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ABSTRACT 

Modern oceanography uses, amongst other platforms, 

automated diving devices, which are drifting with the 

ocean current whilst continuously collecting vertical 

profiles of environmental parameters. One of the 

important parameters is photosynthetically available 

radiation (PAR). It was studied in this work whether the 

PAR values can be reconstructed by combinations of 

measurements from the remaining onboard sensors with 

specific wavelength. If a reconstruction of PAR is 

possible, this would allow allocating the sensor with a 

further specific wavelength instead of PAR. Having 

available more spectral information could for example 

enable natural scientists to better distinguish 

phytoplankton or UV radiation. Therefore, data from 

three different expeditions from different regions of the 

world were used to model PAR using multiple linear 

regression and regression trees (RT). Multiple linear 

regression achieved an R2 value of 0.970 for the 

combined dataset and RT achieved an R2 value of 0.960. 

Hence, the models are accurate enough to predict the 

PAR parameter without the need for a dedicated PAR 

sensor. Thus the PAR sensor reading could be replaced 

with measurements of an additional wave length. 

 
INTRODUCTION 

Modern operational oceanography uses a plethora of 

different autonomous platforms [1]. Among them, the 

nearly 4000 Argo floats [2], automated diving devices, 

drifting with the ocean current and collect continuous 

vertical profiles from a depth ~ 2000 m, evolved to be a 

core component. With Argo float data being transmitted 

via the Iridium or Argos satellite systems, data is publicly 

and freely available via two global data assembly centers 

(GDAC) typically within 24 hours (see Argo website 

https://argo.ucsd.edu).   

 

While Argo started with a three sensor setup aiming at 

physical oceanographic information, there has been a 

significant increase in bio-optical instrumentation on 

Argo, leading to the biogeochemical Argo (short BGC-

Argo) initiative [3]. Together with this increase in 

sensors, accompanied by the data management and 

quality control processes, demand for machine learning 

has been on the rise [3,4]. 

 

In this context, the BGC-Argo community suggested to 

re-configurate the Ocean Color Radiometer (OCR) to 

dismiss the fourth channel, originally designed to record 

PAR measurement, since this could potentially be 

reconstructed from the three available distinct channels, 

measuring wavelengths at 380 nm, 412 nm, and 490 nm. 

In this study, a machine learning approach is provided, 

that models the entire wavelength ranges of PAR  from 

the three wavelengths. This enables including a further 

specific wavelength and thus increase the flexibility of 

the device [1].  

 

RADIOMETRIC PROFILING FLOAT 

OBSERVATIONS 

The underwater light field is one of the six essential 

variables measured by so-called BGC-Argo Floats [6]. 

Featuring the multispectral technology, the OCR-504 

from SATLANTIC Inc./Sea-Bird Scientific, USA [7] is 

used to routinely measure the radiometric observation at 

four channels. Three channels 380 nm, 412 nm and 490 

nm were selected as they are related to the main 

variations in underwater optical properties. The fourth 

channel is dedicated to measure PAR. Figure 1 shows the 

Argo APEX Float WMO7900562, deployment on 27th of 

September 2019 in the western Mediterranean, with 

attached sensors, including the radiometer (left) and the 

radiometer OCR-504 (right).  

 

mailto:%7bFrederic_theodor.stahl@dfki.de
mailto:Lars.Nolle@jade-hs.de
https://argo.ucsd.edu/


 

 

 
Figure1: Argo APEX platform with attached sensors, 

including  

 

The PAR parameter is commonly used to disclose the 

overall light available for the primary production in 

natural waters and allows for the integration of 

downward irradiance between 400 nm and 700 nm. 

Recently, Jemai et al. [4] provided a review of 

radiometric measurements on Argo floats. They, as well 

as Organelli et al. [8], emphazised the need for more 

spectral information, from multi- to hyperspectral 

instrumentation. This platform provided the data that was 

used for the modelling as described below.  

 

The data used in this study is publicly available at 

ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis. The dataset 

represents the German contribution within the BGC-

Argo program. The data was acquired by four floats 

deployed at different sites, one (WMO 7900585) in the 

North Atlantic, one (WMO7900562) in the 

Mediterranean Sea, and two (WMO7900579 and 

WMO7900580) in the Baltic Sea. Radiometric 

observations were collected during the ascent phases 

every two or five days in the upper layer, and sampling 

was carried out at 2 dbar vertical resolution for all floats.  

