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A B S T R A C T

Digital Twins (DTs) are real-time digital models that allow for self-diagnosis, self-optimization and self-
configuration without the need for human input or intervention. While DTs are a central aspect of the ongoing
fourth industrial revolution (I4.0), this leap forward may be reserved for the established, large-cap companies
since the adoption of digital technologies among Small and Medium-size Enterprises (SMEs) is still modest. The
aim of the H2020 European Project "DIGITbrain" is to support a modular construction of DTs by reusing their
fundamental building blocks, i.e., the Models that describe the behavior of the DT, their associated Algorithms
and the Data required for the evaluation. By offering these building blocks as a service via a DT Platform (a
Digital Twin Environment), the technical barriers among SMEs to adopt these technologies are lowered. This
paper describes how digital models can be classified, reused and authored on such DT Platforms. Through
experimental analyses of three industrial cases, the paper exemplifies how DTs are employed in relation to
product assembly of agricultural robots, polymer injection molding, as well as laser-cutting and sheet-metal
forming of aluminum.
1. Introduction

A successful manufacturing company must be agile, innovative, and
highly efficient. Not only do companies today face fierce competition
from globalization, but product requirements constantly increase due
to new legislation, regulations, and customer expectations. Therefore,
manufacturing companies already exploit digitalization techniques to
be successful in the competitive market. This is the basis of the ongoing
fourth industrial revolution (i.e., I4.0), which is already bringing a
paradigm shift to manufacturing engineering.

∗ Corresponding author.
E-mail addresses: vzambrano@itainnova.es (V. Zambrano), prasad.talasila@ece.au.dk (P. Talasila).

I4.0 builds on the foundation of Internet of Things (IoT) technology,
where sensors and software are embedded in devices (i.e., cyber–
physical systems) to exploit different aspects of computerization. As
such, a central aspect of I4.0 is the deployment of the so-called Dig-
ital Twins (DTs) [1] that ultimately act as real-time digital models
and allow for self-diagnosis, self-optimization and self-configuration
without the need for human input or intervention. There is, however,
data that indicate that the leap forward offered by I4.0 might be
reserved for the established, large-cap companies. For example, the
Digital Transformation Scoreboard in EU signals that the adoption of
digital technologies among SMEs and mid-caps [2] is below 10%, which
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poses a significant barrier if I4.0 technologies are to be adopted across
the entire manufacturing sector.

DTs are becoming increasingly prominent in the manufacturing
industry. DTs are capable of optimizing processes and products prior
to their execution thanks to their ability of high-fidelity forecasting. In
manufacturing industries, DTs can be virtual representations of differ-
ent systems, e.g., machinery, production lines, products, or any other
operation or service related to the manufacturing process. Therefore,
DTs can be introduced at any time in the manufacturing process, hence
their usefulness is not limited to pre-production planning and design,
where prediction and optimization of the product or production lines
apply, but they can also be used for maintenance, market analysis,
etc. [3].

One way to allow SMEs and mid-caps access to I4.0 technologies is
to offer the services via a platform, which is sometimes referred to as a
Digital Twin Environment [4]. Not only does this lower the investment
nd infrastructure requirements of companies, but it also gives non-
echnical staff access to key technologies with only limited training.

Digital Twin Environment can utilize collected data to let models
nd algorithms remotely steer and optimize products and processes ac-
ording to the operating conditions. As such, manufacturing companies
an now outsource both expertise and parts of the supply chain [5] to
ervice providers, which is referred to as Manufacturing as a Service
MaaS) [6–10].

To provide a MaaS platform, several building blocks are needed,
any of which have already been explored, among others, in previously

unded European H2020 projects. A non-exhaustive list of these EU
rojects includes: digital services marketplaces for manufacturing com-
anies (CloudiFacturing [11], MANUSQUARE [12]); deployments of
mart applications in open-source IoT platforms (FIWARE [12]); cloud
rchestration engines (COLA [13,14]); as well as basic research into
yber–physical systems (INTO-CPS [15]) and simulation and forecast-
ng technologies (MAYA [16]). The natural step from present state of
he art is to develop a complete set of solutions that further extends the
oncept of DTs and enable manufacturing companies to tap into the
ull potential of I4.0. This is the goal of the European H2020 project
IGITbrain and this paper presents the project’s novel approach how
odels for Digital Twins can be made reusable based on the DIGITbrain

echnology [17].
In order to provide a digital integrated platform, both software and

ardware components need to be considered. However, one of the core
echnologies of the DIGITbrain project is the device-agnostic software-
ased verification mechanism by the implementation of a lightweight
ryptographic library. This paper strictly focuses on Models, as a sepa-
ate and reusable asset in DIGITbrain.

This paper is organized as follows: Section 2 provides background
or the paper by reviewing related work; Section 3 identifies and
eviews a classification of models that may be used on MaaS platforms
or evaluation, including the behavior of models, organization, and
nteraction of coupled models, embedded models, and stateful and
tateless models; Section 4 presents the proposed model characteri-
ation and metadata structure within DIGITbrain; Section 5 explains
ow models can be authored; Section 6 lists some of the most relevant
esults obtained during the first year of DIGITbrain Project leading
o enhanced model reusability; and finally, Section 7 concludes the
indings of the paper.

. Background and related work

The use of DTs dates more than 50 years back to the Apollo 13
rogram, where NASA had designed physical simulators to mirror the
onditions that astronauts would experience in the spacecraft during
paceflight [18]. While no formal, generic definition followed its ini-
ial introduction, the consensus now characterizes a DT as a digital
odel with near real-time, bidirectional communication to the physical

ystem [19]. Accordingly, models with one-way communication are
2

defined as a digital shadow, and models without any communication link
are no more than digital models of the physical system. A DT can reflect
the entire life cycle of a product [20,21], however, targeted domain-
specific applications such as monitoring and prediction of crack growth
are commonly seen as well [22].

