Position of the goal
pose is random (Fig. 6). For the real robot evaluation we
increased the error tolerance for the following two reasons:

1) In simulation we have an ideal synthetic static pose,
which is published at constant rate. For the real robot

6Goal orientation is given with respect to the center of the robotic
platform, not to the end effector



we have used an Alvar marker detection algorithm,
which position publication rate is unsteady. We recall
that real world marker detection is subject to image
noise, blur, and network delay. Because of that we have
observed in our experiments an unstable (shaky) target
pose.

2) Real robot manipulator joints suffer from backlash, and
noisy encoder angle feedback which translates into end
effector frame uncertainty once forward kinematics is
computed. For that reason end effector frame was also
presenting an unsteady behavior.

The real robot increased error tolerance as followed:

Position error
√
e2
x + e2

y + e2
z = 0.05m (11)

Orientation error
√
e2
r + e2

p + e2
y = 0.1rad (12)

Experiment summary:

Environment: simulation simulation real robot
Goal position: random random random
Goal orientation: random rand. realistic fixed7

Grasp type: front/side front front
Position error tolerance: 0.01m 0.01m 0.05m
Orient. error tolerance: 0.05rad 0.05rad 0.1rad
Starting arm config.: candle pregrasp pregrasp
Total number of attempts: 100 50 20
SUCCESS RATE: 78% 98% 80%

D. Discussion

Regarding the simulation results, it was expected that in
some of the cases the controller gets stuck in the local
minima configurations. Another issue is the timeout set to
120 secs. In the first test case scenario, poses are randomized
in both position and orientation. For some of the extremely
not convenient and unrealistic goal poses, the controller
needs more than 120 sec to achieve the goal, that resulted
in an higher failure rate than in the case of the second
experiment, where the poses were restricted to reasonable
rotational variations. On the other hand, while the human
orders the robot to perform grasping object from the table,
we assume that one expects the execution time to no more
than 2 minutes.

Considering the real robot testing, we encountered issues
which do not apply in simulation environment, such as arm
calibration errors and unreachable goal poses. Since the goal
pose is not generated but perceived from the vision, testing
algorithm no longer validates if the perceived goal pose is
reachable. The last problem that caused 50% of failures on
the real robot is the imperfection of perceptual module and
markers detection. While the robot performs the task and gets
closer to the goal pose, the end effector hardware part covers
marker and the pose is no longer visible for the controller. As
the second part of the real robot experiment we tested the

arm following a moving object in real time, which results
can be seen on the companion video8.

E. Moving base

In this part of the experiments, base motion was required
to reach the goal pose. We defined the area of generated
poses in such a way to ensure that randomized pose is
not reachable without moving the platform (Fig. 7). In
this experiment we considered only randomized realistic
orientations of the goal pose.

(a) Front grasp (b) Side grasp

Fig. 7: Volume for randomized poses for base + arm.

The predefined areas have the following dimensions:

Front area (green) Side area (blue)
Dimensions [m]: 0.5 x 1.0 x 0.25 2.0 x 0.5 x 0.35
Distance from ground [m]: (Z-axis) 0.35 (Z-axis) 0.35
Distance from baselink [m]: (X-axis) 0.8 (Y-axis) 1.0

For the real robot testing the orientation of the goal pose was
fixed during the whole experiment and the the error tolerance
was increased due to hardware issues.

Experiment summary:

Environment: simulation real robot real robot
Goal position: random random random
Goal orientation: rand. realistic fixed9 fixed10

Grasp type: front/side front side
Position error tolerance: 0.01m 0.05m 0.05m
Orientat. error tolerance: 0.05rad 0.1rad 0.1rad
Starting arm config.: pregrasp/candle pregrasp candle
Total number of attempts: 100 20 20
SUCCESS RATE: 100% 90% 75%

During the real robot evaluation, we recorded video im-
ages from 3 different perspectives: rviz visualization of
the real world, the image from the head camera used for
markers detection, and a lab live camera placed overhead
the laboratory, where the experiment was taken (Fig. 8).

V. RESULTS
We define a successful reach of the goal pose once the pose

error stabilizes within the specified tolerance. Altogether, we
conducted 7 different experiments, 310 having reached the
goal pose, which represents 89% of success rate (number of
successful reaches over the total amount of attempts). Table
I summarizes our results.

8Companion video showing a real robot using the optimization controller:
https://www.youtube.com/watch?v=_-M7cxlhyYY&t=2s
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(a) Live university
camera image

(b) Mbot head camera im-
age

(c) Rviz real world
image

Fig. 8: Video data captured while conducting experiment.

Success rate
arm arm and base

Simulation front 98% 100%
side − 100%

Real robot front 80% 90%
side − 75%

TABLE I: Experimental evaluation results.

A. Discussion

The first experiment conducted on entirely randomized
goal poses was predictably less successful than following
experiment with a reasonable orientation of generated goal
poses. The arm controller experiment on the real robot was
less successful than expected results, based on the simulation
success rate. Using real robot entails hardware issues, not
modeled in simulation environment.

