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Abstract
Purpose of Review  Starting with a technical categorization and an overview of current exoskeletons and orthoses and their 
applications, this review focuses on robotic exoskeletons and orthoses for neuromotor rehabilitation and relevant research 
needed to provide individualized adaptive support to people under complex environmental conditions, such as assisted daily 
living.
Recent Findings  Many different approaches from the field of autonomous robots have recently been applied to the control of 
exoskeletons. In addition, approaches from the field of brain-computer interfaces for intention recognition are being inten-
sively researched to improve interaction. Finally, besides stimulation, bidirectional feedback and feedback-based learning 
are recognized as very important to enable individualized, flexible, and adaptive human assistance.
Summary  AI-based methods for adaptation and online learning of robotic exoskeleton control, combined with intrinsic 
recognition of human intentions and consent, will in particular lead to improving the quality of human–robot interaction 
and thus user satisfaction with exoskeleton-based rehabilitation interventions.

Keywords  Robotic exoskeletons · Neuromotor rehabilitation · Interactive reinforcement learning · Bidirectional feedback · 
Coadaptive systems · Brain-computer interfaces · Assisted daily living

Introduction

Supporting people with motor impairments with exoskel-
etons, i.e., creating an external support structure for the 
human body, or providing additional human power, is a 
very old desire. The first patents on mechanisms to increase 
human performance exist from 1890 (e.g., Yagn [1]). The 
first exoskeletons were already used for teleoperation in the 
last century (e.g., Alvfen et al. [2]) and the support of human 
musculature by technical systems [3] also has such a long 
history.

Over time, the areas of application have expanded [4]. 
Power augmentation through exoskeletons became particu-
larly relevant in areas of care (easier lifting of patients) [5] 

sports1 and work [6] or military applications [7]. In com-
parison, teleoperation is of particular interest in enabling 
simple remote control of complex, often robotic systems 
with manipulators. Here, force feedback to the human has 
been introduced so that the operator can detect when the 
exoskeleton encounters an obstacle [8–10]. More recently, 
the fields of application have expanded with regard to the use 
of exoskeletons to relieve tiring, mostly repetitive or continu-
ous activities [6]. Examples include exoskeletons that serve 
as a mobile portable seat [11] or have arm-holding functions 
[12]. This trend is driven by demographic change and is 
based on the use of exoskeletons for medical applications, 
such as restoring mobility or for rehabilitation [13–15]. The 
effectiveness of exoskeletons for neuromotor rehabilitation, 
especially after stroke, was shown early on [16] and has been 
confirmed again and again since then [17–19].

Since the last century, many different technical solutions 
have been developed for the various areas of application. A 
distinction can be made, for example, between exoskeletons 
and orthoses as well as passive and active systems. What all 
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these systems have in common is that they have a compli-
cated mechanical construction that encloses the body and, 
at least in the case of active systems, require highest perfor-
mance in the areas of control, software, and hardware archi-
tecture. Depending on the application, the use of physiologi-
cal data and artificial intelligence for intuitive and situational 
support is moreover of great importance [20–22]. We will 
discuss on different developments and research paths that 
future robotic exoskeletons will use bidirectional feedback 
and will no longer be purely programmed, but will intrinsi-
cally learn to behave correctly or subjectively correctly dur-
ing interaction to enable true co-adaptation between humans 
and machines as a prerequisite for support and rehabilitation 
under complex environmental conditions, such as assisted 
daily living (ADL).

This review will first give a brief technical categorization 
of exoskeletons and orthoses, followed by an overview of 
application areas with a focus on exoskeletons and orthoses 
that are already commercially available. We then define 
robotic exoskeletons and orthoses and briefly discuss the rel-
evance of autonomous functions in such systems for different 
application areas. After a discussion of different possibilities 
for exoskeletons to adapt to the user, an overview of different 
approaches for intention recognition is given, with a focus on 
more complex approaches motivated by hybrid brain-com-
puter interfaces in the field of neuromotor rehabilitation and 
assistance. Finally, we discuss bidirectional feedback as the 
last component of human-centered robotic exoskeletons and 
orthoses before giving a short outlook for future research on 
bidirectional coadaptive robotic exoskeletons.