 

PRELIMINARY ANALYSIS AND PROCESSING 

OF THE DATA 

Data from three different expeditions from different 

regions were used. From the Mediterranean Sea one 

dataset with 13,068 data instances was used; from the 

Baltic Sea two datasets were used, one with 1,373 data 

instances and the other with 1,274 data instances and 

Atlantic Ocean with 4,403 data instances. Some data 

instances contained a very small amount of missing 

values, these data instances were removed. Missing value 

are caused by malfunction of the float. In total, 20,079 

instances were available after deletion of missing values. 

 

In order to establish the correlation between the different 

sensors, a scatter matrix with all float datesets 

concatenated was plotted as can be seen in Figure 2. It 

can be seen that there is generally a good correlation 

between all sensors, except for P (pressure). What can 

also be seen is that for P below 100 dbar (equivalent to 

an approximate depth of 100 m), all sensors produce low 

values. The reason for this is that light at this depth is 

fully absorbed by the water. Since this is the case for all 

sensors, it has no effect on the correlation between all 

optical sensors. The fact that P does not correlate with the 

other sensors has subsequently also been confirmed with 

the Institute for Chemistry and Biology of the Marine 

Environment. Therefore, it was decided to exclude P 

from modelling. 

 

MODELLING 

Two different methods for modelling were selected, 

Multiple Linear Regression [9] and Regression Trees 

[10]. The reason for choosing these two techniques is that 

they produce predictive models for continuous target 

variables. All data instances were used for the modelling 

process with input variables downwelling irradiance at 

380 nm, 412 nm, 490 nm and target variable PAR. 30% 

of the data instances were randomly selected without 

replacement to be included into a test set and the 

remaining instances were used to fit the models.  

 

In total, ten models were produced, two for each float 

location, i.e. one Regression Tree and one Multiple linear 

regression equation, and two models for all float data 

combined. 

 

Models based on Muliple Lineare Regression 

For the modelling standard Muliple Lineare Regression 

[9] was used without forcing an intercept. In this paper 

the Scikit-learn implementation (https://scikit-

learn.org/stable/) of Multiple linear regression was used. 

The results are presented in Figures 3-7. The figures plot 

the true PAR values versus the predicted PAR values.  

 

Figure 3 shows the result of Muliple Lineare Regression 

using the combined dataset comprising all float locations. 

 

The R2 value was 0.97. The resulting model can be found 

in Equation 1. 

 
PAR=2582.06*Ed380 

-1715.67*Ed412 

+1023.94*Ed490–1.57 

(1) 
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Figure 2: Dependency of sensors of the float 

 

 
Figure 3: Multiple linear regression on all data 

 

Figure 4 shows the result of multiple linear regression 

using the dataset comprising data for the Mediterranean 

Sea float location. 

 

 
Figure 4: Multiple linear regression on Mediterranean 

Sea data  

 

The R2 value was 0.997. The resulting model can be 

found in Equation 2. 
 

PAR=1744.62*Ed380 

-726.90*Ed412 
(2) 



 

 

+578.50*Ed490–1.14 

 

Figure 5 shows the result of multiple linear regression 

using the dataset comprising data for the Baltic Sea float 

location 1. 

 

 
Figure 5: Multiple linear regression on Baltic Sea float 1  

 

The R2 value was 0.991. The resulting model can be 

found in Equation 3. 
 

PAR=14321.34*Ed380  

-2350.74*Ed412  

+1168.52*Ed490+1.88 

(3) 

 

Figure 6 shows the result of multiple linear regression 

using the dataset comprising data for the Baltic Sea float 

location 2. 

 

 
Figure 6: Multiple linear regression on the Baltic Sea 

float 2  

 

The R2 value was 0.983. The resulting model can be 

found in Equation 4. 
 

PAR=3644.03*Ed380 

-200.34*Ed412  

+966.75*Ed490+1.44 

(4) 

 

Figure 7 shows the result of multiple linear regression 

using the dataset comprising data for the Atlantic Ocean 

float location. 

 

 
Figure 7: Multiple linear regression on Atlantic Ocean 

Data 

 

The R2 value was 0.996. The resulting model can be 

found in Equation 5. 
 

