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Abstract

Over the past two decades Whole-Body Control (WBC) has become the standard method
for controlling robots with redundant degrees of freedom, such as humanoids or mobile
manipulators. WBC enables the simultaneous execution of multiple tasks by formulating
them as constraints or within the cost function of an instantaneous optimization problem. In
each control cycle, the optimization problem is updated, solved and its solution is applied to
the robot’s actuators. Instead of computing the inverse kinematics or inverse dynamics of
each task individually, WBC determines the optimal solution that considers all tasks, as well
as physical constraints such as contact forces or actuator limits. In this way, complex control
problems can be designed by combining simple tasks and the full degrees of freedom of the
robot can be exploited.

However, it requires a lot of expertise to model the optimization problem in such a way
that the desired robot behavior is achieved. A human expert must analyze the task, derive
appropriate task models, define constraints, and assign suitable priorities to the tasks. This
process is commonly performed by hand, which is time-consuming and prone to errors.
Moreover, the solutions developed are usually limited to certain situations. If the given task
or the environment of the robot changes, these manually designed solutions may fail and the
task specification must be adapted.

In this thesis, we address these very problems to improve usability, adaptability, and generality
of existing WBC approaches. First, we introduce a programming by demonstration (PbD)
approach forwhole-body controllers. The approach derives a part of the optimization problem,
namely the task constraints and their associated priorities, from user demonstrations. The
demonstrations are performed in varying conditions, which we refer to as contexts. Using the
acquired data, we can derive probabilistic models that allow generalization of task constraints,
and their associated priorities with respect to novel, previously unseen contexts. That is,
the whole-body controller learns to adapt to unknown situations. The proposed method
not only significantly reduces the effort required to design the optimization problem, but
it also improves the performance of the robot in dynamic environments. Furthermore, as
the approach automatically adapts the whole-body controller to the current situation, it can
be used to keep task descriptions in WBC general and abstract. Thus, the approach has the
potential to bridge the gap between numerical task specifications and higher-level concepts
such as symbolic task planning. As a second contribution we present different methods
for black-box optimization of task priorities, which may increase the performance of the
derived whole-body controller when deployed on the target robot. Third, we integrate these
contributions in a modular Whole-Body Control framework named ARC-OPT, which allows
us to automatically derive, adapt, and optimize whole-body behaviors, while preserving the
positive features of classical WBC approaches.





Zusammenfassung

In den vergangenen zwei Jahrzehnten hat sich Whole-Body Control (WBC) als Standard-
methode zur Regelung von Robotern mit redundanten Freiheitsgraden wie zum Beispiel
Humanoiden oder mobilen Manipulatoren etabliert. WBC ermöglicht die gleichzeitige Aus-
führung mehrerer Aufgaben, indem es diese als Nebenbedingungen oder innerhalb der
Kostenfunktion eines Online-Optimierungsproblems definiert. In jedem Regelzyklus wird
das Optimierungsproblem aktualisiert, gelöst und seine Lösung als Steuersignal auf die
Aktuatoren des Roboters abgebildet. Anstatt die Inverse Kinematik oder Dynamik jeder
Aufgabe einzeln zu berechnen, bestimmt WBC die optimale Lösung, welche alle Aufgaben,
sowie physikalischen Nebenbedingungen wie zum Beispiel Kontaktkräfte oder Gelenkgren-
zen berücksichtigt. Auf diese Weise können komplexe Roboteraufgaben aus einfacheren
Teilaufgaben entworfen und die gesamten Freiheitsgrade des Roboters optimal genutzt
werden.

Allerdings wird Expertenwissen benötigt, um das Optimierungsproblem so zu modellieren,
dass das gewünschte Roboterverhalten erzielt wird. So ist es notwendig die Aufgabe zu
analysieren, entsprechende Aufgabenmodelle abzuleiten, Nebenbedingungen zu definieren
und den Aufgaben geeignete Prioritäten zuzuweisen. Dieser, meist manuell ausgeführte
Vorgang, ist sehr zeitaufwendig und fehleranfällig. Darüber hinaus sind die entwickelten
Lösungen meist auf bestimmte Situationen beschränkt. Falls sich die Aufgabe oder die
Umgebung des Roboters verändert, schlagen die händisch entwickelten Lösungen meist fehl
und die Aufgabenbeschreibung muss angepasst werden.

In dieser Dissertation werden diese Probleme adressiert um die Benutzbarkeit, Anpassungs-
fähigkeit und Allgemeingültigkeit existierender WBC Ansätze zu verbessern. Erstens wird
hier ein Programmierung-durch-Vormachen-Ansatz fürWhole-BodyController vorgestellt. In
dem Ansatz wird ein Teil des Optimierungsproblems, nämlich die Aufgabenbeschränkungen,
sowie die zugehörigen Aufgabenprioritäten aus Benutzerdemonstrationen abgeleitet. Die
Benutzerdemonstrationen werden in verschiedenen Bedingungen durchgeführt, die hier als
Kontexte bezeichnet werden. Anhand der akquirierten Daten werden wahrscheinlichkeits-
theoretische Modelle abgeleitet, die eine Generalisierung der Aufgabenbeschränkungen und
Prioritäten bezüglich neuer, unbekannter Kontexte ermöglichen. Das heißt, der Whole-Body
Controller lernt, sich an unbekannte Situationen anzupassen. Der vorgestellte Ansatz hilft
zum einen dabei, den Aufwand für den Entwurf des Optimierungsproblems deutlich zu
reduzieren. Zum anderen verbessert er die Leistungsfähigkeit eines Robotersystems beim
Einsatz in dynamischen Umgebungen. Darüber hinaus können mit Hilfe diese Ansatzes Auf-
gabenbeschreibungen in WBC allgemein und abstrakt gehalten werden, da der Whole-Body
Controller sich automatisch an die gegebene Situation anpasst. Demnach existiert hier das
Potenzial die Lücke zwischen numerischenAufgabenbeschreibungen und höheren Konzepten
wie zum Beispiel symbolischer Aufgabenplanung zu schließen. Als zweiter Beitrag werden
verschiedene Methoden zur Optimierung von Aufgabenprioritäten vorgestellt, welche die



Performance des abgeleiteten Whole-Body Controllers verbessern, wenn er auf dem Zielsys-
tem eingesetzt wird. Drittens wird ein modulares Whole-Body Control Framework namens
ARC-Opt vorgestellt, welches die zwei zuvor genannten Beiträge integriert. Das Framework
ermöglicht es, Whole-Body Verhalten abzuleiten, zu adaptieren und zu optimieren, während
die positiven Eigenschaften klassischer WBC Frameworks erhalten bleiben.
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Introduction 1
This chapter provides the motivation and scope of this thesis by shortly summarizing the
area of Whole-Body Control, its limitations and the employed methods to overcome them.
Furthermore, it introduces the terminology commonly used throughout this thesis and
describes the structure of this document alongside the main scientific contributions.

1.1 Motivation

During the past two decades an increasing number of humanoid robots and other complex
robotic systems like multi-legged walking machines and mobile manipulators with a single
or two arms have become physically available. With the growing availability of these systems
there was also an increasing need for control approaches that facilitate their deployment in
human environments. These approaches should allow the integration of multiple behaviors
like interaction with several contact points, manipulation, balance, and locomotion, while
considering physical constraints and efficiently coordinating all degrees of freedom (dof).
Until today, Whole-Body Control (WBC) has become the most widely adopted approach for
such multi-objective control problems in robotics [MS19]. The core principle of WBC is to
describe robot tasks as constraints or within the cost function of an optimization problem,
typically a quadratic program (QP). In every control cycle, the optimization problem is
updated with the current system state and its solution is applied to the robot’s actuators.
The solution represents the instantaneous control signal that best accomplishes all tasks
simultaneously. In order to resolve conflicting tasks or emphasize the importance of different
objectives, task priorities can be assigned. Depending on the prioritization method, these
are referred to as strict or soft task priorities. Strict prioritization approaches establish a task
hierarchy such that tasks of lower priority do not disturb higher prioritized tasks. When using
soft task priorities, the solution is a weighted combination of the solutions of the individual
tasks. Both prioritization schemes have their benefits and choosing the wrong task priorities
may produce undesirable results, a fact that will be elaborated in detail within this thesis.

WBC has been successfully applied to complex robot control problems, such as jump-
ing [Bel+18], climbing stairs [CKT19] or ladders [Vai+15], as well as various mobile manipula-
tion tasks [Die+12b; Lei+16]. However, it requires a lot of expertise to model the optimization
problem in a way that the desired robot behavior is achieved. A human expert must analyze
the task, derive task models, define constraints, and assign suitable priorities. This procedure
is performed in a manual, trial-and-error fashion and it requires detailed knowledge about
the problem domain, the actual WBC implementation in use and about WBC in general. Even
with that background knowledge, the procedure is still time-consuming, and the resulting
robot performance is often suboptimal.

Another issue of most existing works in WBC is the low generality of the developed solutions.
Tasks like, e.g., opening a door, climbing a ladder or bi-manual grasping of an object are
often addressed individually, that is the Whole-Body Controller is tailored to a specific task
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Figure 1.1: Illustrative example on the effect of different task hierarchies.

and situation. Although WBC has produced impressive results on individual problems this
way, these carefully handcrafted solutions will fail if the characteristics of the given task or
the environment change.

In the following, we provide illustrative examples regarding both issues.

Example 1: Manual Selection of Task Priorities

Consider a whole-body controller that integrates two tasks on the industrial robot arm shown
in Figure 1.1(a), namely following a sinusoidal end-effector trajectory and avoiding joint
limits. The latter exercises a repelling force on a joint that approaches a position limit. When
applying a strict task hierarchy, there are three different possibilities for prioritization:

# Task Hierarchy

1 Joint Limits > Trajectory Following
2 Joint Limits �� Trajectory Following
3 Joint Limits < Trajectory Following

Table 1.1: Task hierarchies used in Example 1.

Here < and > denote lower and higher priority of the task on the left side, respectively, and
�� denotes equal priority for both tasks. Figure 1.1(b) shows the resulting motion for the
three different task hierarchies. Here, the upper figure depicts the motion in Cartesian space
along the z-axis and the lower figure shows the distance to the position limit of the elbow
joint. Intuitively, joint limit avoidance should be assigned the highest priority. However, the
corresponding task hierarchy #1 shows strong irregularities at the activation point of the joint
limit. The reason is that the higher prioritized joint limit avoidance task pushes joint 3 away
from the position boundary, until the repelling force decreases and the trajectory following
task pushes the robot in opposite direction again. This leads to recurrent activation and
deactivation of the unilateral joint limit constraint, a problem that has been investigated in
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Figure 1.2: Illustrative example on the effect of context changes. Screenshot from
video [Mro21d]

the scientific literature onWBC [MKK09]. In contrast, hierarchy #2 shows smoother transition
behavior. When using hierarchy #3 the behavior is also smooth, but the joint limit of the
regarded joint is not properly avoided.

This example shows that even for simple problems with only two tasks, the resulting robot
behavior may differ from the expected one due to incorrect prioritization. In the example,
we employ a strict task hierarchy, which offers a finite number of prioritizations. In contrast,
soft task priorities, also referred to as task weights, have a continuous range of values. Thus,
they offer more flexibility for task prioritization, with the downside of higher complexity
and effort in selecting them. It shows that there is a strong need for automatized procedures
to select task priorities in WBC approaches [Mod+16b].

Example 2: Context Change

Another crucial point is the adaptability of Whole-Body Controllers in varying situations,
which we refer to as contexts. If the context changes during task execution, the tasks and
their priorities may have to be adapted. As an example, consider the problem of grasping
and carrying a tray with two hands. In the approach phase a coordinated arm movement
is not strictly necessary. However, after the tray has been grasped, the relative position and
orientation of the hands must be constrained. To achieve this, a high-priority task controlling
the relative pose of the hands can be introduced the moment the tray is grasped. Now,
consider carrying the empty tray around with two hands. The tray orientation with respect
to the ground can be arbitrary, leaving the required robot dof free for the execution of other
tasks. However, if somebody places a bottle on the tray, it must be held horizontally as shown
in Figure 1.2. Thus, the priority for controlling the tray orientation must be increased before
placing the bottle. In both examples, the overall robot behavior is adapted through online
modification of the tasks and their priorities. However, it is difficult to estimate the optimal
timing of task insertion or priority switching. Moreover, such an adaptation can hardly be
programmed in advance for every situation.

This example shows that there is also a need for adaptive WBC solutions, that is methods
that automatically select the correct configuration of the whole-body controller with respect
to the current context.
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(a) iMRK [Gea+17b] (b) RH5 [Ess+21] (c) RH5v2 [Bou+22]

Figure 1.3: Robotic systems used for experimental evaluation in this thesis.

1.2 Goals of this Thesis

The general objective of this thesis is to improve the usability, adaptability, and generality of
existing Whole-Body Control approaches for redundant robots. to achieve this objective, we
pursue three subgoals.

i. Introduce an automatized approach to derive task descriptions for whole-body con-
trollers from data obtained in user demonstrations. As WBC commonly describes
robot tasks as part of an optimization problem, this is equivalent to automatizing the
procedure of setting up this problem.We focus on an important part of the optimization
problem, namely the task constraints and their associated task priorities. Furthermore,
the approach shall be able to generalize the obtained solutions to previously unseen
situations (contexts) and adapt the optimization problem accordingly. The goal is to
overcome the limitations of WBC as described in the previous section, namely the need
of human expertise to define the WBC problem and the low generality of manually
defined whole-body controllers.

ii. Develop methods for optimization of task priorities to improve the performance of a
whole-body controller when deployed on the target system. As the user demonstrations
might provide suboptimal data, it is required to adapt the automatically derived WBC
problem in such way that it reflects the structure of the task correctly.

iii. Integrate the methods in a modular software framework for context-adaptive Whole-
Body Control. The framework should extend existing WBC implementations with
methods to intuitively specifyWBC problems using PbD, adapt them to novel situations
and optimize them when deployed on the target robot.

The methods not only reduce the effort of the human expert for task specification and,
thus, improve usability of WBC approaches. They also increase the robot’s performance and
autonomy in dynamically changing environments, as thewhole-body controller automatically
adapts to the current context. This adaptability also allows to formulate tasks for redundant
robots in an abstract and more general way. Thus, the approach has the potential to bridge
the gap between numerical task specifications and high-level concepts for robot control, like
symbolic task planning.
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The methods developed in this thesis are evaluated on the robotic systems illustrated in
Figure 1.3:

i. iMRK: The iMRK system [Gea+17b] consists of two industrial KUKA LBR iiwa
lightweight manipulators [AG21] and includes 14 active dof in total. The arms are
equipped with Robotiq 3-finger grippers [Rob21b]. While the arms are currently
arranged in a way that dual-arm manipulation is facilitated, they can be placed quite
freely on the table structure. Furthermore, the system is equipped with 4 ASUS RGB-D
cameras that allow detection of obstacles in the environment of the robot. The robot
has a proprietary joint level impedance controller, which allows robust positioning and
safe environment interaction. This controller is used in all experiments performed on
the iMRK system in this thesis.

ii. RH5: The humanoid robotic system RH5 [Ess+21] has been developed at the DFKI RIC.
It has 32 active dof in total and is equipped with parallel grippers, also constructed
at DFKI RIC. Compared to the iMRK robot it is a floating-base hybrid system, which
includes multiple parallel kinematic structures. Like the iMRK system, it provides
stabilizing joint level position control with compliance, which allows safe environment
interaction. We use this control mode in all experiments performed on RH5 in this
thesis.

iii. RH5v2: The humanoid robot RH5v2 [Bou+22] has been designed as successor of the
RH5 humanoid. Compared to RH5 it currently comprises only an upper body mounted
on a rack. The robot has 20 active dof in total and is equipped with versatile 4-finger
grippers. Like RH5 is contains multiple parallel structures as subsystems. Like the other
systems, the robot provides stabilizing joint-level position control with compliance. We
use this control mode in all experiments performed on RH5v2 in this thesis.

1.3 Terminology

Whole-Body Control In literature the term Whole-Body Control is often used interchange-
ably with the terms constraint-based control [Smi+08], optimization-based control [Fen+15],
task-oriented control [SK04] ormulti-objective control [DWE14]. All these terms are synonyms
for the concept described in section 1.1, namely, to describe simultaneously running robot
tasks as an online optimization problem, whose solution is the robot joint command that
complies with all given tasks. In this thesis, we solely use the termWhole-Body Control to
describe this concept.

Task Constraints In WBC, complex problems are described as a combination of low-
dimensional descriptors in task space, for example "maintain balance", "reach object" and
"avoid collision". These descriptors are mostly referred to as tasks inWBC literature, although
other authors also describe them as primitives or behaviors [SK06]. In this thesis, we attempt to
derive task descriptions forWBC from user demonstrations. In this regard, we are particularly
interested in the constraints that the demonstrated task is subject to, and we refer to them
as task constraints. If we demonstrate multiple variants of a given task, the most important
task constraints correspond to the invariant features common to all demonstrations. Once
extracted from the acquired data, the task constraints can be generalized to novel, previously
unseen situations.
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Context In this thesis, we use PbD approaches to derive task constraints for WBC. The task
constraints shall be generalized to novel, previously unseen task variants. Throughout this
thesis, the variations that a task may be subjected are referred to as contextual changes. We
use context to decide, in a probabilistic manner, which task constraints are appropriate for a
given task in a particular situation. As the approaches developed in this thesis are meant
to adapt the robot controls with respect to context changes, they are referred to as context
adaptive.

1.4 Thesis Structure and Contributions

The current chapter introduces to WBC and its limitations to motivate the main goals of this
thesis. In Chapter 2, we provide the theoretical background on the main concepts used in this
thesis, which are Whole-Body Control (WBC) and programming by demonstration (PbD).
Furthermore, we present an extensive overview on existing WBC approaches and discuss
their advantages and disadvantages. Chapter 3 reviews state of the art methods for automatic
derivation and generalization of task constraints for WBC. The main contributions of this
thesis are described in Chapters 4, 5 and 6:

I Chapter 4 presents a programming by demonstration approach to learn task constraints
and their associated task priorities for whole-body controllers. User demonstrations
are performed in varying conditions, which we refer to as contexts. From the acquired
data, we can derive probabilistic models that generalize the derived task constraints
and priorities to novel, previously unseen situations. The approach is evaluated on
an industrial dual-arm arm robot and on a humanoid system. It increases usability,
adaptability, and generality of existing WBC methods. Furthermore, we show that it
provides better generalization capabilities than comparable state-of-the-art approaches
for automatic derivation of whole-body controllers.

I Chapter 5 introduces approaches for black-box optimization of task priorities, which
improve the performance of the derived whole-body controller when deployed on the
target robot. The presented approaches are evaluated on an industrial dual-arm robot.
It is shown that the developed methods improve smoothness, accuracy and dof usage
compared to manually tuned whole-body controllers.

I Chapter 6 describes ARC-OPT, a modular software framework to acquire, adapt and
optimize task constraints for Whole-Body Control. The framework integrates several
WBC approaches on velocity, acceleration, and torque level. It provides, amongst others,
an approach for modeling and solving WBC problems for series-parallel hybrid robots.
The ARC-OPT framework is evaluated on two different humanoid robots.

Chapter 7 provides a summary and a discussion of the main contributions and outlook on
future work.

Figure 1.4 shows an overview of the main contributions of this thesis and how they integrate.
We use the ARC-OPT framework to derive task constraints frommultiple user demonstrations,
which are performed in different contexts. The task constraints and contexts are encoded
as probabilistic models. The learned models are used to reproduce the task constraints and
their associated task priorities in novel, previously unseen situations. As the solutions are
deployed on the target robot, the task priorities can be improved using black-box optimization
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Figure 1.4: Overview of the contributions of this thesis.

methods. The fitness evaluation needed for optimization is again performed using ARC-OPT.
Apart from that, ARC-OPT also serves as integrative framework for the contributions of this
thesis.

1.4.1 Own Publications

Most of the work described in this thesis has been published before or is submitted to
journals or conferences and will be published soon. The related publications are mentioned
in marginal notes at the corresponding sections and summarized in the following:

Journals

I Dennis Mronga, Frank Kirchner: "Learning context-adaptive task constraints for robotic
manipulation", In Robotics and Autonomous Systems, Elsevier, volume 141, 2021

I DennisMronga, TobiasKnobloch, José deGea Fernández, FrankKirchner: "AConstraint-
Based Approach for Human-Robot Collision Avoidance", In Advanced Robotics, Taylor
& Francis Online, volume 0, pages 1-17, 2020

I José de Gea Fernández, Dennis Mronga, Martin Günther, Tobias Knobloch, Malte
Wirkus, Martin Schröer, Mathias Trampler, Stefan Stiene, Elsa Andrea Kirchner, Vinzenz
Bargsten, Timo Bänziger, Johannes Teiwes, Thomas Krüger, Frank Kirchner: "Multi-
modal Sensor-BasedWhole-Body Control for Human-Robot Collaboration in Industrial
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Settings", In Robotics and Autonomous Systems, Elsevier, volume 94, pages 102-119,
2017.

I José de Gea Fernández, Dennis Mronga, Martin Günther, Malte Wirkus, Martin Schröer,
Stefan Stiene, Elsa Kirchner, Vinzenz Bargsten, Timo Bänziger, Johannes Teiwes, Thomas
Krüger, Frank Kirchner: "iMRK: Demonstrator for Intelligent and Intuitive Human–
RobotCollaboration in IndustrialManufacturing", InKI -Künstliche Intelligenz,German
Journal on Artificial Intelligence - Organ des Fachbereiches "Künstliche Intelligenz" der
Gesellschaft für Informatik e.V., Springer, volume 31, number 2, pages 203-207, 2017.

Conferences

I DennisMronga, ShiveshKumar, FrankKirchner: "Whole-BodyControl of Series-Parallel
Hybrid Robots", 2022 IEEE International Conference on Robotics and Automation
(ICRA), Accepted for publication, 2022.

I Melya Boukheddimi, Shivesh Kumar, Heiner Peters, Dennis Mronga, Rohan Budhiraja,
Frank Kirchner: Introducing RH5V2: "A Powerful Humanoid Upper Body Design for
DynamicMovements", 2022 IEEE International Conference onRobotics andAutomation
(ICRA), Accepted for publication, 2022.

I José deGea Fernández, Nils Niemann, Sebastian Stock,Martin Günther, DennisMronga,
Hendrik Wiese, Rohit Menon, Elsa Andrea Kirchner, Stefan Stiene: "Hybr-iT Project:
Initial Steps Towards Contextual Robotic Manipulation for Human-Robot Teams in
Industrial Environments ", Poster at the 21st International Conference of the Catalan
Association for Artificial Intelligence (CCIA 2018), 2018.

I José de Gea Fernández, Dennis Mronga, Malte Wirkus, Vinzenz Bargsten, Behnam
Asadi, Frank Kirchner: "Towards Describing and Deploying Whole-Body Generic
Manipulation Behaviours", In 2015 Space Robotics Symposium,Glasgow, IET, University
of Strathclyde, 2015.

Poster

I Jose deGea Fernandez, DennisMronga,Martin Günther, Sebastian Stock, Nils Niemann,
HendrikWiese, Rohit Menon, Elsa Andrea Kirchner, Stefan Stiene: "Towards Contextual
Robots for Collaborative Manufacturing", In Poster at the Workshop "Human-Robot
Cooperation and Collaboration in Manipulation: Advancements and Challenges" at
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018),
Madrid, 2018.



Foundations and Background 2
In this chapter we introduce the mathematical basics and give an overview on Whole-Body
Control and programming by demonstration, which are the two core concepts used in this
thesis. The mathematical foundations, in particular those in Sections 2.1.1 and 2.2.1 are
mostly taken from standard robotics textbooks [LP17; Sic+08]. Apart from giving a theoretical
introduction on WBC, we also provide an extensive survey on existing WBC approaches.

This chapter is organized in twomain sections. Section 2.1 provides the theoretical background
on WBC. After briefly recapitulating the basics on kinematics and dynamics of redundant
manipulators in Section 2.1.1, we introduce closed-form and optimization-based WBC
approaches onvelocity, acceleration, and torque level in the Sections 2.1.2 and2.1.3.Afterwards,
we discuss different task models in Section 2.1.4, the role of prioritization in Section 2.1.5
and under-actuated systems in Section 2.1.6. Section 2.2 provides the basics of PbD. We first
introduce different methods to provide user demonstrations in Section 2.2.1. Afterwards we
give an overview on methods for skill representation and generalization of robot behaviors in
Section 2.2.2. Finally, we provide a short discussion of the presented methods in Section 2.3.

2.1 Whole-Body Control - Principles & Approaches

Although its theoretical foundations originate more than 40 years ago, the topic of Whole-
Body Control has been intensely investigated by the robotics community mostly within
the last two decades. When more humanoid robots became physical available, the need
for suitable control approaches stimulated research efforts and lead to the development
of the first WBC approaches. The term Whole-Body Control itself has been established by
Luis Sentis in his seminal work on humanoid robot control in human environments [SK06].
WBC represents a class of feedback controllers that describe complex robot tasks as an
optimization problem. It combines low-dimensional task descriptors and aggregates them
into complex robot behavior, projecting the solution into the entire configuration space of
the robot. However, using all the robot’s degrees of freedom is not a sufficient criterion to
describe a WBC approach [Soc21]. A WBC system should particularly allow the parallel
execution of several tasks and integration of constraints, for example reaching for an object,
while avoiding collisions and maintaining balance. Typically, tasks are described as functions
to be minimized in task space and integrated as constraints or within the cost function of an
instantaneous optimization problem. This problem is solved online as the robot is moving.
The optimal solution is the velocity, acceleration or force/torque of the robot joints that best
performs all given tasks. In every control cycle, the optimization problem is updated with
the current system state. This indicates that WBC is a reactive control approach, which can
be applied in dynamically changing environments. Figure 2.1 illustrates the basic principles
of WBC.

Another important aspect and powerful feature of WBC approaches is the possibility to
assign priorities to tasks of different importance. Priorities can be strict or soft and they can be
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(a) The humanoid robot TOROperforming
WBC [HRO16].

(b) WBC principle.

Figure 2.1: Illustrations on Whole-Body Control

used to resolve conflicting tasks or emphasize certain aspects of the overall control problem.
When using strict priorities, tasks of lower priority do not disturb higher prioritized tasks,
which is a way to establish task hierarchies. When using soft task priorities, the solution is a
weighted combination of the solutions of the individual tasks.

Nowadays, many different WBC algorithms, frameworks and tools exist. While they have
mostly been developed with the aim of controlling humanoid robots, which are under-
actuated system with a floating base, it is meaningful to apply WBC to less complex,
fixed-base systems like dual-arm robots or mobile manipulators as it may simplify the task
specification process. In this regard, many robotic tasks like dual-arm manipulation, wiping
a window or opening a door can be described as a combination of simpler subtasks. For
example, the task of wiping a window can be split into the subtasks "maintain surface contact"
and "follow trajectory". Such tasks can be easily described in WBC by formulating each
subtask as a function to be minimized and integrating it as a constraint or within the cost
functional of the WBC problem. Obviously, maintaining surface contact is more important
than following an exact trajectory along the window surface. This fact can be formalized
by assigning appropriate priorities and the resulting solution will reflect the desired task
hierarchy. Apart from that, every robotic manipulation task (even if executed on a simple
robot arm) is inherently constrained. Constraints may arise due to the properties of the
environment (e.g., the friction of a contact surface), the restrictions of the task at hand (e.g., a
cup of coffee that must not be tilted) or the physical limitations of the robot (e.g., maximum
joint velocities or forces/torque). In WBC, these constraints can be elegantly described and
integrated into the overall problem.

The characteristics of WBC approaches are summarized as follows:

Composition In WBC, tasks are formulated as constraints to an instantaneous optimization
problem. Complex robot behavior can be created by combining these low-dimensional task
descriptors, which is usually easier than describing the overall problem at once.

Modularity Since task descriptions in WBC are based on elementary principles (constraints,
cost functions) and commonly described in task space, these descriptions are modular. Thus,
they can be transferred between robots and applied to various control problems.
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Reconfiguration In WBC, tasks can be activated or deactivated by switching hierarchies or
by blending task priority functions. Thus, the robot behavior can be adapted online in case of
a changing environment or when the robot must perform a sequence of tasks.

Redundancy As the tasks are projected on the entire configuration space of the robot, the
programmer does not have to deal with the problem of redundancy resolution. In principle,
the number of the robot’s dof can be arbitrary large. Some WBC approaches also allow
over-constrained problems, where the number of task variables is higher than the number of
robot dof.

ReactivityAsWBC solves an online optimization problem in every control cycle, the approach
is inherently reactive. Thus, it can be applied in dynamic environments, continuously
integrating sensory feedback from various sources, and reacting to unforeseen events.

2.1.1 Redundant Robots

SinceWBC approaches have been designed to control complex robots withmany dof, the topic
is related to the concepts of redundancy resolution and control of redundant manipulators.
A redundant robot possesses more dof than required to fulfill a certain task. For example,
when controlling the full end effector pose of a robot in Cartesian space, a minimum of six
dof are required. Thus, a seven dof system is a typical example for a redundant robot. The
presence of additional degrees of freedom allows joint motions, which do not change the
position and orientation of the end effector, which means that the same task can be executed
in different ways. The selection of one of these ways within the (usually infinite) number
of solutions is referred to as redundancy resolution. The motivation for adding kinematic
redundancy to a robot is to increase its dexterity, with the cost of additional complexity for
solving the inverse kinematics and inverse dynamics problem. Numerous methods have
been proposed over the years on how to resolve the redundancy of a robotic system. For
example, the additional dof can be utilized to perform collision avoidance, minimize joint
torques, maximize dexterity, or avoid kinematic singularities. Robots that are controlled with
WBC like humanoids or other multi-legged systems are typically highly redundant, with 30
or more degrees of freedom. However, you may also encounter over-constrained problems
where the number of task variables is higher than the number of robot dof.

The relationship between the joint and task space variables of an open kinematic chain can be
obtained on position, velocity, and acceleration level. Since WBC mostly employs differential
kinematics, we focus on the latter two. On velocity-level, the relationship between joint and
task space is established via the Jacobian matrix:

v � J(q) Ûq (2.1)

where Ûq ∈ RN is the robot joint velocity, v ∈ R6 is the spatial velocity or twist [LP17] of the
end effector and J ∈ R6×N is the geometric Jacobian matrix. Note that there is a distinction
between the geometric and analytic Jacobian (see Appendix A for details). Furthermore, the
Jacobian can be expressed in fixed frame coordinates (Space Jacobian) or moving coordinates
(Body Jacobian). In this thesis, the symbol J denotes the geometric Jacobian in fixed frame
coordinates, unless specified otherwise.
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The solution of the inverse kinematics problem provides the necessary joint space motion
given a desired task space motion of a robotic manipulator. Closed-formWBC approaches
typically require solving the inverse differential kinematics, which means solving (2.1) for Ûq
on velocity-level. If the robot is kinematically redundant (N > M), the general solution of the
first-order inverse differential kinematics problem is:

Ûq � J+v + (I − J+J) Ûq0 (2.2)

where I ∈ RN×N is the identity matrix, Ûq0 ∈ RN an arbitrary joint space velocity and J+

is the pseudoinverse of J satisfying the Moore-Penrose conditions [Ben80]. The operator
P � (I − J+J) ∈ RN×N is the orthogonal projection on the null space of J. The null space of
a Jacobian J is defined as the set of joint space velocities Ûq0, which cause zero task space
velocities: J Ûq0 � 0. Any joint space velocity, projected onto this null space, does not influence
the solution of J+v [Sic+08].

Equation (2.2) provides the basis for establishing task hierarchies in closed-form velocity-
based WBC approaches as described in Section 2.1.2. The term Ûq0 can be used to achieve
arbitrary secondary criteria. Many different secondary criteria have been investigated and
applied to control redundant mechanisms over the years. Whitney [Whi69] introduces
resolved motion rate control, which minimizes the kinetic energy and in addition allows
to emphasize some task space coordinates, while others may be ignored. Liégeois [Lié77]
presents an approach to maximize the distance to the mechanical stops of a redundant
manipulator. The approach presented by Baillieul et al. [BHB84] maximizes the distance to
the joint torque limits. Another important aspect is the avoidance of singularities, which
can be achieved by maximizing the manipulability measure [Yos85]. Maciejewski and Klein
[MK85] maximize the distance to an obstacle in the workspace of a manipulator.

The general solution of the second-order inverse differential kinematics problem is analogue
to the solution on velocity-level and can be obtained by differentiating (2.2). Appendix A
provides more detailed foundations on the robot Jacobian, the computation of its pseudo
inverse and the inverse differential kinematics problem in general.

Considering the forces and torques that cause the motion of kinematic chains leads to the
topic of robot dynamics. The dynamic equations, also referred to as equations of motion
(EOM), can be expressed in joint space as:

τ � H(q)Üq + h(q, Ûq) (2.3)

where τ ∈ RN is the vector of actuation forces and torques, H ∈ RN×N is the symmetric,
positive-definite mass-inertia matrix in joint space and h ∈ RN accounts for the effect of
centripetal, Coriolis and gravitational forces in joint space. The solution of (2.3) corresponds
to the inverse dynamics problem, namely computing the joint actuation torques given
the system state q, Ûq and desired accelerations Üq � Üqd . Conversely, computing the forward
dynamics means solving (2.3) for the joint accelerations Üq given the system state and actuation
torques. The robot dynamic equations are typically either derived by the recursive Newton-
Euler method or by the Lagrangian dynamics formulation [LP17]. Dynamic motion control
of a robotic system usually requires accurate knowledge of the mass-inertia distribution
reflected by H(q), which is sometimes hard to obtain [BGK16]. Equation (2.3) describes the



2.1 Whole-Body Control - Principles & Approaches 13

robot dynamics for free space motion. If the robot is in contact with the environment, the
formulation changes to:

τ � HÜq + h + JT
c fc (2.4)

where Jc ∈ R6×N is the contact Jacobian and fc ∈ RN the contact wrench. In dynamic WBC
approaches, the equations of motion are usually considered as constraints to the underlying
optimization problem (see Section 2.1.3). As they describe the physics of the robot, the
computed solution must be consistent with these equations.