A Technical Categorization of Today’s 
Exoskeletons and Orthoses

In general, a distinction can be made between passive and 
active exoskeletons and orthoses. According to the Oxford 
Concise Medical Dictionary, an orthosis is a device that 
applies external forces to a specific part of the body to pro-
tect or support joints and to correct deformity of the mus-
culoskeletal system [23]. Orthoses are also characterized 
by the fact that they fit closely to the body and claim to be 
as light as possible [24]. Exoskeletons, on the other hand, 
do not always fit closely to the body and are not supported 
solely by the user’s muscle strength (for an example, see 
[25]). Due to the influence of orthoses on the neuromuscular 
system, they also have a biomechanical effect on the motor 
functions of the affected limbs and thereby limit the range 
of movement in terms of permitted straight line of freedom 
or range of movement. Orthoses can be divided into active 
and passive. Active systems are equipped with power units 
and sensors that are used to support or replace the user’s 
muscles. Passive systems conversely do not generate any 

support in form of mechanical energy from power units and 
the user must carry the weight of the system with his mus-
cles. Accordingly, it is important to minimize the system’s 
own weight [26]. Orthoses can be developed for all kinds 
of joints, as for example E-MAG Active (Ottobock) [27] 
for the knee, MalleoLoc (Bauerfeind) [28] for the ankle, 
or OsoTract (Bort medical) [29] for the shoulder. For more 
examples, see Fig. 1, which can be decoded with Table 1.

As can be seen in Fig. 2, exoskeletons are devices that 
are not only used in the medical domain for rehabilita-
tion and pain reduction but also in industry for strength 
enhancement, injury prevention, or teleoperation. Exo-
skeletons can also be divided into passive and active. In 
addition, force feedback from an active exoskeleton can 
also be exerted on the user if the application domain is 
represented by teleoperation. In this case, the sensors are 
used to detect joint angles or to measure the existing mus-
cle activity to determine the resulting force for the support 
[26]. Some examples for active exoskeletons include the 
EksoNR (Ekso Bionics) [30] for gait rehabilitation, the 
Capio (DFKI GmbH) [10] for teleoperation, or Recupera 
Reha (DFKI GmbH) for upper limb rehabilitation [31] 
(more examples in Fig. 1). An example for a passive exo-
skeleton is the Paexo Neck from Ottobock Industrials [32] 
(see Fig. 1). A special feature of some passive exoskel-
etons, which are used for overhead work, for example, are 
spring elements, which can be mechanical or gas springs 
(see Balser et al. [33], Hyun et al. [34], Kazerooni et al. 
[6], and Maurice et al. [35] for details on the effect and the 
mechanism of the springs). During overhead work, these 
springs are used to balance the weight of the arms. This 

Fig. 1   Systematic overview of the subdivision of exoskeletons and 
orthoses shown in Table 1 into passive and active systems (orthoses 
in bold numbers), as well as soft robotics or not. In addition, subdi-
vision of the systems according to the body regions: full body (FB), 
upper body (UB), and lower body (LB) is depicted
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Table 1   Decode for Figs. 1 and 2

Company System Exoskeleton (E)/orthoses (O)/
demonstrator (D)/prototype (P)/
available for purchase (*)

Source

Ekso Bionics (1) Evo,
(2) UE

E/* https://​eksob​ionics.​com

(3) ZeroG E/*
(4) NR E/*

SuitX (5) ShoulderX,
(6) BackX,
(7) ShieldX

E/* https://​www.​suitx.​com

(8) LegX E/*
(9) PhoeniX E/*
(10) BoostX Knee E/*

German Bionic (11) CrayX E/* [41]
Cyberdyne Care Robotics (12) Hybrid Assistive Limb 