Concerning the experimental evaluation in the simulation
environment, the success rate was 100%. Since the robot is
able to move the base to the convenient configuration for
grasping, not reachable poses are no longer existing. Being
able to control the arm along with the base, not only shorten
execution time but also significantly decrease the possibility
of a goal pose not being feasible.

We observe a decline in performance when testing in the
real robot, due to three issues: i) incorrect arm calibration,
ii) unreliable marker detection, and iii) unreachable goal
pose. Failures caused by inaccurate calibration were revealed
by running Rviz real-world representation, along with the
real arm execution. In the simulation software, the robot
reached the goal pose, while that in the real world the
end effector was slightly shifted with respect to the marker,
due to arm calibration bias. Another issue was occlusion
of the marker by the robot body. By observing the Rviz
real-world representation we could easily observe that the
goal pose some times disappears from the vision, which
results in absense of a goal pose. One possible solution
for this problem is to include an object tracking algorithm
that is robust to occasional misdetections of the target. This
problem of losing the marker detection affected negatively
our experiments, since it increased the failure rate in the
side grasping real robot experiment. Because of the starting
arm configuration, the probability of covering the marker
with the manipulator physical part was higher than in the
front grasp task. Another issue is limited camera vision. In
most of the cases, we were able to turn the robotic head
to keep the marker in the vision. The issue encountered

during side grasp tests when the starting head position is
turned into the direction of the goal pose, while it is already
close to its limits on the left side. A last observed issue, also
contributing to a higher failure rate on the real robot testing,
was missing a pregrasp planning module. In order to bypass
this problem, we hardcoded reasonable realistic orientation
for the end effector.

The obtained results show that simulation evaluation is
usually more successful than the real robot testing results.
We can also conclude that using the full arm and base
controller yields higher probability of reaching the goal pose,
than the arm controller alone. Another conclusion concerns
the type of the grasp. When considering the integration of
the controller with the perception module based on marker
detection, the front grasping is more reliable than the side
grasping.

B. Use case

SocRob@Home is a human and robot team tar-
geting scientific robot competitions [10], such as the
RoboCup@Home11 and the European Robotics League12.
It is well known that scientific robot competitions are a
challenging evaluation environment, where robustness of the
solutions is key. In fact, it was the lack of robustness of off-
the-shelf manipulation solutions, such as the MoveIt13, that
originally pushed the authors to find the solution proposed
in this paper. The implemented solution was integrated into
the software architecture used by the team and it was
successful used in the 3rd–4th place bronze cup finals of
RoboCup@Home 2018, in Montreal.

VI. CONCLUSIONS

In this paper we have presented a solution for mobile
manipulation controller for a combined arm and base plat-
form system. We developed a real-time closed-loop Cartesian
controller based on an constrained optimization approach. It
is formulated in local coordinates and in velocity space.

The solution was evaluated quantitatively both in simu-
lation and on a real robot. Moreover, our solution is fully
integrated into ROS framework, and the source code was
made openly available.

Future work includes several avenues, namely: (1) real-
time obstacle avoidance by augmenting the optimization
problem with motion constraints, and (2) robustness to cali-
bration issues by tracking the end effector with the camera.
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Radu Bogdan Rusu, and Ioan A. Şucan. Towards Reliable Grasp-
ing and Manipulation in Household Environments, pages 241–252.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[4] João Messias, Rodrigo Ventura, Pedro Lima, João Sequeira, Paulo
Alvito, Carlos Marques, and Paulo Carri co. A robotic platform for
edutainment activities in a pediatric hospital. In Proceedings of the
IEEE International Conference on Autonomous Robot Systems and
Competitions (ICARSC), pages 193–198, 2014.

[5] M. Nieuwenhuisen, D. Droeschel, D. Holz, J. Stückler, A. Berner,
J. Li, R. Klein, and S. Behnke. Mobile bin picking with an anthro-
pomorphic service robot. In 2013 IEEE International Conference on
Robotics and Automation, pages 2327–2334, May 2013.

[6] Jorg Stuckler, Ricarda Steffens, Dirk Holz, and Sven Behnke. Efficient
3d object perception and grasp planning for mobile manipulation in do-
mestic environments. Robotics and Autonomous Systems, 61(10):1106
– 1115, 2013. Selected Papers from the 5th European Conference on
Mobile Robots (ECMR 2011).

[7] J. Stückler and S. Behnke. Integrating indoor mobility, object manip-
ulation, and intuitive interaction for domestic service tasks. In 2009
9th IEEE-RAS International Conference on Humanoid Robots, pages
506–513, Dec 2009.

[8] I. A. Sucan, M. Moll, and L. E. Kavraki. The open motion planning
library. IEEE Robotics Automation Magazine, 19(4):72–82, Dec 2012.
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