Similarly as (2.2) provides a general solution to the inverse differential kinematics problem
for redundant systems, the general solution to the task space inverse dynamics can be written
as:

τ � JTft + (I − J̄J)Tτ0 (2.5)

where ft ∈ R6 is the wrench describing the primary task, P̄ � (I − J̄J) ∈ RN×N is the
dynamically consistent null space projection of J and τ0 ∈ RN is a joint torque vector
describing an arbitrary secondary objective. The term J̄ � H−1JTΛ is called dynamically
consistent generalized inverse of J, where Λ ∈ RM×M is the task space mass-inertia matrix.
Similarly, as (2.2) provides the basis for most closed-form velocity-based WBC approaches,
many closed-form torque-based approaches are based on (2.5).

2.1.2 Closed-FormWBC Approaches

The survey presented by Moro and Sentis [MS19] classifies WBC approaches into velocity-
based versus torque-based approaches (according to the type of output), or into optimization-
based versus closed-form methods (according to the type of solver). We follow that inter-
pretation here, starting with closed-form WBC. Table 2.1 shows an overview on the existing
WBC and redundancy resolution approaches, categorized accordingly.

Closed-form approaches are also referred to as analytical solutions for the WBC problem.
They use sequences of projections, transpositions, inversions, or pseudo-inversions to com-
pute the output joint velocities, accelerations or torques which fulfill the specified task
constraints. The advantage of closed-form approaches is that they perform significantly faster
than optimization-based approaches especially for large problems (many dof and tasks).
Furthermore, they do not suffer from the problem of infeasible constraints like optimization-
based solutions do. This means they will provide a solution even if the task descriptions
are infeasible, which is a great advantage in real-time control. However, depending on the
type of solver, they may provide suboptimal solutions, as constraints are relaxed in case of
infeasibility. Also, they allow only equality constraints, while optimization-based approaches
can include inequality constraints as well. As a workaround, closed-form approaches usually
use potential fields [Kha85] or special inversion operators [MKK09] for tasks that can only
be described by inequality constraints. For example, in the case of obstacle avoidance, a
repulsive potential field controller can be smoothly activated when the robot approaches
an obstacle. Table 2.2 summarizes advantages and disadvantages of closed-form versus
optimization-based WBC approaches.
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Framework Output Type Solver Type Prioritization References

Task Augmentation velocity closed-form - [SS88]
Task Priority Framework velocity closed-form strict [SS91]
Resolved Momentum
Control velocity closed-form strict [Kaj+03]

Inverse Kinematic
Architecture velocity closed-form hybrid [BB04]

iTaSC velocity closed-form hybrid [Smi+08]
Stack of Tasks velocity closed-form strict [Man+09]

Task Priority Based
Redundancy Control acceleration closed-form strict [NHY87]

Saturation im the
Nullspace (SNS) acceleration closed-form strict [FDK12]

Whole-Body Control torque closed-form strict [SK06]
Reactive Self-Collision
Avoidance torque closed-form strict [Die+12a]

Multi-Task Compliance
Control torque closed-form strict [ODA15]

Attractor-Based WBC torque closed-form soft [Mor+15]
Mixture of Controllers torque closed-form soft [DRS15]

Task Priority Framework velocity optimization soft [Kan+09]
Hierarchical Quadratic
Programming velocity optimization strict [EMW14]

Dynamic Locomotion acceleration optimization soft [KPT14]
Generalized Hierarchical
Control acceleration optimization hybrid [LTP16]

Momentum-Based Control acceleration optimization soft [Koo+16]
Optimization-Based
Whole-Body Control acceleration optimization soft [Hop+16]

Dynamic Balance Control torque optimization strict [Col+07]
Prioritized Optimization
for Task Space Control torque optimization hybrid [LH09]

Dynamic Whole-Body
Motion Generation

acceleration/
torque optimization strict [Saa+13]

Task Space Inverse
Dynamics (TSID)

acceleration/
torque optimization soft [PM16]

Optimization Based Full
Body Control

acceleration/
torque optimization soft [Fen+15]

Table 2.1: Overview on existing WBC and redundancy resolution approaches
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Closed-form approaches + Higher computational speed
+ Handling of infeasible constraints
− Suboptimal solutions due to constraint relaxation
− Only equality constraints

Optimization-based
Approaches

+ Handling of strict constraints without constraint
relaxation

+ Handling of inequality constraints
− Low computational speed, especially for many

dof and tasks
− Problems with infeasible constraints

Table 2.2: General advantages and disadvantages of closed-form and optimization-based
WBC approaches

Velocity-Based Approaches

Closed-Form, velocity-based approaches usually apply first-order differential kinematics
as in (2.2) to compute the joint velocities that comply with the given tasks. The advantage
over acceleration- or torque-based implementations is that they have lower computational
complexity, are easier to implement and provide a more stable solution. Furthermore,
especially industrial manipulators often provide only position interfaces, which complicates
the application of torque-based WBC approaches. On the negative side, velocity-based
approaches are not well suited for tasks including dynamic robot behavior and environment
contacts as they cannot consider force and acceleration constraints.

The solution of closed-form, velocity-based WBC approaches extends the inverse differential
kinematics problem in (2.5) to P tasks that are executed in parallel. The simplest way to do
this is to stack Jacobians and task space velocities into one large m atrix/vector and compute
the joint velocities using pseudo inversion. This method is referred to as augmented Jacobian
approach [SS88], which considers all tasks with equal importance. If tasks are conflicting, a
residual error will remain for all conflicting tasks, which is not acceptable inmost applications.
To overcome the issue of task conflicts, it is required to prioritize one task over the other.

Equation (2.2) can be used to compute the joint space velocities that comply with a given
task along with a secondary objective. Thereby, the applied null space projection ensures
that tracking the secondary objective does not disturb the execution of the primary task. This
is commonly referred to as task hierarchy or strict task prioritization. The concept can be
generalized to multiple tasks using the following recursion:

Ûqi � Ûqi−1 + (JiPi−1)+(vi − Ji Ûqi−1) (2.6)

where Pi is the null space projection for the i-th priority level and vi the desired task space
velocity of the i-th task. This joint velocity solution allows to execute task i in the combined
null space of the previous i − 1 tasks, assigning tasks with higher index a lower priority.
The term Ji Ûqi−1 reduces the desired task space velocity vi to compensate for the parts of the
solution that have already been met on higher priority levels. For a single task, the equation
simplifies to the first-order inverse differential kinematics problem in (2.2)without null space
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term. In practice, the pseudo inversion of the Jacobians is not performed directly, but by using
singular value decomposition as described in Appendix A.2, which is computationally less
demanding for large Jacobian matrices and robust with respect to singularities.

The framework introduced by Siciliano and Slotine [SS91] provides an early implementation
of the recursion in (2.6), which is sometimes referred to as stack of tasks. It establishes a
task hierarchy on velocity level, where the Jacobian matrix is replaced by the augmented
Jacobian [SS88]. Thus, the approach provides a combined solution of strict task priorities
and task augmentation. Like most of the early approaches in the ’80 and beginning of the
’90, this method has been evaluated on a seven dof industrial robot arm. Many variations
and extensions followed this approach, for example in order to implement smooth task se-
quences [MC07; AL15], integrate unilateral constraints [MKK09], or facilitate new applications
like human-robot collaboration [Man+09]. Kajita et al. [Kaj+03] apply a strict prioritization
scheme that realizes a desired linear and angular body momentum of a humanoid robot and
establishes constraints on the foot contact points. This seminal work, referred to as Resolved
Momentum Control, is the first to apply WBC to an actual humanoid robot.

The strict prioritization scheme described in (2.6) may be too restrictive in actual implementa-
tions. The reason is that tasks with high priorities may completely constrain most or all joints
of the robot, leaving too few dof for the lower prioritized tasks. A less restrictive approach
can be obtained by using weighting matrices:

Ûq �

P∑
i�1
(WiJi)+vi �

P∑
i�1

J+W,ivi (2.7)

where Wi ∈ RM×M is a diagonal weighting matrix, containing the task weights wi and JW,i

is the weighted Jacobian of the i-th task. The task weights are often referred to as soft task
priorities. They can be used to balance the contribution of individual task space variables to
the solution. A disadvantage of soft prioritization is that selection of suitable task weights is
difficult, and obtaining the desired overall robot behavior requires time-consuming, manual
tuning.

By replacing the Jacobians in (2.6) with the weighted Jacobian from (2.7), we obtain a so-called
hybrid prioritization scheme. The hybrid approach combines the advantages of soft and
strict prioritization schemes. An implementation of a hybrid approach has been presented
by Baerlocher and Boulic [BB04]. This approach integrates different algorithms for strict
task prioritization, task weighting and singularity robustness. The approach is evaluated by
means of a human computer animation. Another prominent work is the iTaSC framework
introduced by Smits et al. [Smi+08]. It combines well-adopted control approaches in a
coherent framework and provides the user a means to easily specify new tasks by imposing
constraints on the relative motion of two rigid bodies. In addition, it allows the estimation of
geometric uncertainty, which makes it particularly well suited for sensor-based tasks. The
approach has been applied amongst others to a human-robot co-manipulation task [Sch+07].
Due to its ease of use and open-source implementation the framework becamewidely adopted
and many implementation variants and extensions have been published [Dec+09; DBD13;
BAS14; BD14].
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Acceleration and Torque-Based Approaches

The acceleration-level equivalents of the approaches defined in the previous section can
be obtained by differentiating the respective equations. For example, differentiating (2.6)
provides an approach with a strict task hierarchy on acceleration-level. An early attempt to
build a general framework for multi-task prioritized control on acceleration level is reported
by Nakamura et al. [NHY87]. The authors establish a task hierarchy and evaluate it by
integrating obstacle avoidance with a positioning task on a seven dof robot. A modern
approach worth mentioning here is the SNS (Saturation in the Nullspace) framework
introduced by Flacco et al. [FDK12]. In this work the authors introduce an approach
to the inverse differential kinematics problem in the presence of hard joint constraints
(position, velocity, and acceleration limits). They solve the problem on acceleration level to
avoid discontinuities in the commanded joint velocity and introduce task scaling to ensure
feasibility.

On torque level, the seminal work from Sentis and Khatib [SK06] introduces the Whole-Body
Control framework for humanoid robots. The authors establish a task hierarchy for multiple
dynamic control objectives, which they classify as constraint primitives (contacts, joint limits,
collision avoidance, balance, ...), task primitives (hand control, foot control, ...) and posture
primitives (hip height, body posture, ...) and integrate them into one coherent solution.
This WBC framework assumes a fixed hierarchy of physical constraints, task primitives and
posture primitives. The general solution for prioritized, torque-based WBC can be computed
as:

τP �

P∑
i�1
(JiP̄∗i )

Tfi , P0 � I (2.8)

where P̄∗i � P̄i−1P̄i−2 . . . P̄1 is the combined null space for the i-th priority level. Applying
the joint torque τP will not affect the execution of the tasks 1 . . . P − 1, which are higher
prioritized.

Again, this strictly hierarchical scheme may be too restrictive in practical applications.
Approaches based on task weighting allow for greater flexibility, for example an approach
presented by Dehio et al. [DRS15]:

τ �

P∑
i�1

wiτi (2.9)

where τi is the control torque for the i-th task representing a certain objective, e.g., minimum
effort, centroidal linear and angular momentum or end effector pose. The approach is
validated on a simulated humanoid. A similar approach is used by Moro et al. [Mor+15] who
propose an attractor-based WBC framework.

2.1.3 Optimization-Based WBC Approaches

While early WBC approaches were mostly based on closed-form solutions as described
in the previous section, most modern methods use numerical optimization. In contrast to
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closed-formWBC approaches, optimization-based methods formulate whole-body behaviors
as constraints or as part of the cost function of an instantaneous optimization problem,
typically a quadratic program (QP). The general form of a QP is:

min
x

1
2 xTQx + cTx

s.t. Ax ≤ b
(2.10)

where x ∈ RN are the optimization variables, Q ∈ RN×N a symmetric matrix, c ∈ RN a
gradient vector and Ax ≤ b a set of equality or inequality constraints. The optimization
variable can be a joint velocity, acceleration, or torque. The advantage of optimization-based
approaches is that they can explicitly specify inequality constraints, while closed-form
approaches only allow equality constraints. Furthermore, it is possible to include other
variables in the optimization problem, like contact wrenches [KPT14]. On the negative side,
numerical optimization is usually slower than a closed form solution and brings problems
regarding infeasibility of task constraints. Still, optimization-based WBC approaches are
more widely used nowadays, especially in the context of humanoid robotics. In fact, it can be
shown that any closed-form WBC can be expressed as an optimization problem [EMW14].

Velocity-Based Approaches

The general solution of the inverse differential kinematics (2.2) can bewritten as unconstrained
linear least squares problem (neglecting the null space term):

min
Ûq
‖J Ûq − v‖2 (2.11)

which is a simplification of (2.10)1. The solution is the joint velocity Ûq that minimizes the
residual error of the task described by v. Another possibility is to describe the robot tasks in
terms of constraints:

min
Ûq

‖ Ûq‖2
s.t. J Ûq � v

(2.12)

which is an equality-constrained least-squares quadratic program. If the tasks are feasible,
both solutions are equivalent. In case of infeasibility, (2.11) will provide an approximate
solution that minimizes the task error, while the solution of (2.12) will fail, depending on the
type of solver.

Naturally, more advanced solutions on velocity level have been proposed. Escande et al.
[EMW14] extend the task priority framework [SS91] to inequality constraints and formulate

1 The linear least squares problem in (2.11) can be transformed into a quadratic program, see appendix C
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it as a sequence of quadratic programs as follows. On the first priority level, the following
quadratic program is solved:

min
Ûq,ε1

‖ε1‖2
s.t. J1 Ûq ≤ v1 + ε1

(2.13)

Here ε1 is a vector of slack variables, which can relax the inequality constraint in case of
infeasibility. By minimizing ε1 an approximate solution is provided and a unique optimal
value ε∗1 is computed. On the second priority level, the fixed value ε∗1 is inserted and the
constraints for the second priority level are added:

min
Ûq,ε2

‖ε2‖2
s.t. J1 Ûq ≤ v1 + ε∗1

J2 Ûq ≤ v2 + ε2

(2.14)

The first line of constraints in (2.14) ensures that the solution Ûq∗ will not affect the first level of
the hierarchy. This procedure is repeated until all levels of the hierarchy have been processed.
A disadvantage of this approach is the high computational cost, as P quadratic programs
must be solved for P hierarchy levels. Furthermore, each constraint is solved on its own
priority level and all following ones. Different solutions are suggested in literature to speed
up the process [LMH10; EMW14].

Again, strict prioritization as in (2.14) might be too restrictive. A soft prioritization scheme
for optimization-based approaches can be achieved as follows:

min
Ûq
‖∑P

i�1 Wi(Ji Ûq − vi)‖2 (2.15)

where W1 , . . . ,WP are again diagonal matrices containing the task weights. The solution of
this optimization problem is equivalent to (2.7).

Acceleration and Torque-Based Approaches

Optimization-based approaches on acceleration or torque level are most popular in humanoid
robotics, as they allow considering the robot dynamics, contact wrenches and torque limits of
the robot actuators as constraints. Achieving stable joint level torque control for a humanoid
is difficult though, as it depends on the availability of accurate dynamic models of the system.
Thus, early approaches perform evaluations mostly in simulation [Col+07; LH09; Saa+11]. A
simpler, more stable solution can be obtained by either using a velocity-basedWBC, combined
with a computed torque controller on joint level or by utilizing the output of a torque-based
WBC as feed forward to a PD-position controller on joint level.
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Many dynamic WBC approaches exist. As with the velocity-based approaches, the actual
choice of cost function and constraints of the quadratic program (2.10) are problem specific.
A popular approach is referred to as Task Space Inverse Dynamics (TSID) [PM16]:

min
Üq,fc ,τ

‖JÜq − Ûv‖2

s.t. J j
c Üq � −ÛJ j

c Ûq, ∀ j

HÜq + h + JT
c fc � τ

τm ≤ τ ≤ τM

(2.16)

The decision variables are the joint accelerations Üq ∈ RN , joint torques τ ∈ RN and contact
wrenches fc ∈ R6. The problem is solved subject to a set of constraints. The first row assumes
rigid, non-moving contact points, where J j

c ∈ R6×N is the contact Jacobian of the j-th rigid
contact. The second row assures that the solution complies with the equations of motion,
where H ∈ RN×N is the joint space inertia matrix and h ∈ RN accounts for the Coriolis-
centrifugal and gravity effects. The last row assures that the solution for τ is within the torque
limits (τm , τM) of the actuated robot joints.

Task hierarchies can be established in a similar fashion as for velocity-based approaches,
namely by introducing slack variables as in (2.14). Various solutions to this hierarchical
inverse dynamics problem have been proposed in literature. For example, Escande et al.
[EMW14] propose an approach to solve the task hierarchy in a single quadratic program,
which is significantly faster than using iterative solvers.

In analogy to (2.15), a soft prioritization scheme can be established on acceleration level, by
replacing the cost function of, e.g., (2.16) with the weighted sum of the cost of each individual
task. Such an approach is, amongst others, used by Kuindersma et al. [KPT14], who weight
the different task contributions in the objective function with respect to the balancing cost.
They use a similar QP as in (2.16) but remove τ as a decision variable and model the contact
constraints using a friction cone approximation.

Obviously, using a combination of strict and soft hierarchies is also possible in dynamic,
optimization-based WBC approaches. Liu et al. [LTP16] introduce a generalized projector,
which can handle strict and soft task constraints without the need to solve multiple quadratic
programs. The resulting framework is referred to as Generalized Hierarchical Control. Feng
et al. [Fen+15] also use a QP like in (2.16). However, they complement the inverse dynamics
QP with an inverse kinematics solution that provides inputs for the stabilizing joint level
torque controller in order to get a more stable overall behavior. Another prominent framework
has been introduced by Koolen et al. [Koo+16]. The authors use the concept of centroidal
momentum and the centroidal momentum matrix introduced by Orin and Goswami [OG08]
to formulate a compact QP that relates task space acceleration, contact wrench constraints
and the desired rate of change of centroidal momentum.

2.1.4 Task Models

InWBC, a task describes a control objective as a function to beminimized. A task is commonly
implemented by means of a controller, whose control output is related to the gradient of
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the task error. The error is thereby minimized while the robot is moving, offloading part
of the global optimization problem into a closed-loop solution. The gradients of all tasks
are integrated as constraints or with the cost function of an optimization problem, which
computes the joint level command that achieves simultaneous execution of all tasks. Most
task models in WBC are based in some way either on the task function approach [SLE91] on
velocity-level or the operational space formulation [Kha87] on acceleration/torque level. The
common idea of both approaches is to simplify the control problem by describing tasks in a
suitable task space. This way, whole-body behaviors are easy to specify and can be transferred
between different robots.

The Task Function Approach

In velocity-based WBC approaches, tasks are mostly described using a variant of the task
function approach introduced by Samson et al. [SLE91]. A task function is an arbitrary,
derivable function e(q), which is related to the joint velocities by Jt Ûq � Ûe, where Jt � δe/δq
is the analytical Jacobian. The task descriptions in many WBC frameworks are based in
some way on the task function approach as it provides an elegant means to separate task
description from robot kinematics. Task functions can be specified in Cartesian space, joint
space or sensor space on velocity, acceleration, or force level. The task function approach
has been applied to many multi-objective control problems in robotics, for example visual
servoing [ECR92], joint limit avoidance [CM00] and singularity avoidance [MCR96].

Considering the velocity-based WBC approaches described in the previous sections, defining
a task function means to provide an implementation for computing the desired control
actions v � vd . For Cartesian positioning tasks, a straight-forward solution is to use a simple
proportional controller with feed forward term:

vd � vr + Kp

(
pr − p
θω̂r

)
(2.17)

where vd ∈ R6 is the desired spatial velocity, also referred to as twist, vr ∈ R6 is the reference
(feed forward) spatial velocity and Kp ∈ R6×6 is a diagonal matrix containing 6 feedback gain
constants. The vectors pr , p ∈ R3 are the reference and the actual position of the regarded
robot frame. The term θω̂r ∈ R3 is a rotation vector denoting the difference in orientation
between actual and reference pose using a suitable, singularity-free representation [LP17].
The computed control action v � vd is fed into one of the velocity-based WBC frameworks
described in the previous sections, e.g., (2.7). The solution of (2.7) regulates the control
objective defined by (2.17) in task space. It minimizes the residual task space error, while the
robot is moving.

Positioning in joint space can be performed in a similar fashion using the following con-
troller:

Ûqd � Ûqr + Kp(qr − q) (2.18)
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where Ûqd ∈ RN is the control output, Ûqr ∈ RN the feed forward joint velocity and qr , q ∈ RN

the reference and actual joint configuration, respectively. Since Ûqd is defined in joint space,
it can be integrated into a WBC problem by setting the task Jacobian to the identity matrix
J � I ∈ RNxN and v � Ûqd .

Both (2.17) and (2.18) implement attractor tasks. In contrast, repulsive behavior as needed
for collision avoidance can be achieved using potential fields. In Cartesian space, a radial
repulsive potential field can be described as follows:

vd �

(
Kp

p−p0
d S(d)

03×1

)
(2.19)

where d � ‖p − p0‖2 is the distance of the robot to the potential field center. When being
applied to collision avoidance, the potential field center p0 ∈ R3 represents the location of an
obstacle. The term S(d) is a sigmoid function of the distance d. Using a sigmoid here ensures
a bounded control action and smooth transition when approaching the obstacle. In contrast,
using the reciprocal distance instead of a sigmoid may provide infinite control output close
to the obstacle. In joint space, one-dimensional repulsive potential fields can be used for joint
limit avoidance and are defined accordingly:

Ûqi ,d � kp
qi − qi ,0

d
S(d), i � {1, . . . ,N} (2.20)

where d � |qi − qi ,0 | is the distance to the nearest joint limit qi ,0 (upper or lower) of joint i.
Again, this joint space task can be integrated into a WBC problem by setting the task Jacobian
to the identity matrix J � I ∈ RN×N and choosing v � Ûqd � ( Ûq1,d , . . . , ÛqN,d). Many robot
behaviors can already be described through combinations of the task functions we discussed
in this section. Nevertheless, many more task functions exist in literature in a large variety of
implementations.

The Operational Space Formulation

The operational space formulation has been introduced in the seminal work by Khatib
[Kha87]. The approach strongly influenced the research in dynamic manipulation and control
of redundant robots within the last decades. As with the task function approach, the idea is
to specify tasks in a dedicated space, the operational space, which is chosen in a way that
task specification is simplified. For example, considering environment interaction, one might
want to specify tasks in a coordinate system located in the contact point of the manipulator
with the environment or in the force sensor frame, while free space motions should best be
specified in end effector coordinates. In contrast to the task function approach, the operational
space formulation explicitly considers the manipulator dynamics and is therefore better
suited for compliant environment interaction and force control.

Considering acceleration- or torque-based tasks, defining task models means implementing
a controller that produces the desired control actions Ûvd for acceleration-based tasks or τd
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for force-based tasks. Within the operational space framework, motion control in Cartesian
space is achieved by selecting the following spatial acceleration:

Ûvd � Ûvr + Kd(vr − v) + Kp(xr − x) (2.21)

where xr , x ∈ R6 are the reference and actual pose, vr , v ∈ R6 the reference and actual twist
and Ûvr ∈ R6 the reference (feed forward) spatial acceleration of the controlled robot frame.
The matrices Kp ,Kd ∈ R6×6 are diagonal matrices with the proportional and derivative gain
constants on the main diagonal. In joint space, the analogue expression is:

Üqd � Üqr + Kd( Ûqr − Ûq) + Kp(qr − q) (2.22)

where qr , q ∈ RN are the reference and actual joint configuration, Ûqr , Ûq ∈ RN the reference
and actual joint velocity and Üqr ∈ RN the reference (feed forward) joint acceleration. Again,
as Üqd is defined in joint space, the related Jacobian will be the identity matrix.

Substituting the above Ûvd or Üqd into one of the acceleration-based WBC frameworks will
provide the joint space accelerations or forces/torques that comply with the given control
objectives, i.e., minimize the task residual error.

Other task models have been proposed in literature for acceleration- and force-based tasks
like dynamic obstacle avoidance [Kha85], self-collision avoidance [Die+12a] or task and joint
space compliance [Die+12b].

2.1.5 Task Prioritization

As elaborated in the previous sections, tasks in WBC can be assigned different priorities in
order to resolve conflicts or to emphasize the importance of certain objectives. For example,
the balance of a humanoid robot would certainly have higher priority than reaching for an
object, which again should be prioritized over the task of maintaining an upright upper
body posture. In the WBC literature, different prioritization schemes are found, which can
be classified into strict, soft or hybrid methods. Strict task hierarchies can be established for
example via a sequence of null space projections as in (2.6) or by introducing slack variables
into the optimization problem as in (2.13). Strict priorities ensure that tasks of higher priority
are not disturbed by lower prioritized tasks. This means that the task with highest priority
will be fulfilled if it is feasible, while tasks with lower priority are only fulfilled if the robot
has enough redundant dof left. In general, strict prioritization schemes are more restrictive
than soft prioritization, as they quickly consume all robot dof. As a result, important aspects
of the control problem may be neglected. In contrast, soft prioritization schemes are usually
implemented by weighting the different control objectives as in (2.7), (2.9) or (2.15). Here, the
degree of task achievement depends on the assigned weight value. On the positive side, more
simultaneously running tasks can be implemented this way and there is greater flexibility in
prioritizing them. However, this flexibility comes with a larger effort of selecting appropriate
weight values. Also, different tasks may disturb each other if they are executed using the same
robot dof. Finally, hybrid prioritization schemes allow both strict and soft prioritization.
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Figure 2.2: Model of a floating base robot

The role of prioritization in WBC is not limited to resolve conflicting tasks. Task priorities
can also be used to influence the overall behavior of the robotic system. By switching task
priorities at runtime, different robot behavior can be implemented, or task sequences can be
executed [MC07]. Regarding the latter, soft task priorities can be used as activation function
in order to smooth transitions between subsequent tasks. Furthermore, high-level control
modules can make use of this activation/deactivation functionality to plan transitions for
complex maneuvers involving such task sequences. This is a key feature of WBC regarding
the development of the methods within this thesis. Through the temporal evolution of task
priority functions, we adapt the robot behavior according to the current situation. We will
further elaborate on this topic in Chapter 4.

2.1.6 Floating Base Systems

Until now we neglected the fact that most WBC approaches are designed for floating base
systems, for example humanoids. The term floating base indicates that the robot is not rigidly
attached to the environment, but its position and orientation with respect to the world may be
changed. As the floating base state cannot be directly controlled, a humanoid is an example
for an underactuated system. Underactuated means that a system cannot be commanded to
follow arbitrary trajectories in configuration space, either because of physical constraints or
because the system has more degrees of freedom than actuators.

A floating base is usuallymodeled by attaching 6 virtual joints (3 translational and 3 rotational)
to the base link of the robot (see Figure 2.2). The state of this virtual linkage can be estimated
from inertial sensors, force or contact sensors and the leg’s forward kinematics [Xin15]. The
dynamic behavior of the robot can only be controlled indirectly through the support contact
points with the ground. The presence of a floating base enlarges the configuration space of
the robot by 6 virtual joints as in q � ( xb qu ) ∈ R6+N , where xb � (xb , yb , zb , φb , θb , ψb)T
is the pose of the robot base link in world coordinates and qu ∈ RN the configuration of
actuated robot joints. The equations of motion (2.4) must be adapted in case of a floating base
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system as follows:

STτ � HÜq + h + JT
c fc (2.23)

where S ∈ RN×(N+6) is a diagonal actuation matrix, separating the actuated from the
unactuated dof. Note that here the mass-inertia matrix H, the bias term h and the Jacobian J
include additional rows corresponding to the joints of the floating base.

2.2 Programming-by-Demonstration

Robot programming by demonstration (PbD), which is sometimes also referred to as imitation
learning, is a method to specify tasks by demonstrating them to the robot, instead of explicitly
programming them using machine commands. This makes PbD an intuitive approach for
end users without robotics expertise to teach new robot behaviors. Apart from that, PbD
may also reduce the search space for learning, either by starting from an observed (good)
example or by dropping what is known as a bad solution and reducing the search space
accordingly [Bil+08].

PbD has been introduced in the 1980s in the context of industrial robotics as a promising
alternative to reduce time and costs for development and maintenance of robot programs in
manufacturing lines. In the beginning, the demonstrated tasks consisted of simple point-to-
pointmotions demonstrated through teleoperation. The demonstrationswere recorded in joint
space and directly transferred to the target robot. To consider the variability within different
demonstrations from the human operator and inherent sensor noise, more sophisticated
methods were required that consolidate all demonstrated movements, generalize the task,
and reproduce it in a novel context. These ideas are illustrated in Figure 2.3.

Robot tasks learned by demonstration are often referred to as skills. Throughout the years PbD
has been applied to learn various robotic skills, especially in combination with reinforcement
learning. Examples include teaching a robot to play ball-in-a-cup [KP14] or flipping a
pancake [KCC10].

User

Model of the Skill Reproduction

Robot

User DemonstrationsUser Demonstrations
User Demonstrations
User Demonstrations

Demonstrations

New Context

Figure 2.3: General idea of PbD, figure inspired by [Bil+08]
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2.2.1 User Demonstrations

In PbD the data, which is used to derive the desired robot behavior, is acquired through user
demonstrations. These demonstrations can be performed by several different means.

A common approach is to use kinesthetic guiding [CB08], where the robot is in a compliant or
gravity mode and the operator steers the system along the desired trajectory. The advantage
of this method is that the desired task can be directly captured by e.g., the proprioceptive and
force sensors of the robot. This allows to demonstrate tasks with environment contacts and
avoids the problem of mapping the captured motions into the workspace of the robot, which
requires solving the correspondence problem [ND02]. The disadvantage is that the desired
motion can be hard to perform as the robot may disallow certain motions due to kinematic
singularities or other restrictions of its workspace. Furthermore, only single arm or dual arm
motions can be demonstrated by a single operator. More complex behaviors like balancing or
walking are hard to demonstrate through kinesthetic teaching.

Another possibility is to telemanipulate the robot either with a joystick, game controller
(supported by virtual reality environment [FBB16]) or with an exoskeleton. The latter can
cover a single arm, the upper body or even the full body of the operator [Kum+19c]. When
using telemanipulation, a workspace mapping from input space to the kinematic structure of
the robot is required. Furthermore, depending on the input device, demonstrating certain
motionsmight not be intuitive.When using a joystick, the demonstration is usually performed
in task space, which requires a certain amount of practice for the operator. When using
an exoskeleton, the motions that can be demonstrated might be limited, depending on the
physical workspace of the exoskeleton.

Finally, user demonstrations can be provided using a motion capture system, for example an
IMU-based motion tracking suite [Cac+17] or a camera-based system [Gut+18]. Nowadays,
these devices are commercially available in a large variety. Using a motion capture system is
the most intuitive way of teaching skills to a robot, since it covers the entire range of motions
that a human can perform. However, mapping to the robot workspace can become difficult
since human and robot usually have different degrees of freedom, range of joint motion and
dynamics [Pol+02]. Furthermore, interaction forces cannot be easily integrated when using
motion capture systems.

2.2.2 Skill Representation and Generalization

Skills learned through PbD can be represented on symbolic and on trajectory level [Bil+08].
While the former method facilitates sequential organization of pre-defined skills to more
complex tasks, it is limited in practical applications, where we usually want to generalize
movementswith respect to different task parameters, e.g., start and end position. Furthermore,
it requires a predefined set of controllers that can reproduce the learned skill. Consequently,
we will focus on methods that represent skills on trajectory level in this thesis. These methods
may encode the skills learned from demonstrations in joint or task space, respectively.

Many different methods for representing skills learned through PbD exist. In the following
we will present the ones that are most relevant for this thesis and discuss advantages and
shortcomings especially with respect to their generalization capabilities in terms of learning
whole-body behaviors.



2.2 Programming-by-Demonstration 27

Gaussian Mixture Models and Gaussian Mixture Regression

A Gaussian Mixture Model (GMM) is a parametric probability distribution represented as a
weighted combination of Gaussians:

p(ξ) �
K∑

k�1
πkN(ξ , µk ,Σk) (2.24)

Here K is the number of mixture components, πk are the mixing weights, µk and Σk the
means and covariances of the Gaussian distributions N(ξ , µk ,Σk). The modeled data is
represented by the variable ξ. Note that all parameters of the model are vectors, thus (2.24)
describes a multivariate probability distribution.

The classical application of GMMs is unsupervised learning of clusters within a population
of normally distributed data points. For this purpose, a mixture of K Gaussians is fitted to
the data without prior knowledge about what data point belongs to which cluster. Given
the fitted model, a previously unseen data point can be assigned to an existing cluster. In
contrast, in PbD applications GMMs are used for motion modeling and synthesis. Here, the
GMM is fitted to the data obtained in D user demonstrations, where the modeled variables
can be e.g., joint space or task space positions, velocities and forces/torques of the robot.