(HAL)
E/* https://​www.​ccr-​deuts​chland.​de

Ottobock (13) Paexo Back,
(14) Paexo Shoulder,
(15) Paexo Thumb,
(16) Paexo Wrist,
(17) Paexo Neck

E/* https://​paexo.​com

(18) Paexo Soft Back E/*
(19) E-MAG Active O/* https://​www.​ottob​ock.​de/​orthe​sen/
(20) C-BRACE,
(21) Agilium Freestep 3.0

O/*

(22) Dorsa Direxa Posture O/*
Hyundai (23) H-CEX E/* https://​tech.​hyund​aimot​orgro​up.​

com/​artic​le/​hyund​ai-​and-​kias-​
weara​ble-​robot-​vexve​st-​exosk​
eleton/

(24) H-VEX E/*

Roam Robotics (25) Ascend,
(26) Forge Performance

E/* https://​www.​roamr​oboti​cs.​com

(27) Elevate E/*
Noonee (28) Chairless Chair E/* https://​www.​noonee.​com
Laevo (29) Laevo V2 E/* [40]
Bioservo (30) Ironhand E/* https://​www.​biose​rvo.​com
Levitate Technologies (31) Airframe E/* https://​www.​levit​atete​ch.​com
ReWalk Robotics (32) ReWalk E/* https://​rewalk.​com

(33) ReStore E/*
Zarya (34) E-Helper E/* https://​zarya-​med.​com

(35) ANIKA E/*
Honda (36) Walking Assist Device 

(WAD)
E/* https://​global.​honda/​produ​cts/​

power/​walki​ngass​ist.​html
Hunic (37) SoftExo Lift,

(38) SoftExo Hold,
(39) SoftExo Carry,
(40) SoftExo Care

E/* https://​hunic.​com

Myomo (41) MyoPro E/* http://​www.​myomo.​com
EXPOS (42) ExoMotus E/* http://​exops.​fftai.​com/​home.​html
Wandercraft (43) Atalante E/* https://​www.​wande​rcraft.​eu
Gogoa (44) Hank,

(45) Belk
E/* https://​www.​gogoa.​eu

(46) Hand of Hope E/*
Cyber Human Systems (47) Aldak,

(48) Besk G
E/* https://​en.​cyber​hs.​eu

23Current Robotics Reports (2022) 3:21–32

https://eksobionics.com
https://www.suitx.com
https://www.ccr-deutschland.de
https://paexo.com
https://www.ottobock.de/orthesen/
https://tech.hyundaimotorgroup.com/article/hyundai-and-kias-wearable-robot-vexvest-exoskeleton/
https://tech.hyundaimotorgroup.com/article/hyundai-and-kias-wearable-robot-vexvest-exoskeleton/
https://tech.hyundaimotorgroup.com/article/hyundai-and-kias-wearable-robot-vexvest-exoskeleton/
https://tech.hyundaimotorgroup.com/article/hyundai-and-kias-wearable-robot-vexvest-exoskeleton/
https://www.roamrobotics.com
https://www.noonee.com
https://www.bioservo.com
https://www.levitatetech.com
https://rewalk.com
https://zarya-med.com
https://global.honda/products/power/walkingassist.html
https://global.honda/products/power/walkingassist.html
https://hunic.com
http://www.myomo.com
http://exops.fftai.com/home.html
https://www.wandercraft.eu
https://www.gogoa.eu
https://en.cyberhs.eu


1 3

relieves the shoulder muscles, and the forces are trans-
ferred to the lower back [33]. This mechanism is used for 
example in Ekso EVO (Ekso Bionics) [33], H-VEX (Hyun-
dai) [34], and Skelex 360-XFR (SkeleX) [36]. In case of 
using gas springs, the force is generated by another part 
of the body during execution of the movement to be sup-
ported. This method is used, for example, with the BackX 
(SuitX) [6]. Here, when the user leans forward, a torque 
is generated in response to the gravitational force of the 
torso, thus relieving the user’s lower back.