In order to implement and use DTs in an I4.0 manufactory sce-
nario, protocols, access profiles and communications must be set up
between hardware and software nodes of the DT architecture [23–25].
Nevertheless, as described in Section 1, the Project DIGITbrain allows a
clear separation between different assets, mainly Data, Algorithm and
Microservices, and Models. In this scope, only Models are analyzed as
an independent and reusable building blocks for DTs in I4.0.

The data to be utilized by the DT (i.e., the cyber–physical system)
can be collected from various sensors and other devices, such as cam-
eras, Radio Frequency Identification (RFID) tags, gauges (e.g., strain,
deformation, temperature), etc. [26]. Naturally, to allow the system
to perform any meaningful autonomous decision-making, data must
be transmitted in real time or near real time. Recent reviews of data
processing in a DT setting can be found in [27,28].

The role of models in a DT setting is to state, estimate and forecast.
Models can be purely semantic in the sense that they are solely based on
previously collected data. These models are also called database models
and can be considered as black-box or gray-box approaches depending
on the need for manual configuration. Machine Learning (ML) is the
basis for semantic models, and several examples in literature can be
found where data has been used to train Neural Networks (NN) [28,29].

Another approach to model system behavior is using physics-based
models, also called first-principle models. Here, models are estab-
lished based on geometrical information, material parameters, process
conditions, and the underlying physics is characterized with partial
differential equations. In a DT setting, for instance, the governing equa-
tions can take the basis in simple considerations of the conservation
of energy in thermal system [30] or high-fidelity computational fluid
dynamics models [31]. When solving the partial differential equations
that govern the physics-based models, discretization methods such as
Finite Element Method (FEM) or Finite Volume Method (FVM) must be
employed. Therefore, the physical product or process is resolved into a
large number of discrete variables, and this system can require signifi-
cant computational effort to solve. As already discussed, the runtime of
simulation models must be close to real-time in a DT setting, so physics-
based models are often supplemented with semantic (i.e., ML) [32]
or Reduced Order Modeling (ROM) techniques [33,34] to bring down
computation time, although the latter technique can be also used to
build completely data-driven DTs, as detailed in Section 3.

Based on some prior initiatives in Germany, a joint effort named
Plattform Industrie 4.0 [35] was launched in 2012 to promote the digital
transformation of manufacturing, by bringing together companies, their
workforces, trade unions, related associations, science, and politics.
A comprehensive literature review of I4.0 and related technologies
shows that the label Industry 4.0 was later taken up internationally by
many other approaches in the area of smart manufacturing [36]. The
4.0 approach was hence at first driven by the German initiative with
road support and high effort in its conceptual foundation, standard-
zation [37] and practical application. The foundation of this approach
as mainly based on the results of the working group on Reference
rchitectures and Standards and Norms, i.e., the Reference Architec-

ural Model Industrie 4.0 [38]. Over the years, the platform extended
nternationally by cooperation or alignment with similar initiatives in
ther countries in Europe, the US, Japan, and China. An important
ornerstone was the alignment with the Industrial Internet Reference
rchitecture (IIRA) of the Industrial Internet Consortium (IIC) [39]. As

the key concept of I4.0 platform, the Asset Administration Shell (AAS)
has been introduced. In alignment with the IIC, the AAS is understood
as a realization of DT in terms of I4.0 [40].

While all the previously mentioned research efforts enable the

creation of DTs, their construction and creation remain a long and
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time-consuming process. Each DT is typically constructed individually,
without reusing previous results and existing building blocks. The work
described in this paper is the first step to overcome this obstacle by
categorizing and describing models with a rich set of metadata to
enable their reusability when building DTs.

3. Types of models

The DIGITbrain Project includes and supports several kinds of mod-
els. A model in DIGITbrain is an asset that contains the knowledge
related to a specific industrial product instance (i.e., a concrete man-
ufacturing machine or production line), which can hence describe and
forecast the behavior of such an instance when specific operating con-
ditions are given (n.b., the process of forecasting a system’s behavior
according to specific operating conditions is also known as model
evaluation). In this section, we detail the different model types.

3.1. Co-simulation models

Models related to Cyber–Physical Systems (CPSs) are often difficult
to develop, due to the large variety of sub-systems (e.g., networks,
control algorithms, mechanical components, electrical circuits, sen-
sors) and components with different formalisms. Since sub-systems and
components can be reused in different scenarios and applications, it
becomes very helpful to be able to model them separately, instead of
creating a single monolithic model that includes all of them. For this
purpose, co-simulation is a very useful approach for coupling together
the different parts of a whole system.

The sub-systems and components are created by model developers
and exported as co-simulation units [41]. In order to perform co-
simulation of a complete system, these co-simulation units need a
standard way of interacting with each other. Since manufacturing
systems are typically produced by a combination of heterogeneous
components, these components are usually supplied by several legal
entities; hence protection of the intellectual property for the underlying
model is needed.

The Functional Mockup Interface (FMI) [42] is a widely used so-
lution for the above described problem where the orchestration of
combining differing simulation units is made by independent orchestra-
tion engines [43]. FMI is a cross-platform and open-source standard to
exchange models and perform co-simulation. Components that conform
to the FMI standard are called Functional Mockup Units (FMUs). An
FMU is distributed as an archive with the file extension .fmu. An FMU
ontains the following:

• an XML-file with metadata, definitions of all the variables inside
the FMU, and desired outputs

• implementation in source and/or binary form, specifically:

– binaries: this directory contains the executable files of the
FMU and can also contain shared library executable code
for different OS (Operating System) platforms

– resources (optional): the contents of this directory can be
used by the FMU during execution time

– sources (optional): the source code of the FMU, compiled to
produce the shared libraries placed in the binaries directory

• additional Data, such as documentation

t is important to remark that the model itself inside the FMU may be
istributed as binary and hence can be exchanged as black boxes, which
3

s also beneficial to protect the intellectual property of the source code.
.2. Machine learning models

The use of ML in industrial manufacturing offers immense po-
ential for the optimization of procedures and processes. As a result
f their effectiveness, they are used in various tasks like computer
ision, speech and pattern recognition, natural language processing
tc. [44]. However, the creation of the required models requires ex-
ert knowledge, since modern production plants are very individual
nd thus also very complex. The goal of the methods is to capture
nterrelationships that cannot be comprehensively achieved by clas-
ical modeling with the aim of capturing the optimization potential,
uch as product quality, resource utilization and to be able to initiate
orresponding improvements in the sense of predictive maintenance,
ontainment of unplanned machine failures or an improved quality
ssurance process. To develop models in these application domains,
ignificant amounts of data are needed in the first stage of prepa-
ation. These data need to be collected and prepared with the help
f experts, matching the applied ML technical requirements and the
roduction-automation technologies. They serve as training data for the
odel.