Fitting Fitting a GMM is mostly performed using the iterative expectation maximization
algorithm [DLR77]. Starting from an initial distribution of K mixture components (randomly
selected or initialized with e.g., k-means [Mac+67]) EM alternates between finding the
probabilities for each data point to be generated by each mixture and fitting the mixtures to
the assigned points in order to maximize the likelihood of the data given those assignments.
However, selecting the optimal number of mixture components K can be difficult. One
possibility is to select the number of components that maximize a certain metric like the
Bayesian Information Criterion (BIC). However, this means that one has to repeat fitting
multiple times for different values of K. To avoid this overhead, the selection process can
be automatized by using variational inference [BKM17]. This algorithm extends EM by
introducing a prior distribution on the mixing weights, which is also computed by the
algorithm. Unlikely mixtures receive a lowmixing weight and have no influence on the result.
In practice one can simply select a large number of mixtures as an upper bound and the
algorithm will distribute most of the weight on a few components, while setting all others
close to zero. On the negative side, variational inference is notably slower than EM and
requires additional hyper-parameters to tune. One important hyper-parameter is the prior on
the weight concentration, which decides if only a few components should be emphasized, or
the weights should be equally distributed over all components.

Motion Synthesis To retrieve a continuous motion from a GMM, the simplest way is to
encode an additional time variable t together with the motion variables x in the mixture
model:

p(ξ) � p(t , x) (2.25)
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Figure 2.4: Using GMM to model a data set obtained from D � 10 user demonstrations
(K � 3). GMR is applied to retrieve a continuous motion (blue dashed line).

Now, the motion variables can be reproduced for every given time step from the conditional
distribution p(x|t) by the means of Gaussian Mixture Regression (GMR) [CGB07]. Figure 2.4
shows an example of this procedure. Here, a GMM with K � 3 mixture components is used
to model a one-dimensional data set obtained from D � 10 user demonstrations (grey lines).
The differently colored ellipses represent the mean and spread of the respective mixture
components. As can be seen, the variances of the mixtures reflect the variability in the
provided user demonstrations. GMR is used to retrieve a continuous motion from the model
(blue dashed line), which is close to the mean of the data set (red line).

The encoding strategy described by (2.25) is referred to as time-indexed encoding of motion.
Alternatively, different subsets of input and output variables can be selected. According
to [Cal16] three main usages of GMR can be observed in literature:

i. Encoding as time-indexed trajectories. The motion is reproduced from p(x|t) using
GMR for each time step t (see example above).

ii. Encoding as autonomous system. The joint probability of position x and velocity v of
the system is learned. Starting from the current position of the system x0 and time
t � 0, a continuous motion is retrieved by computing velocity commands from p(vt |xt)
using GMR and integrating the respective position commands xt+1 � xt + vt∆t until
convergence to the target position

iii. Encoding as dynamic system. The joint probability distribution of ξ � (x, v, Ûv) is used
to generate the motion in the same manner as with the autonomous system encoding.

Each encoding has advantages and disadvantages. For example, time-indexed encoding is
attractive due to its simplicity. Also, the assignment of time-indices to data points is usually
unambiguous, which leads to reliable results. On the negative side, complex demonstrations
with different options cannot be easily encoded with time-indexed trajectories. Furthermore,
generalizing the trajectory to different starting points is not possible without further mod-
ification of the model. When encoding motion as an autonomous or dynamic system, the
process of motion synthesis is initialized with the current position. Thus, generalizing with
respect to different starting positions is possible by design. Also, different options in the
demonstrated movements can be encoded using the latter two strategies. These advantages
are achieved at the expense of increasing the model dimension by the first and second order
derivatives of the motion variables.
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Generalization Gaussian Mixture Regression can be used to generalize robotic skills
obtained from PbD with respect to novel situations. In the example of time-indexed trajectory
encoding, we use a time variable to obtain a continuous motion using GMR. Additionally, we
can encode task parameters, which we want to generalize about, within the joint probability
distribution. These parameters can be simply different starting or ending points of the
demonstrated motion, but also more complex characteristics of the task such as properties of
the handled objects or the environment. In themachine learning literature, the task parameters
to generalize about are often referred to as context. Assuming we can describe the current
context by a real-valued vector κ ∈ RC , where C is the number of task parameters, then the
probability distribution we want to learn is p(t , κ, x). From this distribution, we can retrieve
a generalized version of the learned motion by applying GMR to the conditional distribution
p(x |t , κ). Thereby, the given context vector κ can describe a novel, previously unseen situation.
The quality of skill reproduction in a novel context depends on the quality of the training data
set and on the generalization capabilities of the model. Several approaches exist to increase
the generalization capabilities of GMR, most notably the use of Task-Parameterized Gaussian
Mixture Models (TP-GMMs) [Cal+12; Cal16]. Here, the task parameters are reference frames
according to which a demonstrated motion is observed, each described by a linear transform
comprising rotation matrix and translation vector. During reproduction, the motion can be
adapted to a new frame of reference by generating a GMM using the new frame’s position
and orientation. Thus, the model provides some extrapolation properties that go beyond the
capabilities of normal regression methods.

Movement Primitives

Dynamic Movement Primitives (DMPs), first introduced by Ijspeert et al. [INS02], are
a movement representation based on nonlinear differential equations. DMPs have been
introduced with the goal of finding a robust movement representation for imitation learning
in robotics. A one-dimensional DMP can be represented by the following set of differential
equations [Pas+09]:

T Ûv � K(xg − x) − Dv − K(xg − x0)s + K f (s)
T Ûx � v
T Ûs � −αs

(2.26)

where x , v , Ûv are position, velocity, and acceleration of the system, x0 , xg the start and goal
position, respectively, K,D stiffness and damping factor and s is a phase variable, which
monotonically changes from 1 to 0 during the movement depending on the constant factor α.
The equations can be interpreted as a linear spring-damper system described by the spring
constant K and damping D, which is perturbed by the non-linear forcing term f (s):

f (s) �
∑

i αiΨ(s)s∑
iΨi(s)

(2.27)

Here,Ψi(s) are Gaussian basis functions. The parameters of the forcing term, which converges
to zero towards the end of the motion, can be learned to create the desired attractor landscape.
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The parameters comprise the weights, as well as the centers and widths of the Gaussian basis
functions.

DMPs have several favorable properties for movement representation in imitation learn-
ing [Pas+09]. First, convergence to the goal position xg can be guaranteed as the forcing term
vanishes towards the end of the motion. The parameters of the forcing term can be learned
in order to create any trajectory shape. Furthermore, the generated motions are smooth
and invariant to space and time, i.e., they can be scaled according to the desired movement
duration, as well as adapted to different start and goal positions. Thus, DMPs inherently
provide certain generalization abilities.

Movement primitives have a meanwhile long history in imitation and reinforcement learning.
They have been successfully applied to problems like learning to play ball-in-a-cup [KP14],
flipping a pancake [KCC10] or goal-directed ball-throwing [Ude+10]. Also, several variants
of the original DMP formulation have been presented, which allow a non-zero target
velocity [MKP10] or which can properly deal with orientation trajectories [Ude+14].

Probabilistic Movement Primitives In terms of learning task constraints for WBC, we are
interested in the variance of the demonstrated movements in order to deduce the importance
of the demonstrated task. Unfortunately, the original DMP formulation does not capture
information on variance and correlation of the movement. However, Paraschos et al. [Par+13]
present a DMP variant denoted as Probabilistic Movement Primitives (ProMPs), which
represent a distribution over trajectories. In the given approach, a state space trajectory is
represented as a linear basis function model:

yt �

[
xt

vt

]
�ΦT

t w+ εy (2.28)

where Φt is a matrix of basis functions, w a weight vector and εy Gaussian noise. The
termΦT

t w can be used to represent the mean of a trajectory. To represent the variance of a
trajectory, a probability distribution over the weight vector is introduced. The probability of
observing a trajectory T, given a certain weight vector can be computed as the product:

p(T|w) �
∏

t
N(yt |ΦT

t w,Σt) (2.29)

whereΣ is the covariancematrix of the trajectory distribution. The choice of the basis functions
Φ depends on the type of movement. Paraschos et al. [Par+13] use Gaussian basis functions
for stroke-based movements and Von-Misis basis functions for rhythmic motions.

ProMPs have many of the favorable properties as DMPs, like e.g., temporal scaling and spatial
adaptation. Apart from that they allow a variety of probabilistic operations like conditioning
of different via points, final positions or velocities, combination and blending of trajectories,
and computation of variance and covariance of trajectories resulting from multiple user
demonstrations. The latter is particularly important for learning task constraints as it allows
us to infer task priorities by relating them to the variability of the user demonstrations.
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Other Representations

Many models for skill representation exist in robotics. Considering PbD, early approaches
were focusing on Hidden Markov Models (HMMs) to encode spatial and temporal variations
in user demonstrations, for example in then work introduced by Tso and Liu [TL96]. Another
generic approach is to treat PbD as a regression problem and simply use a general function
approximator like a neural network or Gaussian Process Regression to represent the desired
skill. With the increasing popularity of Deep Learning (DL) methods in applications like
facial or speech recognition, also their abilities in robotic behavior learning have been
considered. DLmethods usually require large data sets to achieve considerable generalization
performance. Thus, training data is often generated artificially. Schmidt et al. [Sch+18] require
95000 samples acquired from simulation to train a convolutional neural network (CNN) for
the purpose of unknown object grasping on a humanoid robot. In contrast, the CNN approach
presented by Levine et al. [Lev+18] learns hand-eye coordination for robotic grasping from
real data acquired in 800,000 grasp attempts using 14 robotic manipulators. Although many
methods exist in literature to increase sample efficiency of DL methods, they still require an
considerable number of training samples and therefore we do not focus on these methods
within this thesis.

2.3 Discussion

In this chapter, we provide the theoretical background on the two core concepts used in this
thesis, namely Whole-Body Control and programming by demonstration.

Regarding programming by demonstration, GMM-GMR provides a framework for motion
synthesis and it has several desirable properties with respect to learning task constraints for
WBC. Apart from providing smooth trajectories and good generalization capabilities with a
few training samples, it provides information on the variance of the user demonstrations. This
variance can be exploited to estimate the importance of certain features of the demonstrated
motions, which again can be mapped to task priorities of a whole-body controller. We will
elaborate on this feature in detail in Chapter 4. Compared to GMR, movement primitives
provide a different motion model and properties like inherent stability and scaling according
to the motion duration, start and end position. However, they do not allow to encode
arbitrary parameters inside the model. For example, we are interested in encoding contextual
information like certain task or environment parameters inside a GMM and generalize the
demonstrated task with respect to these parameters. When using movement primitives, this
can only be achieved by applying a hierarchical approach, e.g., learning an upper-level policy
that encodes the DMP hyper-parameters together with contextual information on the task.

WBC is today a well-understood topic and a large variety of approaches exist. However, some
open problems persist, see [MS19] for a discussion. One issue is that, although the individual
controllers might be stable, the accumulation of control actions resulting from different
tasks may result in unstable behavior and a formal proof is difficult. Another open issue is
improving the speed of optimization-based approaches when many degrees of freedom and
constraints are considered. In this context there is a lack of proper benchmarks in order to
compare available solvers. Furthermore, the integration of different trajectories computed by
planning modules with reactive controllers for e.g., obstacle avoidance and balancing with
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the aim of providing feasible overall trajectories is an open research problem. Apart from the
implementation issues of whole-body controllers, most of the developed solutions focus on
state estimation and control. They introduce hand-crafted whole-body controllers, which
are carefully designed to tackle individual problems, and lack generality. To develop more
autonomous robots that operate in dynamic environments and adapt to novel situations, the
link to higher-level intelligence like reasoning and machine learning concepts is required.
In this thesis, we attempt to provide such a link by introducing methods to automatically
derive, adapt and optimize task constraints for WBC.

One of these methods is based on PbD, which has complementary strengths compared
to Whole-Body Control. While PbD offers an intuitive way for non-experts to program a
robot, WBC allows expert users to specify complex, multi-objective tasks on robots with
redundant dof. The combination of both approaches provides an intuitive way to program
complex tasks on redundant robots and adapt them according to the current situation. In the
following chapter, we provide an overview on the state of the art on PbD-based approaches
for automatic derivation of whole-body controllers, as well as other methods for automatic
or intuitive specification of tasks for WBC.
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Whole-Body Control is a well-established approach to program redundant robots and it
has been used to solve complex robotic tasks like balancing [Nor+15], climbing stairs and
ladders [Fen+15], jumping [Kui+16] or mobile manipulation [Van+12]. In WBC, complex
tasks can be composed from simpler task descriptors, which are posed as constraints to an
optimization problem. This separates the task description from the details on its execution
and leaves the programmer the job of specifying tasks constraints and define their relative
importance by the means of priorities. A lot of expertise is required to select the task models,
define priorities, and tune parameters. And even then, the result is usually not satisfying
right away, the task parameters must be tuned in a time-consuming trial-and-error process.
The manually programmed tasks usually perform well only in a certain context. If the task or
environment changes, the task description must be adapted.

In this thesis we want to provide a way to simplify the task specification process in WBC
and generalized task descriptions to previously unseen situations. This chapter provides an
overview of existing works in this field, which can be roughly classified into the following
categories (see also Table 3.1):

I Programming by demonstration-based approaches that derive task constraints for
WBC from data acquired in user demonstrations

I Optimization- or Reinforcement Learning-based approaches that optimize task con-
straints given an initial guess

I Knowledge-based methods that apply symbolic reasoning to infer task constraints for
WBC approaches in a specific situation

This chapter is organized as follows: We first review the state of the art for the three categories
in the Sections 3.1, 3.2 and 3.3. While we provide a review on all three categories, this thesis
focuses on developing methods that fall into the first two. Section 3.4 mentions some further
approaches that do not fit into one of the three categories. Apart from that, there is also
a relation of the methods developed in this thesis to classical behavior learning, which is
discussed in Section 3.5. Finally, we provide a brief discussion and summary in Section 3.6.
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Method PbD-based Optimization/RF-
based

Knowledge-based

Description Derive task constraints
and associated (strict or
soft) task priorities
from data obtained in
user demonstrations

Derive task priority
functions using
black-box optimization
or reinforcement
learning given an initial
guess

Use symbolic reasoning
to parameterize
Whole-Body
Controllers

Example

Efficient Learning of
Constraints and
Generic Null Space
Policies [Arm+17]

Learning soft task
priorities for control of
redundant
robots [Mod+16b]

Knowledge-based
Specification of Robot
Motions [TBB14]

References [How+09; Arm+17;
Arm+18; LHV15;
LRH17; CGB07; CB08;
CB09; Cal16; RCC14;
Ure+15; FBB16; Sil+19;
PDA19]

[Cha+18; Spi+17;
Mod+16a; Mod+16b;
LPS16; LPS15; LPS14;
DRS15; DRS16]

[BKB13; KB12; TBB14;
Son+10; Lei+16; Lei+14]

Table 3.1: Overview of the state of the art on automatic derivation of task constraints

3.1 PbD-Based Approaches

Programming by demonstration, also referred to as imitation learning, is an end user
approach to learn robot tasks without explicit programming, namely by demonstrating
the task of interest and transferring it to the target system. Demonstrations can be in the
form of guiding the robot along the desired trajectory (kinesthetic teaching), teleoperation
using exoskeletons or joypads, motion capturing, gesture recognition or other input devices.
Apart from providing an intuitive user interface for robot programming, PbD may also
reduce the search space for learning, either by starting from an observed (good) example
or by discarding from the search space what is known as a bad solution [Bil+08]. PbD has
been applied to learn various robotic manipulation skills, especially in combination with
reinforcement learning. Examples include teaching a robot to play ball-in-a-cup [KP14] or
flipping a pancake [KCC10].

Classical PbD Most existing PbD approaches try to learn a single task, usually on a six or
seven dof robot arm. In contrast to that, we attempt to learn a whole-body problem including
multiple tasks that shall be executed in parallel on a robot with many dof. For example, we
mightwant to jointly learn amanipulation task and obstacle avoidance. Since the learned tasks
might be conflicting, we additionally must derive their relative importance from the acquired
data. Thus, the problem we consider is twofold: Estimate the task constraints in terms of a
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motion description and derive their associated task priorities, i.e., their relative importance,
from data. In addition, we want the constraints to generalize over new situations (contexts),
so that the user does not have to specify similar tasks repeatedly and the robotic system
behaves more autonomously in novel situations. The problem of learning task constraints in
WBC from user demonstrations has been tackled before in literature and we give an overview
hereinafter.

Policy LearningwithVariable Constraints Several works consider the problem of learning
constrained motion from observations. Howard et al. [How+09] extend classical policy
learning to account for variable constraints the demonstrated task is subject to. The authors
provide a method that learns the underlying (unconstrained) policy from constrained motion
data, which enables them to generalize the policy to novel, previously unseen constraints.
They evaluate their approach in a dual-arm reaching scenario with varying obstacles on
the humanoid robot ASIMO and in a wiping task with variable surface orientations using a
seven dof robot arm. There are a couple of follow-up works [Arm+17; Arm+18; LHV15] which
also focus on wiping or polishing tasks and generalize the acquired task constraints to novel,
previously unseen contact surfaces with different orientation or curvature. Another work in
this area evaluates a similar approach in the context of grasping with a multi-fingered robotic
hand [LRH17]. All these works have some similarities with the goals of this thesis: They try
to learn from constrained motion and attempt to generalize the learned task constraints over
a range of novel situations. However, the presented methods are restricted to a fixed task
hierarchy consisting of the task constraints on the highest priority level and the unconstrained
policy executed in the associated null space. The number of applications is therefore limited.
In contrast to that, we attempt to learn both task constraints and the respective priorities from
demonstrations and do not make assumptions about the underlying task hierarchy.

Task-ParameterizedGaussianMixtureModels While the aforementioned approaches rely
on a weighted combination of linear models like radial basis functions (RBFs) for representing
motion, another line of research uses probabilistic models to extract task constraints from
user demonstrations. Calinon et al. [CGB07] introduce a PbD framework for learning a
task on a humanoid robot. The approach relies on Gaussian Mixture Models (GMMs) for
encoding the trajectories and Gaussian Mixture Regression (GMR) for generalizing the
resulting behaviors to different contexts. While the GMR algorithm has first been described
in [GJ94], the term Gaussian Mixture Regression has first been introduced by Calinon et al.
[CGB07]. Compared to the previously described approaches, this method does not assume a
fixed, strict task hierarchy, but estimates the relative importance of task constraints from the
statistical variance observed in the demonstrations. This importance is encoded in terms of
weighting matrices in the inverse kinematics solution. The approach is evaluated in different
manipulation tasks on a humanoid robot, namely manipulating a chess piece, a bucket, and
a piece of sugar. The system can generalize to a certain extend over different initial positions
of the manipulated object. Various extensions of the probabilistic PbD-framework have been
proposed. For example, Calinon and Billard [CB09] extend the method to simultaneously
treat constraints in joint and task space. The authors aggregate their efforts in a framework
for learning and generalizing skills on a robot called Task-Parameterized Gaussian Mixture
Models (TP-GMMs). Calinon [Cal16] present an overview on applications and extensions of
this framework. While classical TP-GMM only considers motion, the approach presented
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by Rozo et al. [RCC14] uses a dynamical system to encode the robot task so that positions and
contact forces can be learned simultaneously. Thus, the dynamics of themanipulation task can
be accounted for, a fact that is evaluated in a human-robot co-manipulation scenario. Silvério
et al. [Sil+19] extend the TP-GMM framework to additionally learn the evolution of strict task
priorities from demonstrations. For this purpose, they exploit the variability between the
demonstrations in task space when different strict candidate hierarchies are employed. From
this variability, they obtain a joint level controller using soft weighting of strict hierarchies.
Thereby, hierarchies that result in a large variance for the task constraints contribute less to
the solution and vice versa. The approach is demonstrated on a humanoid robotic system,
and it is shown that task priorities can be generalized to different target locations. In contrast
to the previous methods, we develop an approach that allows us to estimate task constraints
together with their associated soft priorities and additionally generalizes them to novel
situations. The generalization capabilities of previous methods are mostly limited to varying
start and end positions of the demonstrated motions, whereas we want to deal with more
complex variations of the demonstrated task. Finally, the existing approaches describe the
context by means of real-valued vectors of task parameters, e.g., frame transformations. In
contrast to that, our approach also allows categorical context variables, e.g., use right/left
arm or allow/forbid object tilting.

Others There are other probabilistic PbD-approaches that estimate task constraints from
demonstration and that are not based on TP-GMM. Ureche et al. [Ure+15] propose a
method to learn hybrid force-position tasks from user demonstrations. They extract the
parameters of a hybrid impedance controller (reference frame, variables of interest and
stiffness) from user demonstrations of a manipulation task like grating a vegetable. The
approach generalizes over different initial robot and object positions. Compared to the
approaches investigated in this thesis, the authors do not consider learning of task hierarchies,
which is an important aspect in case of conflicting tasks. Perico et al. [PDA19] combine a
constraint-based control framework with methods from programming by demonstration.
They use Probabilistic Principal Component Analysis (PPCA) to represent a demonstrated
trajectory. The demonstrated trajectories are integrated as a constraint into eTaSL [AD14],
which is a high-level extension of the iTaSC framework. The variance inherent in the
demonstrations is used to estimate the stiffness settings of the robot’s joint-level impedance
controller in order to guide the human operator to the target position. Other task parameters,
like, for example, the task priorities, must be chosen manually by the human expert. In
contrast, we use data obtained in the user demonstrations to automatically get an estimate
of the task priorities. Furthermore, the approach developed by Perico et al. [PDA19] allows
only limited generalization, e.g., a varying target position of the end effector. In contrast, we
develop a solution that can generalize over complex task parameters like the properties of the
handled objects. Fang et al. [FBB16] use Random Forest Regression (RFR) in combination with
WBC to learn pouring water into a container. Training data is generated by demonstrating
the task in an interactive simulation environment. In contrast to this approach, which seems
designed to solve the pouring task, we attempt to provide a more general framework that
works on multiple tasks and situations.
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Figure 3.1: Learning task priority functions: Optimized task priorities yield improved WBC
performance compared to manually selected ones, drawing inspired by Modugno
et al. [Mod+16b].

3.2 Optimization- and RF-Based Approaches

Another way to simplify the life of the human expert in WBC is to automatically derive
task constraints using black-box optimization or Reinforcement Learning (RF) with the
goal of improving performance in terms of stability, compatibility, robustness, or safety. For
example, optimization or RF can be used to compute the soft task priorities of a Whole-Body
Controller. In this case, the desired trajectories for each task are given, e.g., by a motion
planner. Compared to strict priorities, soft task priorities are much harder to tune. On the
one hand, the performance may strongly depend on the selected values. For example, the
system might become unstable when the chosen values for a certain task are too high or too
small. On the other hand, each dimension of a task constraint may have different optimal
values of the task priorities. For example, the motion or force along a certain axis might be
more important than for other axes. This implies that all soft task priorities must be tuned
individually and, depending on the problem, their number might be quite large. Finally,
optimal behavior might only be achieved if the task priorities vary over time. For example,
when approaching an obstacle, the respective task priorities for collision avoidance should be
increased and decreased again if the robot withdraws from the obstacle. Another example is
the execution of task sequences. When transitioning from one task to the next, the respective
task constraints can be faded-in and -out smoothly. Thus, they must have time-varying task
priorities, which are obviously much harder to compute than fixed values. Figure 3.1 shows
the general idea of learning time-depending task priority functions.

Different works exist that attempt to learn soft task priorities using stochastic optimization.
For example, the approach described by Charbonneau et al. [Cha+18] increases robustness
with respect to perturbations and varying conditions when transferring the task priorities
to the real robot. The (time-fixed) task weights are learned using the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [HOt01]. As a fitness function the authors use a
combination of task space tracking error, joint torque and ZeroMoment Point (ZMP) deviation
from the center of the support polygon. The results are evaluated on the humanoid iCub
robot [Met+08]. In contrast to that, Modugno et al. [Mod+16b] present an approach to learn
time-varying task priority functions, modeled as a mixture of radial basis functions (RBFs).
The authors also use CMA-ES with a combination of task space tracking error and joint
torque as a fitness function to learn the parameters of the RBFs. Experiments are performed
on a seven dof robot arm in a scenario, where the robot must reach different goal positions in
the presence of obstacles. In a follow-up work the authors benchmark their solution with
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different CMA-ES variants and apply it to the iCub humanoid [Mod+16a]. The objective is
here to learn task priority functions that ensure that physical constraints are never violated.
CMA-ES is also employed by Dehio et al. [DRS16] to optimize the mixing coefficients in
a torque-based multi-objective controller. As a fitness function they use a combination of
minimum task space error, execution time and energy consumption.

Another line of research deals with finding optimal task trajectories for multiple competing
objectives in WBC using stochastic optimization or Reinforcement Learning. Lober et al.
[LPS14] describe each task as a Dynamic Movement Primitive (DMP) [INS02]. The parameters
of the DMPs of all tasks are optimized using a black-box optimization algorithm in order
to minimize task incompatibilities. The approach is demonstrated on the iCub humanoid.
Later, the same authors use RF to optimize the location and temporal evolution of waypoints
when manipulating objects with the iCub humanoid [LPS16]. As a cost function they use a
combination of trajectory tracking error, the position error in the target location and energy
consumption. This way, they can overcome task discrepancies, and increase the probability
of a successful task execution.

Compared to our work, the optimization and RF-based approaches as described above focus
on deriving either soft task priorities or task constraints in terms of motion descriptions. In
contrast to that, we develop an approach that is able to derive task constraints and priorities
simultaneously from the same data set. Furthermore, the previous methods provide only
limited generalization capabilities as they perform optimization with respect to a particular
situation. Our approach on the other hand attempts to generalize task constraints over a
variety of situations. Furthermore, all approaches mentioned above are either applied in a
very restricted context, only in simulation or for simple robot tasks. Compared to that we are
striving for methods that can be applied to more general robot control problems, are able to
deal with considerable number of parameters and contexts and can be easily applied on real
robots.

3.3 Knowledge-Based Approaches

Other approaches use high-level reasoning mechanisms to parameterize Whole-Body con-
trollers. We refer to this class of approaches as knowledge-based methods here. The idea is to
use background knowledge to infer WBC task parameters given a certain task and situation.
This way, complex task sequences can be planned and executed using WBC approaches.
Figure 3.2 shows the general idea of using knowledge-based approaches to parameterize
Whole-Body controllers.

In the work presented by Leidner et al. [Lei+14; Lei+16], a reasoning framework is combined
with a torque-based WBC approach to solve different compliant manipulation tasks on the
humanoid robot Justin [Fuc+09], namely wiping a window, scrubbing a mug, and sweeping
the floor. Task parameters like e.g., contact stiffness, the control hierarchy and force limits are
stored together with the model of the manipulated object and inferred using a combination
of geometric and symbolic reasoning. The approach provides abstract, object-centric action
templates for complex manipulation tasks, which can be transferred between different robots.
Generalization capabilities are provided in the sense that the task trajectories are defined in
object space, such that the location of the manipulated object can be varied without changing
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Figure 3.2: Knowledge-based approaches parameterize Whole-Body Controllers using sym-
bolic reasoning, drawing inspired by Leidner et al. [Lei+16]

the task specification. However, the concrete task trajectories, task hierarchies, stiffness
parameters and other task parameters still must be selected by hand. At least an allowable
range of values must be given by the human expert. Thus, the presented approach does not
automatize the process of task specification, it only shifts the problem of parameter selection
to amore user-friendly level. Other knowledge-basedmethods have similar shortcomings. For
example, the approach presented by Tenorth et al. [TBB14] the reasoning framework CRAM
(Cognitive Robot Abstract Machine) [BMT10] is used in combination with abstract constraint
descriptions and a WBC approach to specify household tasks like pouring pancake mix
into a frying pan on the PR2 robot [Boh+11]. As the authors argue, the motion descriptions
provided still contain hand-crafted numbers, which limits the generalization capabilities of
the approach. Kresse and Beetz [KB12] and Bartels et al. [BKB13] both present a system that
attempts to bridge the gap between symbolic action representation and a motion control
approach based on task functions. Constraints are defined using geometric features, providing
a symbolic, constraint-based movement description language. The approach is evaluated in a
pancake making scenario. Again, as with the previous approaches, an automatized selection
of numerical values given a symbolic action description is not considered.

Another interesting approach is introduced by Song et al. [Son+10]. The authors use a Bayesian
network to model, in a probabilistic manner, task, object, action and constraint features as
a joint probability distribution. While the task is described by symbolic variables like e.g.,
"hand-over" or "pour", the object, action and constraint features are described by numeric
values like object size, grasp configuration or grasping constraints. The Bayesian network is
trained using data generated by a grasp planner and a human expert that labels the suggested
grasp configurations of the planner. The initialized network can be used for decision making.
For example, given the perceived object and a certain task, the associated action features, and
task constraints like e.g., the optimal grasp configuration and object enclosure can be inferred.
While sharing some similarities with the goals of this thesis, namely the possibility to derive
task constraints from user demonstrations, the application domain is quite different. The
system is only applied to multi-fingered grasping and does not have a relation to WBC.
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3.4 Other Approaches

There are some other approaches that supply user-friendly interfaces to WBC-based task
specification and cannot be classified into one of the three categories. For example, Aert-
beliën and De Schutter [AD14] present a symbolic programming language called eTaSL
(Expressiongraph-based Task Specification Language). The idea is to provide a flexible and
user-friendly way to define and execute robot tasks based on expression graphs. Somani et al.
[Som+15] presents a task specification framework based on geometric constraints expressed
in CAD models. The framework shall ease task-based robot programming for non-experts
in industrial settings. Both approaches may simplify the process of creating WBC-based
task descriptions, but they do not automatize it. Furthermore, they do not provide general
solutions by any means, but rely on the fact that new tasks can be quickly (re-)programmed
by the user.

3.5 Relation to Behavior Learning

Behavior learning in robotics is the process of learning robot skills that can generalize
over task parameters. As with most machine learning approaches, robot behavior learning
is particularly popular in applications where modeling the problem is difficult or even
impossible. In behavior learning, a commonly used method is to retrieve an initial trajectory
by the means of imitation learning and refine them using RF. Behaviors can be described
using a parametric motionmodel, for example DynamicMovement Primitives (DMPs) [KP10].
DMPs have been designed to generalize over some meta-parameters like its initial position or
duration of motion [INS02]. Adaptation to more complex task parameters can be achieved
using hierarchical approaches. Hierarchical approaches apply an upper-level policy that is
supposed to generalize over the meta-parameters of the lower-level policy [FM14; Kup+17;
WLP17]. Fabisch et al. [Fab+19] provide an overview over the state of the art in behavior
learning for robotics, with the focus on real-world applications.

Most of the existing behavior learning methods focus on algorithmic development. The
applications are commonly limited to learning a single task, which is executed on a robotic
arm with six or seven dof. In contrast to that, this thesis focuses on learning task constraints
for multi-task scenarios on more complex systems with kinematic tree structure.

3.6 Discussion and Summary

In the earlier sections, we gave an overview on the state of the art in learning task constraints
for Whole-Body Control of robotic systems. Learning task constraints for WBC instead of
manually specifying them can have different objectives. On the one hand, learning task
constraints can simplify or fully automatize the task specification process in WBC and thus
reduce the burden of the human programmer. On the other hand, it can generalize task
descriptions to novel situations and automatically adapt the robot behavior without the need
to re-program the system repeatedly. As a result, the target robot will be more adaptive and
autonomous, especially in dynamically changing environments.
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Approach Use PbD Task
Constraints

Task
Priorities

Soft/Strict
Priorities

Genera-
lization

[Mod+16b],[Mod+16a] - -
√

soft -
[LPS16] -

√
- soft -

[DRS15] - -
√

soft -
[Arm+17]

√ √
- strict

√

[PDA19]
√ √

- soft
√

[Sil+19]
√ √ √

strict
√

[FBB16]
√ √

- soft
√

Our approach
√ √ √

soft/strict
√

Table 3.2: Comparison of the main approach for learning task constraints followed in this
thesis with the state of the art.

We classified the existing state of the art methods in PbD-based, optimization- / RF-based
and knowledge-based approaches. PbD-based approaches derive task constraints and/or the
associated task priorities from data obtained in user demonstrations. In contrast, optimization-
and RF-based approaches derive either task priority functions or task trajectories given an
initial guess. Finally, knowledge-based methods use symbolic reasoning to parameterize
Whole-Body Controllers.

Table 3.2 compares the main method developed in this thesis with the state of the art
according to the type of learning (PbD vs. other e.g., RF), the learning target (task constraints,
task priorities or both), whether the approach applies to strict or soft priorities and whether
the approach achieves generalization capabilities. According to the table the most similar
approach to ours has been presented by Silvério et al. [Sil+19]. However, this approach
demands that the user selects candidate hierarchies in terms of projection operators in
advance. Compared to that, our approach only requires the selection of task relevant
coordinate frames, which is trivial in every case. Furthermore, the approach relies on strict
task hierarchies, which does not work well on over-constrained problems. In summary, the
main differences and innovations of the approaches developed in this thesis compared to
existing state of the art methods are

I In contrast to classical PbD applications and behavior learning approaches, which often
focus on a single task executed on a manipulator arm, we attempt to learn multiple
parallel tasks applied on complex robots with kinematic tree-structure.