In summary, there are more passive than active or 
robotic systems overall (see Fig. 1). It can also be seen 
from Figs. 1 and 2 that almost all systems in the industry 
are passive. Furthermore, there are very few devices for 
full-body application and more systems for the lower body 
than for the upper body available.

Table 1   (continued)

Company System Exoskeleton (E)/orthoses (O)/
demonstrator (D)/prototype (P)/
available for purchase (*)

Source

Marsi Bionics (49) Atlas Pediatric Exo,
(50) MB-Active Knee

E/* https://​www.​marsi​bioni​cs.​com

Skelex (51) Skelex 360-XFR E/* [36]
Able Human Motion (52) ABLE Exoskeleton E/* https://​www.​ableh​umanm​otion.​com
Human Mechanical Technolo-

gies
(53) PLUM’,
(54) Moon,
(55) Light

E/* https://​www.​hmt-​france.​com/​en

U.C. Berkeley (56) U.C. Berkeley Lower 
Extremity Exoskeleton 
(BLEEX)

E/D [49]

DFKI GmbH (57) CAPIO E/D [10]
(58) VI-Bot E/D [51]
(59) Recupera Reha E/D [31]

DLR (60) Exodex-Adam E/D [52]
ReNeu Robotics Lab (61) Harmony E/D [44]
Tendo (62) The Product E/P [53]
Medi (63) Genumedi PA O/* https://​www.​medi.​de/​produ​kte/​

orthe​sen/
Bauerfeind (64) MalleoLoc,

(65) ValguLoc
O/* https://​www.​bauer​feind.​de/​de/​produ​

kte/​orthe​sen
Bort medical (66) Oso Tract O/* [29]
Boston Brace (67) Boston Brace Original O/* https://​www.​bosto​noandp.​com/​

produ​cts/
OPED (68) VACOped O/* https://​oped.​de
Becker Orthopedic (69) Shoulder Holster Orthosis O/* https://​www.​becke​rorth​opedic.​com/​

Produ​ct/​Prefa​brica​tedOr​thoses
Enhanced Robotics (70) SPORTSMATE 5 E/* https://​www.​kicks​tarter.​com/​proje​

cts/​14856​48715/​worlds-​first-​
exosk​eleton-​for-​consu​mers-​sport​
smate5?​lang=​de

Fig. 2   Subdivision of all exoskeletons and orthoses (orthoses in bold 
numbers) shown in Table 1 into their different application domains 
taking overlaps in application into account
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Currently Existing Application Domains

Exoskeletons and orthoses are already applied in many dif-
ferent domains. An overview of the domains of the different 
devices considered here can be seen in Fig. 2. Orthoses are 
generally used mainly in the domain of rehabilitation, for 
example, E-MAG Active (Ottobock) [27] or OsoTract (Bort 
medical) [29] (s. Figure 2). There are also orthoses that have 
been developed for elderly who have age-related problems 
and need assistance in daily life (e.g., Agilium Freestep 3.0 
(Ottobock) [37]). Overall, the domains of orthoses are there-
fore to be arranged in a medical context and to reduce pain. 
Exoskeletons are found in significantly more domains than 
orthoses. For industry, for example, there are already many 
passive and some active devices available today (s. Figure 2). 
The passive devices are mainly used to prevent injuries to 
the musculoskeletal system by relieving the musculature, 
e.g., Moon (Human Mechnical Techologies) [38], SoftExo 
Carry (Hunic) [39], and Laevo V2 (Laevo) [40]. The active 
device mentioned in Fig. 1, CrayX (German Bionic) [41], is 
also designed to relieve the lower back, but additionally has 
active walking support.