ML models are usually trained in a High Performance Computing
luster (HPC) and subsequently deployed in less compute-intensive
nvironments, such as highly available computers in the cloud or
dge devices. The trained model can be used for prediction, feature
xtraction, decision support, and pattern recognition once adaptation
o the training data is complete. Such a trained model consists of a
ollection of numbers (called weights), rules, and data structures specific
o ML algorithms, required for decision-making and prediction. For
xample, in an ML deep learning application on an image classification
se case, the NN algorithm, together with the backpropagation [45]
nd gradient descent algorithms [46], generates an ML model and
ptimizes the training data, which consists of a collection of correctly
lassified images.

.3. Reduced Order Models

Together with ML, ROM is another popular technique among AI
ethods for DTs. It shows several similarities with ML, as detailed

elow.
ROM models are created through a numerical strategy that aims

o transform a complex, time- and resources-consuming simulation
r laboratory test-based model into a significantly simpler system.
OM models can be obtained through both intrusive [47–50] or non-

ntrusive methods [51–54]. Intrusive methods allow to directly modify
he system’s equations and are especially useful when the system’s
quations are known, but too complex to be solved for a general case, in
reasonable amount of time and with limited resources. On the other
and, non-intrusive methods can be employed either when the system’s
quations are known or completely unknown. These methods are hence
urely data-based and can be compared to ML data-trained model.

An example for generating non-intrusive ROM models is provided
y CAELIATM Twinkle authoring tool [55], i.e., a library for creating
ensor-Rank-Decomposition (TRD)-based ROMs, according to Eq. (1).
winkle allows for an extensive manifold exploration, and it can work
n dense, sparse or even unstructured data; for further details please
efer to Zambrano et al. [56]. According to Eq. (1), the TRD method
s a powerful method for simplifying and understanding a system. In
act, through the TRD approach it is possible to describe the system’s
ehavior (i.e., output) by means of independent functions, one for
ach system variable separately. Using the TRD method, a problem
ith 𝑁 variables can therefore be expressed as the product of 𝑁

one-dimensional functions (i.e., one for each system variable).

𝐹 (𝑣1,… , 𝑣𝑁 ) =
𝑀
∑

𝛼𝑚
𝑁
∏

𝑓𝑚,𝑛(𝑣𝑛) (1)

𝑚=1 𝑛=1
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Fig. 1. Example of a SoS characterization from an LCA perspective.
where M is the ROM’s approximation order, so that the first addend
corresponds to a first approximation of the system, while following
terms are corrections to it, being 𝛼𝑚, 𝑚 = 1,… ,𝑀 weighting coefficients
with generally decreasing values.

CAELIATM ROMs, for instance, can be easily obtained from input
data files such as .txt or .csv that typically include data points where
both inputs and output values are provided, similarly to supervised
ML algorithms [57]. These ROM models can be easily embedded and
managed by virtually any kind of environment, e.g., desktop applica-
tions or web interfaces, where users can provide keyboard inputs and
navigate to obtain real-time results. The computed ROM model file can
be straightforwardly embedded in different platforms as a .txt file that
includes all the necessary information and parameters to compute the
system’s response in real-time.

3.4. System of Systems models

System of Systems (SoS) models can be based on both structural and
behavioral models. One example of a SoS model, from a structural point
of view, is the Life Cycle Assessment (LCA) tool [58] model applied
in a manufacturing domain. LCA is a well-acknowledged methodology
for analyzing the environmental impacts of manufacturing processes
along their entire life cycle. LCA assessment leverages on the use of
well-founded background data that enable users to personalize their
operation information so to calculate the environmental indicators that
represent impacts related to a specific process. This process is sup-
ported by the LCA Process Templates (PT) tool which creates process
characterization by formalizing the Life Cycle Inventory (LCI) descrip-
tion, where for each specific process inputs and outputs are identified
and quantified. LCI considers resources (i.e., inputs) coming from the
ecosphere (e.g., raw material, water) or from another technosphere
(e.g., ancillary material such as lubricating oil) and energy of various
types. LCI assesses emissions (i.e., outputs), such as waste, products
and co-products. LCI data represent the variables belonging to the LCA
model and are retrieved directly from the production line or collected
manually through IoT devices. Fig. 1 shows an example of LCA process
characterization. The figure shows how LCI output of a certain process
can become the input for another process in a SoS model.

From a LCA point of view, an output of a specific process (i.e., a
system) can be formalized as an input to another process. Since a
process is considered the fundamental unit for the LCA evaluation, a
complex system might be represented by a production machine (as
4

supplier of several processes) or a production line (obtained as the
composition of production machines or single processes). This approach
can be repeated by composing more processes on various levels of
complexity.

In addition to LCI data, LCA methodology is also based on Life Cycle
Impact Assessment (LCIA) information on the impacts related to the
inventory, i.e., the computed environmental indicators. LCIA data, for
the analysis of a specific system, can be calculated from the LCI data via
characterization factors, i.e., factors meant to translate the inventory
into environmental impacts. On the basis of the approach explained
before, the LCA assessment of a SoS can be obtained as a composition
of LCA assessments of each system.

Another type of SoS models supported by DIGITbrain is integrated
3D and Discrete Event Simulation (DES) models. DES models are be-
havioral model which describe the evolution of a system during a given
time, in which the simulated time is advanced at discrete intervals only
when a change in the system occurs, updating the state of the system.
In DIGITbrain, DES is supported through the DDDSimulator simulation
engine, a DES tool with integrated 3D virtual environment. Simulation
models are composed by reusable elements called prototypes, each one
representing a component of the simulated system (machine, trans-
porters, logic module); prototype instances communicate among each
other with ports that are used to exchange data between different
modules. The models realized can be used to simulate the system for
a period of time and obtain statistics that give information on the
performance of the system in the simulated conditions. A graphical
Integrated Development Environment (IDE) called DDD Model Editor
supports the visual editing of both prototypes and models.