I Compared to most existing methods that combine machine learning and WBC, we
attempt to learn both, task constraints and associated priorities at the same time.

I We attempt to generalize both, task constraints and priorities with respect to previously
unseen contexts, where the context description may be real-valued or categorical. In
contrast, existing methods only allow minor contextual variations, or they focus on
simple contexts like start and end positions of the demonstrated motion.

The approach for learning task constraints, which based on PbD, is presented in the following
chapter.





Parts of
this chapter
have already
been pub-
lished [MK21]

Learning Context-Adaptive Task Constraints
from Demonstration 4

In this chapter we introduce a programming by demonstration approach for whole-body
controllers. The approach automatically derives a part of the optimization problem, namely
task constraints and the associated task priorities, from data acquired in user demonstrations.
The demonstrations are performed in varying conditions, which we refer to as contexts.
From the acquired data, we derive probabilistic models that generalize task constraints
and priorities over various contexts and adapt robot behavior to novel, previously unseen
situations. We evaluate our approach by learning several manipulation tasks on an industrial
dual-arm robot and on a humanoid system.

The original contributions in this chapter are:

i. A PbD approach to derive task constraints and the associated soft task priorities for a
whole-body controller from user demonstrations.

ii. An adaptation method based on Gaussian Mixture Regression (GMR) that generalizes
the acquired task constraints and soft priorities with respect to context changes.

iii. An alternative to the GMR approach based on Probabilistic Movement Primitives.

This chapter is organized as follows: Section 4.1 explains the motivation for developing
the approaches. Section 4.2 gives an overview on the PbD workflow. In Section 4.3, we
describe the WBC implementation used and the modelling of task constraints. Section 4.4
illustrates the process of data acquisition and processing. In Section 4.5, we describe a method
for estimating task constraints with soft priorities and present results using an industrial
dual-arm robot. In Section 4.6 we compare the proposed approach to a method based on
Probabilistic Movement Primitives (ProMPs). We evaluate the approach on a humanoid robot.
Finally, Section 4.7 provides a brief discussion and outlook.

4.1 Motivation

Whole-Body Control is a flexible and well-adopted framework to specify and control complex
tasks on redundant robots. Although WBC has been introduced in the context of humanoid
robotics, it is meaningful to apply it to any problem, where multiple robot behaviors must be
integrated, while considering physical constraints related to the environment, the robot, or the
task itself. Especially in robotic manipulation, many tasks can be specified as a combination of
simpler subtasks. For example, the task of cleaning a table can be separated into two subtasks:
"maintain contact with the table surface" and "follow thewiping trajectory". Now,maintaining
surface contact is obviously more important than following an accurate trajectory parallel
to this surface. This preference can be formalized by means of task priorities. Assigning
a low priority to the trajectory following task allows to perform additional tasks utilizing
the remaining robot dof, for example, avoiding collisions with objects on the table surface.
Secondary objectives like minimizing energy consumption can be integrated on the lowest
priority level.
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As already elaborated in previous sections, the design of task models and constraints, as
well as the selection of appropriate task priorities is typically done by a human expert in a
manual fashion. This process requires knowledge regarding WBC in general, the specific
WBC implementation and the problem domain. Even with that background knowledge,
the specification is typically a trial-and-error process, which is tedious and prone to errors.
Furthermore, the resulting task models are often specific to a certain situation. If the task
specification or the environment conditions change, these handcrafted solutions will fail.
Especially selecting incorrect task priorities may lead to a bad control performance, as shown
in Section 1.1, or even to completely different robot behavior. An automated procedure to
derive task constraints and the respective task priorities for WBC may strongly reduce the
work for the human programmer and lead to better results. The latter is especially true if the
developed approach is context-adaptive, i.e., if it can automatically adapt the whole-body
controller to context changes. Context changes refer to the variations that a robotic task may
be subjected and can be classified into three different categories:

1. Variations of the task itself, e.g., the goal position of the end effector, orientation
constraints when carrying an object, etc.

2. Changes in the environment of the robot, e.g., the dimension or the shape of a
manipulated object, the presence of obstacles, etc.

3. Changes regarding the robot in use, e.g., different robot morphologies (single arm vs.
dual arm, stationary vs. mobile, number of dof, etc. ..), defective actuators/sensors, etc.

In the following sections we introduce a programming by demonstration (PbD) approach to
automatically derive task descriptions for Whole-Body Control. Programming by demon-
stration and Whole-Body Control (or model-based control in general) have complementary
characteristics [PDA19]. PbD provides the user an intuitive interface to specify novel tasks
on a robotic system without requiring any expertise in robotics or programming skills. In
contrast, WBC allows a human expert to program reusable, sensor-based skills for complex
robots in dynamic environments. The combination of both enables non-experts to create
solutions for complex and adaptive behavior on redundant robots, while preserving the
positive features of stand-alone whole-body controllers.

4.2 Approach

We first supply an overview of our approach and the PbDworkflow. The goal of the presented
method is to reduce the effort for the human programmer to design the optimization problem
of a whole-body controller. An important part of the optimization problem is the task
constraints and their respective task priorities. In general, many different constraints act on
a robotic system when performing a manipulation task. These can be related to the robot
(physical constraints like joint limits, self-collision, ...), to the environment (stationary or
moving obstacles, contact surfaces, manipulated objects, ...) and the task itself (goal positions,
objects that may not be tilted, ...). The idea of the presented approach is that the demonstrated
task is subject to constraints which are consistent over multiple demonstrations. Thus, they
can be extracted by identifying the invariant features in the acquired data. As an example,
consider again the task of wiping a table surface. The surface constrains the motion of the
robot, which is reflected in the data acquired in the user demonstrations. Even if we perform
different wipingmotions, themotion vertical to the table surface will have a low variance in all
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Figure 4.1: Overview of the approach on learning context-adaptive task constraints from user
demonstrations

demonstrations. This variance can be mapped to a task constraint with high priority in aWBC
framework, while other tasks are assigned lower priorities. This way, the relevant aspects of
the task are preferred by the whole-body controller and other tasks are subordinated, leaving
redundant dof free for other important tasks. To generalize the task constraints with respect
to previously unseen situation, we perform the user demonstration in different contexts.
From the acquired data, we can derive probabilistic models that generalize the extracted
task constraints over context changes like the height of the table, the wiping direction, or the
tilt angle of the contact surface. Thus, the whole-body controller learns to adapt to novel,
previously unmet situations.

Figure 4.1 shows an overview of the proposed PbD approach, which consists of the following
steps:

1. The kinematic model of the robot is assumed to be known. The human expert must
select in advance only a couple of relevant coordinate frames, referred to as task frames
here. (e.g., the base of the robot, the gripper frames, or an object-related coordinate
frame). The selected task frames are used to model the task constraints, i.e., each task
constraint describes the relative motion of two task frames (see Section 4.3).

2. We perform several user demonstrations in the form of kinesthetic teaching in different
contexts (see Section 4.4). The context may vary over time. However, here we assume
that the context is time-invariant, at least within a single demonstration. In each
demonstration we record the available task constraints.

3. We model the joint probability distribution over context variables and task constraints
as a Gaussian Mixture Model (GMM) (see Section 4.5).
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4. From this joint distribution, we can generalize the task constraints, as well as their
associated task priorities and reproduce them in a novel, previously unknown context
using Gaussian Mixture Regression (GMR) (see Section 4.5).

4.3 WBC Framework and Task Constraints

The WBC approach we use here is a variant of the method presented by Smits et al. [Smi+08].
As in their approach, we describe robot tasks by imposing constraints on the relative twist
between two rigid bodies. Each body is thereby described by a unique coordinate system,
denoted as task frame [BBD03].

Definition 4.3.1 A task frame is a uniquely defined, task relevant coordinate system relative to
which a robot task can be specified.

Zero twist between two task frames means that the associated bodies are not supposed to
change their relative position and orientation during the task. Multiple constraints can be
integrated by solving the following instantaneous optimization problem:

minimize
Ûq

‖ Ûq‖2

subject to
©«

JW,1
...

JW,P

ª®®¬ Ûq �
©«

vd ,1
...

vd ,P

ª®®¬
(4.1)

Here Ûq ∈ RN are the joint velocities of the robot, where N is the number of joints. The
number of task constraints is denoted as P, JW,i � WiJi ∈ R6×N is the weighted task Jacobian
of the i-th task and W ∈ R6×6 refers to a diagonal matrix, which contains the task weights
w � (w1 , . . . ,w6)T on its main diagonal. The task weights are also referred to as soft task
priorities. The solution of (4.1) is the robot joint velocity that complies with all task constraints
of type Ji Ûq � vi in the best possible manner. This means, the solution ensures that the P
pairs of user-defined task frames move with the desired relative twists (vd ,1 , . . . , vd ,P)T if
possible. Like with any other WBC approach, (4.1) is not a global optimization problem but
provides the optimal solution at a specific time instant. In every control cycle, the optimization
problem is updated with the new JW,i , vd ,i and solved for Ûq, which is directly applied to
the robot actuators. To impose constraints on the relative poses of two task frames, a set of
closed-loop position controllers can be designed around the optimization problem in (4.1).
These controllers have the following form:

vd � vr + Kp

(
pr − p
θω̂r

)
, vd ≤ v̄ (4.2)

where vr ∈ R6 is the reference (feed forward) twist, pr , p ∈ R3 the reference and actual
position, θω̂r ∈ R3 the rotational difference between reference and actual pose, v̄ the
controller saturation and Kp ∈ R6×6 a diagonal matrix containing 6 feedback gain constants.
The control output vd is fed into (4.1) for each task constraint. Assuming that the kinematic
model of the robot is given, the representation in (4.1), (4.2) includes the relative pose and
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Figure 4.2: Modeling of task constraints.

twist of two task frames, as well as the soft task priorities as main design parameters. We
refer to the tuple of relative pose and twist of two task frames as task constraint here.

Definition 4.3.2 A task constraint is described by the relative pose and twist of two task frames
(x(t), v(t)) and its associated (soft) task priorities w(t).

The task constraints and their associated priorities are functions of time, so they may change
during task execution and can be described as time-indexed trajectories. Figure 4.2 illustrates
the concept of task constraints that we employ here. Each task constraint corresponds
to a virtual kinematic chain connecting the corresponding task frames. The controller in
(4.2) regulates the relative pose and twist of two task frames, while the soft task priorities
employed in (4.1) control the relative importance of each task variable within the solution.
As an example, consider the case where robot orientation is not relevant to us. Here we
can set the corresponding soft task priorities to zero and only the position of the robot will
be considered in the solution. Using soft task priorities here means that the tasks are not
hierarchically organized as in the Whole-Body Control framework introduced by Sentis and
Khatib [SK06], but the solution will be a weighted combination of the different tasks. If we
consider the over-constrained case, we have more task variables than available robot dof.
Here, the solution approximates the demanded tasks. The accuracy of each task depends on
the values of the corresponding soft task priorities. The higher these values, the more accurate
a task is fulfilled. The solution of (4.1) is computed using a standard QP solver [FBD08].
Throughout the entire chapter, we assume that a sufficiently accurate kinematic model of the
robot is known, providing the task Jacobians required in (4.1). Such a model can be obtained
from CAD export and refined through kinematic calibration [HW96]. We also assume that
the robot model contains only rigid bodies, where each rigid body is assigned a unique
coordinate frame.

The WBC approach used here can model several types of task constraints like joint limits,
collision avoidance or contact forces. However, for the sake of simplicity we consider only
task constraints as described in Definition 4.3.2. In the following sections we will illustrate
an approach to automatically derive the quantities (x(t), v(t)), as well as w(t) from user
demonstrations and adapt them to novel, previously unseen contexts.
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4.4 User Demonstrations

For data acquisition, we use kinesthetic teaching. As already mentioned in Section 2.2.1, the
advantage of kinesthetic teaching compared to other data acquisition methods like human
motion tracking is that we do not have to bother about workspace transformations and
reachability issues afterwards. In each demonstration we record the current context and
the relative poses and twists between all pairs of task frames. For now, we refer to these
pose/twist pairs as candidate constraints (v∗(t), x∗(t)) in order to distinguish them from the
actual and the estimated task constraints. The importance of a candidate constraint for the
demonstrated task will be determined by its associated priority w(t). Both the task constraints
and the priorities shall be estimated from the acquired data.

In the following we describe the representation of the data acquired in user demonstrations
and the necessary preprocessing steps.

4.4.1 Representation of Context

Contextual information can be used to characterize the state of the world and aid in
robotic decision making. According to [Tur98], contextual information can be classified
in three categories: environmental information, task-related information, and agent self-
knowledge. Another critical point is how to represent contextual knowledge. Bloisi et al.
[Blo+16] distinguish three different classes of context representation structures. First, there is
embedded context representation, which describes features on a subsymbolic level. Such
a representation is typically applied in perceptive systems. Secondly, there are logic-based
representations, which use declarative knowledge representation languages that allow
inference on a symbolic level. Third, probabilistic representations allow reasoning about
uncertainty andmodeling the degree of belief when selecting a behavior for a certain situation.
Most existing approaches for context representation cannot be categorized exactly into one of
the three categories but comprise a combination of them.

In our approach, we describe context as a real-valued vector κ ∈ RC , where C is the number
of context variables. Since we model context and task constraints as a joint probability
function later, the approach falls into the category of probabilistic context representations. In
general, the context may change over time. However, here we assume that the context is time-
invariant during a demonstration. As the topic of state estimation and context identification
is out of the scope of this thesis, the user currently must specify the context variables for
each demonstration by hand. The context variables can be real-valued numbers, e.g., the
dimensions of an object, or categories, e.g., single, or dual-arm task execution, allow or forbid
tilting the object during task execution, etc. In case of a categorical representation, one-hot
encoding is used to model the categories and integrate them into the real-valued vector κ.
Table 4.1 shows an example of context variables, which describe the width of the manipulated
object, whether the object may be tilted or not and whether it should be manipulated with
the right or left arm. The context vectors for these two cases are κ1 � (0.3, 1, 0, 1)T and
κ2 � (0.5, 0, 1, 0)T .

Other context-adaptive approaches mostly allow an adaptation with respect to varying start-
and end positions of learned motions. In contrast to that we focus on major context changes
that may lead to a completely different characteristic of the demonstrated tasks. Considering



4.4 User Demonstrations 49

Context # Object width Allow Tilt Right Arm Left arm

1 0.3m 1 0 1
2 0.5m 0 1 0

Table 4.1: Example context variables

again the task of wiping a table surface, a context change might be related to the type of
wiping motion, which can be executed as a circular or a linear motion.

4.4.2 Representation of Task Constraints

During user demonstrations we acquire candidate constraints (v∗(t), x∗(t)) for each pair of
selected task frames, which have the form time-indexed trajectories. Afterwards these trajec-
tories are resampled and temporally aligned. Furthermore, the time variable is normalized to
[0, 1].

As a next step, we convert the rotational part of the pose trajectories x∗(t) into a representation
which is suitable for regression. Many different forms of describing orientations can be used
in robotics, each of which has certain advantages and disadvantages. Euler angles are a
minimal representation composed from three consecutive elemental rotations. Though being
minimal, this form of representing orientation is not unique, i.e., different sets of Euler angles
may represent the same orientation. Also, Euler angles suffer from singularities and, thus,
have a discontinuous representation space. This is particularly problematic for regression as
the mean of two sets of Euler angles is not necessarily the mean of the represented rotation. In
contrast, orthogonal rotation matrices have a continuous representation space. However, they
are inherently over-parameterized and orthonormality must be enforced during regression,
e.g., by applying Gram-Schmidt orthonormalization [Mat21]. A compromise can be obtained
by using unit Quaternions, which are more compact than rotation matrices and numerically
stable. However, they are also not unique, i.e., there are two different quaternions that
represent the same orientation. Furthermore, they also have a discontinuous representation
space and unit-lengthmust be ensured during regression. Instead, we choose a representation
basedon elements of theLie algebra so(3), which is a 3-dimensional representation of rotations.
The so(3) is tangential to SO(3), the space of 3× 3 orthogonal rotation matrices. Any rotation
matrix can be projected to so(3) using the logarithmic map [LP17]:

log(R) � [ω̂]θ (4.3)

with

θ � cos−1(1
2
(tr(R) − 1)), θ ∈ [0, π] (4.4)

[ω̂] �
1

2 sin(θ) (R − RT), |tr(R)| , 1 (4.5)
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Here, [ω̂] denotes the skew-symmetric matrix form of the unit rotation axis ω̂ and θ is the
rotation angle. The resulting rotation vector ω̂θ provides a three-dimensional representation
of the rotation described by R. According to Hartley et al. [Har+13], this representation
will be unique if we restrict θ ∈ [0, π]. However, two particular cases must be considered,
θ � 0 and θ � π. In each of these cases, the rotation axis inverts its sign. To deal with these
situations, we first make sure that the rotational part of the pose trajectory starts in the upper
half of SO(3) by setting ωz ≥ 0. Then we iterate each point in the rotational part of the
pose trajectory and apply ω̂∗ � −ω̂, as well as θ∗ � (2π − θ) for all the remaining points
whenever ω̂ changes its sign. The resulting three-dimensional orientation trajectory will be
continuous. An advantage of using so(3) elements to represent rotations is that averaging is
possible just as it is for elements of R3 if the boundary cases θ � 0 and θ � π are handled
separately. Another reason for choosing this representation is that we want to estimate soft
task priorities from the variance in the user demonstrations. The soft task priorities in (4.1)
are six-dimensional, where three entries correspond to the linear and three entries to the
angular part, respectively. Thus, it is beneficial to represent the rotational part of the pose
trajectories x∗(t) in three dimensions as well.

In summary, we represent the demonstrated motion in terms of 6D-candidate constraints
(x∗(t), v∗(t)). Each of these pairs describes the relative pose/twist between two task frames and
can be used as input to the controller in (4.2). The controller output represents a constraint in
the optimization problem (4.1) with 6 constraint variables, respectively. The dataset obtained
from D user demonstration ξ � {K,X,V} contains the context data K(t) ∈ RD·S×C and
the candidate task constraints X(t),V(t) ∈ RD·S×M , where t ∈ [0, 1] is the normalized time
variable, S the number of samples per demonstration, C the number of context variables and
M the number of task constraints. The number of task constraints depends on the number of
task frames F as follows:

M �
3F!
(F − 2)! (4.6)

For example, for F � 3, we have 18 constraint variables. As we can see, M grows strongly
with increasing F. Thus, the problem quickly becomes intractable for large F. Consequently,
the task frames must be selected with care by the human expert.

4.5 Estimation of Task Constraints with Soft Priorities

In this section, we describe a method to estimate the task constraints (x(t), v(t)) and their
respective soft priorities w(t) that best reproduce the demonstrated task in a given context κ,
which might be unknown to the system. During user demonstrations, we record the task
constraints for each pair of task frames and store them in a database. From a training data
set ξ � [K,X,V]we learn a probabilistic model as described in the previous section. Given
a certain context κ, the model estimates the task constraints (x̂(t), v̂(t)) and associated soft
priorities ŵ(t) that are required to fulfill a certain task. Both, constraints, and priorities,
are fed into the WBC framework, which computes the joint velocities that comply with
these constraints and sends them to the robot joints. Figure 4.3 shows an overview of the
framework including the learning module. Thereby each of the illustrated controllers is an
implementation of (4.2), while the solver implements (4.1).
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Figure 4.3: Overview of the control framework including learning of context-adaptive task
constraints

As we perform D user demonstrations for each context, each point in the dataset ξ(t) has a
variance σκ(t), which describes the variation within the different demonstrations of the same
task. We use this variance to get an initial estimate of the soft task priorities. The basic idea
is here, that a high variance in the user demonstrations is mapped to low priorities of the
corresponding task constraints and vice versa. Figuratively, this means that if certain moving
directions have a low variance over all user demonstrations, they are "constrained", either by
the task itself, the capabilities of the robot or the configuration of the environment. Thus, it is
likely that these aspects are more important for the demonstrated task than those which have
a high variability throughout the demonstrations.

4.5.1 Probabilistic Encoding of Context and Constraints

We model the joint distribution of context variables κ and task constraints (x(t), v(t)) using
Gaussian Mixture Models:

p(v, x, κ |θ1 , . . . , θK) �
K∑

k�1
πkN(v, x, κ |µk ,Σk) (4.7)

Note that we omit the dependency on the time variable for the sake of readability here.
We employ a variant of GMM called Dirichlet Process Gaussian Mixture Model (DPGMM).
The model parameters of the DPGMM are described as θ � {πk , µk ,Σk}Kk�1, where K is
the number of mixture components, πk are the mixing weights, µk the means and Σk the
covariance matrices of the Gaussian distributions. These parameters are obtained using
variational inference. In contrast to a normal GMM, the DPGMM models the mixing weights
πk as a Dirichlet Process. This way, the effective number of mixture components can be
inferred from the given data. In practice only a maximum number of mixtures must be
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Algorithm 1 Reproduction of Task Constraints and Soft Task Priorities
1: Given: Joint distribution p(v, x, κ), Context κ
2: Start at t � 0, start pose xt � x0
3: while ‖xe − xt ‖2 > δ do
4: 1. Estimate twist:
5: From p(v|xt , κ) estimate v̂t using GMR
6: 2. Estimate pose
7: Integrate once to get the corresponding pose estimate as in (4.8)
8: 3. Estimate task priorities:
9: Compute p(x|vt , κ) using the estimated twist vt
10: Compute task priorities using (4.9) and (4.10)
11: 4. Update
12: Set xt � x̂t+1
13: end while

selected (upper bound) and the algorithmwill set the mixture weights of irrelevant Gaussians
to near zero. On the downside, the time for training is larger compared to, e.g., EM.

4.5.2 Reproduction of Task Constraints

Given the joint probability distribution p(v, x, κ), reproduction of the task constraints and
the respective soft task priorities is performed in an iterative manner: Starting from an initial
pose1 xt � x0, we estimate the twist v̂t from the conditional distribution p(v|xt , κ) using
Gaussian Mixture Regression (GMR) [CGB07] and integrate once to get the corresponding
pose estimate:

x̂t+1 � xt + v̂t · ∆t (4.8)

where ∆t is the sample time in seconds. Given the estimated twist, we can compute the
conditional distribution p(x|vt , κ). From this distribution with parameters {πk , µk ,Σk}Kk�1
we can get an estimate of the pose variance for each constraint variable by collapsing the
multi-variate Gaussian distribution to a single Gaussian as follows [Tou21]:

µ �

K∑
i�1

πiµi , Σ �

K∑
i�1

πi(Σi + µiµ
T
i + µµT) (4.9)

Note that we omit the time index for the sake of readability here again. From the covariance
matrix Σ, we compute the task priorities w � (w1 , . . . ,wM)T as follows:

w j � 1 −
(
σ2

j

σ̄2

)
, ∀ j (4.10)

where σ2
j are the diagonal entries of Σ and σ̄2 is the maximum variance over all constraint

variables. Finally, we set xt � x̂t+1, estimate the next twist and so on. This process is repeated
until convergence to the target pose.

1Note that x0 contains the relative poses of all pairs of task frames, stacked vertically. E.g., if the number of task
frames is 3, the dimension of x0 is 18.
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Figure 4.4: Example: Estimated task constraints (x-position) and confidence interval used for
predicting soft task priorities.

The procedure for estimating task constraints from GMM is summarized in Algorithm 1. As
an input the algorithm requires the context vector κ ∈ RC and the initial poses for all pairs of
task frames x0. The algorithm produces the estimated task constraints (x̂(t), v̂(t)) as output,
along with the soft task priorities w(t). As we are using twist commands as variables, the
resulting trajectories can be adapted with respect to different starting points.

Figure 4.4 illustrates the reproduction of a motion (only x-position) for a single context. In
Figure 4.4(a) the mean and extend of K � 3 mixture components is shown. These mixtures
are fitted to D � 10 user demonstrations. The figure also illustrates the predicted trajectory
using GMR and the mean of the user demonstrations. Figure 4.4(b) shows the resulting
confidence interval 2σ computed from (4.9), which is used to estimate the soft task priorities
according to (4.10).

Why GMR?

GMR has several positive properties for motion synthesis on robotic systems. First, in contrast
to other regression methods like Gaussian Process Regression (GPR) [Ras04] or Locally
Weighted Projection Regression (LWPR) [VDS05], GMR does not model the regression
function directly [Cal16]. Instead, it models the joint probability density of the data and
computes the motion from the density model. The time for regression is independent of this
number and solely depends on the dimension of the data set and the number of mixture
components. Thus, GMR is better suited for online motion synthesis than e.g., GPR, where the
time for regression grows with the size of the data set. Secondly, as the underlying Gaussians
are smooth functions, GMR inherently produces smooth and continuous motions.

In the context of learning adaptive task constraints for WBC, GMR has the advantage of
directly providing information about the variability in the user demonstrations in terms of full
covariancematrices. This information canbe exploited to estimate the importance of individual
constraints and relate it to the corresponding task priorities. Another advantage is that GMR
achieves good generalization capabilities, even with a small number of demonstrations.

However, as GMR uses the means of the posterior probabilities to predict the motion, it will
produce skills that average over the given user demonstrations. In case of having e.g., two
different modes in the data set (two distinct clusters which are equally probable), this is an
undesirable property, since none of the modes will be correctly represented. In this case,
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an alternative to GMR is to sample on the joint probability distribution represented by the
GMM [Bis06]. By providing a confidence interval that the sampled data point should be
contained in, we can control the degree of how much averaging between different modes in
the data set is allowed.

Generalization to Unknown Contexts

Applying GMM-GMR to learn a demonstrated task has the purpose of achieving certain
generalization capabilities. That is, the learned model is supposed to generalize with respect
to novel, previously unseen situations. To achieve this, we perform user demonstrations in
several different contexts, i.e., variations of the considered task. As already mentioned, we
describe context as vector κ ∈ RC and map categorical variables to real-valued numbers by
the means of simple one-hot encoding. Previous approaches for learning task constraints,
like the one described by Calinon [Cal16], mostly generalize over start and/or goal positions
for a given motion. The idea of introducing categories as context variables is that we want to
generalize over more severe context changes. As an example, consider the task of carrying
an object. Variations of the task may include changes in object geometry or weight, the
way of task execution, e.g., allow/forbid tilting the object, and the robot morphology, e.g.,
executing the task with a single arm or with a dual-arm robot. In WBC such changes can be
represented by an appropriate modification of the soft task priorities of certain tasks. For
example, if an object may be tilted during execution, the soft task priorities related to the
object orientation can be set to a low value, such that the robot can execute additional tasks
instead, e.g., avoiding obstacles.

One problem with Gaussian Mixture Models is the selection of the number of components
or mixtures. If it is chosen too large, the resulting model may represent the training data
accurately, but does not generalize well to previously unseen samples. The variant of GMM
that we employ here, DPGMM, allows to infer the number of active components from data,
with the downside of requiring additional hyper-parameters to tune. The most important
hyper-parameter is theweight concentration prior γ. A small value of γ setsmost component’s
weights to zero, which leads to a small number of active components in practice. A large
value of γ produces an equally distributed weight concentration over all components,
which corresponds to having a many active components. To achieve the best generalization
capabilities, we optimize the weight concentration prior and other hyper-parameters of the
DPGMM using grid search. The training data is selected using leave-one-out cross validation.
We use data from each context as a holdout set once and train on the data acquired in all
remaining contexts. Finally, we test the resulting model in a context that the model has not
seen before.

4.5.3 Results

This section presents the experimental evaluation of the PbD-based approach for learning
task constraints.
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(a) Rotate object: Rotating an object
by 90° degrees

(b) Human-Robot Collaboration: Col-
laborative transport of a bulky object

(c) Assembly: Connecting a tube and
a connector piece

Figure 4.5: Kinesthetic teaching of dual-arm manipulation tasks, screenshots from
video [MK21]

Experimental Setup

The experiments are conducted on the iMRK system as described in Section 1.2. Initially, we
must select suitable task frames. We select the base frame of the robot, denoted as Base, and
the gripper frames, denoted as Left EE and Right EE. The corresponding task constraints are
denoted as Base-Left EE, Base-Right EE and Left EE-Right EE. Having three 6-dimensional
Cartesian task constraints, we get M � 18 pose and twist variables, respectively. For each
context, we perform D � 10 user demonstrations with a varying start pose. The acquired task
trajectories are resampled to S � 200 samples. The robot model is based on the Unified Robot
Description Format (URDF) [Sys21], which supports mechanical tree structures with serial
chains of rigid bodies, connected by rotational and prismatic joints. It provides kinematic
information to the underlying WBC implementation we use here (see Section 4.3).

Our approach is evaluated in 3 different manipulation tasks. Table 4.2 shows a summary of
all contexts and context variables.

RotateObject In this task the robot is supposed to rotate a rigid object by 90◦ (see Figure 4.5(a)).
Variants of the task include the starting pose, the size of the object (the width is varied
between 0.3m and 0.5m), the direction of rotation (clockwise/anticlockwise) and the robot
morphology (use of left arm, right arm or both arms). In total 14 different contexts are
obtained, which can be described by C � 4 context variables.

Human-Robot Collaboration Here, a human carries a bulky object in collaboration with
the robot (see Figure 4.5(b)). Variants of the task include the starting pose, the way of task
execution (allow/forbid tilting the object during transport) and the robot morphology (use
of left arm, right arm or both arms). In total 6 different contexts are obtained, which can be
described by C � 3 context variables.

Assembly In this task the robot is supposed to assemble a tube and a connector piece (see
Figure 4.5(c)). Variants of the task include the starting pose and the robot morphology (use
of left arm, right arm or both arms). In total 3 different contexts are obtained, which can be
described by C � 2 context variables.
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Rotate Object

# Description OS LA RA CW

R11 Rotate obj. 0.30m clockwise 0.3 1 1 1
R12 Rotate obj. 0.35m clockwise 0.35 1 1 1
R13 Rotate obj. 0.40m clockwise 0.4 1 1 1
R14 Rotate obj. 0.45m clockwise 0.45 1 1 1
R15 Rotate obj. 0.50m clockwise 0.5 1 1 1

R21 Rotate obj. 0.30m anticlockwise 0.3 1 1 0
R22 Rotate obj. 0.35m anticlockwise 0.35 1 1 0
R23 Rotate obj. 0.40m anticlockwise 0.4 1 1 0
R24 Rotate obj. 0.45m anticlockwise 0.45 1 1 0
R25 Rotate obj. 0.50m anticlockwise 0.5 1 1 0

R31 Rotate obj. 0.50m left arm anticlockwise 0.5 1 0 0
R32 Rotate obj. 0.50m left arm clockwise 0.5 1 0 1

R41 Rotate obj. 0.50m right arm clockwise 0.5 0 1 1
R42 Rotate obj. 0.50m right arm anticlockwise 0.5 0 1 0

Human-Robot Collaboration

# Name AT LA RA

H11 HRC no tilt 0 1 1
H12 HRC with tilt 1 1 1

H21 HRC no tilt left arm 0 1 0
H22 HRC with tilt left arm 1 1 0

H31 HRC no tilt right arm 0 1 0
H32 HRC with tilt right arm 1 1 0

Assembly

# Name LA RA

A11 Assembly 1 1
A21 Assembly left arm 1 0
A31 Assembly right arm 0 1

Table 4.2: Contexts and context variables used for experimental evaluation, OS - Object Size,
CW - Clockwise rotation, LA/RA - Left Arm/Right Arm, AT - Allow Tilt

The experiments are illustrated in Figure 4.5, which shows screenshots from different
videos [MK21].

Reproduction of Task Constraints

In this section, we evaluate the capability of the approach to generalize with respect to
previously unseen situations, i.e., different variants of the demonstrated task. These variants
are described by the means of the context vector κ. As mentioned before, we fit a joint
distribution p(v, x, κ) to context data and task constraints by using a DPGMM. We use a
DPGMM implementation provided by Pedregosa et al. [Ped+11]. Regarding GMR we use
the approach described by Fabisch [Fab21]. We select K � 50 for the number of mixture
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Figure 4.6: Results when reproducing task constraints in previously unseen context: Gray:
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Dashed: Right Arm (constraint Base-Right EE), Red Dashed: Reproduction in
previously unseen context

components and let the DPGMM compute the effective number of mixtures. Reproduction of
the task constraints and soft task priorities is achieved as described in Algorithm 1.

The results are displayed in Figure 4.6 and explained in the following.

Rotate Object In the first case, the DPGMM is trained for clockwise rotation direction
using both arms. We only use data obtained in the contexts {R11 , R13 , R15} for model
fitting. Figure 4.6(a) illustrates the reproduction results in the test contexts {R12 , R14}, which
correspond to object sizes, which are not contained in the training set. We only display
the x yz-position for the sake of clarity. The DPGMM generalizes well over the size of the
manipulated object. Figure 4.7(a) shows video snapshots of the experiment.

Secondly, the DPGMM is trained for clockwise rotation direction using both arms and
anticlockwise rotation direction with only a single arm. Thus, we only use data obtained
in the contexts {R11 . . . R15 , R31 , R32 , R41 , R42} for training. The learned model is evaluated
using anticlockwise rotation using both arms. This variant of the task corresponds to the
contexts {R21 , . . . , R25}, which are unknown to the learned model. The results are illustrated
in Figure 4.6(b). The DPGMM is able to reproduce the task with both hands in anticlockwise
rotation direction, a variant that is not included in the training set.