Another domain of exoskeletons is the rehabilitation, as 
well as the (permanent) assistance of people with incurable 
movement restrictions (e.g., Ekso UE (Ekso Bionics) [42], 
BoostX Knee (SuitX) [43], Harmony (ReNeu Robotics Lab) 
[44]). Most devices for rehabilitation provide active support 
and are intended for recovery and functional compensation 
of people with physical disorders [45]. Those categorized as 
passive in Fig. 1 provide support via springs, making them 
passive devices as defined in the previous section. Passive 
exoskeletons have also been developed in some cases espe-
cially for medical care staff to provide support when trans-
ferring or lifting patients (SoftExo Care (Hunic) [46]) or to 
protect them from X-rays (ShieldX (SuitX) [47]). The active 
exoskeleton Forge Performance (Roam Robotics) [48] was 
developed especially for the military. This is an active walk-
ing support, so that soldiers can walk on uneven terrain for a 
long time without getting tired. In contrast to orthoses, there 
is no exoskeleton in Fig. 2 that was developed exclusively to 
support elderly in daily life and to alleviate age-related com-
plaints, but always focus on injury prevention or relieving 
the musculature. Figure 2 shows some active exoskeletons 
that currently exist only as demonstrators or prototypes and 
are therefore not available for purchase now. The BLEEX 
(U.C. Berkeley) [49], for example, is being developed for the 
military. It is designed to allow soldiers to carry up to 70 kg 
in a backpack and have active walking support, making it 
possible to carry this load over longer distances [49]. Also, 
there are demonstrators of active exoskeletons (Capio (DFKI 
GmbH) [50], VI-Bot (DFKI, GmbH) [51], Exodex-Adam 
(DLR) [52]) that were developed to be used in aerospace 

and teleoperation. A unique selling point is that they have 
force-feedback, which should simplify the operation for the 
user at a long distance [50]. This is a domain that would be 
opened up in a new way and would show completely new 
possibilities. One prototype named “The Product” by Tendo 
[53] is shown in Fig. 2. This is an active exoskeleton that 
is designed to assist with grasping by controlling artificial 
tendons [53].

In summary, there are currently no pure systems for assis-
tance and only a few that work with biosignals (for example, 
in rehabilitation) as shown in Fig. 2. A variety of passive 
systems are available for industry, as the daily benefits are 
visible here.

Robotic Exoskeletons and Orthoses

Robots are in a general definition multi-purpose handling 
devices that not only perform one task but can also be 
adapted to solve other tasks by being programmable and 
being equipped with various tools. Often a distinction is 
made between robots with fixed work sequences such as 
classical industrial robots, robots that can perform several 
specific tasks in variable sequence, playback or teach-in 
robots whose motion sequences are demonstrated by an 
operator, stored, and can be replayed, numerically controlled 
robots for which the operator can flexibly program various 
motion sequences, and generally “intelligent” robots. Intel-
ligent robots perceive their environment via sensors and 
interpret this via various algorithms and (learned) models to 
solve tasks even if something changes in the environment. In 
the definition of autonomous robots, some of the aforemen-
tioned categories are combined. Autonomous robots move 
independently and complete a not exactly defined task with-
out human assistance by calculating or learning solutions.

Robotic orthoses and exoskeletons, i.e., active sys-
tems, that can move independently via motors can either 
be assigned to one of the mentioned subgroups of robots 
or even fulfil several criteria of different subgroups. Very 
complex systems can include both simple algorithms that 
adapt their own movement, for example, by taking out their 
own weight or the weight of parts of the human body2 in 
the sense of gravitational compensation, or more complex 
control approaches that allow one part of the system to con-
trol another part, for example, one arm or leg controls the 
other [21, 54]. In the same system, in another mode, the 
movements can be trained by a therapist in the sense of a 
teach-in and then repeated automatically or triggered by the 
recognition of the person’s intention to move from, e.g., their 

2  See video at https://​youtu.​be/​dCn1k​tzbpZ8 minute 0:58.
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residual muscle activity,3 eye movement, or brain activity 
[21]. The latter requires an intelligent interface, such as a 
BCI, which can be part of the intelligent robotic exoskeleton 
or orthoses [55]. In teleoperation, intelligent bidirectional 
exoskeletons can not only transmit movements from the 
human to the robot but also feedback tactile information to 
the operator [10].