3.5. Stateful vs. stateless models

Some models always generate the same results for a specific set
of in-slot values when instantiated (i.e., stateless models), while other
models depend on their previous state and must therefore remain
persistently instantiated (i.e., stateful models). On the one hand, in
stateless models, outputs only depend on the model itself and current
inputs, such as static equilibrium simulations, non-recurrent NNs, and
LCAs. On the other hand, for stateful models, the outputs also depend
on their internal state and thereby on a potentially unbounded number
of previous inputs. Examples include transient or dynamic simulations
and recurrent NNs.
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Distinguishing between stateful and stateless models is particularly
important for the correct evaluation of models. On the one hand, while
stateless models can be reconstructed at any time, stateful models
and their evaluating algorithms must remain instantiated on a given
compute node. Alternatively, the algorithm must support serializing
its state and restoring it on a different machine. On the other hand,
keeping stateless models instantiated is not a requirement, although it
might be beneficial to avoid instantiation overhead. In this context,
it is important to consider the cost of on-demand instantiation of a
model with a given algorithm, as well as (de)serialization costs for
stateful models. If the cost of on-demand instantiation is less than the
benefit derived from continuous model evaluation, then on-demand
instantiation might be a better choice.

4. Reusable models for DIGITbrain

4.1. Reuse in the DIGITbrain ecosystem

The key to efficiently create DTs lies in the reuse of existing arti-
facts. The reuse of software artifacts is a well-established concept in
software engineering [59]. The DIGITbrain ecosystem enables reuse by
decomposing DTs into their constituting parts, i.e., data, models, and al-
gorithms. Metadata describing these assets and their physical locations
in external repositories are stored in the Platform, enabling users to
create DTs by composing the parts into a Data-Model-Algorithm (DMA)
tuple.

Focusing on models, the core problem is not the availability, but
the identification, occasional adaptation, and composition of models
with suitable data and algorithms to create DTs (i.e., DMA Tuples). In
DIGITbrain a model classification has been developed to allow a model
developer creating a meta-description, which ensures discoverability
and composability of models with algorithms by DT experts after
publication.

The major challenge tackled by DIGITbrain is to present the charac-
terization in such a way that the model user can conveniently find the
right model for efficient reuse. The core service responsible for enabling
reuse is the DIGITbrain Asset Metadata Registry that stores a rich set
of metadata about all DIGITbrain assets, including models. The actual
models are only referenced from this Registry and stored in external
model repositories (the project set up a sample model repository for
demonstration purposes). The access service relies on the metadata
descriptions to provide filtering, search functionality and to assure that
the selected model is fed into the chosen algorithm at execution time.

Within this context, the main classification characteristics proposed
in DIGITbrain are the various aspects of the model, for example mod-
eling language, model inputs and outputs, and the structure and con-
struction of the model. Moreover, further characteristics are taken
into account, related to the evaluation of the model by the selected
algorithm, such as its storage requirements during execution, and the
information about the model’s fidelity in its range of validity.

For this purpose, generalized metadata description tables were cre-
ated (see Tables 1 to 3), to be filled with the selected characteristics of
each model. The tables, represented as key–value pairs, are described
in the following sections.

4.2. Model metadata description

The process of publishing a model on the DIGITbrain Platform
requires providing all information needed for the model to be evaluated
with a compatible algorithm. Once the model information has been
collected, it can be published on the DIGITbrain Platform, using the
dedicated DIGITbrain publishing interface.

As mentioned earlier, in order to facilitate data collection from
different types of models, metadata specifications for models have been
defined as a common structure to be used within the DIGITbrain Plat-
form and are stored as key–value pairs in a relational database. Model
5

Table 1
Selection of model metadata related to model definition.

Key Type Description

ID UUID SemVer ID of the model.
name string Name of the model.
version SemVer2 Model version.
license string Licensing model chosen from a fixed set

of known licenses.

provider enum Provider name: Institution or Person.
provider_contacts obj (optional) Dictionary with keys being

phone, email, address.

AuthTool obj Authoring tool used to create the model.
type enum Model type, e.g., ML, LCA, 3D FEM,

CFD, system simulation, discrete event
simulation, or co-simulation; any
algorithm that supports the given type
can be used to evaluate this model.

fidelity number (optional) Error of the model’s
prediction.

model_URI URI Where the model(s) file(s) is/are stored.
state_depend bool Defines whether a model is stateful or

stateless, c.f. Section 3.

metadata were designed not simply based on the analysis of various
models, but also taking the characteristics of algorithms evaluating
these models, and the requirements for the deployment and execution
of the resulting DMA Tuples (DTs) into consideration. Model metadata
are divided into three main categories: definition, parametrization, and
publication. Tables 1 to 3 show a selection of model metadata related
to each category, while Tables 4 to 6 are optional metadata tables very
specifically referring to co-simulation models. A full specification will
be released on the DIGITbrain Website (https://digitbrain.eu) in the
near future.

Model definition fields ( Table 1) include a human-readable descrip-
tion of models, model properties (i.e., I/O, hardware requirements etc.),
and references to the externally stored models. This section contains
an ID value, which is generated automatically by the DIGITbrain Asset
Publishing Interface. The other fields are provided by the asset owner
through the publishing interface. These include generic information as
the model’s name, version, license, and provider fields. The AuthTool
key provides information about the authoring tool used for creating
the model, while further fields describe its type (e.g., ML, LCA, etc.),
the model’s fidelity (i.e., reliability of prediction or errors), a URI
for storage location and a state_depend key that differentiates between
stateful and stateless models (see Section 3).