Human-Robot Collaboration In this case, the model is trained using only a part of the
demonstrations (D � 6) for a fixed context (H11). Each of the demonstrations has a different
starting pose. The remaining demonstrations (D � 4) with unknown starting poses are used
for evaluation. The results are illustrated in Figure 4.6(c). The model is able to generalize
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(a) Reproduction of the Rotate Object task in context R12
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(c) Reproduction of the Assembly task in context A11

Figure 4.7: Results on reproduction of task constraints, screenshots from video [MK21]

over varying starting poses. Like before, we only show the x yz-position. Figure 4.7(b) shows
video snapshots of the experiment.

Assembly Finally, the DPGMM is trained with D � 6 demonstrations of the assembly task.
Each demonstration has a different starting pose. We use a fixed context A11 here. The
remaining D � 4 demonstrations with unknown starting poses are used for evaluation. The
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Figure 4.8: Learning curves for the Rotate Object task, x-axis: Number of training samples, y-
axis: mean absolute reproduction error for the contexts R11 . . . R15 and R21 . . . R25

results are displayed in Figure 4.6(d). Again, the approach can generalize over previously
unknown starting poses. Figure 4.7(c) shows video snapshots of the experiment.

Model Performance We analyze the performance of our approach using the contexts
(R11 . . . R15) and (R21 . . . R25) of the Rotate Object task (see Table 4.2). The model is trained
with all but one of these contexts using grid search and leave-one-out cross validation for
hyper-parameter tuning. Then we evaluate the resulting model by measuring the error
between the mean of the demonstrations and the reproduced motion (predictions made by
the model) for the remaining (unknown) context. Every context is used once for evaluation,
so we perform C evaluations in total. As a performance measure we use the mean absolute
error (MAE) over all evaluations.

Figure 4.8(a) shows the learning curve (number of training samples vs. MAE including a
single standard deviation depicted as error bars) for the rotate object task. The motion can
be reproduced reliably in unknown contexts with low error (approx. 2cm on average). In
Figure 4.8(b) we compare the GMR learning curve with other regression methods used for
motion synthesis. It shows that GMR requires a small number of training samples to achieve
good generalization capabilities (low reproduction error in unknown contexts) and provides
a low overall reproduction error in general.

Estimation of Soft Task Priorities

In this section, we evaluate the ability of the approach to estimate soft task priorities and
adapt them

1. in a temporal manner, i.e., during task execution
2. with respect to different aspects of the tasks, e.g., different task variables receive

different soft task priorities depending on their importance
3. according to the current context

As described in Section 4.5, we estimate the task priorities from the variance in the user
demonstrations according to Equation (4.10).

2GMR - Gaussian Mixture Regression, GBR - Gradient Boosting Regression, RFR - Random Forest Regression,
DTR - Decision Tree Regression, GPR - Gaussian Process Regression, SVR - Support Vector Regression, MLP -
Multi-layer Perceptron, All implementations are taken from scikit-learn [Ped+11]
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(a) Rotate Object task (only x-position, fixed context R15).
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(b) Human-Robot Collaboration task (only φ-orientation), Reproduction in context H11: Without tilting

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

Ba
se

-L
ef

t E
E

mean
prediction
raw data
2*predicted std_dev

t [s]

 [r
ad

]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

Ba
se

-L
ef

t E
E

t [s]

w
x

(c) Human-Robot Collaboration task (only φ-orientation), Reproduction in context H12: With tilting

Figure 4.9: Estimation of soft task priorities: Temporal, inter-constraint and contextual adap-
tation. Left: Reproduction of task constraints and variance, Right: Estimation of
task priorities according to (4.10).

Temporal & Inter-Constraint Adaptation We use the Rotate Object task to illustrate the
ability of temporal and inter-constraint adaptation of the approach. Figure 4.9(a) shows the
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Figure 4.10: Comparison of the reproduction error using three different methods for task
prioritization: Estimated soft task priorities (approach described in Section 4.5),
manually selected soft task priorities (blue) and estimated strict hierarchies as
proposed by Silvério et al. [Sil+19] (orange).

reproduction of this task (only x-axis), the user demonstrations, their mean and the estimated
confidence interval 2σ. Since the demonstrations are performed from different starting poses,
the result initially shows a large variance for Base-Left EE and Base-Right EE. This variance
becomes smaller during task execution, since the object is moved to a similar end pose in
each demonstration. The corresponding task priorities are low in the beginning of the motion
and increase towards the end. In contrast, the constraint Left EE - Right EE has a low variance
and, accordingly, a large task priority during the entire motion. The reason is that the relative
motion of the grippers is constrained by the rigid object that they are carrying. The resulting
soft task priorities reflect the importance of the different constraints. In this case, the relative
pose of the grippers is more important than the pose of each individual gripper. Also, it is
shown that the soft task priorities are adapted correctly during task execution.

ContextAdaptation Figures 4.9(b) and 4.9(c) show the effect of estimating soft task priorities
in different contexts for the Human-Robot Collaboration task (only φ-rotation). For evaluation,
we use the contexts H11 (Figure 4.9(b)) and H12 (Figure 4.9(c)). Since we allow tilting the
carried object during the motion in context H12, the variance is large, and the corresponding
task priority drops during task execution. In contrast, the task priority in context H11 is high
throughout the whole motion. A video demonstrating the contextual adaptation of the task
priorities can be found with the related publication [MK21].

4.5.4 Comparison of Different Approaches for Task Prioritization

In this section we compare three different approaches for task prioritization:

i. Our approach for estimating soft task priorities using GMR as described in Section 4.5.
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ii. Manually selected soft task priorities. Here we select a fixed value w � 1 for all task
priorities during the complete motion.

iii. Strict hierarchy estimation from data as described by Silvério et al. [Sil+19].

The latter approach enforces strict prioritization through consecutive null space projections
of the respective task Jacobians. The task hierarchy is thereby estimated from the variance in
the user demonstrations, given a set of candidate hierarchies. The idea is that hierarchies
with a low relevance produce a higher variability during demonstration than hierarchies
with high relevance. For movement synthesis the candidate joint space velocities generated
by each hierarchy are fused using a soft weighting scheme, where a high variance in the user
demonstrations corresponds to a low priority and vice versa.

For evaluation, we train the models using all but one of the contexts of a given task and
measure the reproduction error for the remaining, previously unknown context. Again, we
consider three task constraints, denoted as Base-Left EE (left), Base-Right EE (right) and Left
EE-Right EE (relative). For the approach described by Silvério et al. [Sil+19], we must select a
set of candidate hierarchies in advance. For simplicity, we select each combination, given the
three task constraints:

priority highest medium lowest

h1 left right relative
h2 left relative right
h3 right left relative
h4 right relative left
h5 relative right left
h6 relative left right

The evaluation results are shown in Figure 4.10. As before, we evaluate the MAE between the
mean of the user demonstrations and the predicted motion in different contexts.

From these figures we can derive the following results: (1) Our approach for estimating
soft task priorities results in a lower reproduction error compared to the use of fixed task
priorities. Apart from that, it allows a bigger flexibility for executing additional tasks like e.g.,
collision avoidance. (2) Our approach results in a lower reproduction error when comparing
to the method described by Silvério et al. [Sil+19] (fusion of strict hierarchies). This is due
to the following reasons: In all three evaluation tasks, we have an over-constrained case (18
constraints, but only 14 degrees of freedom). Obviously, strict prioritization is not useful in
such a case since it results in a bad tracking performance for the tasks with lowest priority.
Fusing the candidate hierarchies with a soft weighting scheme cannot overcome this issue,
at least not with the training data that we acquired. (3) The mean reproduction error of
our method is in the magnitude of around 0.005m − 0.02m. Since we are not regarding
high precision tasks here and the KUKA robots have integrated compliance controllers that
compensate for minor inaccuracies, the resulting reproduction errors are acceptable to us.
Further improvements can be made by obtaining more examples from user demonstrations.
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4.6 Alternative Encoding: Probabilistic Movement Primitives

In this section, we describe an alternative approach for encoding contexts and task constraints
based on Probabilistic Movement Primitives (ProMPs). We adapt the approach described in
the previous section regarding two aspects. Firstly, we employ ProMPs as defined in (2.28) as
motion model. To represent the actual trajectory, we use a mixture of radial basis functions
(RBFs) in the ProMP. Secondly, we apply a hierarchical approach for contextual adaptation.
As ProMPs cannot directly encode context variables, we use GMMs to model the mapping
from context to ProMP weights. From the estimated weight vector, we can reproduce mean,
and variance of the movement given the initial position x0 of all task constraints. ProMPs
have similar characteristics like ordinary DMPs, that is they can be conditioned according to
a new starting or ending position and allow temporal scaling. Apart from that, when being
learned from multiple demonstrations, ProMPs provide information about the variability of
the demonstrated trajectories in terms of full covariance matrices.

4.6.1 Probabilistic Encoding and Reproduction of Task Constraints

As in Section 4.5, wewant to estimate the task constraints (x(t), v(t)) alongwith the associated
soft task priorities w(t) for a certain context. Given a training data set ξ � {K,X,V} obtained
from user demonstrations, we derive a probabilistic model that is supposed to encode context
and task constraints. In contrast to the approach in Section 4.5.1, we first fit a ProMP to each
demonstration and obtain the corresponding ProMP weights w. The weights are computed
using a linear regression over the poses in the demonstrated trajectory. From the new data set,
consisting of context data and ProMP weights, we model the joint probability distribution:

p(κ,w) �
K∑

k�1
πkN(κ,w|µk ,Σk) (4.11)

Again, θ � {πk , µk ,Σk}Kk�1 are the model parameters denoted as mixing weights, means and
covariance matrices of the Gaussian distributionsN(κ,w). From the conditional distribution
p(w|κ), we can now obtain the ProMP weights w for a certain context κ by using Gaussian
Mixture Regression. Having computed the ProMP weights, we can compute the probability
of observing the task constraints (x(t), v(t)) given an initial pose x0 as:

p(xt , vt |w, x0) �
∏

t
N(xt , vt |ΦT

t w,Σt) (4.12)

whereΦt is the RBF matrix. Here, we apply RBFs of the form φ(r) � exp
(
a(r − c)2

)
, where

the centers c are equally distributed in the interval [0, 1] and the factor a is chosen such
that the RBFs overlap to a certain degree. The mean values of this probability distribution
reproduce the task constraints in the context κ and for the initial pose x0. From the trajectory
variance, we can get an estimate of the soft task priorities according to (4.10).
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Figure 4.11: Kinesthetic teaching on the RH5 humanoid. Illustration of task frames and
constraints.

4.6.2 Results

Experimental Setup

We evaluate the ProMP-based approach for estimating task constraints and their associated
priorities on the humanoid robot RH5 shown in Figure 1.3. As WBC approach, we employ a
variant of the QP in (2.15), which includes rigid contact constraints for the RH5 floating base
model:

minimize
Ûq

∑P
i�1

(
JW,i Ûq − vd ,i

)
2

subject to J j
c Ûq � 0, ∀ j

Jcom Ûq � vd ,com

(4.13)

Again, JW,i is the weighted Jacobian and vd ,i the desired spatial velocity of task i, respectively.
Each spatial velocity is generated by a Cartesian pose controller as in (4.2). The constraint
J j

c Ûq � 0 ensures rigid, non-moving contacts, where J j
c is the contact Jacobian of contact point

j. In this case we have at least two rigid contacts of the feet with the ground floor, j � {1, 2}.
The constraint Jcom Ûq � vd ,com ensures that the CoM remains within the support polygon of
the robot feet, such that the overall balance of the system is maintained. In contrast to (4.1),
we formulate the task constraints, which we attempt to learn from user demonstrations,
within the cost functional of the QP. In doing so, we combine expert knowledge considering
the appropriate specification of the CoM controller with task constraints learned from
demonstration. Figure 4.11(a) illustrates the task frames and constraints used for experimental
evaluation.

As in Section 4.5.3, we perform kinesthetic teaching to record training data for different
tasks as illustrated in Figure 4.11. We vary the context in between the demonstrations, i.e.,
we perform the experiments considering different variants of the tasks. For each context, we
perform D � 10 user demonstrations, in which we record the task constraints (x(t), v(t)) for
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Rotate Panel

# Description RA CW

R11 Rotate Panel 30◦ clockwise 0.5236 1
R12 Rotate Panel 60◦ clockwise 1.0472 1

R21 Rotate Panel 30◦ anticlockwise 0.5236 0
R22 Rotate Panel 60◦ anticlockwise 1.0472 0

Wipe Whiteboard

# Name WA CW AW HO LA RA

W11 Wipe Board 40◦ clockwise left 0.6981 1 0 0 1 0
W12 Wipe Board 50◦ clockwise left 0.8727 1 0 0 1 0
W13 Wipe Board 60◦ clockwise left 1.0472 1 0 0 1 0
W14 Wipe Board 70◦ clockwise left 1.2217 1 0 0 1 0
W15 Wipe Board 80◦ clockwise left 1.3962 1 0 0 1 0

W21 Wipe Board 40◦ anticlockwise left 0.6981 0 1 0 1 0
W21 Wipe Board 40◦ horizontal left 0.6981 0 0 1 1 0

W31 Wipe Board 40◦ clockwise right 0.6981 1 0 0 0 1
W32 Wipe Board 40◦ anticlockwise right 0.6981 0 1 0 0 1
W33 Wipe Board 40◦ horizontal right 0.6981 0 0 1 0 1

Place Object

# Name TH LA RA

P11 Place Object 77cm left 0.77 1 0
P12 Place Object 80cm left 0.80 1 0
P13 Place Object 83cm left 0.83 1 0
P14 Place Object 85cm left 0.85 1 0
P15 Place Object 87cm left 0.87 1 0

P21 Place Object 77cm right 0.77 0 1
P22 Place Object 80cm right 0.80 0 1
P23 Place Object 83cm right 0.83 0 1
P24 Place Object 85cm right 0.85 0 1
P25 Place Object 87cm right 0.87 0 1

Table 4.3: Tasks and context variables used for experimental evaluation on RH5, RA - Rotation
angle, WA - Whiteboard Angle, CW - Clockwise, AW - Anticlockwise, HO -
Horizontal, LA/RA - Left Arm/Right Arm, TH - Table Height

each pair of the task frames left, right, base and world. The resulting trajectories are resampled
to contain S � 200 samples each.

The following tasks are used for experimental evaluation (see Table 4.3 for an overview):

Rotate Panel The RH5 humanoid rotates a solar panel with two arms (Figure 4.11(a)). The
task is taken from the storyline of the TransFit project3. We vary the rotation angle (30◦ , 60◦)
and the rotation direction (clockwise, anticlockwise), such that we get C � 2 context variables
and 4 different contexts in total.

3 The TransFit project is funded by the German Federal Ministry of Economic Affairs and Energy (BMWi) as well
as the German Aerospace Center (DLR), Grant number 50RA1701
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Wipe Whiteboard The robot is supposed to wipe a whiteboard using a whiteboard cleaning
sponge (Figure 4.11(b)). We vary the tilt of the whiteboard (40◦ − 80◦), the type of wiping
motion (circular motion clockwise/anticlockwise, horizontal motion) and the arm to be used
(right/left arm). We get C � 6 context variables and record 10 different contexts.

Place Object The robot is supposed to place an object on the table with one hand, while
holding to a vertical bar with the other hand (Figure 4.11(c)). We vary the height of the table
(77cm − 87cm) and the arm to be used for placing the object. We get C � 2 context variables
and we record 10 different contexts here.

Reproduction of Task Constraints

From the data obtained in user demonstrations as illustrated in Figure 4.11 we learn a
hierarchicalmodel as described in Section 4.6.1. The task constraints (x(t), v(t)) are represented
as ProMPs. For each demonstration, we fit a ProMP to the task constraints and obtain the
corresponding ProMP weights. Then, we model context data and ProMP weights as an upper
level GMM with K � 10 mixture components. From this model, we can obtain the ProMP
weights for a given context using GMR. The approach also allows us to generalize with
respect to previously unseen contexts. From the ProMP described by the estimated ProMP
weights ŵ, we obtain the task constraints (x̂(t), v̂(t)) as well as the soft task priorities ŵ(t)
according to (4.10).

Using this approach, we reproduce the tasks Rotate Panel,Wipe Whiteboard and Place Object on
the RH5 humanoid (see Figure 4.12). In all three cases RH5 is standing freely, integrating
manually specified CoM-control with the learned task constraints in order to safely maintain
balance while manipulating with one or two arms. Figure 4.13 shows the reproduced task
trajectories (only left arm position). In Figure 4.13(a), the results on the Wipe Whiteboard
tasks are shown. The approach can generalize with respect to a varying inclination of the
whiteboard with respect to the floor. While we train the hierarchical model with the contexts
W11 ,W13 ,W15 corresponding to inclinations of 40◦ , 60◦ , 80◦ (blue sold lines), we evaluate the
model in the contexts W12 ,W14, which correspond to inclinations of 50◦ , 70◦ (red dashed
lines). Figure 4.13(b) shows the results on the Place Object task. As the power drill is too heavy
to allow safe manipulation with the RH5 grippers, we evaluate the task with a box of the same
height as the power drill. The plot shows that we can generalize the task constraints with
respect to varying table heights, which correspond to varying target locations of the handled
object. Again, we train the model in several contexts, in this case P12 , P13 , P15 corresponding
to table heights of 80cm , 83cm , 87cm, and evaluate it with the previously unknown context
P14, which corresponds to the table height 85cm.

Comparison to GMM-GMR

In this section, we compare the hierarchical, ProMP-based method with the end-to-end
approach using GMM-GMR as described in Section 4.5.3. As training data, we use the
Rotate Object data set obtained by kinesthetic teaching on the KUKA dual arm system (see
Figure 4.5(a)). We only consider the contexts R11 , . . . , R15 , R21 , . . . , R25 (see Table 4.2) for
training. Both models are trained using grid search and leave-one-out cross validation for
hyper-parameter tuning. The most important hyper-parameter for the GMM is the number
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1 2 3 4

(a) Rotate Panel, Context R12

1 2 3 4

(b) Wipe Whiteboard, Context W13

1 2 3 4

(c) Place Object, Context P13

Figure 4.12: Reproduction of task constraints using the ProMP-based approach



68 4 Learning Context-Adaptive Task Constraints from Demonstration

x-position [m]
0.080.040.00

y-position [m]

0.1

0.0

0.1

z-position [m
]

0.08

0.04

0.00

80 deg
70 deg

60 deg

50 deg

40 deg

(a) Wipe Board Task, Generalization over varying
tilt angles

x-position [m]

0.0

0.5

1.0

y-position [m]0.30

0.45

0.60

z-
po

si
tio

n 
[m

]

0.35

0.40

0.45

80cm
83cm

85cm
87cm

(b) Place Object Task, Generalization over different
table heights

Figure 4.13: Results on reproduction of task constraints on the RH5 robot, left arm position.
Blue solid: Known contexts, Red dashed: Reproduction in unknown context.

of mixture components. For the ProMP-based approach, we have the number of GMM
components for the context mapping on the one hand and the number of basis functions for
shaping the actual movement primitive on the other. The shape and parameters of the RBFs
remain fixed during grid search. For evaluation, we train the models with all but one of the
given contexts andmeasure theMAE between the demonstrations and the reproducedmotion
for the remaining, previously unseen context. Every context is used once for evaluation, so
we perform 10 evaluations in total. Figure 4.14 shows the results of this evaluation. Note that
we only show the accuracy on the position variables here and leave out the orientation values.
However, the rotational error between demonstration and reproduced motion shows similar
results.

Both approaches perform similarly on average. We obtain an overall MAE of 0.0269±0.0116m
for GMM-GMR and 0.0270 ± 0.0151m for the ProMP-based approach. However, the GMM-
GMR approach requires more time for fitting and prediction. Especially the prediction time
could be a burden for real-time applications. We found that the ProMP-based approach
requires 0.5 − 1 ms for predicting the next data point on average, while GMM-GMR is slower
by a factor of 10 when using the optimal set of hyper-parameters acquired through grid
search. A disadvantage of the ProMP-based approach is that is can only be applied if the
context is constant throughout the entire task execution. If the context suddenly changes, a
new set of ProMP weights must be acquired, which brings additional computational costs.
Furthermore, a smooth task space trajectory cannot be ensured in this case.
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Figure 4.14: Comparison of the GMM-GMR and the ProMP-based approach for the Rotate
Object data set obtained on the KUKA dual-arm robot.

4.7 Discussion

In this chapter, we introduce a PbD-based approach to derive task constraints and associated
priorities of a whole-body controller. We found that the use of PbD in combination with
WBC offers an intuitive way to program multiple simultaneous tasks on redundant robots,
reducing the effective amount of time spent with manual tuning and evaluation of task
specifications. Furthermore, the introduced methods can generalize task constraints and
priorities over context changes using Gaussian Mixture Regression. As a result, we achieve
an improved performance compared to manual tuning and the human expert is relieved
from the burden of having to reprogram the task for every novel situation. Instead, the
generalization capabilities of the model can be exploited. Furthermore, we showed that
the developed approach outperforms a state-of-the-art method, which relies on a weighted
mixture of strict priorities [Sil+19].

On the downside, the PbD-based approach described in this chapter obviously relies on
the quality of user demonstrations. These must reflect the constraints of the demonstrated
task. If the user demonstrations do not cover the important aspects of the task, the estimated
task priorities might be suboptimal, e.g., the solution might be unnecessarily over- or under-
constrained. For example, when teaching a robot to place an object on a table, its motion is
obviously constrained in the direction perpendicular to the surface (z-direction), while it can
place the object quite freely somewhere on the table (xy-direction). The user demonstrations
should address this by varying the target position on the surface as much as possible. This
results in a high variance in xy-direction and a low priority for the corresponding constraints
according to (4.10). Conversely, the z-direction is assigned a low variance and a high priority.
This way, the resulting task priorities will allow the robot to fulfill additional tasks in
xy-direction like e.g., obstacle avoidance. This simple example shows that a thorough design
of the experiments for data acquisition is a crucial part of the approach. Active learning
methods can be useful here to extend the programming-by-demonstration paradigm and
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supply the user with hints on "what to teach next" (see e.g., the work presented by Calinon
and Billard [CB07]).

In the developed PbD workflow there are still some manual steps to consider. Firstly, the user
must choose the relevant task frames in advance. Although this choice is trivial in many cases,
there might be some tasks where a certain expertise is required. In the proposed workflow,
the number of task constraints is related to the number of combinations of the selected
task frames. As the computational effort quickly grows with the number of constraints, the
task frames should be selected with care. As an additional improvement, the information
whether a task frame introduces redundant information on the task can be derived from
data. This way, irrelevant task frames can be discarded before fitting the model. Secondly,
the identification of the current context must be done by the user in a manual fashion. An
automatic identification of the current context is out of the scope of this thesis. Automatizing
this step requires classifying the current context based on sensor data of the robot, given
the experience of previously demonstrated tasks. In addition, the system should be able to
distinguish a novel, previously unseen context from the known ones. Both problems are
considerable challenges in real-world applications.

Throughout this thesis, we partly use categorical variables to represent context in order to ease
labeling of the demonstrations. Although Gaussians are usually not optimal for modeling
categories, it could be shown that GMMs are well enough able to fit categorical context data if
a suitable regularization of the model parameters is done. In future, it is worth investigating
different representations of the categorical variables like, e.g., binomial distributions.

In the presented approach, we focus on estimation of soft task priorities. It can be shown that
reasonable soft priorities can be estimated from data, which allows temporal and contextual
adaptation of the task constraints, while providing a means to automatically identify the
relative importance of the demonstrated subtasks. However, there are situations where task
hierarchies provide better results than soft task priorities. Especially in the over-constrained
case, where the number of task variables is larger than the number of robot dof, there may be
subtle differences. When using soft task prioritization in an over-constrained case, a residual
error will remain. The distribution of this error over the tasks depends on the choice of soft
task priorities. If all priorities are set to the same value, the error will equally distribute over
all tasks. When using task hierarchies, the higher prioritized tasks will produce zero residual
error, while the task with lowest priority will show the largest error. However, when the
desired control actions of the individual tasks are orthogonal, hierarchical controllers can
exactly resolve over-constrained cases and produce zero error in task space. To allow the
estimation of both, strict and soft task priorities, as required by hybrid WBC approaches, one
future research direction will be to extend the presented approach to task hierarchies.

The user demonstrations provided may be suboptimal, i.e., they might not represent the
structure of the overall task correctly. Consequently, the estimated task constraints and
priorities might as well be suboptimal. Thus, we present optimization approaches for task
priorities in the following chapter, which are meant to improve the performance of the
whole-body controller when deployed on the target system.
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Optimization of Task Priorities 5
In this chapter we present methods to optimize task priorities used in WBC. The goal is to
improve the performance of a whole-body controller when deployed on the target robotic
system. We focus on soft task priorities, which may be constant during task execution or a
function of time. As we do not have prior knowledge about the shape of the cost function,
we apply black-box optimization methods. Optimization may take place in simulation or
on the actual robot. We evaluate the proposed methods on the iMRK robot illustrated in
Figure 1.3.

The original contributions presented in this chapter are

i. A novel method for human-robot collision avoidance using WBC
ii. An approach to automatically derive optimal control parameters and soft task priorities

within a WBC framework based on black-box optimization, which provides improved
control performance compared to manual tuning

iii. A comparison of different cost functions for black-box optimization of task priority
functions in WBC.

This chapter is organized into two main sections. Section 5.1 presents an approach for
black-box optimization to automatize selection of time-fixed soft task priorities and other
WBC control parameters. The approach is evaluated in a human-robot coexistence scenario
with the focus on real-time collision avoidance. In Section 5.2 we consider optimization
of task priorities as a function of time. Starting with the results obtained in Section 4.5.3,
we apply black-box optimization to enhance the resulting soft task priority functions. We
evaluate the approach on an industrial dual-arm robot and compare different cost functions
used in literature.

5.1 Optimizing Task Constraints in Human-Robot Collision
Avoidance

In this section, we describe an approach for safe human-robot coexistence based on WBC. We
automatically derive optimal task parameters for the whole-body controller using black-box
optimization. The approach improves the control performance in transient zones between
constrained and unconstrained motion in terms of smoothness.

5.1.1 Motivation

Safe collaboration of humans and robots is of major interest in industrial manufacturing.
The increasing number of collaborative lightweight robots applied in industry allows (to
some extent) the removal of fences usually separating robots and workers. The use of modern
sensor technologies and processing approaches allows external monitoring of collaborative
workspaces and tracking of the human worker inside the dangerous zone. By maintaining a



72 5 Optimization of Task Priorities

minimal distance to the robot, the safety of the worker can be ensured. Existing approaches
in the industrial domain usually perform a full stop of the robot as soon as the sensors detect
a violation of the minimum distance. However, in order to enable closer collaboration as,
e.g., in shared assembly and reduce downtime, more intelligent systems are required. These
systems must enable robots to avoid unintended collisions and find escape trajectories, if
possible, while only pausing the motion if a collision cannot be prevented.

Whole-Body Control provides a flexible approach to integrate the generation of avoidance
motions with other robotic manipulation tasks. The robot is supposed to avoid collisions with
arbitrary external objects in its workspace, while at the same time continue executing its main
task, e.g., picking and placing objects, and additional secondary tasks with lower priority.
Obstacles can be static, like a tool or a work piece that has been placed in the workspace, or
dynamic, like a human walking into the reachable area of the robot. As already described in
previous sections, WBC offers a powerful tool to specify and control complex robot tasks.
However, the solution is usually controlled by many parameters like control gains and task
priorities. In particular, the manual tuning of task priorities is time-consuming and prone
to errors. Thus, we investigate automatized methods based on black-box optimization to
identify WBC parameters in this section. We apply evolutionary methods for parameter
optimization and define a suitable fitness criterion for optimization. Although the focus
is on optimization of task priorities for WBC, we also introduce and discuss methods on
collision distance computation and avoidance control. Collision distance computation is based
on the Kinematic Continuous Collision Detection (KCCD) library for robotic self-collision
avoidance [TBF11; TF12]. We extend the library to allow distance computations between
robots and unknown external objects. Given the robot-obstacle distance vectors, we generate
suitable escape trajectories for the robot using repulsive potential fields.

5.1.2 Related Work: Collision Detection and Avoidance

In this section, we briefly describe the related work regarding the topic of collision detection
and avoidance based on optical sensors. The state of the art regarding automatic derivation
of whole-body behaviors can be found in Section 3.2.

Robot-Obstacle Distance Computation

Since real-time collision avoidance is of fundamental importance in robotics, the topic has
been widely studied and many different approaches have been developed throughout the
years. An interesting work in this regard has been presented by Flacco et al. [Fla+12]. The
presented approach computes distances between obstacles and the robot directly in a depth
image provided by a 3D camera, which is significantly faster than other robot-obstacle
distance computation methods. Later, the authors extend their approach to an integrated
framework for collision detection, reaction and avoidance [DF12]. In contrast, we compute
robot-obstacle distances in 3D space using point clouds and a 3D collision model of the robot,
which is slower. However, our approach allows us to integrate multiple different sensors
that supply point cloud data, e.g., RGB-D cameras and laser scanners. Furthermore, using a
WBC-based approach, we can integrate additional tasks like joint limit avoidance. Another
approach that applies convex hulls to represent robots and obstacles has been recently
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presented by Han et al. [Han+18]. However, the approach focuses on motion planning and
not on reactive control.

The approach for collisiondistance evaluationweuse here is based on theKCCD library [TBF11;
TF12]. KCCD uses a computationally efficient convex hull representation for rigid bodies.
The original approach is intended to be used for self-collision avoidance of complex robots
with e.g., tree structure. Here, we provide an extension to KCCD to include external objects
observed by sensor data, which is required for real-time robot-obstacle collision avoidance.

Collision Avoidance Control

Planning and control of collision avoidance behaviors is also a long-studied topic in robotics.
A lot of methods are based on the concept of artificial potential fields [Kha85]. The work
presented by Brock and Khatib [BK02], combines a method for real-time path modification
and task-consistent robot control based on repulsive potential fields. While the approach
generates task consistent avoidance motions, it is based on 2D laser scanner information. In
contrast, the approach we present here uses 3D point cloud data, which allows more complex
collision avoidance scenarios, e.g., between a human and robot sharing the sameworkspace or
performing shared assembly. Also, we extend the concept ofWBCwith black-box optimization
techniques in order to automatically discover soft priorities and other controller parameters,
which are often difficult to obtain manually.

5.1.3 Robot-Obstacle Distance Computation

In this section we provide a brief overview of our approach for real-time robot-obstacle
distance estimation. For a detailed description and evaluation, please refer to the related
publication [Mro+20].

The approach for robot-obstacle distance computation is based on 3D point clouds, which
can be obtained from different sensor sources. Here, we use RGB-D cameras as input and we
perform the following preprocessing steps:

i. Subtract the background from the depth image
ii. Perform robot self-filtering in the depth image
iii. Convert the raw depth data from multiple 3D cameras into a single point cloud
iv. Cluster the remaining points using spatial information
v. Convert the point cloud clusters into convex hulls

Figure 5.1 shows an overview on the processing steps, while a detailed description can be
found in the related publication by Gea Fernández et al. [Gea+17a]. After preprocessing steps
(i)-(iv), we have several 3D point clusters, which describe the external objects in the vicinity
of the robot (see Figure 5.1(c)). Each cluster may contain a couple of hundred to a couple of
thousand 3D points, depending on the size of the object and the resolution of the camera.

KCCD is a C++ library, which may evaluate distances between rigid bodies in real-time.
Each body is modeled as a convex volume, which is described by a finite number of support
points and a radius r. With this representation, arbitrary objects can be described, where the
accuracy of the hull depends on the number of support points used. For example, a sphere
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(a) Original scene (b) 3D point cloud

(c) Point cluster representing the external
object

(d) Convex hulls for collision distance com-
putation

Figure 5.1: Overview of the most important sensor processing steps.

can be described by with a single point and a radius vector. More complex objects like e.g., a
robot gripper may require many points and there is a need for trading off computational
complexity and approximation accuracy. KCCD requires that the user models all robots and
other collision bodies. Thus, it cannot deal with dynamic, unknown objects entering the
workspace of the robot. To overcome this limitation, we extend the KCCD library to allow
insertion of collision bodies into the model at runtime. To achieve this we provide a method to
efficiently convert point clouds into KCCD collision bodies. The result of this conversion can
be seen in Figure 5.1(a). Here, the raw point cloud cluster shown in Figure 5.1(c) is converted
into a KCCD volume using an online algorithm. A detailed description of this algorithm can
be found in the related publication by Mronga et al. [Mro+20]. Using this approach, KCCD is
able to evaluate robot-obstacle distances using the collision model of the robot and point
cloud clusters, which are wrapped by KCCD volumes. The robot obstacle distance vectors
computed by KCCD can be used to generate suitable avoidance motions, which is described
in the following section.