Hence, intelligent robotic exoskeletons and orthoses that 
are able to sense and analyze their environment and adapt 
their behavior are on the one hand autonomous robots, but 
also have a strong, sometime bidirectional interactive com-
ponent to recognize the user’s intention or user’s capabilities 
[56] as will be discussed in the following sections.

Autonomous Adaptation of Behavior

Only very few exoskeletons for neuromotor rehabilitation 
are designed to support humans with no motor abilities left. 
For example, Atalante Exoskeleton from Wandercraft can 
self-balance itself and a patient with complete spinal cord 
injury during walking [57]. For efficient rehabilitation and 
motivating support, exoskeletons and orthoses must adapt 
their behavior to the abilities of the patient, e.g., not only to 
support an arm movement to different strengths depending 
on the patient’s condition, called assist-as-needed [58–60], 
but also to enable natural movements by synchronizing 
human–robot movements [61, 62]. For guided movement, 
impedance control allows variable adjustment of support, 
i.e., from precise guidance on the trajectories with rather 
passive participation of the patient to very weak support in 
the direction of the target trajectory with greater personal 
participation, as shown for gait [63] as well as upper body 
rehabilitation (see [64] for review). In order to adapt the 
control of exoskeletons even better to the patient and his or 
her needs, biosignals such as electromyogram (EMG) can 
be used in the control [65].

For the support of patients under ADL, it is for example 
not sufficient to adapt movement pattern for gate rehabilita-
tion similar to able-bodied gait [66] or to assure the bal-
ance of the user [57] or to automatically recognizing and 
responding to different gaits [61, 62]. Rather, systems that 
assist in ADL conditions must also be able to recognize and 
understand the environment, e.g., the position and size of 
stairs in order to climb stairs [67]. Such behaviors under 
ADL conditions were often developed based on research 
on autonomous systems, here humanoid robot walking. By 
automated environment recognition (see [68] for review on 
environment recognition), patients can thus in the future be 
re-enabled to operate in a wide variety of environments and 
perform activities of daily living.

For upper body rehabilitation (see [69] and [70] for 
review on the effect of robot guided upper limb rehabilita-
tion) and support under ADL, even more autonomous robot 
function must be implemented into robotic exoskeletons (see 
[71•] for evaluation of potential needs on upper body exo-
skeletons in ADL). Most of such functions needed to, e.g., 
recognize a cup that the user wants to drink from and to aid 
with reaching [72•] and gripping [73] as well as bringing 
the cup to the mouth, and to support for drinking itself, are 
not yet implemented as a complete solution within a single 
exoskeleton, especially not in rather complex hand exoskel-
etons and often only explored in simulation [74]. Further-
more, how much autonomy is needed always depends on 
the remaining abilities of the user and on the exoskeleton’s 
ability to autonomously recognize the user’s intentions, as 
will be explained in the next section.

Intention Recognition Using Multimodal Data

The perception of intentions is particularly important in the 
context of neuromotor rehabilitation [17, 18] or ADL sup-
port by an exoskeleton [75–77]. An intelligent exoskeleton 
must recognize the patient’s intention, e.g., where he or she 
wants to move [78, 79]. But also in other applications, such 
as teleoperation, it can be relevant to understand what a 
user’s intentions are. For example, using the human elec-
troencephalogram (EEG) can help to detect the movement 
intention to increase the sensitivity of the force sensors that 
recognizes interaction forces between human and exoskel-
eton for more transparent behavior [8].

Brain-computer interfaces (BCIs) [80] can be used to 
detect the user’s intention, such as walking direction when 
using a lower limb exoskeleton based on SSVEP [78, 79] or 
the intention to move the arm, for example [81]. In general, 
BCIs are often used to control the environment and assistive 
devices [82–85]. The above given examples of using BCIs 
in the control of exoskeletons [8, 17, 18, 75–79] show that 
the analysis of human physiological data can be used to infer 
intention. However, also other physiological data or data 
recorded from the exoskeleton such as motion data recorded 
from a healthy leg to control the impaired leg [54] or data 
from force sensors to measure interaction forces [8] can be 
utilized to infer intentions to support a human adequately 
and to interact with the environment. In recent research on 
intent recognition for exoskeleton-based support and reha-
bilitation, multimodal physiological [77, 86] and external 
data [87] is combined to increase reliability and performance 
[56].