The parametrization section takes into account I/O and other pa-
rameters that might be needed for its evaluation. In Table 2 the
generic features to be considered for model parametrization are listed,
such as the in_slots (i.e., inputs and parameters) and outputs fields.
These are composed of a unique model’s key, a name, the number
of dimensions, model’s units (i.e., human-readable name, SI – In-
ternational System of Units – exponents in a [m, s,mol,A,K, cd, kg]
ormat, a scale offset if needed and a scale’s order of magnitude), a
efault value if available, valid range, and a description. Moreover, the
odel parametrization metadata foresees optional fields presented in
ables 4 to 6 and related to co-simulation, in which dependencies, OS
nd hardware requirements are covered.

Publication metadata (Table 3) is currently a simple human-
eadable description of the model. However, this can potentially be
eplaced with a more complex ontological approach in the future
hat enables the automated interpretation and selection of models (a
unctionality that is not currently supported by the DIGITbrain Platform
nd done by the human operators/users).

Using the metadata specified above, model reusability becomes a
eality. Once Models are published separately from other DIGITbrain
ssets (e.g., Algorithms and Data), dynamic composition of these assets

https://digitbrain.eu
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Table 2
Selection of model metadata related to model parametrization.

Key Type Description

in_slots array[object] Input values and/or parameters for the model. The objects in this array contain input’s or parameter’s: unique key,
name, number of dimensions, units (i.e., a human-readable name, SI – International System of Units – exponents in a
[m, s, mol, A, K, cd, kg] format, a scale offset if needed and a scale’s order of magnitude), default value if available,
ranges (i.e., minima and maxima) and a description

outputs array[object] Model-specific outputs. Structured analogously to in_slots.
cosim_solver_info object (optional) Co-simulation models bundle binary solvers. Therefore, execution information such as operating system, CPU and GPU

architecture, etc. are required in that case (see Tables 4 to 6).
Table 3
Selection of model metadata related to model publication.

Key Type Description

description CommonMark Human-readable description of the
model, e.g., version, scope (simulation,
control, etc.). Provided as CommonMark
Markdown for rendering as a web page.

Table 4
Cosim_solver_info Dependant FMUs metadata (optional).

Key Type Description

dependencies array[URI] Dependant FMUs for co-simulation.

Table 5
Cosim_solver_info OS requirements metadata (optional).

Key Type Description

osArch enum OS architecture type (e.g., x86_64).
osType enum OS type (e.g., Windows, Linux).
osDistribution enum OS distribution (e.g., Ubuntu, Fedora).
osVersion SemVer2 Version of the OS.

into executable DMA Tuples becomes possible at run-time. Obviously,
the compatibility of the combined assets still needs to be checked and
assured, either by the human composer (as in the current version of
the DIGITbrain Platform) or via an ontology-based automated approach
(which may be considered for the future). However, from the pub-
lished metadata the DIGITbrain Platform is capable of generating the
executable ‘‘artifact’’ automatically by combining the model with the
algorithm that evaluates it and the data that is required as input for
the calculation, without further human intervention.

Please note that while the above-mentioned composition and auto-
matic code generation are important and interesting topics, these are
out of the scope of this paper as we only concentrate on models and
their reusability.

5. Authoring of DIGITbrain models

There are several authoring tools for generating, importing, man-
aging, evaluating, and exporting various models. In this section the
authoring tools related to DIGITbrain models detailed in Section 3
are described. Please note that such authoring tools are outside the
DIGITbrain Platform. With such decision DIGITbrain does not limit
the choice of authoring tools that can be used to generate models.
Any authoring tool can be applied, and the generated models can
be registered in a uniform way with the Platform, as described in
Section 4. As a consequence, the authoring tools detailed in this section
are examples only. Other authoring tools can also be used freely in
relation to the DIGITbrain approach.

5.1. Authoring tools for co-simulation models

Many modeling and simulation tools are used to author functional
mockup unit (FMUs) – co-simulation units – conforming to the func-
tional mockup interface (FMI) standard; over 100 of these authoring
6

tools can be found on the FMI website [60]. Using FMI, FMUs can be
authored by the manufacturers of industrial products and shared among
the users.

The Integrated Tool Chain for Model-based Design of Cyber–Physical
Systems (INTO-CPS toolchain), a Project led by Aarhus University, is an
example co-simulation toolchain [15,61]. The INTO-CPS toolchain con-
sists of a framework (i.e., a family of tools) built around FMI-compatible
co-simulation for a collaborative development of Cyber–Physical Sys-
tems (CPS). The core of the INTO-CPS toolchain is the co-simulation
orchestration engine called Maestro [43]. This essentially enables any
authoring tool that can export their models to an FMU to be usable. The
toolchain integrates with FMU authoring tools such as Modelio, and
Overture [62,63]. Modelio is an open-source modeling environment
capable of generating FMUs from SysML profiles [64]. Overture is a
tool used to specify and execute formal models described in Vienna De-
velopment Method (VDM) [65]. Overture is capable of exporting VDM
models into FMUs. Other FMU authoring tools do exist; OpenModelica
is one such example as an interactive development environment for
system representation in Modelica language [66,67]. The three tools
mentioned above model Cyber Physical Systems (CPS) in different ways
and export these into FMUs. The users can then apply the INTO-CPS
toolchain to import these FMUs and combine multiple FMUs into a
co-simulation model of an industrial product.

5.2. Authoring tools for machine learning models

As ML models are generated through the data driven training pro-
cess on ML algorithms, necessary algorithm packages have to be devel-
oped in the particular ML framework. These pre-configured algorithms
are created with the help of external authoring tools. Such authoring
tools create specific microservices performing certain data handling
tasks and build up an ML algorithm by combining one or more in-
dividual microservices. In ML applications DIGITbrain makes use of
reference architectures, combination of widely-used machine learning
tools and libraries that can be deployed by one click in the cloud,
to enable this automated creation of containerized, ready-to-use soft-
ware stacks, for non-experienced users. Many steps of the authoring
process could be automated, by providing domain specific templates
and building on tools that are already available, for example Jupyter
Labs [68].