5.1.4 Task-Compliant Collision Avoidance using WBC

For the integration of avoidance control with other robot tasks like positioning in Cartesian
space, we use the WBC approach described by (4.1). Cartesian pose constraints are enforced
using (4.2). For avoidance motions we use repulsive potential fields, which provide a control
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Figure 5.2: Generation of avoidance motions using KCCD and potential fields.

output of vd �
(
vt , 03×1)T with

vt �


Kp

p − p0

d
S(d), if d < d0

0, else
vt ≤ v̄t (5.1)

where p, p0 ∈ R3 are the actual robot position and the position of the potential field center, d0
the maximum influence distance of the potential field, v̄t the maximum controller output or
saturation term and Kp ∈ R3×3 is a diagonal matrix containing the 3 feedback gain constants.
S(d) is a sigmoid function of the distance d � ‖p − p0‖2 between the robot and the potential
field center:

S(d) �
(
1 + eα

(
1−2 d0−d

d0

) )−1

(5.2)

The factor α � 6 is chosen empirically. If the robot is close to an obstacle, the collision
distance becomes small and the repulsive control action will be maximal, as S(d) ≈ 1. If
the collision distance d is close to the maximum influence distance d0 of the potential field,
the exponential term becomes large and S(d) ≈ 0. Thus, for d ≈ d0, the control output vd

vanishes. Figure 5.2(a) illustrates the development of the control output with respect to the
computed collision distance for kp � 3 and different d0. The Sigmoid function implements a
smooth transition if the robot enters the influence sphere of a potential field (in contrast to
e.g., piecewise linear functions). Sigmoid functions are finite, which ensures a finite repulsive
velocity and a more stable robot behavior compared to having a reciprocal (or even squared
reciprocal) dependency on the robot-obstacle distance.

To allow collision avoidance with the entire robot body, we define one avoidance controller
per robot link. The potential field center p0,i and the corresponding control point pi for the
i-th robot link are assigned to the two closest points on the collision volumes of obstacle and
robot link, respectively. This procedure is illustrated for the last two links of a KUKA iiwa
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robot in Figure 5.2(b). Using (5.1) we convert the safety distances di into equality constraints of
the form Ji Ûq � vd ,i , where vd ,i is computed according to (5.1) and Ji is the Jacobian associated
with robot link i. We integrate the collision avoidance tasks with other tasks like Cartesian
position control into the instantaneous optimization problem in (4.1). As in Section 4.3 we
use a standard QP solver [FBD08] for computing the optimal solution of this problem. The
problem is obviously over-constrained, which means that an accurate solution does not
exist, especially if multiple collision avoidance tasks are simultaneously active. To avoid
unnecessary restriction of robot motion in free space, the soft task priorities for the collision
avoidance tasks are adapted with respect to the collision distance as follows:

wi �

{
(d0 − d)/d0 , d < d0

0, else ∀i (5.3)

The weights are zero if the robot is moving far from any obstacle, so that the avoidance
behaviors do not interfere with the main task. When a robot link approaches an obstacle, the
weights gradually increase, implementing a smooth transition between unconstrained and
constrained robot motion. This way we can smoothly integrate avoidance motions with other
simultaneously running tasks.

The solution described here is governed by several parameters, namely control gains kp ,
saturation terms v̄, maximum influence distance d0 of the potential field controllers, as
well as the soft task priorities w. Manual choosing and fine-tuning these parameters can
be time-consuming and may lead to a suboptimal solution. To overcome these issues, we
introduce an automatized procedure based on black-box optimization for deriving these task
parameters. The approach is described in the following section.

5.1.5 Optimization of WBC Parameters

We propose to apply black-box optimization1 based on evolutionary techniques to generate
an optimal parameter set for WBC. The advantage of black-box optimization in general is that
we do not require detailed knowledge about the fitness landscape. However, the design of the
cost or fitness function requires particular care. Another disadvantage is that, depending on
the optimization method, many evaluations of the fitness function may have to be performed.
Thus, we rely on a simulation of the scenario for fitness evaluation.

When combining position control with collision avoidance using WBC, the given tasks have
conflicting objectives, i.e., avoidance behaviors might prevent reaching the reference position
of the manipulator. In WBC with conflicting objectives, trading off the performance of the
individual task constraints is required, a process that is typically done by manually tuning of
task priorities and other control parameters. For optimization of the parameters, a global
fitness function describing the overall robot performance is required. Here, we propose the

1 Note thatwe refer to offline optimization of the control parameters here, not to be confusedwith the instantaneous
optimization problem as in (4.1)
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following fitness function:

f � λ

( ∑
i
αi f i

cd︸    ︷︷    ︸
Collision Fitness

+
∑

j

α j

3

(
f j
ss + f j

po + f j
st

)
︸                        ︷︷                        ︸

Position Fitness

)
(5.4)

This fitness function sums up the fitness of all task constraints, divided into collision and
position fitness. The α-coefficients are weighting factors used to balance the contribution of
each individual task constraint. The individual fitness measures are computed as follows:

Steady State Error fss � S (e(tss))

Percentage Overshoot fpo � S (‖pmax − pmin)‖2)

Settling Time fst � S (tss − t0)

Min. Col. Distance fcd � S (dmin)

(5.5)

Here e � ‖pr − p‖2 is the position error2, t0, tss the start time of the motion and the settling
time of the controller, pmax , pmin are the maximum and minimum position observed during
transient behavior and dmin the minimum distance to a collision object observed during
motion. The term S is again a Sigmoid function, which normalizes the fitness measures to
the interval [0, 1]. It also inverts the slope of the functions fss , fpo , fst as they are supposed
to be maximized here. The regularization term λ is computed as follows:

λ � e
− 1−min( f i )

min( f i ) (5.6)

The term punishes results with low fitness values of individual tasks. This way, solutions that
represent a trade-off between different tasks will be favored compared to solutions where
one task is fully achieved while another task is ignored.

5.1.6 Results

For evaluation of our approach, we use the iMRK robot described in Section 1.2. The robot
control software runs on an industrial PC with Intel Core i7 4790K 4 x 4.00 GHz, while
the sensor processing part runs on a standard desktop PC with Intel Core i7-2600 CPU 4 x
3.40 GHz. The iMRK system is described in more detail by Gea Fernández et al. [Gea+17b].
The evaluation of the real-time robot-obstacle distance computation method mentioned in
Section 5.1.3 can be found in the work by Mronga et al. [Mro+20]. Here, we focus here on the
WBC-related aspects and the parameter optimization part.
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(a) Trajectory following with collision avoidance. –:
Desired end effector position, −−: Actual position,
· · ·: Soft task priority of the task constraint as in (5.3)

(b) Snapshots taken from a video of the experi-
ment [Mro21b]

Figure 5.3: Results on task-compliant collision avoidance using WBC.

Task-Compliant Collision Avoidance using WBC

We evaluate the general functionality of our WBC approach for generating suitable escape
trajectories for collision avoidance. For evaluation, we use a single arm of the iMRK system as
shown in Figure 1.3 and mount it vertically on the top plate of a table. The arm is supposed
to follow a circular end effector trajectory, while avoiding an obstacle, which is randomly
placed in the robot workspace. For obstacle detection, we use a single ASUS Xtion RGB-D
camera. The WBC control parameters are chosen as follows. For Cartesian position control as
in (4.2) we set the feedback gain and saturation values to kp ,i � 1.5, v̄i � 0.5, ∀i. The task
weights used in the optimization problem described by (4.1) are set to fixed values wi � 1, ∀i.
For the avoidance controller as described by (5.1) we set the control gain and saturation to
kp ,i � 0.05, v̄i � 0.5, ∀i and the influence distance to d0 � 0.5m. The weights of the collision
avoidance task are computed automatically according to (5.3). The results are illustrated in
Figure 5.3. The trajectory is accurately followed until the end effector enters the influence
zone of the obstacle. Here, the task priority for collision avoidance is increased and the robot
deviates from its reference path. The figure also shows that the transient behavior between
free and constrained motion is not satisfactory. Having chosen too aggressive control gains,
we observe repeated activation and deactivation of the collision avoidance task in the transient
zone. Although each task constraint performs well on its own, the combination of position
control and obstacle avoidance leads to suboptimal overall behavior in this case. As discussed
in section 5.1.1, manual parametrization of whole-body controllers can be time-consuming
and, as in this case, may lead to suboptimal results. In the next section, we evaluate our
approach for automatic derivation of WBC task parameters, which is intended to overcome
these problems.

Black-Box Optimization of WBC Parameters

We apply a genetic algorithm (GA) from the DEAP evolutionary computation frame-
work [For+12] for black-box optimization of WBC parameters. This choice is motivated
2 For the sake of readability we omit the orientation error here.



5.1 Optimizing Task Constraints in Human-Robot Collision Avoidance 79

Xr

(a) Left Arm Position task

Xr

(b) Keep Relative Pose task

d

(c) Avoid Collisions task

Figure 5.4: Illustration of tasks used in the experimental setup. The dottedwhite lines indicate
which parts of the robot are used for a task.

by the fact that the fitness function as defined in (5.4) may comprise multiple extrema due to
conflicting objectives. Finding the global maximum in such a fitness landscape can be difficult
and satisfactory results can only be achieved by using derivative-free optimization methods
like GA. Given that GAs typically need many fitness evaluations, we simulate the robot
using Gazebo [Fou21c] as a simulation environment. We program a whole-body controller
comprising three robot tasks, which are framed as task constraints in the optimization
problem (4.1). Figure 1reffig:subtasks illustrates the tasks. First, we apply a position controller
as in (4.2) to follow an end effector trajectory with the left arm (Left Arm Position task).
Secondly, the end effector of the right arm shall maintain a fixed pose with respect to the end
effector of the left arm (Keep Relative Pose task). Third, the robot is supposed to avoid collisions
with obstacles (Avoid Collisions task)3. The only obstacle is given by the vertical bar, which is in
the path of the right gripper. The position of the bar is fixed and known in this case, since we
do not want perception errors to influence the results. The experimental setup includes many
commonly encountered problems when specifying tasks for WBC, like conflicting constraints,
dual arm coordination and redundant dof. In GAs, the candidate solutions for the parameters
to be optimized are encoded as so-called individuals, which are iteratively refined using the
biologically inspired principles of mutation, crossover and selection [SGK05]. Here, each
individual encoded in the GA comprises the control parameters of the three tasks, including
the proportional control gains kp , the task weights w, the saturation terms v̄, as well as the
maximum influence distance d0 of the potential field controller. In summary each individual
comprises the following parameters:


kL

p wL v̄L

kK
p wK v̄K

kA
p dA

0 v̄A


(5.7)

The superscripts correspond to the respective tasks Left Arm Position, Keep Relative Pose
and Avoid Collisions. Note that the task weights of the avoidance controller are computed
automatically according to (5.3), thus they will only be optimized indirectly through the
influence distance d0. Since Cartesian positioning and avoidance tasks have 6 and 3 dof,

3We only consider collisions of the right gripper here. However, the solution can be extended to include all links
of the robot.
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f_L
f_A

f_K

(a) Fitness measures without regularization

Left

(b) Task weights without regularization

f_L
f_A

f_K

(c) Fitness measures with regularization

Left

(d) Task weights with regularization

Figure 5.5: GA results. Development of individual fitness measures and the global fitness
(left). Development of task weights of the Keep Relative Pose and the Left Arm
Position task (right)

respectively, we obtain 6 ·3+6 ·3+3 ·3 � 45 free parameters in total. However, for simplification
we set the parameters of all dof of a task to the same value, which reduces the number of free
parameters to 9. We initially use a population of 100 individuals, drawn randomly from the
feasible parameter space. The fitness function is chosen according to (5.4), (5.5) and (5.6) as
follows:

f � λ

(
αA f A

cd︸︷︷︸
f A

+
αL

3
( f L

ss + f L
po + f L

st)︸                  ︷︷                  ︸
f L

+
αK

3
( f K

ss + f K
po + f K

st )︸                  ︷︷                  ︸
f K

)
(5.8)

where λ is the regularization term and f i , i ∈ {A, L, K} the fitness measures for the
individual tasks (Avoid, Left, Keep). We select the weighting coefficients as αA � 0.5, αL � 0.2
and αK � 0.3.

Figure 5.5 shows the development of the fitness function and the evolution of the individuals
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Subtask Optimized Parameter Set

Step kL
p � 2.651 wL � 1.000 v̄L � 0.361

Keep kK
p � 1.578 wK � 0.919 v̄L � 0.371

Avoid kA
p � 0.001 dA

0 � 0.654 v̄A � 0.768

Subtask Manually Tuned Parameter Set

Step kL
p � 1.500 wL1.000 v̄L � 0.200

Keep kK
p � 2.500 wK � 1.000 v̄L � 0.200

Avoid kA
p � 0.100 dA

0 � 0.500 v̄A � 0.500

Fitness f L f K f A f

Optimized 0.956 0.600 0.611 0.347
Manual 0.618 0.600 0.615 0.314

Table 5.1: Optimization results: Optimized and manually tuned parameter set. Individual
fitness measures f L, f K , f A and global fitness f for the respective parameter sets

for two different cases: With regularization term (bottom row) and without regularization
term (λ � 1, top row). Given the conflict of position and avoidance control, optimal fulfillment
of all tasks is not possible. As a result, the GA may favor results where one task is fully
achieved, while the performance of another task becomes small. This problem can be observed
in Figure 5.5(a). Here, the regularization term is omitted. As a result, the GA converges
to a solution, where the task weights of the Keep Relative Pose task tend towards zero (see
Figure 5.5(b)). Consequently, the right arm does not follow the left arm at all, which leads
to high fitness for the Avoid Collisions and Left Arm Position tasks, small fitness for the Keep
Relative Pose task and an average overall fitness. The introduction of the regularization term
in (5.4) avoids such problems by punishing results with low fitness values for the individual
tasks. Figure 5.5(c) shows that a tradeoff is achieved and none of the individual fitness
functions converges to extremely small values. Also, the task weights of the Keep Relative
Pose task assume average values now. The resulting optimized parameter set is shown in
Table 5.1. We compare the optimized parameters with a parameter set that has been found by
manually tuning the individual tasks one at a time. The most prominent difference is the
proportional gain value of the Avoid Collisions task, which ends up with a low value after
black-box optimization. The resulting overall robot behavior is quite different, especially
when entering the influence distance of an obstacle. Figure 5.6(a) shows the step response of
the left end effector in the proximity of the obstacle. Obviously, the proportional gains for the
manually selected parameter set have been chosen too high for this specific scenario, which
results in a suboptimal transient behavior. In our case, the parameter optimization strategy
automatically avoids this problem by minimizing the overshoot and settling time and thus
proposing a lower proportional gain for the potential field controller. The fitness values for
the individual tasks and the global fitness for both parameter sets are also shown in Table 5.1.
As it can be seen, the Keep Relative Pose and Avoid Collisions tasks perform similarly for both
parameter sets. The Left Arm Position task on the other hand performs much worse for the
manually tuned parameter set, which is due to the long settling time of the controller, as
can also be seen in Figure 5.6(a). Having found an optimal set of WBC parameters in an
automatized manner like this, we evaluate its quality in a human-robot coexistence scenario
in the following section.
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Human-Robot Coexistence Scenario

We transfer the optimized WBC parameters found in simulation to the real robot system and
evaluate it in a human-robot coexistence scenario. The left robot arm is supposed to follow
a continuous trajectory, while a human moves into the path of the robot. Again, the right
arm end effector should maintain the relative pose to the left arm end effector. Figure 5.7
shows video snapshots of the human-robot collision avoidance. Figure 5.6(b) shows the
reference trajectory along with actual trajectory observed by using the optimized and the
manually tuned parameter set. As before, the optimized parameter set provides a smoother
transient behavior between free and constrained motion. Far away from any collision, the
end effector trajectory is followed accurately. The results suggest that the approach is able
to create optimal parameter sets for such kind of robot task in an automatized manner. In
this case, the parameter set we found provides safe and jerk-free reactions in a human-robot
coexistence scenario.
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(b) Trajectory tracking with human in the workspace
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Figure 5.6: Comparing the robot behavior for the optimized and manually tuned WBC
parameters. –: Reference trajectory,−−: Trajectorywithmanually tunedparameters,
· · · : Trajectory with optimized parameters
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Figure 5.7: Trajectory tracking and collision avoidance with a human entering the workspace
of the robot, screenshots from video [Mro21a].

5.2 Optimization of Soft Task Priority Functions

We extend the approach for optimizing WBC task parameters as described in the previous
section. While the former method optimizes fixed task parameters like control gains or soft
task priorities, we consider optimization of task priorities as function of time here. This
provides higher flexibility for complex tasks with time-varying objectives.

5.2.1 Motivation

When dealing with multiple, conflicting tasks in WBC, the choice of the prioritization scheme
is of utmost importance. For complex robots like humanoids, the number of tasks can easily
exceed a dozen, in addition to multiple constraints that must be considered simultaneously.
Strict prioritization schemes are not well suited in such scenarios. On the one hand they often
unnecessarily constrain the available robot dof and high-priority tasks may block tasks with
lower priority. On the other hand, the task hierarchy must be selected in advance, and online
switching of the task hierarchy may result in discontinuities in the control law [MKK09].
Soft task priorities are more promising here, as they allow smooth transitions between tasks,
which facilitates execution of task sequences. Furthermore, soft priorities can have temporal
profiles, which may optimally exploit the robot capabilities throughout the execution of a task.
On the downside, tuning temporal profiles of soft task priorities is a difficult, time-consuming
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task and may result in suboptimal robot behavior, e.g., in terms of controller stability and task
consistency. Consequently, there is a need to develop automatized methods for derivation of
soft task priority functions in WBC.

In this section,wepresent an approach that utilizesmachine learningmethods to automatically
optimize soft task priorities as a function of time. We start from an initial guess of the soft task
priorities obtained from PbD as described in Chapter 4. The soft task priorities derived from
user demonstrations might be suboptimal for several reasons. First, the user demonstrations
may not capture the structure of the task and the most important task constraints. Secondly,
when executing the learned tasks on the target robot, the behavior might be different from
what is expected because of sensor uncertainty or not correctly modeled constraints. Finally,
when executing task sequences, task transitions can be smoothly performed by blending
task priority functions, which is hard to model by hand though. In all three cases black-box
optimization of task priorities can be performed to improve the overall robot behavior.

In fact, machine learning can be applied with the goal of improving several aspects of
the overall robot performance in WBC, like task consistency [Sil+19; LPS16; Mod+16b],
accuracy [DRS15], ergonomics [Bus+17], safety [Mod+16a], smoothness, manipulability or
dof usage. The application of black-box optimization assumes that a suitable cost function has
been defined by the user. Several functions have been proposed in literature for this purpose.
The approaches presented by Modugno et al. [Mod+16b; Mod+16a] utilize a combination of
cumulative distance and global control effort as cost. Charbonneau et al. [Cha+18] compare
three criteria applied in a static walking task on a humanoid robot. The first, similarly
to the work presented by Modugno et al. [Mod+16b; Mod+16a], penalizes Cartesian task
error and control effort, the second focuses on robustness of the ZMP controller, the third
is a combination of both. Lober et al. [LPS16] propose a combination of position tracking
error, goal error and kinetic energy cost, even though their focus is on optimization of task
trajectories and not on soft task priorities. Dehio et al. [DRS15] apply a combination of
tracking error and energy cost. Here, the latter is implemented by minimizing the sum of
control torques generated by each individual task. This way, irrelevant tasks are filtered out
by automatically reducing their respective soft task priorities.

The selection of a global cost function for optimization requires a certain amount of expertise
and may be just as difficult and time-consuming as manual tuning of task priorities. The
quality of the obtained solution depends strongly on the choice of this function. To investigate
the effect of different cost functions, we perform an empirical comparison using functions
that can be found in literature for the optimization of soft task priorities.

5.2.2 Approach

In this section, we apply an optimization-based WBC approach on velocity level. Each task is
described as part of the cost function of an unconstrained QP:

min
Ûq
‖∑P

i�1 wi(Ji Ûq − vd ,i)‖2 (5.9)

We employ a one-dimensional soft task priority w per task in order to simplify the optimization
problem. In contrast, the approach in (2.15), employs one soft task priority per task space
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variable. We generate the control actions vd ,i by the means of a Cartesian position controller
as in (2.17). The soft task priorities are functions of time w � w(t). We model their temporal
profile using a weighted combination of radial basis functions (RBFs):

w(t , θ) �
∑

i αiΨi∑
iΨi

(5.10)

where each RBF is a represented by a Gaussian:

Ψi(t , µ, σ) � e−
1
2

(
t−µ
2σ

)2

(5.11)

The shape of each soft task priority profile is governed by a parameter set θ � {αi , µi , σi}Ki�1
comprising the weights αi , means µi and variances σi of the Gaussians. This parameter set is
learned using black-box optimization given a suitable cost function. Thereby, the soft task
priorities obtained from user demonstrations as described in Section (4.5.3) can be used as
initial guess to speed up optimization. The choice of a suitable cost function for optimization
depends on the application. When combining different objectives to one global cost function,
the global cost may be sensitive to proper scaling or weighting of the individual cost functions.
To highlight these issues, we use a combination of different optimization criteria:

Tracking Error f �
1
T
∑te

t�t0
‖et ‖2

Goal Error f � ‖ete ‖2
Kinetic Energy f �

1
T
∑T

t�0 ‖vt ‖22
Angular Jerk f � ‖Ýqmax ‖2

(5.12)

Here, e is the pose error, T is the number of time steps between start time t0 and end time
te of the task, v the spatial velocity of the robot end effector and Ýqmax the maximum jerk
(change of acceleration) in joint space. Most of these criteria have been used in literature
before, in particular Ivaldi et al. [Iva+12] give a good overview on optimality criteria in
human motor control. Here, we attempt to optimize the soft task priorities for a multi-
objective control problem. Thus, the landscapes of the cost functions will be multi-modal. For
example, when combining position control and obstacle avoidance as illustrated in Section 5.1,
optimizing the soft task priorities will be prone to local optima. To deal with this issue,
we employ the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [HOt01] for
black-box optimization, which is a stochastic, derivative-free approach that belongs to the
class of evolutionary algorithms. It is particularly well suited for complex, multi-modal cost
functions.

5.2.3 Results

In this section, we evaluate the optimization of soft task priorities for WBC using CMA-ES as
black-box optimizer. We compare the effect of using different cost functions. We apply the
criteria defined in the previous section and weighted combinations of them. As experimental
system, we use the dual-arm KUKA iiwa robot (see Figure 1.3) and apply the trajectories
obtained from the Rotate Object data set as illustrated in Section 4.5.3. In this data set, we
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observe three different tasks: Right Arm Motion (R), Left Arm Motion (L) and Keep Relative
Pose (K). As the tasks are 6-dof Cartesian tasks and the robot has 14 dof, the problem is
over-constrained. By tuning the soft task priority functions, a trade-off between the different
control objectives can be obtained. We define one soft task priority function as defined
in (5.10) per task. The parameters of the task priority functions {θL , θR , θK} comprise the
weights, means and variances of the Gaussian RBFs as in (5.11). We choose K � 10 RBFs
per task priority, thus we obtain 90 optimization parameters. As CMA-ES belongs to the
class of evolutionary algorithms, the optimization parameters are denoted as individuals.
In CMA-ES, new candidate solutions are generated from a population of individuals using
stochastic sampling. In each iteration of the algorithm, which is referred to as generation, a
cost function is evaluated for each individual. In each generation, only the most promising
candidates are kept. In the next generation a new population is generated by sampling from
a multi-variate normal distribution. Mean and variance of the distribution evolve over the
generations. Apart from the cost function, only a small number of hyper-parameters must
be tuned in CMA-ES. The most important ones are the initial variance σ0, which is related
to the exploration rate, and the number of individuals Ni per generation. As we normalize
the RBF parameters to zero mean and unit variance before feeding them in the optimizer,
we can choose σ0 � 1. The number of individuals per generation is set to Ni � 100. We
perform Ng � 300 iterations of CMA-ES, which gives us a total of 90000 evaluations of the
cost function. As it is not possible to perform so many evaluations on the real robot, we rely
on a simulation of the system. As a simulator we use the RaiSim physics engine [HLH18]. We
select the following cost functions for comparison:

f1 �
1
2
( 1

T

te∑
t�t0

‖eK
t ‖2︸        ︷︷        ︸

Tracking Cost (Keep)

+
1
T

te∑
t�t0

‖vt ‖22︸        ︷︷        ︸
Kinetic Energy (all)

)
(5.13)

f2 �
1
2
( 1

T

te∑
t�t0

‖eK
t ‖2︸        ︷︷        ︸

Tracking Cost (Keep)

+ ‖eL
te
‖2︸︷︷︸

Goal Cost (Left)

)
(5.14)

f3 �
1
3
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Tracking Cost (Keep)

+ ‖eL
te
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Goal Cost (Left)

+
1
T

te∑
t�t0

‖vt ‖22︸        ︷︷        ︸
Kinetic Energy (all)

)
(5.15)

f4 �
1
3
( 1

T

te∑
t�t0

‖eK
t ‖2︸        ︷︷        ︸

Tracking Cost (Keep)

+ ‖eL
te
‖2︸︷︷︸

Goal Cost (Left)

+ ‖Ýqmax ‖2︸   ︷︷   ︸
Smoothness Cost

)
(5.16)

The optimization results are illustrated in the Figures 5.8 and 5.9, as well as in Appendix E.
Figure 5.8 shows the initial soft task priorities obtained from user demonstrations, as well as
the resulting task priorities after optimization using the cost functions f1 , . . . , f4.

In Figure 5.8(b) it can be seen that the priority of the Keep Relative Pose task constantly assumes
a high value, while the priorities of the other tasks tend towards zero. The former effect is
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(a) Initial task priorities obtained
from PbD
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(b) Optimized task priorities, cost
function f1
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(c) Optimized task priorities, cost
function f2
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(d) Optimized task priorities, cost
function f3
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(e) Optimized task priorities, cost
function f4

Figure 5.8: Resulting soft task priorities for the three tasks after optimization with CMA-ES

related to the first part of the cost function f1, which minimizes the tracking error of the
Keep Relative Pose task. The latter effect is resulting from the kinetic energy minimization
of f1, which drives the soft priorities of the less important tasks towards low values. This
way, irrelevant tasks can be filtered out and the remaining dof of the robot can be utilized
to perform additional tasks. The resulting trajectories shown in Figure E.1 in the appendix
illustrate that the Keep Relative Pose task is tracked most accurately, while the tracking
performance of the Right Arm and Left Arm tasks is degraded.

Figure 5.8(c) shows the optimized soft task priorities using cost function f2, which includes
the target pose error of the left arm as additional cost (goal cost) instead of the kinetic energy.
The task priority for the Left Arm task increases towards the end of the task in order to comply
with that demand. The task priority of the Right Arm task assumes medium values.

Cost function f3 is a combination of f1 and f2. The resulting task priorities shown in
Figure 5.8(d) reflect the demands of the given criteria. While the task priority of the Keep
Relative Pose task is constantly high, the other task priorities assume low values. However, the
Left Arm task priority increases towards the end of the task, which is due to the goal cost (left)
included in the cost.

Finally, cost function f4 is a modification of f3, which uses the maximum angular jerk as
smoothness cost instead of the kinetic energy. The effect of using this cost function can be
observed in Figure 5.8(e), which shows that the Right Arm task, as well as the Left Arm task
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Figure 5.9: Result on task priority optimization.

assume zero task weights at the start of the motion and gradually increase towards the end
of the task. We compare the average jerk over all joints using the different cost function in
Figure 5.9(a). Especially in the beginning of the movement, using f4 as cost function produces
significantly lower jerk.

5.3 Discussion

In this chapter we illustrate methods to optimize task priorities and other WBC parameters in
order to improve whole-body behaviors once they are deployed on the target robot. Section 5.1
focuses on optimization of static WBC parameters, while Section 5.2 deals with task priority
functions that have a temporal profile. While we evaluate the approaches on a fixed-base,
industrial dual-arm robot, they are transferable to more complex systems like humanoids.
However, the evaluation of the cost function usually relies on simulation, which becomes
more complex and less accurate with increasing system complexity. Furthermore, not every
aspect of a robot task can be easily modeled in simulation, especially when considering
dexterous manipulation tasks or other complex environment interaction. Thus, the effort of
creating a realistic simulation may exceed the effort for parameter tuning.

Still, the application of black-box optimization for task priority optimization in WBC is
promising. Especially when dealing with temporal profiles of task priorities, the optimizer
may produce a solution that a human expert cannot create by hand. When dealing with
multiple, inconsistent tasks or task sequences, black-box optimization can produce more
stable and smooth control signals, time-optimal task transitions andmore consistent behaviors
than manual tuning.

Naturally, the choice of the cost function has a major influence on the result of optimization
and thus must be chosen with care. The criteria evaluated in Section 5.2 usually work well
for certain scenarios. However, finding a generic criterion for a wide range of robot tasks is
difficult.
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ARC-OPT: An Adaptive Whole-Body Control
Framework 6

In this chapter we describe a modular and adaptive WBC framework, which we refer to as
Adaptive Robot Control using Optimization (ARC-OPT). The framework has been used to
generate the results presented in Chapter 4 and 5. ARC-OPT consists of three major parts:
The core WBC library, the Rock interface, and the learning module.

The original contributions in this chapter are

i. A modular software framework, which integrates several WBC approaches on velocity,
acceleration, and torque control level in a common interface.

ii. A learning module that allows us to automatically derive, adapt, and optimize task
constraints for WBC.

iii. An approach for modeling and solving WBC problems on series-parallel hybrid robots.

This chapter is organized as follows: In Section 6.1, we describe the motivation to develop
ARC-OPT and its relation to existing WBC software. In Section 6.2 we provide an overview
on the software and its integration into existing robot middlewares. Further, we describe
the learning module, which can be used to automatically acquire, adapt, and optimize task
constraints for Whole-Body Control. In Section 6.3, we introduce a computationally efficient
approach for Whole-Body Control of series-parallel hybrid robots, which is integrated in
ARC-OPT. Experimental results are provided by evaluating the approach on two different
humanoid robots with series-parallel architecture. Finally, we discuss future work and
extensions in Section 6.4.

6.1 Motivation

Nowadays, several WBC frameworks exist, many of which are available fully or partly as
open-source software. Especially the DARPA robotics challenge (DRC) [SBI18] stimulated
many developments in this domain and some of the participating groups have published their
robot control software in the aftermath of this event. Like most modern WBC approaches,
many of the published WBC implementations are based on quadratic programming as
described in Section 2.1.3. However, some existing open-source implementations also provide
closed-form solutions. Table 6.1 gives an overview on the most popular WBC software
frameworks.

The Task Space Inverse Dynamics (TSID) framework, which has first been described by Del
Prete et al. [Del+16], implements a control algorithm for legged robots. Like most other
WBC frameworks it provides software support for setting up and solving the underlying
inverse-dynamics problem, which is formulated as quadratic program. Here, the decision
variables are the joint accelerations and the contact wrenches. The framework allows us to
specify tasks/constraints in operational and configuration space. As a QP-solver, different
variants of Eiquadprog [Buo21] are provided. Although the framework allows us to solve
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Name Robot Model Parser License Ref.

Task Space Inverse Dynamics
(TSID)

Pinnochio URDF BSD 2 [Del+16]

Optimization-based
framework for Robotic
Control Applications (ORCA)

KDL/iDynTree URDF CeCILL-C [Rob21a]

instantaneous Task
Specification using
Constraints (iTaSC)

KDL URDF LGPLv2.1 /
BSD

[Smi+08]

IHMCWhole-Body
Controller

internal URDF/SDF Apache 2.0 /
GPLv3

[Koo+16]

Drake internal URDF/SDF BSD 3 [TD19]

ControlIt! RBDL URDF LGPL [Uni21]

Table 6.1: Overview of the most popular open-source software frameworks for WBC

hierarchical QPs, the current solvers do not support task hierarchies. ORCA (Optimization-
based framework for Robotic Control Applications) [Rob21a] is a reactiveWBC framework that
computes the required torques and accelerations for a given set of tasks subject to constraints.
As the TSID framework the problem is formulated as single priority QP. Currently the
only implemented solver is qpOASES [Fer+14]. The Stack of Tasks (SoT) is a framework
that integrates several approaches to control redundant robots, rapidly prototype new
applications and verify them in simulation. All controllers are written as optimization
problems and include velocity-, acceleration- and torque-level approaches. The SoT also
includes different client libraries like Pinocchio [Car+19], a library implementing various rigid
body dynamics algorithms. The iTaSC framework [Smi+08] is one of the first open-source
software frameworks for optimization-based robot control. It implements a hierarchical linear
least-squares solver that allows to integrate multiple simultaneously running robot tasks
on velocity-level. The iTaSC framework is tightly coupled to the Orocos project [BSK03].
The IHCM Whole-Body Controller has been developed for the ATLAS robot [Fen+15] when
participating in the DARPA robotics challenge. It provides control algorithms for walking
and manipulation based on quadratic programming. The Drake library [TD19] is a collection
of libraries for model-based design and control of complex robots. It provides interfaces
to several open-source and commercial solvers, including linear least-squares, quadratic
programming, and non-linear programming. Finally, ControlIt! [Uni21] is a middleware built
around the whole-body operational space control algorithm first introduced by Sentis and
Khatib [SK06]. It has been developed at the Human-Centered Robotics Lab of the University
of Texas at Austin.

Given the meanwhile long history of Whole-Body Control in robotics, these frameworks
provide mature implementations and are rich of features. Still, they lack generality and
adaptability, which motivated the development of ARC-OPT. The distinctive features of
ARC-OPT compared to the state of the art are listed as follows.

Usability & Adaptability Even though the state of the art WBC frameworks presented
in this section have produced impressive results on individual robot control problems,
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they require human expertise to model the optimization problem and design feedback
controllers around it. These handcrafted solutions are often tailored to specific problems and
situations. In summary, these frameworks provide pure feedback control algorithms, lacking
adaptability and intelligence. Within ARC-OPT, we introduce a Python-based machine
learning architecture around a WBC framework, which allows non-experienced users to
specify WBC problems by demonstrating the desired robot behavior. Furthermore, using
probabilistic adaptation models as described in Chapter 4, the demonstrated whole-body
behavior can be adapted to the current context, eliminating the need to repeatedly specify and
fine-tune the controllers for every novel situation. Finally, different black-box optimization
approaches allow for automatic fine-tuning of task priority functions once the behaviors are
deployed on the target robot.