Therefore, for intention detection and control, signals 
from the EEG, such as motor-related signals elicited by 
motor imagery [88] (see recent review in [89] on brain-
computer interfaces based on motor imagery) or by plan-
ning intended motor movements, are often not used alone 3  See video at https://​youtu.​be/​dCn1k​tzbpZ8 minute 1:25.
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but in combination with other signals using hybrid BCIs 
(for review of hybrid BCIs, see [90] and [91]). Hybrid BCIs 
can, on the one hand, use two different types of EEG pat-
terns from different sources, such as a specific EEG signal 
elicited by motor preparation or motor imagery combined 
with other patterns in the EEG such as the so-called SSVEP 
[92–94] an activity elicited by repetitive visual stimuli. 
On the other hand, two different EEG patterns such as fre-
quency- or time-domain related patterns elicited by the 
same internal or external event such as movement prepara-
tion [95, 96] can also be combined in a hybrid BCI. Other 
approaches use different types of signals, such as EEG and 
other physiological data like the electrooculogram (EOG) 
[97, 98], the EMG [86], or the electrocardiogram (ECG) 
[99] or combine EEG with other non-physiological signals 
such as eyetracking data [100] or joystick data [101] (for 
comprehensive and systematic review, see [91]). The main 
reason to combine multimodal data is to improve accuracy 
of the BCI [77, 86, 89, 90] or to enhance controllability [89, 
98]. It is also possible to improve the adaptability of assistive 
technical aids to individual needs through the availability of 
increased information [87] or for depth directional naviga-
tion for hand-disabled persons through better recognition of 
the environment with several sensors [100].

Based on the research in hybrid BCI reviewed above, it 
can be derived that safe and flexible intention recognition 
for exoskeleton control under ADL conditions multimodal 
data such as EEG and EMG data [87] should be combined to 
reliably detect the intention of the user and be extended by 
additional data to infer how the user wants to interact with 
or within the environment [21, 75–78, 87].

Stimulation, Bidirectional Feedback, and Interactive 
Learning

Feedback helps to improve human–machine interaction. It 
improves the user’s awareness on specific situations, e.g., 
whether the user of an exoskeleton is in balance [102], 
transfers tactile information using force feedback [8–10], or 
directs the user back to a target trajectory as soon as he or 
she is too much off from it under assist-as-needed [58–60]. 
Moreover, the combination of an exoskeleton with functional 
electrical stimulation (FES) has shown to provide promising 
results for motor recovery of upper limb [72•, 103] and lower 
limb gait rehabilitation [104] or during sit-to-stand transitions 
[105] with reduced muscle fatigue caused from FES when 
combined with an active exoskeleton (for review, see [106]).

While stimulation offers a way to directly influence mus-
cles using FES or brain areas, such as the motor area using 
repetitive transcranial magnetic stimulation (rTMS), to 
improve neuromotor rehabilitation after stroke [107], pro-
viding feedback allows for a more indirect adaptation, as 
known from biofeedback approaches (see [108] for review). 

A biofeedback signal can be of two categories, i.e., biome-
chanical or physiological [108]. Biomechanical biofeedback 
is used most often either combined with or integrated into 
exoskeleton-based assistance or rehabilitation. Most BCIs, 
which can be combined with exoskeletons as discussed 
above, make use of biofeedback, i.e., neurofeedback. Any 
type of biofeedback is used to support the user’s learning 
by becoming aware of changes in the body (processes and 
behavior). Also, stimulation addresses the user, e.g., by 
enhancing activity in motor areas of the brain while using 
an exoskeleton for stroke rehabilitation to improve the effec-
tiveness of the therapy [109].