Within the reference architectures, the domain experts (data scien-
tists) can build on and use well-known ML frameworks. The DIGITbrain
Platform provides a fast way to reuse models and train them indi-
vidually with customized datasets. This fast and easy reproducibility
of implementations provides a very fast way to implement AI in pro-
duction. This model processing takes place in a predefined working
environment supported by ML frameworks such as TensorFlow [69],
PyTorch [70], etc. After training, the generated models can be stored
in ML framework-specific formats and executed on less powerful hard-
ware. To support model portability, the open source community has
proposed the Open Neural Network Exchange (ONNX) standard [71].
With this approach, we propose a standard to exchange and transfer
trained ML models to the different devices for applications. As another
option, we also rely on the SavedModel format [72] favored by Google.
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Table 6
Cosim_solver_info Hardware requirements metadata (optional).

Key Type Description

recommendedNumberOfGPUCores number Recommended number of GPU cores.
minimumNumberOfGPUCores number Minimum required number of GPU cores.
recommendedGPURAM number Recommended GPU memory.
minimumGPURAM number Minimum required GPU memory.
recommendedRAM number Recommended Memory.
minimumRAM number Minimum required memory.
recommendedCPUs number Recommended number of CPU cores.
minimumCPUs number Minimum required number of CPU cores.
requiredDiskSpace number Required amount of disk space in GB.
5.3. Authoring tools for Reduced Order Models

As described in Section 3, ROM is an umbrella of methods that can
be handful in different situations where a reduction in terms of system
variables and their relations should be taken into consideration. The
most common scenarios for ROM application are the followings:

• a large amount of data is to be analyzed,
• the physics behind the system under investigation remains uncer-

tain,
• the system’s equations are well known, but the solution is not

trivial and/or its computation is highly time- and resource con-
suming.

To support such scenarios, the CAELIA™ tool was developed at
ITAINNOVA for ROM generation and management, using TRD tech-
nique. CAELIA™ can be used for different manufacturing processes,
such as injection molding, rubber extrusion, hot stamping, and laser
welding. CAELIA™ consists of a set of libraries, where models are gen-
erated using Twinkle library [56]. Since TRD-based ROM models are
based on data (please, refer to Section 3) that can be obtained through
experiments, simulations or by mathematically solving equations (if
known), a careful Design of Experiment (DoE) must be performed
beforehand. Hence, this authoring tool also includes a library for au-
tomatic DoE with an enhanced space coverage. Additionally, CAELIA™
includes different optimization algorithms and several visualization
interfaces. All these libraries and tools can be combined and used for
enhancing ROM computation and management.

CAELIA™’s ROMs are a valuable tool, not only capable of forecasting
unexplored behaviors of the system, but also useful for optimization,
i.e., for finding the system’s operating conditions that correspond to a
desired output.

The CAELIA™ toolset has been already tested against a large variety
of cases, such as fluid- and thermodynamics, friction modeling, etc. In
Section 6 an injection application CAELIA™ will be detailed.

5.4. Authoring tools for System of Systems models

The Sustainability Assessment Application (SAA) is an evolution of
an already existing application developed by SUPSI, i.e., Scuola Uni-
versitaria Professionale della Svizzera Italiana, in previous EU projects
(MANUTELLIGENCE [73] and MANUSQUARE [12]). SAA is an author-
ing tool which allows users to characterize the processes provided by
a production machine or a production line according to a LCA point of
view. Fig. 2 shows an example of formalization of a set of processes.
The tool enables the users to specify the SoS composition where the
output flow (LCI output) of a certain process can be formalized as input
flow (LCI input) for another process. The model underlying the SAA
has been extensively described in Section 3, where the concept of PT
emerges as an element related to a specific Functional Unit (i.e., the
quantification of the system’s function analyzed by LCA), that is meant
to quantify the function of the process under investigation (examples
are: 1 h of milling process execution or 1 kg of removed steel for
milling, 1 kg of injected plastic for injection molding, etc.; please refer
to Fig. 2). Starting from the background data, retrieved from a LCIA
7

database such as Ecoinvent [74], the percentage contribution of inputs
and outputs to the selected environmental indicators are evaluated in
order to identify process parameters critical from the LCA point of view.
For instance, concerning the Climate Change indicator of the injection
molding operation, it has been estimated that inputs such as Electricity
and Natural Gas (heat) represent over 80% of the indicator value’s
input. Through this sort of Pareto analysis, performed by LCA experts
and partially automatized by the SSA, whenever a new operation type
is introduced into the ecosystem, the LCI data affecting most of the
process in terms of environmental impacts is determined. The identified
crucial parameters are hence considered as free ones that, starting
from the default value proposed by the SSA, can be customized by
the supplier, together with more specific indicators values, in order
to better represent its manufacturing operation. The Pareto analysis,
here presented only for the Climate Change impact category, has to be
performed on the complete set of the selected indicators. By clicking on
a specific process, it is possible to visualize the LCI data characterizing
the whole, where the most relevant ones from the impact point of view
are highlighted in green, as shown in Fig. 3. Only the highlighted LCI
can be customized by the user considering a different input value (n.b.,
the user usually knows the amount of the electricity that is actually
consumed by a given machine).

Another example for SoS authoring tools is the DDDSimulator which
a DES tool with an integrated 3D virtual environment. Simulation
models are composed by reusable elements called prototypes each one
representing a component of the simulated system (machine, trans-
porters, logic module). Prototype instances communicate among each
other with ports that are used to exchange data between different
modules. The developed models can be used to simulate the behavior
of the entire system by obtaining statistics that give information on
the performance of the system within the simulated conditions. A
graphical IDE called DDD Model Editor supports the visual editing of
both prototypes and models. The modules can be combined in different
configurations to realize DTs of plants to evaluate and compare the
performances of alternative design. Due to this modular approach,
with each module encapsulating the behavior of a complex system, the
modules can be reused to compose SoS models.

6. Experimental results

In this section the results obtained in some of the experiments per-
formed during the first year of the DIGITbrain Project are summarized.
The examples described in this section show how DIGITbrain architec-
ture helps developing DTs. Moreover, the experimental results obtained
during the first year of the project, some of them being summarized
below, show that the DIGITbrain’s framework can be straightforwardly
applied in I4.0 to accelerate industrial digitalization.