PAR=805.10*Ed380 

+203.80*Ed412  

+494.75*Ed490-0.38 

(5) 

 

Models based on Regression Trees 

A regression tree algorithm generating a binary tree was 

used in this research. The central task was to find a split 

that leads to an optimal separation of data [10]. In this 

paper the Scikit-learn implementation of regression tree 

was used, which makes use of the Gini Importance [11] 

to choose an attribute to split on. Figures 9 to 13 plot the 

predicted PAR values versus the groundtruth. When 

compared with the results for linear regression, it can be 

seen that groups of the plotted data points are aligned 

horizontally. This is because the regression tree predicts 

value ranges rather than individual values. Figure  8 

shows the resulting tree for the combined dataset. Due to 

the complexity of the tree, the parameters of the 

subsequent tree based models are omitted.  

 

 
Figure 9: Regression tree on all data 

 

 

 

 

 



 

 

  
|--- Ed490 <= 0.39 

|   |--- Ed490 <= 0.10 

|   |   |--- Ed490 <= 0.02 
|   |   |   |--- Ed490 <= 0.01 

|   |   |   |   |--- Ed412 <= 0.00 

|   |   |   |   |   |--- value: [0.08] 
|   |   |   |   |--- Ed412 >  0.00 

|   |   |   |   |   |--- value: [2.52] 

|   |   |   |--- Ed490 >  0.01 
|   |   |   |   |--- Ed380 <= 0.00 

|   |   |   |   |   |--- value: [12.49] 

|   |   |   |   |--- Ed380 >  0.00 
|   |   |   |   |   |--- value: [5.54] 

|   |   |--- Ed490 >  0.02 

|   |   |   |--- Ed380 <= 0.00 

|   |   |   |   |--- Ed490 <= 0.04 

|   |   |   |   |   |--- value: [32.61] 

|   |   |   |   |--- Ed490 >  0.04 
|   |   |   |   |   |--- value: [67.39] 

|   |   |   |--- Ed380 >  0.00 

|   |   |   |   |--- Ed490 <= 0.06 
|   |   |   |   |   |--- value: [17.13] 

|   |   |   |   |--- Ed490 >  0.06 

|   |   |   |   |   |--- value: [41.63] 
|   |--- Ed490 >  0.10 

|   |   |--- Ed490 <= 0.20 
|   |   |   |--- Ed380 <= 0.00 

|   |   |   |   |--- Ed490 <= 0.12 

|   |   |   |   |   |--- value: [102.96] 
|   |   |   |   |--- Ed490 >  0.12 

|   |   |   |   |   |--- value: [161.96] 

|   |   |   |--- Ed380 >  0.00 

|   |   |   |   |--- Ed490 <= 0.15 

|   |   |   |   |   |--- value: [59.81] 

|   |   |   |   |--- Ed490 >  0.15 
|   |   |   |   |   |--- value: [94.03] 

|   |   |--- Ed490 >  0.20 

|   |   |   |--- Ed380 <= 0.01 
|   |   |   |   |--- Ed490 <= 0.28 

|   |   |   |   |   |--- value: [231.32] 

|   |   |   |   |--- Ed490 >  0.28 
|   |   |   |   |   |--- value: [335.38] 

|   |   |   |--- Ed380 >  0.01 

|   |   |   |   |--- Ed380 <= 0.05 
|   |   |   |   |   |--- value: [123.24] 

|   |   |   |   |--- Ed380 >  0.05 

|   |   |   |   |   |--- value: [184.44] 
|--- Ed490 >  0.39 

|   |--- Ed380 <= 0.28 

|   |   |--- Ed380 <= 0.18 

|   |   |   |--- Ed380 <= 0.03 

|   |   |   |   |--- Ed490 <= 0.50 
|   |   |   |   |   |--- value: [450.25] 

|   |   |   |   |--- Ed490 >  0.50 

|   |   |   |   |   |--- value: [539.81] 
|   |   |   |--- Ed380 >  0.03 

|   |   |   |   |--- Ed490 <= 0.55 

|   |   |   |   |   |--- value: [255.22] 
|   |   |   |   |--- Ed490 >  0.55 

|   |   |   |   |   |--- value: [339.21] 

|   |   |--- Ed380 >  0.18 
|   |   |   |--- Ed490 <= 0.62 

|   |   |   |   |--- Ed490 <= 0.52 

|   |   |   |   |   |--- value: [344.61] 