However, feedback should also be given to the machine, 
e.g., to the exoskeleton, to improve its behavior. This is 
done, e.g., in “assist-as-needed,” by making use of EMG 
activity [65] as discussed above. Very recent approaches use 
feedback from humans even more fundamentally than just 
to adapt the robotic system. Based on learning approaches 
for autonomous robotic systems, especially using reinforce-
ment learning (RL) [110, 111], new approaches are being 
developed to make online learning more robust under com-
plex environments by using human feedback (see [112] for 
discussion). Feedback can be given explicitly [113, 114] or 
implicitly inferred by the human during the interaction (dis-
cussed in [115]) to avoid additional cognitive load on the 
human and to obtain more consistent feedback than would 
be possible with explicit feedback [116–119].

A recent approach that uses human feedback is interactive 
reinforcement learning (IRL) (see [120–122] for a review). 
Since human–robot interaction is crucial in assistive robot-
ics, IRL offers great potential for using human feedback to 
learn, improve, or adapt a system’s behavior to human needs 
[115]. Here, the use of brain activity as an intrinsic feed-
back source in IRL, i.e., for intrinsic IRL [116], became of 
particular interest as it combines approaches of IRL and the 
intrinsic use of brain activity for learning in robots. Current 
approaches make use of a user’s error awareness, which is 
correlated with the so-called error-related potential (ErrP) in 
the EEG (for different types of ErrP, see [123, 124]) to auto-
matically correct or learn appropriate behavior (see [125] 
for general discussion). ErrP not only correlates with error 
awareness [126], but it is also discussed to correlate with 
error severity [127]. Intrinsic feedback in RL from ErrPs 
has already been discussed as a way to learn the control of 
prostheses online and it has been shown that a robotic arm 
can thus learn to reach certain predefined target locations in 
2D [118]. In addition, a study with stroke patients showed 
that unfinished training trials produce a brain pattern similar 
to ErrP, which could potentially be used to improve state-of-
the-art assistive robotic therapy approaches [128•]. While 
in [128•], it is discussed that assistance as needed can be 
improved by detecting the time of failure during therapy to 
then trigger, e.g., needed support, we would like to argue 
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that the detection of ErrP or other error-related activities in 
the EEG can furthermore be used to improve assistance in 
relation to subjective needs, which may differ from objec-
tively measured needs.

Conclusion

While mechanically sophisticated and stably controlled 
robotic exoskeletons and orthoses are already available for 
various applications, current research is mainly focused on 
improving human–machine interaction using various data 
from the user. This current research is driven by the enor-
mous need for human intention recognition, adaptation to the 
user’s needs, and, especially in neuromotor rehabilitation, 
the provision of assistance according to needs. From the 
different approaches discussed in this review, it is clear that 
many different challenges are often addressed individually 
through research in a particular area. In the future, research 
that combines different research directions is needed to over-
come weaknesses in individual approaches and to capitalize 
on the strengths of other approaches. For example, using a 
BCI, it will remain difficult to calculate exact movement 
trajectories from surface derived brain signals, e.g., the 
EEG, even if other data are used. However, using solutions 
from the field of autonomous robots can solve this problem. 
Once the intention and goal are derived from the physiologi-
cal data, a trajectory can be calculated to reach the goal. In 
addition, the intrinsic feedback of the human can be used 
to correct the guidance support offered by the robotic exo-
skeleton online or to learn preferred support strategies. It is 
the combination of different approaches in future research 
that will enable the effective use of bidirectional feedback 
for transparent behavior and optimal support, as well as for 
robotic exoskeletons that can also be used under ADL. Espe-
cially for the latter, increasingly more methods from the area 
of autonomous robotics need to be integrated into future 
robotic exoskeletons to enable the support and assistance of 
a human under complex natural environmental conditions. 
By means of these approaches, bidirectional feedback and 
interactive learning for true coadaptivity between man and 
machine, the felt fusion between man and exoskeleton will 
be made possible in the future and will allow the integration 
of such technical devices into the body schemata.
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