6.1. Co-simulation in agricultural robots

AgroIntelli manufactures and sells semi-autonomous agricultural
vehicles to farmers, called Robotti. Robottis are delivered to farmers
and used in diverse agricultural environments. The company expects a

rapid growth in the sales of Robotti and would like to know the best
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Fig. 2. List of the processes, for example belonging to a production line.
Fig. 3. Example of process characterization (LCI input and output) by the SSA. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
way of scaling up the production based on the expected sales. Right
now, AgroIntelli assembles each robot on a made-to-order basis, at a
single workstation, with predominantly manual work being required
to assemble and interconnect all subcomponents and devices to each
order. AgroIntelli would like to design and validate an automated man-
ufacturing line for Robotti that can take the manufacturing blueprint
and produce the robot.

Additionally, certain parts of Robotti, for example the air filter, the
hydraulic oil, or the oil filter, need to be replaced during scheduled
maintenance at different service intervals. When required, farmers also
place orders for Robotti parts. Once the part orders from farmers are
received, AgroIntelli needs to integrate the production of these parts
into the manufacturing schedule. The updated production schedule will
have to produce an expected delivery date for all the ordered parts.

A DT of AgroIntelli’s manufacturing line helps the company per-
forming an analysis of alternative scenarios for future factory con-
struction. The projected manufacturing capacity, based on estimated
sales and the manufacturing requirements of various parts based on
sample Robotti usage scenarios, are key inputs of the factory DT. On
the other hand, a feasible production schedule is the key output of the
DT. The creation of the DT for the manufacturing line is done using the
FMI [60] co-simulation standard. The key elements/workstations of the
manufacturing line are modeled as FMUs. The DT for the manufacturing
line is created by putting the FMUs together as one system and then
co-simulated using Maestro [43]. The co-simulation Algorithm uses a
configuration file for connecting the FMUs and performing a single
co-simulation.

The factory DT is created from reusable FMUs which together form
the Model of the DT. The Maestro co-simulation Algorithm becomes the
Algorithm evaluating the factory DT Model. The evaluation of the factory
Model by the Maestro Algorithm also requires Data. This Data come from
the planned production schedules and the on-demand part orders from
farmers.

In the context of agile manufacturing practices, it is important to
keep the manufacturing line flexible and reroute the parts based on the
8

current demand. Therefore, FMUs need to be connected differently for
co-simulating alternative manufacturing scenarios. One such scenario
could be the creation of multiple models of Robotti. Another scenario
could be the installation of parallel workstations to scale up the produc-
tion of complicated machine parts. Each of these alternative scenarios
can be explored by using one factory Model (implemented as multiple
FMUs) and different co-simulation configurations. Therefore, the Mae-
stro co-simulation Algorithm is reusable for all co-simulation models.
Additionally, different manufacturers can bring in their co-simulation
models and perform co-simulation using Maestro co-simulation Algo-
rithm. The factory Model can also be reused by AgroIntelli to perform
different design scenarios for the planned manufacturing line. In other
words, the same Model can be used to perform Design Space Exploration
(DSE) for designing an optimum manufacturing line [15]. Since each
FMU represents a factory workstation, there is a potential for reusing
single FMUs to create new co-simulation scenarios of other factory
configurations/factories. As a result, a DT created for AgroIntelli is
reusable within the broader manufacturing industry too. This has been
made possible by the clean separation of Data, Algorithm, and Model of
the factory DT using the DIGITbrain approach.

6.2. Reduced order models for injection molding

A physically based DT for a thermoplastic injection molding consists
of the digitalization of a thermoplastic material injection molding
process for the quick initial set-up of process parameters and the opti-
mization during production. The DT is based on the offline exploitation
of state-of-the-art numerical simulation tools to model the relevant
fluid-dynamics, heat transfer and thermo-mechanical physical mecha-
nisms, as well as subsequent encapsulation of relevant Key Performance
Indicators (KPIs) into ROMs that are made available for the user to get
a real time virtual try-out and estimated production quality monitoring.

Within the DIGITbrain experiment performed for Inymon, a Spanish
injection molding company, current state-of-the-art simulation models
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representing the physics of the material transformation process, in-
cluding transient flow fluid-dynamics, heat transfer by conduction and
convention, and solid thermo-mechanics were used. Specific material
relations, such as non-Newtonian rheology and equations of state,
reproduce the material’s behavior. These models are expressed as a
set of differential equations corresponding to the conservative laws
(i.e., mass, moment, energy) in fluid and solid domains. These phys-
ical equations are solved using Volume of Fluid (VoF)/FEM by the
Moldex3D commercial program [75]. Furthermore, an offline execution
of a simulation DoE is carried out to allow the virtual exploration of the
Model to generate a database of simulation results, covering suitable
variation ranges of the processing parameters (i.e., melt temperature,
filling time/ram speed, switch over point, packing pressure and time,
coolant temperature and flow rate, cooling time, etc.).

As mentioned previously, online process modeling for quality con-
trol requires real-time simulation capabilities, which cannot be
achieved by executing the computationally intensive physically based
simulation models (as these require hours to run) within a real cycle
time (i.e., <1 min). Creating ROMs has proved to be a valid approach
o provide real-time responses to Physically Based Simulations (PBS).

ROM retains only the relevant information required for quality
valuation (i.e., selected KPIs) and process control. Among the different
echniques available for ROM generation, a posteriori or non-intrusive
echniques have a higher potential, especially combined with real
ata. CAELIA™’s ROM generation, based on the factorization of the

nformation through TRD approach, results into a sequence of products
f separable 1D functions that can be solved on the fly (see Eq. (1)),
llowing having a transfer function directly related to input parameters,
ndependently [56].

Within the scope of the DIGITbrain Project, the ROM generation
olution, used to build the ROMs, has been deployed in the cloud-based
latform as a job. Moreover, the CAELIA™ App including a Graphical
ser Interface (GUI) has also been deployed on a Virtual Machine (VM)

nstance on the Platform. The GUI allows the user to compose tuples of
OMs (as DIGITbrain Models), input Data, as well as evaluation and

optimization Algorithms to try finding the parameters describing the
best injection molding process.