Generality Like most other software in the scope of robot motion planning and control,
existing WBC frameworks are only able to handle serial or tree-type robot architecture. In
contrast, the WBC approaches integrated in ARC-OPT are general in the sense that they can
be applied to any robot with serial, tree-type, parallel or hybrid architecture. We elaborate on
this feature in detail in Section 6.3, where we introduce a WBC approach for series-parallel
hybrid robots.

Modularity Most WBC frameworks implement either acceleration/torque-level or velocity-
based approaches. While acceleration/torque level approaches are better suited for legged
robots with compliant environment interaction, fixed-based systems likemobile manipulators
can as well be controlled using velocity-based WBC, which is easier to implement, more
stable and less effected by modeling errors. Furthermore, in the industrial domain, most
robotic systems do not expose torque control interfaces and velocity-level approaches are
the only option. Consequently, both types have their justification. In ARC-OPT we provide a
common interface to velocity, acceleration and torque-based WBC approaches for fixed-base
and floating-base robots. The framework is developed in a modular way, such that new robot
models, solvers and optimization problems can be integrated and easily benchmarked.

6.2 Framework Overview

In this section we illustrate the design ideas and key features of the ARC-OPT framework.
The framework comprises the core WBC library, an interface to the robotic middleware
Rock [RJ21] and the learning module.

6.2.1 WBC Library

Figure 6.1 gives an overview of the core WBC library in ARC-OPT and its connection
to other components. The library is implemented in C++ with Python bindings for most
functionalities. The software design is inspired by the iTaSC framework for constraint-based
robot control [Smi+08]. Here, the whole-body controller comprises four separated building
blocks, namely controller(s), scene, robotmodel and solver. In contrast to the iTaSC framework,
ARC-OPT defines these modules on library level in order to avoid the dependency to a
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Figure 6.1: Overview of ARC-OPT: Components and their interaction

specific robotic middleware. The functionality of each of these modules is described in the
following.

Controller A controller implements a task function in operational space, which represents
the control objective of a single task, e.g., maintain a certain contact force, follow a trajectory,
or avoid an obstacle. The controller can be designed either in task space, in which case it
regulates e.g., a desired wrench fr or a pose xr , or in joint space, where it regulates e.g., a
desired joint position qr . The control output describes the error of the task function, which is
minimized during task execution. Again, the control output is defined either in task space,
e.g., a spatial acceleration Ûvd or a twist vd , or in joint space, e.g., a joint acceleration Üqd or
a joint velocity Ûqd . Considering the implementation, each controller inherits from a base
controller, which assures consistent behavior. This way it is easy to add new controllers. All
controllers are agnostic of the robot kinematics and dynamics, as well as the underlying
WBC implementation, which brings considerable advantages considering reusability and
modularity. Table 6.2 shows an overview of the available controllers.

Scene The scene sets up the optimization problem, which is implemented as a variant
of the quadratic program in (2.10). The concrete form of the QP can be controlled by a
configuration vector comprising one or multiple task configurations. Each task configuration
defines the task name, its type (joint or task space), its priority and the task weights, which
may influence the relative contribution of the individual task variables within the solution.
Furthermore, some robot-specific, semantic information must be provided. For Cartesian
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Name Description Equation

CartesianPositionController Cartesian space PD-position/
orientation control with optional
velocity/acceleration feed forward

(2.17), (2.21)

CartesianRadialPotentialFields Cartesian space radial repulsive
potential fields used for dynamic
obstacle avoidance

(2.19)

CartesianPlanarPotentialField Cartesian space planar potential field
used for obstacle avoidance

-

CartesianForceController Cartesian 6 dof force-torque
controller

-

JointPositionController Joint space PD-position/orientation
control with optional
velocity/acceleration feed forward

(2.18), (2.22)

JointLimitAvoidance Joint position limit avoidance as
repulsive control action in joint space

(2.20)

JointTorqueController Joint space PID force/torque
controller

-

Table 6.2: Overview on the implemented controllers in ARC-OPT.

tasks, this information includes the frame of reference, as well as the root and tip frame on the
robot defining the (virtual) kinematic chain used to execute the desired task. For joint space
tasks, the names of the joints involved must be provided. The tasks are usually formulated
within the cost function of a QP, but may also be interpreted as constraints, depending on the
implementation of the scene. At runtime, the optimization problem is updated in every cycle
with the new reference input from all controllers, the current robot kinematics & dynamics
and the task weights, which can be used to (smoothly) activate or deactivate complete tasks
or specific task variables. The output of the scene is a (hierarchical) quadratic program (QP),
which can be solved using a QP-solver or linear least squares approach. Depending on the
implementation of the scene, the QP may allow task hierarchies or implement only a single
priority level. Each scene inherits from a common scene interface, which assures consistent
behavior. Table 6.3 describes the available scenes including the mathematical formulation of
the underlying QPs. Note that the equations are simplified, i.e., they describe QPs with a
single task. To deal with multiple tasks, the cost function can be replaced by the weighted
sum of the individual tasks as described in (2.15) or implemented as hierarchy as in (2.6).

Robot Model The robot model computes the kinematic and dynamic information that the
scene requires to set up the optimization problem. This includes different Jacobians and
their derivatives, frame transformations, gravity forces and torques, as well as mass-inertia
matrices. The robot model is updated in each control cycle with the current joint status of the
robot. Currently, two different robot models are implemented:

I RobotModelKDL This robot model is based on the Orocos Kinematics and Dynamics
Library (KDL) [Pro21], which provides functionality to model and compute kinematics
& dynamics of mechanical chains or tree structures. The internal robot representation
in KDL is parsed from URDF. While KDL in principle allows to define kinematic loops



94 6 ARC-OPT: An Adaptive Whole-Body Control Framework

Name Description Problem Type

VelocityScene Special case of a QP with linear
equality constraints and quadratic
cost, i.e., a linear-least squares
problem. The decision variables
are the joint velocities Ûq.

min
Ûq

‖ Ûq‖2

s.t. J Ûq � vd

VelocitySceneQP Tasks are formulated within the
cost functional. Rigid contacts
(Jc Ûq � 0) and joint velocity
bounds as constraints. The deci-
sion variables are the joint veloci-
ties Ûq.

min
Ûq

‖J Ûq − vd ‖2

s.t. Jc Ûq � 0

Ûqm ≤ Ûq ≤ ÛqM

AccelerationScene Tasks are formulated within the
cost functional. Special case of an
unconstrained QP with quadratic
cost, i.e., a linear-least squares
problem. The decision variables
are the joint accelerations Üq.

min
Üq

‖JÜq + ÛJ Ûq − Ûvd ‖2

AccelerationSceneID Tasks are formulated within the
cost functional. EOM, rigid con-
tacts and joint torque limits as
constraints. The decision variables
are the joint accelerations Üq, joint
torques τ and contact wrenches f.

min
Üq,τ,f

‖JÜq + ÛJ Ûq − Ûvd ‖2

s.t. HÜq + h � Sτ + Jcf

Jc Üq � −ÛJc Ûq
τm ≤ τ ≤ τM

Table 6.3: Overview of the available scenes in ARC-OPT

and parallel structures, URDF does not. Thus, this robot model supports only serial or
tree-type robots.

I RobotModelHyRoDyn This robot model is based on the Hybrid Robot Dynamics
(HyRoDyn) framework [Kum+20]. HyRoDyn is a software workbench for computing
the kinematics and dynamics of series-parallel hybrid robots. It extends the concepts of
URDF by annotating the model with sub-mechanism definitions provided as YAML-
files. These sub-mechanism files specify the structure and type of a specific mechanism
(e.g., a parallel structure), whose analytical solutions for kinematics and dynamics are
implemented in HyRoDyn. Using this robot model, the WBC problem can be set up
and solved in the actuation space of series-parallel hybrid robots, a unique feature of
ARC-OPT that will be elaborated in Section 6.3. If the given URDF and submechanism
file describe a serial or tree-type system, this robot model will produce identical results
as the KDL-based model.

Solver The solver is a generic component that solves a quadratic program as described in
(2.10). Its output is a velocity, acceleration, or torque command in configuration space of the
robot. As of now two solvers with strongly different properties are integrated:

I Hierarchical Least Squares (HLS) The HLS solver is inspired by a solver implemen-
tation integrated in the iTaSC framework [Smi+08]. It solves a sequence of linear
least-squares problems by combining the approaches described in (2.6) and (2.7).
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Scene

+ configure(): bool
+ update(): HierarchicalQP
+ solve(HierarchicalQP): JointCommand

# robot_model: RobotModelPtr
# solver: SolverPtr
# wbc_config: vector<TaskConfig>

VelocityScene AccelerationScene AccelerationSceneIDVelocitySceneQP

TaskConfig

+ name: string
+ type: ConstraintType
+ priority: usigned int
+ weights: VectorXd
+ ref_frame: string
+ root: string
+ tip: string
+ int_names: vector<string>

1

1..*

Solver

+ solve(HierarchicalQP): VectorXd

HLSSolver QPOASESSolver

1 1

RobotModel

RobotModelKDLRobotModelHyrodyn

+ configure(RobotModelConfig): bool
+ update(JointStatus)
+ jacobian(root,tip): MatrixXd
+ jacobianDot(root,tip): MatrixXd
+ ...

1

1

RobotModelConfig

+ file: string
+ submechanism_file: string
+ floating_base: bool
+ contact_points: vector<string>
+ joint_names: vector<string>
+ active_joints: vector<string>

1

1

Figure 6.2: Class diagram showing the key components of ARC-OPT

Although (2.6), (2.7) describe a solution on velocity-level, the HLS solver can also
be applied to acceleration-based problems. Being a hybrid approach, HLS allows to
arrange the tasks in a hierarchy, apply a soft weighting scheme or use a combination
of both. In addition, it supports joint weighting in order to prioritize the usage of
specific joints of the system. The solution of the hierarchical least-squares problem is
computed using a sequence of pseudo inversions with damping term, as described in
Section 2.1.1. Note that the least-squares characteristics of this solver does not allow the
implementation of hard constraints. This means that even tasks on the highest priority
level are only solved accurately if enough dof are available. Otherwise, an approximate
solution will be returned, which has the advantage that the solver will never fail to
compute a solution due to infeasibility.

I qpOASES This solver is a wrapper around qpOASES [Fer+14], which is an imple-
mentation of the online active set strategy [FBD08]. It solves quadratic programs as
in described (2.10). In contrast to the HLS solver, the qpOASES solver allows hard
constraints, like e.g upper and lower bounds of the decision variables. Currently only a
single QP can be passed to the solver. Thus, the tasks cannot be arranged in a hierarchy,
but only related via a soft weighting scheme. In practice, a two-level hierarchy can be
established by implementing the tasks with higher priority as constraints and the tasks
with lower priority within the cost functional.

6.2.2 Rock Integration

TheWBC library described in the earlier section has initially been developed for the usewithin
the Robot Construction Kit (Rock) [RJ21]. Rock is a software framework for the development
of robotic systems, which is comparable in scope and usage to other robotic frameworks like
ROS [Fou21a] or YARP [MFN06]. It has been developed at the DFKI Robotics Innovation
Center (RIC) with the idea of long-term autonomous robots with large scale software systems
in mind. In Rock, software libraries are encapsulated in so-called oroGen components, which
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Figure 6.3: Rock integration of the ARC-OPT library exemplified for the RH5 humanoid.

are based on the Orocos Real-Time Toolkit (RTT) [Soe+21]. These components expose the
main functionality of the library to other components via communication interfaces like
ports (data flow), operations (request-reply) and properties (configuration). Depending on
the complexity of the robot and the task, the component network required to control such a
system may comprise more than a hundred components.

Figure 6.3 illustrates the Rock integration of the WBC library on the RH5 humanoid robot.
The figure only shows the most important components. Each controller is encapsulated in
a separate Rock component and thus separated from the main WBC component. This way,
arbitrary controllers can be connected to WBC and the existing controller implementations
can be reused for other applications. The CoM and the leg posture controller are an
implementation of (2.17), while the joint limit avoidance controller is an implementation of
(2.20). The input trajectories for the controllers may come either from a motion planner, a
trajectory optimization module or they can be learned from demonstration. As mentioned
before, the controllers are agnostic to the kinematics and dynamics of the robot and only
retrieve the current system state. The control output of each controller is continuously passed
to the WBC component. Additionally, the WBC receives the robot state with respect to a
global world frame from the robot state estimation module. This module uses an extended
Kalman filter to fuse the information from robot forward kinematics, contact force sensors
and IMU. It performs a robust estimation of the robot’s base pose, twist, and acceleration
with respect to the world frame. As for most of the components in the ARC-OPT framework,
the execution of the WBC component is triggered periodically, in this case with a fixed period
of 5 ms. In each cycle, it performs the following actions in sequence:

i. Update the robot model with the current joint state of the robot (position, velocity, and
acceleration), including the floating base.

ii. Set up the optimization problem. Compute Hessian, constraint matrix and bounds for
the quadratic program to be solved.

iii. Solve the QP and write the solver output to the output port.

The WBC passes the solver output (joint position, velocity, acceleration, and torque) to a
stabilizing PD-controller. We found that the system is more stable when using an additional
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URDF file

HyRoDyn configuration file

Floating base configuration

floating base robot 
(true/false)

world frame ID
initial state

Task 1
COM position control

Cartesian space
Highest prio

Task 2
Joint Limits avoidance

Joint space
Lower prio

robot_model:
file: bundles/wbc_examples/config/models/rh5/urdf/rh5.urdf
submechanism_file: bundles/wbc_examples/config/models/rh5/hyrodyn/rh5.yml
floating_base: true
world_frame_id: world
floating_base_state:

pose:
position: {data: [-0.016, 0.0, 0.87]}
orientation: {im: [0,0,0], re: 1.0}

twist:
linear: {data: [0,0,0]}
angular: {data: [0,0,0]}

acceleration:
linear: {data: [0,0,0]}
angular: {data: [0,0,0]}

contact_points: ["LLAnkle_FT", "LRAnkle_FT"]

task_config:
- name: "com_position"
type: cart
priority: 0
root: "world"
tip: "RH5_Root_Link"
ref_frame: "world"
activation: 1
weights: [1,1,1,1,1,1]

- name: "joint_limits"
type: jnt
priority: 1
joint_names: ["HeadRoll", "HeadPitch", "HeadYaw",

"BodyRoll", "BodyPitch", "BodyYaw",
"ALShoulder1", "ALShoulder2", "ALShoulder3",
"ALElbow", "ALWristRoll", "ALWristRoll", "ALWristPitch",
"ARShoulder1", "ARShoulder2", "ARShoulder3", "ARElbow",
"ARWristRoll", "ARWristRoll", "ARWristPitch"]

activation: 1.0
weights: [1,1,1,

1,1,1,
1,1,1,1,1,1,1,
1,1,1,1,1,1,1]

Contact configuration

Figure 6.4: WBC configuration example for the RH5 robot.

joint-level PD-controller with feed forward torque, instead of just sending the motor torques
to the robot joints and closing the control loop via the WBC. The reason is that, depending
on the solver and the size of the problem, the solution of the WBC problem may take 5 − 10
ms, which is too slow for accurate trajectory tracking control (see Section 6.3.4 for results on
computation time). The stabilizing PD-controller runs with a cycle time of 1 ms, while the
task space controllers run with 5 ms. Depending on the quality of the dynamic robot model,
the feed forward torque will compensate for most of the robot dynamics and the PD-gains
can be set to low values, which makes the system compliant.

Configuration Options The WBC approaches implemented in ARC-OPT can be applied to
different robots and a variety of control problems in a flexible manner without having to
implement a single line of code. In Rock, configuration properties, which can be loaded from
a YAML file, are used to define the runtime behavior of a component. In case of the WBC
component, the most important configuration options are the robot model configuration
and the task configuration. Figure 6.4 shows an example of a configuration file for the RH5
humanoid. The robot model configuration includes the URDF and HyRoDyn model files
and a floating base configuration. In addition, the possible contact points can be defined.
The task configuration defines the tasks along with their priorities. Tasks can be defined in
joint space (type:jnt) or in Cartesian space (type:cart). For Cartesian space tasks, WBC
requires the definition of three coordinate frames. The root and the tip frame define the
(virtual) kinematic chain, which is used to execute the task, while the reference frame
(ref_frame) defines the frame in which the control action is performed (see Figure 4.2 for
explanation). These frames can be arbitrary links within the entire robot model or external
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frames, e.g., an object. For joint space tasks the WBC component requires the names of the
joints that contribute to the task. In addition, each task configuration allows the definition
of an activation value, i.e., whether the task is initially active or not, and the initial task
weights.

By passing different configuration options to the components, the overall behavior can be
adapted, even at runtime. A large variety of different control schemes and robot behaviors
can be represented through the configuration and composition of different controllers/tasks.
For example, it is possible to switch from joint-level control to task space control or from stiff
position control to compliant interaction control.

6.2.3 Learning Module and PbD Pipeline

To pursue the goal of automatic derivation and contextual adaptation of task constraints for
WBC we develop a Python-based architecture for data acquisition, data processing, model
fitting, movement reproduction and performance evaluation of whole-body controllers.
The architecture connects to the Rock interfaces of ARC-OPT via a Rock-Python bridge,
which is a wrapper around the Python implementation of CORBA omniORB. The main
functionality of this architecture is to provide a programming by demonstration framework
for whole-body behaviors, which allows to specify the optimization problem inWBCwithout
explicit programming. Another aspect of the architecture is to provide methods for black-box
optimization of task priorities in WBC. Figure 6.5 shows an overview of the learning pipeline.
The workflow is explained in the following.

I Data Acquisition For data acquisition we mostly apply kinesthetic teaching, although
the input data may be retrieved by any method of choice. In ARC-OPT, constraints are
described by the the means of task frames, i.e., a constraint describes the relative motion
(pose, twist, spatial acceleration) of two coordinate frames, or the wrench applied in
a contact coordinate frame. During data acquisition, we record the relative motion
between user-defined task frames, as well as the interaction wrenches perceived in these
frames. To allow kinesthetic teaching, the robot is required to provide a gravity-mode,
which allows guiding the system by hand. Typically, we perform a small number of
demonstrations for a certain task and for each context, before we process the acquired
data. The context information for each demonstration currently must be provided by
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hand. Automatizing recognition and interpretation of the current context, e.g., from the
sensor information of the robot, is a non-trivial task and out of the scope of this thesis.

I Logging The motion and wrench data is recorded using the Rock logging interface,
which stores the data in binary .log-files and provides a software API to inspect, replay
and extract the data. The data is converted to .csv files.

I Preprocessing After the logging data has been extracted to .csv files, several post-
processing steps are applied. At first, we manually segment the demonstrations
by identifying feasible start and end points within a plot of the robot’s average joint
velocity. In future, this manual procedure can be replaced by an automatic segmentation
method [GK16]. Afterwards, the data streams are resampled to reduce the amount of
data and all streams are temporally aligned. Next, the pose data is processed to provide
a singularity-free, continuous, and uniquely defined representation of the orientation
between two task frames (see Section 4.4.2 for details). Finally, the entire data set is
normalized to have zero mean and unit variance.

I Model Fitting After preprocessing, we fit a probabilistic model to the entire data set
including context and constraint data. The architecture integrates several approaches
for modeling task constraints (GMM, ProMP, ...) and different regression methods for
reproducing them in a given context (GMR, GPR, MLP, ...).

I Reproduction The task constraints are reproduced in a given context, which currently
must be selected by the user. After reproducing the task constraints and their respective
priorities, they are sent to the WBC framework via the Rock-Python bridge.

I Optimization For optimizing task priority functions, the architecture provides different
black-box optimization methods (e.g., CMA-ES or other evolutionary approaches) that
use the evaluation feedback from the robot. We implement various loss functions that
can be easily compared to each other for a given WBC problem.

The learning module described in this section has been applied to produce the results
illustrated in Chapter 4 (PbD pipeline) and Chapter 5 (black-box optimization).

6.3 Application: WBC for Series-Parallel Hybrid Robots

In this section, we illustrate the application of the ARC-OPT framework to series-parallel
hybrid robots.

6.3.1 Motivation

Parallel mechanisms1 are becoming increasingly popular as subsystems in a variety of robots.
In comparison to purely serial or tree-type robots2, parallel systems may offer a higher
stiffness, payload, and accuracy. On the negative side, such mechanisms have a smaller
workspace and are in general more complex to model and control than robots with serial or
tree-type architecture. When combining tree-type and parallel robot architectures we obtain
series-parallel hybrid robots. They combine the positive aspects of the two types, that is they
may provide better dynamic characteristics and a larger workspace compared to serial or

1A parallel mechanism is a system where two or more chains support a single end-effector.
2A tree-type robot consists of multiple serial chains connected to a common root link.
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tree-type robots. In humanoid robotics series-parallel mechanisms are especially useful in
the lower extremities as they may provide a superior payload-to-weight ratio, stiff structure,
and optimal distribution of mass-inertia properties. Examples are the ankle mechanisms in
NASA’s Valkyrie [Rad+15] or in the RH5 humanoid robot of DFKI [Ess+21].

Likemost other existing software for robotmotion planning and control, theWBC frameworks
mentioned in Section 6.1 consider only serial or tree-type robots when modeling the WBC
problem. In contrast, parallel or series-parallel hybrid robots, which are designed in a way
that they contain parallel loops inside the robot model are mostly not supported. This has two
main reasons: On the one hand, robots with serial or tree-type architecture are much easier to
model and control than series-parallel hybrid systems. On the other hand, most Whole-Body
Control framework applies the Unified Robot Description Format (URDF) to model the robot
kinematics and dynamics. URDF is a well-established tool in the robotics community, which,
however, forbids the formulation of closed loops inside the model. The common workaround
is to abstract parallel mechanisms as one or multiple joints, arranged in series. The kinematics
and dynamics of the abstracted parallel mechanisms is usually handled separately in a special
function (e.g., [Fou21b]). Such a procedure has several disadvantages:

I Box constraints3, which describe the physical limits of the actuators contained in a
parallel mechanism, cannot properly be included in the optimization problem. This
way, the admissible workspace and the dynamic properties of the robot may be over-
or underestimated.

I The solution of the optimization problem is usually less accurate since it does not
capture the dynamic properties of the parallel subsystems correctly. For example,
quantities as the center of mass may be inaccurate when using a serial abstraction of
the parallel mechanisms. An extensive study on the effect of neglected dynamics in
parallel submechanisms has been presented by Kumar et al. [Kum+19a].

I The parallel mechanisms may contain singularities that cannot be resolved by the
whole-body controller.

I The resulting control software stack will be more complicated and more difficult to
maintain.

Especially the first point is of interest as a proper consideration of the actuator limits inWBC is
crucial in terms of an optimal exploitation of the robot workspace. InWBC, the physical limits
of the robot actuators, like maximum position, velocity, and torque, are typically expressed
as box constraints in the underlying optimization problem. WBC approaches for tree-type
robots use serial chains as abstraction of parallel mechanisms, i.e., they hide the parallel
mechanism behind independent rotational or prismatic joints. In general, it is not possible
to capture the entire configuration space of a robot with closed loops with independent
coordinates. Consequently, these approaches cannot consider the actuator limits of joints
within parallel systems as box constraints without over- or underestimating the admissible
workspace of the robot.

As an example, consider Figure 6.6(a), which illustrates the ankle structure of the RH5 robot.
The ankle joint is a 2-dof orientational parallel mechanism of type 2SPRR+1U [Kum+19b].
The actuation principle comprises two linear actuators (ball screw drives), which are attached
via two passive rotational joints to the foot link on the lower side and via a passive spherical

3 Box constraints usually describe an upper and lower bound on the variables of an optimization problem
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(a) Structure (b) Actuation space (c) Independent joint space.

Figure 6.6: RH5 anklemechanism, implementing box constraints for actuator positions. Image
credits [Kum19].

joint to the shank link on the upper side. Moving both actuators in the same direction
produces a pure pitch movement of the foot, while moving them in opposite direction
will create a roll-movement. Figure 6.6(b) shows the admissible actuator configurations
(red dots) of the mechanism. The blue lines represent actuator position limits modeled
as box constraints. If we represent this ankle mechanism using independent coordinates
(two rotational joints, arranged in series), we achieve the orientation workspace shown in
Figure 6.6(c). The black curve denotes the effectiveworkspace after imposing actuator position
limits, which is equivalent to mapping the box constraints in actuation space (blue lines in
Figure 6.6(b)) into independent joint space. Obviously, it is not possible to model position
limits as box constraints in independent joint space without over- or underestimating the
effective workspace. Considering safety and reliability aspects we would naturally choose a
conservative approximation of the workspace as indicated by the green line. In doing so, we
lose part of the admissible workspace and cannot exploit the full capabilities of the robot.

A similar problem can be observed considering box constraints on velocity- or torque-
level. Figure 6.7(a) shows the elbow mechanism of the RH5v2 humanoid. The 1-dof elbow
structure has a 1-RRPR topology and is a variant of a slider crank mechanism with linear
actuator [Kum19]. Figures 6.7(b) and 6.7(c) show that the maximum velocity and torque
around the bow of this mechanism are both position dependent. While the maximum elbow
velocity can be obtained around the zero configuration where the arm is fully stretched out,
the maximum torque can be retrieved when the elbow is inflected by −90 degrees. When
modeling velocity/torque limits as box constraints, we naturally select a lower bound as
indicated by the dashed line, which ensures that we do not request infeasible velocities or
torques from the mechanism. In doing so, we lose part of the admissible velocity or torque
range.

To overcome the limitations imposed by tree-type WBC approaches, we introduce a com-
putationally efficient approach for Whole-Body Control of series-parallel hybrid robots.
The approach is based on the HyRoDyn library [Kum+20], which is a modular software
workbench for computation of kinematics and dynamics of series-parallel hybrid robots. If
the kinematic and dynamic quantities needed by WBC are provided by HyRoDyn, we can
formulate the optimization problem in the actuation space4 of a series-parallel hybrid robot.
This way, we can consider actuator limits of parallel subsystems as box constraints, in order

4 The actuation space of a robot is the space of all admissible actuator configurations.
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Figure 6.7: RH5 elbow mechanism, box constraints for actuator velocity/torque.

to fully exploit the position, velocity and torque range of all actuators. In contrast, WBC
approaches for tree-type robots must apply conservative approximations that underestimate
the effective workspace. The approach is integrated in the ARC-OPT framework via the Hy-
RoDyn-based robot model. Thus, the framework is applicable to robots with serial/tree-type,
parallel and series-parallel hybrid architecture. We describe the mathematical basics and the
actual approach in the following sections.

6.3.2 Constrained Kinematics and Dynamics

Robotic systems with closed loops can be described as connectivity graphs, where links
and joints are represented as edges and nodes in that graph, respectively. A spanning tree
describes a subgraph such that there is one and only one path between any two nodes. Robots
with closed loops are subject to loop closure constraints, which are always active and must
be resolved in a computationally efficient manner5. A robotic system with closed loops may
be described by three different sets of coordinates:

I spanning tree joints q ∈ RNn , which describe the entire spanning tree of the robot.
I independent joints y ∈ RNm , also referred to as generalized coordinates, which typically

describe a serial abstraction of the parallel subsystems
I active or actuated joints u ∈ RNp , which describe all joints that contain an actuator

Each of these sets constitutes a different space describing the state of the robot, which are
denoted as (full) joint space, independent joint space, and actuation space, respectively.
Figure 6.8 illustrates the different spaces. The HyRoDyn workbench provides bi-directional
mappings between the full joint space, independent joint space, and actuation space, while
considering the loop closure constraints of the spanning tree.

6.3.3 WBC Approach

In contrast to other WBC approaches, which usually model the optimization problem in
independent joint space, we describe the optimization problem in the actuation space of
the robot. This allows us to explicitly consider actuator limits of parallel subsystems as box

5Note that we distinguish loop closure constraints, which are inherent in the design of a series-parallel hybrid
robot, from the task constraints in the WBC problem
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(a) Full Joint
Space

(b) Actuation
Space

(c) Independent
Joint Space

Figure 6.8: Different sub-spaces for modeling series-parallel hybrid robots. Image credits
[Kum19]

constraints in the optimization problem. For the sake of simplicity, we consider only a single
task in the WBC problem. For velocity-based WBC the proposed approach sets up and solves
the following quadratic program:

min
Ûu

‖Ju Ûu − vd ‖2
s.t. J j

cu Ûu � 0, ∀ j
Ûum ≤ Ûu ≤ ÛuM

(6.1)

where Ûu ∈ RNp are the actuator velocities of the robot, vd ∈ R6 is the desired spatial velocity
and { Ûum , ÛuM} are the actuator velocity limits. The Jacobian Ju ∈ R6×Np maps actuator to task
space velocities and is related to the Jacobian J ∈ R6×Nn of the spanning tree as follows:

Ju � JGG−1
u (6.2)

Here, G ∈ RNn×Nm is the loop closure Jacobian that relates independent to spanning tree
coordinates Ûq � GÛy. Furthermore, Gu ∈ RNp×Nm is the actuator Jacobian, which comprises
the rows of G that correspond to the actuated joints: Ûu � Gu Ûy. The derivation of loop
constraints shall be skipped here for brevity, but algorithms to compute them can be found
in standard textbooks [Fea14; Jai10].

On acceleration level, we derive the following WBC problem in actuation space:

min
Üu,τu ,f

‖Ju Üu + ÛJu Ûu − Ûvd ‖2

s.t. Hu Üu + hu � τu +
∑

j J j
cuf j

J j
cu Üu � −ÛJ j

cu Ûu, ∀ j

τum ≤ τ ≤ τuM

(6.3)

Here, Üu, τu are the accelerations and forces/torques of the actuators, f j are the contact
wrenches and Ûvd the desired spatial acceleration. Again, we assume a single task and fully
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actuated robot for the sake of simplicity. The tasks are solved respecting the EOM in actuation
space, rigid contacts, and actuator force/torque limits {τum , τuM}. The dynamic quantities
in actuation space required to set up this QP are again computed using the loop closure
Jacobian. For example, the mass-inertia matrix in actuation space Hu can be derived from the
mass-inertia matrix of the full spanning tree H as follows:

Hu � G−T
u GTHGG−1

u (6.4)

Through the ability of describing optimization problems in actuation space of series-parallel
hybrid robots, the proposed WBC framework is more general than the existing approaches
as it can be applied to any kind of robot without the need to abstract important details. In the
following section we demonstrate the application of the approach to different series-parallel
hybrid robots and compare its performance with respect to WBC approaches that solve the
optimization problem in independent joint space.

Note that (6.1) - (6.4) only apply if the robot is fully actuated, that is Np � Nm . To handle
robots with a floating base, we have to replace the configuration vector of the actuated joints
u with ũ �

(
uT

b uT
)
. Here, ub ∈ R6 is the configuration of the virtual 6-dof linkage

representing the floating base. Furthermore, all kinematic and dynamic quantities used in
the QP must be replaced by their counterparts that include the floating base. This includes
all Jacobians Ju and ÛJu , the mass-inertia matrix Hu and the bias force/torque term hu .

6.3.4 Results

This section presents experimental results to demonstrate the ability of the proposed approach
to exploit the entire position, velocity, and torque workspace of series-parallel hybrid robots.
Also, we study the computational performance of the WBC architecture here. Experiments
are performed using the RH5 and RH5v2 humanoid robots, in simulation as well as on the
actual systems. As a benchmark, we compare the results to an analogue WBC approach for
tree-type systems.

Application of Box Constraints in Actuation Space

As described in Section 6.3.1, integration of actuator constraints (e.g., maximum actuator
positions, velocities or torques) for parallel mechanisms is usually not possible in existing
WBC frameworks as they use an abstract representation of the mechanical structures. The
abstract workspace cannot be captured entirely using box constraints. Thus, a conservative
approximation of the reachable workspace must be selected in order to avoid deadlock
situations or even mechanical damage to the actuation system. This approximation usually
leads to a reduced workspace as depicted in Figures 6.6 and 6.7. In contrast, describing the
WBC problem in actuation space allows to exploit the full workspace. This is demonstrated
in the following.
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(b) Hybrid Model

Figure 6.9: Comparison of squatting motion on RH5 using WBC with abstract/tree-type
model and series-parallel hybrid model.

(a) CoM trajectoryusing sim-
plified tree model

(b) CoM trajectory using
full hybrid model

(c) Screenshots from video [Mro21c]

Figure 6.10: Squatting motions on the RH5 humanoid.
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Position Constraints We evaluate the application of position limits as box constraints
in actuation space using the proposed WBC approach for series-parallel hybrid robots.
Experiments are performed on the RH5 humanoid (see Figure 1.3) using velocity-based WBC
as in (6.1). We implement two tasks, namely CoM control enforced by a Cartesian position
controller as in (2.17) and joint limit avoidance using repulsive potential fields as described
by (2.20). We program squat movements by translating the CoM ±0.2m in z-direction, which
is oriented vertically to the ground. Considering the desired squatting motion, the ankle
mechanism of RH5 as depicted in Figure 6.6(a) is particularly important. The position limits
of the ankle mechanism in actuation space and in independent joint space are as follows:

Joint Name Upper Lower

Independent
Joint Space

Ankle Pitch L/R [rad] 0.5236 -0.5236
Ankle Roll L/R [rad] 0.7850 -0.7850

Actuation Space Ankle Act L1,L2,R1,R2 [m] 0.0647 -0.0449

Figure 6.9 compares the squatting motion of our approach with the analogue WBC approach
for tree-type robots. The plots illustrate the CoM trajectory (top), the ankle actuators (middle)
and the independent ankle pitch joint (bottom). For squatting, the ankle joints follow a pure
pitch trajectory and all 4 ankle actuators L1 , L2 , R1 , R2 move identically. Figure 6.10 shows
the motion of the CoM in the xz-plane. Using the hybrid WBC approach, we can obtain
deeper squat movements as the entire actuation space is exploited. In contrast, when using
the tree-typeWBC approach, the admissible workspace of the actuators is reduced as we have
to define conservative position limits in independent joint space, which again compromises
the CoM trajectory. In the experiments, we can perform squatting movements in a range of
0.957− 1.100m on the z-axis using tree-type WBC, while achieving a range of 0.911− 1.100m
using the hybrid WBC approach. Using the proposed approach in actuation space we can
fully exploit the capabilities of the robot, gaining about 4.5cm or approx. 25% of admissible
workspace.