|   |   |   |   |--- Ed490 >  0.52 

|   |   |   |   |   |--- value: [394.69] 

|   |   |   |--- Ed490 >  0.62 
|   |   |   |   |--- Ed490 <= 0.82 

|   |   |   |   |   |--- value: [459.72] 

|   |   |   |   |--- Ed490 >  0.82 
|   |   |   |   |   |--- value: [508.59] 

|   |--- Ed380 >  0.28 

|   |   |--- Ed490 <= 1.16 
|   |   |   |--- Ed380 <= 0.38 

|   |   |   |   |--- Ed490 <= 1.07 
|   |   |   |   |   |--- value: [605.62] 

|   |   |   |   |--- Ed490 >  1.07 

|   |   |   |   |   |--- value: [689.01] 
|   |   |   |--- Ed380 >  0.38 

|   |   |   |   |--- Ed380 <= 0.41 

|   |   |   |   |   |--- value: [688.43] 

|   |   |   |   |--- Ed380 >  0.41 

|   |   |   |   |   |--- value: [741.71] 

|   |   |--- Ed490 >  1.16 
|   |   |   |--- Ed490 <= 1.32 

|   |   |   |   |--- Ed380 <= 0.47 

|   |   |   |   |   |--- value: [802.03] 
|   |   |   |   |--- Ed380 >  0.47 

|   |   |   |   |   |--- value: [888.95] 

|   |   |   |--- Ed490 >  1.32 
|   |   |   |   |--- Ed380 <= 0.59 

|   |   |   |   |   |--- value: [1021.58] 

|   |   |   |   |--- Ed380 >  0.59 
|   |   |   |   |   |--- value: [1126.55] 

 

 

Figure 8: Regression tree structure induced on the combined dataset. 

 

Figure 9 shows the result of the regression tree using the 

combined dataset comprising all float locations. The fit 

of the regression tree model on all data combined resulted 

in R2 = 0.960. Figure 10 shows the result of the regression 

tree using the Mediterranean dataset. The fit of the 

regression tree model on the Mediterranean Sea data 

resulted in R2 = 0.989. Figure 11 shows the result of the 

regression tree using the Baltic Sea dataset float  

location 1. 

 

 
Figure 10: Regression tree on Mediterranean data 

 

 



 

 

 
Figure 11: Regression tree on Baltic Sea float 1 data 

 

The fit of the regression tree model on the Baltic Sea 

location 1 data resulted in R2 = 0.973.  

 

Figure 12 shows the result of the regression tree using the 

Baltic Sea dataset float location 2. 

 

  
Figure 12: Regression tree on Baltic Sea float 2 data 

 

The fit of the regression tree model on the Baltic Sea 

location 2 data resulted in R2 = 0.963.  

 

Figure 13 shows the result of the regression tree using the 

Atlantic Ocean dataset. 

 

 
Figure 13: Regression tree on Atlantic Ocean data 

 

The fit of the regression tree model on the Atlantic Ocean 

data resulted in R2 = 0.988.  

 

RESULTS AND DISCUSSION 

In Table 1 the R2 values for the different models are 

compared. As it can be observed, the R2 values for the 

Multiple linear regression models are marginally better 

than those for the regression tree. It is assumed that this 

is caused by inherent discretization of predicted results at 

the leave nodes of the regression tree.  

 

Table 1: R2 values for different models using Multiple 

linear regression (MLR) and Regression Tree (RT) 

R2 values 

Dataset MLR RT 

Combined 0.970 0.960 

Mediterranean Sea 0.997 0.989 

Baltic Sea Float 1 0.981 0.973 

Baltic Sea Float 2 0.983 0.963 

Atlantic Ocean 0.996 0.988 

 

Furthermore, it can be seen that for both Multiple linear 

regression and regression trees based models the R2 

values for the combined datasets are slightly worse than 

models tailored for individual locations. This can be 

explained by influences of environmental parameters, for 

example salinity, which are different at the different 

location. These parameters were not available as input 

parameters for the models. However, the models are 

accurate enough to predict the PAR parameter without 

the need for a dedicated PAR sensor. Thus, PAR can be 

replaced by a specific wavelength enabling recording of 

more spectral information. 

 

The next steps in this research is to use non-linear 

machine learning methods in order to increase the 

accuracy further. 
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