ROMs are specific of each injection process (IP instance), as they
are built on physically based simulation Data generated for a specific
physical instance, which makes the reusability of ROMs anything but
straightforward. Nevertheless, the algorithms used to build ROMs and
the CAELIA™ App are generic, so that different users can employ them
and upload their ROMs and Data from other injection molding lines.
A possible way to reuse ROMs would be the development of an expert
system that, by analyzing a database of ROMs, generated for different
injection molding processes, could extract rules of dependencies for
typical results obtained from defined process conditions (knowledge-
based reasoning). As a further step, the aforementioned expert system
could also, based on the characteristics of the part to be injected, be
able to create a new ROM backbone by proposing 1D functions for
the TRD factorization, that represent the dependency of a result on a
specific process condition. This Model could be used as a low fidelity
Model to analyze tendencies or as the basis for a new adjustment, based
on PBS or measured Data.

6.3. System of systems models for laser-cutting and forming of aluminum

Creation of a simulation tool which allows the end user to create
alternative layouts of production lines for forming aluminum sheets
and compare the performances of the different solutions has high
importance. The main limitations that reflect the current status of most
EU manufacturing SMEs in the utilization of DTs of production lines,
are the following:

• the inability to perform real-time what-if analysis based on the
actual plant Data, that strongly impairs the ability to promptly
9

tackle production needs and constraints,
• the inability to use DT in the bidding/negotiation phase, that
hampers the possibility to demonstrate all plant configurations,
leading to under-exploited machine customization potential,

• the inability to provide simulation services and analytics empow-
ered by the knowledge developed all along the plant’s life-cycle
reduces plant productivity and efficiency, reducing customer sat-
isfaction,

• the dichotomy existing between the real plant and its digital
representation makes simulation and analysis tools of little use
after the ramp-up phase, leading to under-exploited productiv-
ity during machine usage due to the inability to use context-
synchronized and history-aware simulation.

The inability to connect to existing manufacturing plants in many cases
comes from the presence of legacy control hardware, as this legacy
hardware does not have the ability to be connected to the external
world. Investing in updating the control hardware of a manufacturing
line usually requires high investment. To overcome this, CPSisers are
deployed at shop-floor level. Such CPSisers are software and hard-
ware components used to turn the machines into CPS. The task of
developing the CPSiser was assigned to NXT control, an automation
consulting company partner of the DIGITbrain Project. To interact with
the real plant, NXT control developed a CPSiser, which allows legacy
hardware of different brands and vendors to be interfaced with the
FIWARE [12] communication infrastructure, sending Data from sensor
and Programmable Logic Controllers (PLCs) to the DT to synchronize it
with the reality. Simulation prototypes for eight modules were created,
which allowed the simulation of two alternative layouts with different
configurations of the unloading system and selecting the better per-
former. The simulation Model was then uploaded on a VM in the cloud
and from there it can be accessed and executed via an internet browser
loading different production plans.

Within this context, the discrete simulation engine (DDDSimula-
tor) [76] was used for SoS analysis. The DDDSimulator is a simulation
tool for integrated 3D and DES, developed and distributed by Technol-
ogy Transfer System (TTS). This simulator enables its users to design
new layouts combining reusable modules, each representing an ele-
ment of the plant such as machines, transporters, feeding systems and
robots. The simulation models can be used to assess the performance
of alternative layouts, after which the Model of the effective plant
can be uploaded to the DIGITbrain Platform and used to simulate the
performances of different production plans.

To simulate a production line, the end user uses the Domain-Driven
Design (DDD) Model editor, a standalone Windows application that can
be installed on a Windows PC. The user drags modules from the pro-
totype catalog into the 3D environment. Each prototype simulates the
behavior of a component of the plant and several instances of the same
prototype can be added to one simulation Model. Once an instance is
dragged into the 3D environment, it can be moved and rotated to adjust
its position in space. Each specific instance also has parameters that can
be configured, representing the peculiarities of the specific instance and
enabling the configuration of both logical or physical characteristics
of the module. For example, the speed of a linear axis in a robot or
the length of a conveyor are parameters that can be configured for a
module. Modules can exchange information between them using ports,
and ports are connected in the visual interface to allow all the modules
to work based on the entire logic of the system. This modular structure
allows for the re-usability of modules, which already encapsulate the
behavioral model of a single complex system, to compose SoS models of
several complex production systems combining the reusable elements.

7. Conclusion

The European H2020 Project ‘‘DIGITbrain’’ aims at creating an
integrated digital platform that enables Manufacturing as a Service
(MaaS) which lowers the barriers for Small and Medium-size Enter-

prises (SMEs) to adopt key Industry 4.0 technologies. The demands for
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increased production and the high standards of consumers’ expectations
in the Industry 4.0 (I4.0) era encourage the introduction of Digital
Twins (DTs) in the manufacturing industry, especially to help SMEs
forecasting and optimizing their systems (e.g., processes, machinery,
production lines) under different operating conditions. Offering MaaS
on an integrated digital platform is an efficient way to achieve that.

In the paper, it was highlighted how DIGITbrain’s overall concept
supports the reusability of Models by separating the fundamental build-
ng blocks of DTs, including the Model itself, its Algorithms and Data,
ith a rich set of metadata. Moreover, given the definition of a DT as a
irtual model of a physical system, models represent a crucial asset for
ndustrial digitalization and the introduction of DTs in manufacturing
rocesses. We further detailed some model types that are currently
upported by the DIGITbrain Platform, such as co-simulation, Artificial
ntelligence (AI) and System of Systems (SoS) models. Moreover, we
etailed three representative case studies, where practical applications
f DTs were delivered to manufacturing SMEs and their end-users.

Further work is being conducted towards the generation of im-
roved models for several applications. The models will be published
n the project’s integrated platform which is currently being upgraded
o grant scalability, parallelization and efficiency.
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