Velocity Constraints Next, we evaluate the formulation velocity limits as box constraints
in actuation space using the RH5v2 robot (see Figure 1.3) as experimental platform. RH5v2
is a series-parallel hybrid system, including multiple closed-loop kinematic structures. We
execute highly dynamic boxing movements, which are generated using offline trajectory
optimization based on Differential Dynamic Programming (DDP) [Mas+20]. The motions are
executed using the velocity-level WBC approach in (6.1). We focus on the elbow mechanism
of the robot, whose maximum velocity is configuration dependent, as shown in Figure 6.7.
Using a tree-type WBC approach, we would necessarily select conservative velocity limits as
box constraints in independent joint space, which underestimate the velocity range of the
mechanism. In contrast, using our WBC approach, we can define velocity limits in actuation
space. The velocity limits of the elbow mechanism in independent joint space and actuation
space are:

Joint Name Upper Lower

Ind. Joint Space Elbow L/R [rad/s] 3.09 -3.09

Actuation Space Elbow Act L/R [m/s] 0.266 -0.266
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(a) Tree-type model
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(b) Hybrid model

Figure 6.11: Comparison of boxing motions on RH5v2 using WBC with abstract/tree-type
model and series-parallel hybrid model.

Figure 6.11 shows a comparison between the resulting boxing motions using simplified
tree-type and full hybrid WBC approach. The plots show the linear end-effector velocities of
the left arm (top), the linear actuator velocity of the left elbow mechanism (middle) and the
radial elbow motion in independent joint space (bottom). The maximum velocity of the linear
actuator cannot be exploited when choosing conservative velocity limits in independent joint
space, which is the case for the tree-type WBC approach. In contrast, the hybrid approach is
able to fully exploit the velocity range and achieves independent joint space velocities greater
than 3.09 rad/s, which is the conservative maximum in independent joint space. The linear
end-effector velocities are identical in both cases, as the other arm joints compensate for
the reduced elbow velocity in the tree-type case. Nevertheless, the maximum independent
joint velocity of the elbow mechanism is about twice as high in the hybrid case. Thus, the
hybrid approach allows for more dynamic movements than the corresponding tree-type
WBC approach. Figure 6.12 shows snapshots from a video of executing boxing motions on
the RH5v2 robot.

Force/Torque Constraints Although being skipped here for the sake of brevity, we expect
similar results on torque-level, i.e., when describing maximum actuator forces/torques of
a series-parallel hybrid robot as box constraints in a whole-body controller. In particular
applications from humanoid robotics like walking or jumping are highly dynamic and require
an optimal exploitation of the feasible actuator forces and torques.

Computational Performance

In this section, we evaluate the computational performance of the proposed WBC framework.
We measure the computation time for a complete udpate cycle, which comprises the
computation times for updating the QP and solving it using qpOASES. All experiments
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Figure 6.12: Executing boxing motions on RH5v2, screenshots from video [Mro21c].

# Robot Type Model Type WBC Type Model Size QP Size
Nn Nm Np Nq Nc

1

RH5v2*

serial
(6.1)

20 20 20 20 0
2 hybrid 61 20 20 20 0
3 serial

(6.3)
20 20 20 40 20

4 hybrid 61 20 20 40 20

5
RH5 One
Leg*

serial
(6.1)

6 6 6 6 0
6 hybrid 18 6 6 6 0
7 serial

(6.3)
6 6 6 12 6

8 hybrid 18 6 6 12 6

9
RH5 Both
Legs**

serial
(6.1)

18 18 12 18 12
10 hybrid 42 18 12 18 12
11 serial

(6.3)
18 18 12 42 30

12 hybrid 42 18 12 42 30

13

RH5**

serial
(6.1)

38 38 32 38 12
14 hybrid 83 38 32 38 12
15 serial

(6.3)
38 38 32 82 50

16 hybrid 83 38 32 82 50

**Fixed Base, **Floating Base

Table 6.4: Complexity of different robots models.
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are performed in a simulation environment provided by the RaiSim multi-body physics
engine [HLH18], running on a standard Laptop with an Intel Core i7-8565U CPU (8 x 1.8GHz).
To examine the effect of an increasing model complexity on the computational effort, we
use different robot models as illustrated in Table 6.4. Here Nn ,Nm ,Np are the number joints
contained in the spanning tree, the independent joints, and actuators. For the serial models,
Nn � Nm , that is the spanning tree and the independent joint space match. Furthermore, the
employedmodels without floating base are all fully actuated, that is Nm � Np . For the models
that include a 6 dof floating base, the independent joint space is larger than the actuation
space. The QP problem size is described by Nq and Nc , which are the number of decision
variables (joint velocities for the velocity-based WBC, joint accelerations, torques and contact
wrenches for the acceleration-based WBC) and the number of constraints, respectively. Both
Nq and Nc depend on the complexity of the robot model, the WBC implementation and the
problem that is to be solved. Here, we use a WBC implementation on velocity-level as in (6.1)
and a WBC implementation on acceleration/torque level as in (6.3), which provide different
QP sizes. As an example, consider #16 from Table 6.4, which shows the model complexity of
the series-parallel hybrid (full) RH5 model for the dynamic acceleration/torque-based WBC
approach. In this model, the robot has 32 actuators in total and 38 independent joints. The
latter include a virtual 6-dof linkage for the floating base, which has a spatial acceleration Ûvb .
Furthermore, we have two rigid contacts of the feet with the ground floor, which are expressed
as 6-dimensional no-slip constraints. In total, we get the following decision variables:

Ü̃u � ( Ûvb Üu )T ∈ R38

τu ∈ R32

f j ∈ R6 , j � {1, 2}
(6.5)

and the constraints:

Hu Üu + hu � τu +
∑

j J j
cuf j ∈ R38

J j
cu Üu � −ÛJ j

cu Ûu ∈ R6 , j � {1, 2}
(6.6)

This gives in total 38 + 32 + 2 · 6 � 82 decision variables and 38 + 12 � 50 task constraints.
In addition to these constraints, every QP is subject to Np actuator limits modeled as
upper and lower bounds on the decision variables. However, these qpOASES handled these
decision bounds much faster than actual constraints, so we do not mention them in Table 6.4.
Considering the robot task used for experimental evaluation, we define similar tasks for all
robot models. For the RH5v2 robot, we specify a 6 dof Cartesian task for each gripper. For
the RH5 single leg robot, we specify a 6-dimensional task for the ankle link. For the floating
base RH5 legs and the full RH5 robot model, we specify a 6-dimensional Center of Mass
tracking task, where the foot links are subject to rigid contact constraints.

We compare the computation time for solving the same WBC problem on a series-parallel
hybrid robot and on the corresponding simplified tree-type model. The results are shown in
Figure 6.13. We found that the computation time using the hybrid models is around 1.2 − 2.5
larger on average. Since we describe the optimization problem in actuation space, the QP
size is identical for both cases (considering the same robot model and WBC type) as can be
seen in Table 6.4. However, the series-parallel hybrid robot models have a larger number
of joints in total (spanning tree). Also, the consideration of the loop closure constraints
requires additional computational effort. For simple models, this effect can be neglected.
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Figure 6.13: Comparison of serial vs. hybrid model regarding the computation time for a
complete cycle (model update, scene update, QP solving) for different robot
models and scenes.

For increasingly complex models, the difference in computation time between serial and
hybrid model increases as well. The additional computational effort is justified given to the
advantages we get regarding model fidelity. Anyways, the approach is still able to control the
RH5 system, which has the most complex robot model, with a cycle time well below 10 ms.

Still, a further reduction of the computation time can be achieved by various measures. First,
one could avoid the use of a numerical QP solver. Switching to an analytical least-squares
approach not only reduces the computation time, but it also makes it easier to assume an
upper bound for the required computational effort. In contrast, a numerical solver may take
arbitrary long to find a solution in case of infeasibility. However, this way one loses the
capability of describing inequality constraints. Further, least-squares approaches only allow
soft constraints as they return the best-possible nearby solution, while QP solvers can also
deal with hard constraints. Another possibility to decrease the computational effort is to
reduce the QP problem size, for example by expressing τu as a function of Üu. This way one
could eliminate τu as a decision variable. The inverse dynamics solution, if required, could
be computed in a subsequent step using a specialized solver. Finally, one could reduce the
model complexity in an intelligent way. For example, one could use the full model, where
heavy masses are moved inside the parallel submechanisms and use an abstract model for
the lightweight constructions. In [Kum+19a], the authors argue that simplified series-parallel
hybrid models can be used in some cases, which speeds up computation by more than 50%,
while providing similarly accurate results as the full model.
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(a) iMRK [Gea+17a]* (b) AILA [Lem+11]* (c) Mantis [Bar+16]***

(d) RH5 [Ess+21]* (e) RH5v2 [Bou+22]** (f) Mobipick [Gmb21b]* (g) Recupera Reha [Gmb21a]*

Figure 6.14: Robotic systems at DFKI RIC that the ARC-OPT framework has been applied to.
Image Credits: *Annemarie Popp, **Thomas Frank, ***Alexander Dettmann (all
DFKI)

6.4 Discussion

In this chapter we introduced ARC-OPT, which is a modular software framework that
provides various WBC implementations on velocity-, acceleration- and torque-level. The
framework integrates a novel WBC approach for series-parallel hybrid robots, which makes
ARC-OPT more generally applicable than existing frameworks. The WBC core of ARC-OPT is
integrated into a Python-based architecture for learning task constraints and their respective
priorities from user demonstrations. This allows us to automatically derive task constraints
from data, adapt them to different application contexts and optimize the task priorities once
the solution is deployed on the target robot.

Figure 6.14 shows different robotic systems at DFKI RIC, which are currently or have been
controlled by ARC-OPT or by one of its predecessor frameworks. These robots include
industrial manipulators, mobile systems, multi-legged robots, humanoids and even an
upper-body exoskeleton used for teleoperation. The heterogeneity of these systems shows the
general applicability of ARC-OPT. To increase visibility outside DFKI and receive valuable
community feedback, the framework will be published as open-source software after the
scientific dissemination of the results.

The core of ARC-OPT, which is thewhole-body controller with different configuration options
considering solver, robot model and control output type is mature and well-tested. However,
within the Python architecture for learning and optimizing task constraints, we envisage
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several future steps to improve workflow and generality of the approach. First, there are still
various manual steps included in the workflow, which shall be replaced by automatized
procedures soon. For example, the demonstrated movements are currently segmented by
the user with the help of a simple graphical tool, which is time-consuming. To improve this
situation, one could either apply an automatized segmentation process or attempt to fully
avoid the need to segment the demonstrated tasks. The latter can be achieved by means of
suitable user interfaces for starting data acquisition, e.g., a button attached to the robot, or
any other means to detect start and stop of the demonstrated movement. Furthermore, the
user currently must define the given context by providing a real-valued context vector. An
automatized procedure for context classification could be based on unsupervised learning
approaches that assign categories to the acquired data after all demonstrations have been
collected. At execution time, the current sensory information can be used to select the category
and assign the corresponding task constraints. While context classification is a non-trivial
problem in general in robotics, for a finite number of discrete contexts it is known to work
well. Examples can be found in contact classification in human-robot collaboration [PKM17;
HDA17].



Conclusion 7
This chapter recapitulates the main contributions of this thesis and draws conclusions on the
results. Furthermore, an outlook on future work is given.

7.1 Summary and Discussion

This thesis is motivated by the fact that Whole-Body Control, though being a powerful tool to
specify and control complex robot tasks, requires a human expert to analyze the task, specify
task constraints and assign suitable task priorities. Apart from being time-consuming and
error-prone, this procedure results in solutions that lack generality. Once the situation or
the task changes, the specification must be adapted, which increases the general effort for
modeling and reduces the autonomy of the robot as the human operator has to intervene.
If we demand robotic systems that operate autonomously over a long period, we require
adaptive control approaches that consider the current context and reason about suitable,
situation-specific controller parameters.

In order to serve these needs, we introduce a programming by demonstration approach for
whole-body controllers in this thesis. The approach, which is based on GMM-GMR allows
to automatically derive parts of the optimization problem in WBC from data acquired in
user demonstrations. By demonstrating a robot task in varying situations, we can generalize
the acquired knowledge and adapt the whole-body controller with respect to the current
situation, which is referred to as context. These generalization capabilitiesmay help to develop
robots that perform better in dynamic environments, act more autonomously and require
less human intervention and expertise. We demonstrate the capabilities of the approach
regarding different manipulation tasks on the iMRK system, an industrial dual-arm robot,
and on the RH5 humanoid. It is shown that the approach is able to automatically adapt
task constraints and priorities with respect to a limited number of contexts, where the
context description may be discrete, as in "rotate right", "rotate left", or continuous, e.g., the
size of a manipulated object. Furthermore, it is demonstrated that the approach performs
better than state-of-the-art methods in terms of reproduction error for previously unknown
contexts. Finally, we develop an alternative PbD approach based on ProMPs and compare its
performance to the GMM-GMR-based method.

Once being deployed on the target robot, there is no guarantee that the learned behavior
is optimal as it depends on the quality of user demonstrations. Therefore, this thesis also
investigates black-box optimization approaches for task priorities and other WBC parameters
in order to increase the quality of the obtained solutions. The developed methods are
evaluated and compared using the iMRK robot. It is shown that we can use black-box
optimization to improve robot behavior in terms of accuracy and smoothness.

The contributions are aggregated in a modular and adaptive Whole-Body Control framework
named Adaptive Robot Control using Optimization (ARC-OPT). The framework aids at
programming complex robots like humanoids, multi-legged systems, or mobile manipulators
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by combining machine learning methods and WBC. We demonstrate one of the core features
of this framework, namely its general applicability, on two different humanoid robots with
series-parallel hybrid structure.

The combination of Whole-Body Control and programming by demonstration has immense
potential. While PbD offers an end-user interface to intuitively program new robot tasks,
WBC provides a powerful tool for experts to specify complex behaviors for redundant
robots. The integration of the two approaches provides improvements in terms of usability,
general applicability, and autonomy of robots in dynamic environments. Also, it is possible
to integrate expert knowledge by programming some tasks in a manual fashion and learning
other tasks that are too hard to program.

Naturally, creating autonomous robot behavior requires more than intelligent control tech-
niques as described in this thesis. In our work we assume that the context in which the
robot is currently operating is known. Estimating the current operational context with high
certainty is a crucial ingredient in robotic decision making, but hard to implement in complex
environments. Furthermore, the experimental evaluation in this thesis mostly focuses on
individual robot tasks. To generate complex robot behavior, we require approaches for
planning, executing, and monitoring sequences of tasks on a symbolic level. Although we
do not touch the area of task planning, the approaches presented in this thesis facilitate
high-level planning as they are able to select the correct controllers for a certain situation.
Thus, the approaches have the potential to bridge the gap between high-level symbolic
planning and numerical control.

7.2 Future Work

This thesis addresses certain limitations ofWBC approaches in order to make themmore user-
friendly, general and performant in dynamic environments. The adaptive WBC approaches
presented in this thesis provide a basis for future lines of research, which shall be summarized
in the following.

I Contact Interaction Tasks Modeling time-varying contact situations is one of the key
problems to be solved when controlling a humanoid robot. Complex interaction tasks,
as also required in dexterous object manipulation, are difficult to model. To compensate
for inevitable modeling errors and further reduce the effort for the human expert,
the PbD approach presented in Chapter 4 could be extended to the estimation of
contact constraints in future. Both, location of an environment contact and the time of
contact making could be derived from user demonstrations and generalized to varying
situations using machine learning approaches. In future, we plan to increase our efforts
in this regard and integrate contact constraints derived from user demonstrations with
other tasks in the WBC problem.

I Context Identification In order to create autonomous robot behavior, it is required that
the robot perceives the environment through sensors and identifies the context in which
it is currently operating from the acquired sensor data. In relation to the approaches
presented in this thesis, a relevant line of research would thus be to automatize the
process of context identification, i.e., assign context labels given the data acquired from
user demonstrations, distinguish known and unknown contexts, identify the current
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context during operation of the robot and select the appropriate whole-body controller
based on this classification. Such an automated procedure should replace the manual
context definition and identification used in the approach presented in this thesis on
the long run.

I Link to Symbolic Task Planning The focus of this thesis is to create more intelligent
WBC approaches. We create context-adaptive feedback controllers for redundant robots.
The area of high-level task planning and execution is not touched here, although the
implemented approaches may provide a helpful link to symbolic robot control. Thus,
a natural extension would be to create task sequences using symbolic planning and
use ARC-OPT as execution layer, which is able to select optimal WBC parameters for a
certain situation.

I Model Selection The experimental evaluation presented in Chapter 4 focuses on a
finite number of tasks and contexts obtained in user demonstrations. When we deploy
the approaches presented in this thesis in real-world applications, the number of tasks,
contexts and derived adaptation models may grow quickly. Thus, an intelligent way to
manage the generated models is required. Questions like, "Which model to select for
a given task?", "How to evaluate model performance?" and "When should I re-train
or discard a model?" will naturally arise in this regard. A sophisticated infrastructure
for model management will have to be embedded into a software architecture that
facilitates the generation of long-term autonomous robot behavior. The Rock framework
provides a suitable basis for such an architecture.

I Open-Source Release The ARC-OPT framework has been applied to various robotic
systems at the DFKI RIC institute (see Figure 6.14). To increase visibility outside RIC,
the framework shall be published as open-source software. In particular, the integration
of further solvers, robot models and WBC problems can be aided by the robotics
community. In return, ARC-OPT facilitates benchmarking different WBC approaches,
which can be utilized by other researchers. Furthermore, the communitymayprofit from
the various existing WBC implementations and the surrounding learning architecture.
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A
Kinematics of Open Chains

A.1 Differential Kinematics

The relationship between task space and configuration space variables of a robot manipu-
lator can be established on position, velocity and acceleration level. On position-level, the
equation

x � f(q) (A.1)

relates the joint space coordinates q ∈ RN to the task space coordinates x ∈ RM , where f is a
non-linear vector function, N the number of robot joints and M the number of task space
variables. A typical task is end-effector positioning. When considering both, position and
orientation of the end effector, a minimal representation of x is x � (x , y , z , φ, θ, ψ)T , where
(x , y , z)T denote the end-effector’s position and (φ, θ, ψ)T its orientation as roll-pitch-yaw
Euler angles. If N > M the robot is said to be kinematically redundant. When differentiating
(A.1), we obtain the first-order differential kinematics equation:

Ûx �
δf
δq
Ûq � Jt(q) Ûq (A.2)

where Ûq is the joint velocity vector, Ûx the task space velocity vector and Jt ∈ RM×N the analytic
Jacobian matrix of the robot, also referred to as task Jacobian. It is important to note that,
regarding the end-effector orientation, the analytic Jacobian does not relate joint velocities
to the angular velocities ω of the end effector. Instead, it relates the joint velocities to the
rate of change of the parameters characterized by the chosen representation of orientation,
in this case the derivative of the chosen roll-pitch-yaw Euler angles. In contrast to that, the
geometric Jacobian J relates spatial end effector velocity v ∈ R6 to joint velocities Ûq:

v � J(q) Ûq (A.3)

Analytic and geometric Jacobian are related via a simple transform:

Jt � TJ (A.4)

Another common distinction is made regarding whether the Jacobian is expressed in fixed
(space) frame coordinates or in moving (body) frame coordinates. The respective Jacobians
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are referred to as space Jacobian and body Jacobian. The space Jacobian Js relates the joint
velocities to the twist vs expressed in spatial coordinates, e.g., the base frame of a robot. In
contrast, the body Jacobian Jb relates the joint velocities to the twist vb expressed in body
coordinates, e.g., the end-effector frame. Both types are frequently used in modeling inverse
kinematics problems and the choice depends on the coordinate frame in which the problem
should be expressed.

The second order differential kinematics can be obtained by differentiating (A.3):

Ûv � JÜq + ÛJ Ûq (A.5)

where Üq ∈ RN is the robot joint acceleration and Ûv ∈ R6 the spatial acceleration of the end
effector.

A.2 Singularities

The configuration q of a robotic manipulator is said to singular, if the Jacobian matrix J(q) is
singular, i.e., if it is rank deficient. Note that, since the task Jacobian Jt is computed according
to (A.4), we have to distinguish representation and kinematic singularities. The former are
related to rank deficiencies of T and depend on the chosen representation of the end effector
orientation. The latter occur when the geometric Jacobian is singular and are related to a
loss of mobility of the end effector. In this case there exist end effector velocities that are
unfeasible for any joint velocity command.

The singular value decomposition (SVD) is a tool to analyze the singularity of any linear
mapping. The SVD of the Jacobian is computed as:

J � UΣVT (A.6)

where U ∈ RM×M and V ∈ RN×N are orthonormal matrices containing the left- and right-
singular vectors and Σ ∈ RM×N is a diagonal matrix containing the singular values on its
main diagonal. If all singular values σ1 , . . . σM are non-zero, the Jacobian is full-rank and the
range space of J is the entireRM . Close to a singularity at least one singular value approaches
zero, which decreases the dimension of the range space of J, eliminating a linear combination
of task space velocities from the space of feasible velocities.

When approaching a singularity, at some point the required joint space velocities for a
given task space velocity will become extremely high. The effect can be analyzed using the
manipulability measure, which characterizes the distance from a singularity:

µ �

√
|JJT | �

M∏
i�1

σi (A.7)

Maximizing µ will drive the manipulator away from singular configurations.
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A.3 Inverse Differential Kinematics

The inverse differential kinematics problem can be solved on position, velocity, or acceleration
level by inverting either (A.1), (A.3) or (A.5). Considering WBC, only the latter two are
relevant. If the manipulator is redundant (N > M) the general solution of (A.3) or (A.5) can
be expressed with the help of the pseudo inverse J+ ∈ RN×M of the Jacobian. The pseudo
inverse of J is a unique matrix satisfying the Moore-Penrose conditions:

JJ+J � J
J+JJ+ � J+

(JJ+)T � JJ+

(J+J)T � J+J

(A.8)

If J is full-rank, its pseudo inverse can be computed as

J+ � JT(JJT)−1 (A.9)

Using the pseudo inverse of the Jacobian, the general solution of the first-order inverse
differential kinematics can be expressed as:

Ûq � J+v + (I − J+J) Ûq0 (A.10)

where Ûq0 is an arbitrary joint space velocity and the operator P � (I − J+J) is the orthogonal
projection in the null space of J. The null space of J is the set of joint space velocities that yield
zero task space velocity. The term (I− J+J) Ûq0 is therefore a null space velocity. By acting on Ûq0
different joint space velocities can be obtained that result in the same task space velocity. This
facilitates the application of arbitrary secondary tasks that can be solved in the null space of
the primary task defined by v.

The second-order inverse differential kinematics solution can be expressed by solving (A.5):

Üq � J+(Ûv − ÛJ Ûq) + (I − J+J)Üq (A.11)

A.4 Singularity Robustness

For computational reasons and due to the presence of kinematic singularities, the pseudo
inverse of the Jacobian is hardly computed using (A.9) in practice. Multiple methods to
provide robustness with respect to singularities exist, one of which is called regularization or
damped least-squares technique. Using the singular value decomposition of J:

J+ � VΣ+UT (A.12)
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the damped pseudo inverse can be computed by approximating the diagonal entries s−1
i of

Σ+ as follows:

s−1
i �

si

s2
i + λ

2
, ∀i (A.13)

where si are the singular values of the Jacobian. The damping factor λ can be fixed or
computed from the current singular values according to [MK88]:

λ �


0 if sm ≥ q−1

max

(2qmax)−1 if sm ≤ (2qmax)−1√
sm

(
q−1

max − sm
)

else

(A.14)

here sm is the minimum eigenvalue of J and qmax is the maximum norm of the joint velocities
that the solution should allow, a value that must be selected in advance according to
capabilities of the robotic manipulator. Using this automatic adaptation of the damping, the
inverse solution will be exact if the robot is far from a singularity and approximate (damped)
if it is approaching a singular configuration, in which case the singular values of J become
small. This solution provides nice properties regarding singularity robustness and damping
and can safely steer the robot through singular configurations [MK88].



B
Dynamics of Open Chains

Considering the forces and torques that cause the motion of kinematic chains leads to the
topic of robot dynamics. The dynamic equations that express this problem are referred to as
equations of motion (EOM), which have the form:

τ � H(q)Üq + h(q, Ûq) (B.1)

where τ ∈ RN is the vector of joint forces and torques, H ∈ RN×N is the symmetric, positive-
definite mass-inertia matrix in joint space and h ∈ RN accounts for the effect of centripetal,
Coriolis and gravitational forces in joint space. Similarly to forward and inverse kinematics,
one can distinguish the the forward and inverse dynamics. The forward dynamics determines
the robot joint acceleration Üq given the robot state q, Ûq, as well as the joint forces and torques
τ. The inverse problem is about finding the required joint forces and torques τ given the
robot state q, Ûq and the desired joint acceleration Üq. The EOM are usually either derived by
using the conceptually elegant, but computationally inefficient Lagrangian formulation or
by the Newton-Euler formulation, which is better suited for robots with many dof [LP17].
Equation (B.1) considers the case where the robot moving in free space. If the robot is in
contact with the environment the wrenches fc in each contact point have to be considered:

τ � H(q)Üq + h(q, Ûq) +
∑

i
JT

c ,ifc (B.2)

where Jc ,i is the contact Jacobian of the i-th contact.

The mass-inertia matrix H is a generalization of a point mass for rigid body open chains.
For complex robots, an accurate derivation of the mass-inertia distribution will be hard to
obtain [BGK16]. Therefore, algorithms for dynamic control attempt to avoid direct inversion
of H, which may be problematic in terms of model uncertainties.

In task space the robot dynamics can be expressed as

f � Λ(q)Ûv + η(q, v) (B.3)

where f ∈ R6 is the end effector wrench, Λ � JHJ−1 ∈ RM×M is the task space mass-inertia
matrix and η ∈ RM is the effect of centripetal, Coriolis and gravitational forces in task space.
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The task wrench ft applied at a point in operational space of the robot can be obtained by
applying the following joint force and torques:

τ � JTft (B.4)

where ft has to account for the task space dynamics of the robot described by (B.3). For a
redundant robot, τ is not unique and a secondary task can be introduced:

τ � JTft + (I − J̄J)Tτ0 (B.5)

where P̄ � (I− J̄J) ∈ RN×N is the dynamically consistent null space projection of J and τ0 ∈ RN

is a joint torque vector describing an arbitrary secondary objective. The term J̄ � H−1JTΛ is
called dynamically consistent generalized inverse of J. The use of this specific inverse results
in the task-consistent forces and torques that minimize the kinetic energy. The null space
term can be used to achieve arbitrary secondary criteria that utilize the robot’s redundancy,
such as obstacle, singularity or joint limit avoidance, and energy/torque minimization.



C
Linear Least Squares and Quadratic Programming

Theorem C.0.1 Every linear least squares problem can be written as a standard quadratic program.

Proof. Let a linear least squares problem be described as

min
x

1
2
‖Ax − b‖2

This can be transferred to a standard quadratic program as follows:

1
2
‖Ax − b‖2 �

1
2
(Ax − b)T(Ax − b)

�
1
2
(xTATAx − xTATb − bTAx + bTb)

�
1
2
(xTATAx − 2xTATb + bTb)

Since b is assumed fixed, it can be ignored in the optimization problem, which gives:

min
x

1
2

xTQx + gTx

which is a standard quadratic program with Q � ATA and g � −ATb.





D
Relation between WBC and Optimal Control

Optimal control is a branch of mathematical optimization that attempts to find a control law
for a dynamical system such that a running cost (e.g., the integral of the position tracking
error over time) and a terminal cost (e.g., the final position error) is minimized [Tod06]. If
the optimal control policy for a dynamical system is computed once, there is no need for
the application of feedback controllers since the policy steers the systems in an optimal
manner. In practice the model of the dynamical system will be only approximately known,
and a stabilizing feedback control is required to cancel out inevitable modeling errors.
The optimal control problem is typically subject to multiple constraints, e.g., maximum
torque, battery consumption, workspace limits, etc. In robotics, in particular model predictive
control (MPC) is of interest, also known as receding horizon control or online trajectory
optimization [Ceb+21]. InMPC the optimal control law is computed for a finite number of time
steps ahead. Then, the first value of the trajectory is applied to the robot and the optimization
problem is solved again with the current state estimate. MPC has been successfully applied
in many technical fields like e.g., chemistry. However, in robotics the timescales of system
dynamics are much smaller. Furthermore, many robotic tasks involve making and braking of
contact with the environment (e.g., in humanoid walking), which poses certain problems to
MPC. Still online MPC has been successfully applied to humanoid robots. For example, Del
Prete et al. [Del+14] introduce prioritized optimal control, which combines the advantages of
task prioritization known fromWBC and optimal control theory. The authors evaluate the
approach on a simulated humanoid using a control loop running at 20ms and a time horizon
of one second. Tassa et al. [TET12a] introduce a MPC approach that relies on a powerful
physics simulation engine [TET12b] and enables the simulated robot to perform complex
behaviors like getting up from the ground or recovering from large disturbances. Their
MPC framework runs at 8ms with a time horizon of 500ms. Kleff et al. [Kle+21] implement
closed-loop non-linear MPC at real-time rates (1 KHz) on a 7 dof industrial manipulator.

In contrast to optimal control or MPC, WBC solves an instantaneous optimization problem
by regarding cost and constraints only for the current time step. It has the advantage to
perform at higher speeds by offloading parts of the optimization problem into a closed-loop
projection-based solution [MS19]. On the negative side, WBC-based solutions are less optimal
and more likely to get stuck in local minima. A common workaround that combines the
advantages of MPC and WBC is to perform trajectory optimization offline and stabilize the
optimal trajectories with a whole-body controller during execution [Ceb+21]. This requires a
decent simulation of the full task and environment.

In fact, it has been shown by [Kle+21] that Task Space Inverse Dynamics (TSID) is equivalent
to optimal control with collapsed time horizon.
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Figure E.1: Resulting trajectories after task priority optimization using cost function f1, Rotate
Object task, KUKA dual-arm robot
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Figure E.2: Resulting trajectories after task priority optimization using cost function f2, Rotate
Object task, KUKA dual-arm robot
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Figure E.3: Resulting trajectories after task priority optimization using cost function f3, Rotate
Object task, KUKA dual-arm robot
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Figure E.4: Resulting trajectories after task priority optimization using cost function f4, Rotate
Object task, KUKA dual-arm robot



Notations and Symbols

Throughout the document the notations and symbols as shown in the following table will
be used. The table only shows the most important variables. Vectors are represented by
lowercase bold characters, matrices by uppercase bold characters.

Operators and Attributes
Ûx Time derivative of x
x̂ Estimate of x
A−1 Inverse of a matrix A
A+ Pseudo-inverse of a matrix A
AT Transpose of matrix A
[x] Skew symmetric matrix of a

vector x (see e.g., [LP17])
tr(A) Trace of a square matrix A

Dimensions
N Number of robot joints
NN Number of spanning tree

robot joints
NM Number of independent robot

joints
NP Number of actuated robot

joints
Nq Number of decision variables

in QP
Nc Number of constraints in QP
M Number of constraint/task

variables
D Number of demonstrations

per context
C Number of context variables
S Number of samples per

demonstration
K Number of mixture compo-

nents
F Number of task frames

Robot Control
q ∈ RN Robot configuration in joint

space
p ∈ R3 Position in Cartesian space
x ∈ R6 Pose in Cartesian space
v ∈ R6 Twist/spatial velocity inCarte-

sian space

J ∈ R6×N Geometric Jacobian
Jt ∈ R6×N Task Jacobian
P ∈ RN×N Null space projection matrix
τ ∈ RNp Robot joint actuation torques
H ∈ RN×N Joint space mass-inertia ma-

trix
h ∈ RN Vector of bias force/torques in

joint space
f ∈ R6 Wrench in Cartesian space
Λ ∈ RM×N Task spacemass-inertiamatrix
R ∈ SO(3) Rotation matrix
θ ∈ R Rotation angle
ω̂ ∈ R3 Unit rotation axis
u ∈ RNp Robot configuration in actua-

tion space
W ∈ R6×6 Diagonal task weight matrix
S ∈ RNp×N Actuation matrix
w ∈ R6 Task weight vector
∆t Sample time

Mixture Models
p(x) Probability distribution of x
µ Mean of a Gaussian
Σ Covariance matrix of a Gaus-

sian
σ2 Variance
π Mixing weight in a GMM

Data Sets and modeling
κ ∈ RC Context vector
ξ Multi-dimensional data set
X ∈ RD·S×L Data set with poses
V ∈ RD·S×L Data set with twists
K ∈ RD·S×C Data set with contexts
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