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ABSTRACT 

In this paper, the concept of optimised bumblebee (BB) 

patterns as a search strategy for autonomous underwater 

vehicles (AUV) is presented. Here, an AUV is used to 

detect submarine groundwater discharge (SGD) in 

coastal areas. The optimisation of the BB paths is 

achieved utilising k-opt optimisation. In this research, 2-

opt, 3-opt and 4-opt is used for the optimisation of the BB 

paths. It is shown using computer simulations that all 

three optimisation strategies are able to improve the 

search capabilities of the BB search strategy. The 

optimisation of the BB path shortens the length of the 

path to visit the waypoints generated. The saved energy 

can be used for exploring the search space in more detail, 

allowing the visit of waypoint the unoptimized BB was 

not able to reach. The median saved path length is 33.8 

m, 43.5 m and 52.6 m for the 2-opt, 3-opt and 4-opt, 

respectively. The median error over 1,000 experiments of 

the not-optimised BB is 76.26, while the median error of 

the optimised BB are 71.63, 72.02 and 72.23 for the 2-

opt, 3-opt and 4-opt, respectively.  

 
INTRODUCTION 

The long-term goal of this research is to develop a 

flexible and low-cost autonomous multi-sensor platform 

for submarine exploration. Such a platform could be used 

for the localisation and investigation of submarine 

sources of interest like dumped waste, lost harmful cargo 

or submarine groundwater discharge (SGD) (Burnett et 

al. 2006). The term SGD covers any flow of water across 

the seabed regardless of the composition and the driving 

forces (Burnett et al. 2006; Moore 2010). Hence, SGD 

includes the discharge of fresh groundwater as well as the 

discharge of recirculating seawater (Figure 1). Due to the 

higher load of nutrients, SGD inflow can have an 

influence on the marine environment (Luijendijk et al. 

2020). 

 

 
Figure 1: Submarine groundwater discharge (SGD) 

consisting of fresh groundwater and recirculating 

seawater 

Different methods, such as seepage meters (Lee 1977; 

Taniguchi et al. 2003; Seibert et al. 2020), tracer studies 



 

 

(Burnett et al. 2006), remote sensing (Mallast and Siebert 

2019), or seismic surveys (Smith et al. 2003; Stieglitz and 

Ridd 2000; Taniguchi et al. 2019), have been utilised for 

SGD investigation. More recently, small unmanned 

underwater vehicles (UUVs) were used as a tool for SGD 

site investigation (Tholen et al. 2021).  

UUVs can either be remotely controlled by a human pilot 

over a tether, i.e. remotely operated vehicle (ROV) or, 

without a tether, by an algorithm running on an onboard 

computer, i.e. autonomous underwater vehicle (AUV) 

(Christ and Wernli 2011).  

During their missions, AUVs usually follow a pre-

defined path, for instance a series of different transects 

defined by waypoints (Wynn et al. 2014; Marouchos et 

al. 2015), or an adaptive sampling strategy (Hwang et al. 

2019; Mo-Bjorkelund et al. 2020) to achieve a given 

goal. The search capabilities could be potentially 

improved by incorporating artificial intelligence (AI) into 

the strategy. Often, AI strategies, for instance particle 

swarm optimisation (PSO) (Kennedy and Eberhart 1995) 

or ant colony optimisation (ACO) (Dorigo et al. 2006; 

Nolle 2008), mimic the behaviour of social entities, like 

schools of fish, flocks of birds, or colonies of ants, and 

hence are population-based.  

The bumblebee (BB) search strategy has been used as 

search strategy to guide a small swarm of AUVs during 

the search for SGD sites (Tholen et al. 2022). However, 

in this research, only a single AUV was used during the 

simulations.  

 

Bumblebee 

The BB search strategy is inspired by bumblebee flight 

paths (Dukas and Real 1993; Philippides et al. 2013) and 

was developed by Hwang et al. (2020). The search 

strategy applies a combination of zigzag and double 

loops within the search space. In the first step, a specific 

number of waypoints is generated randomly and a path to 

visit all waypoints is computed. Upon arrival at a 

waypoint, the AUV undertakes a bow-tie shaped path 

with two loops. The radius of the loops r and the offset 

between the loops O are chosen by the operator prior to 

the search. The execution of the loops adds local 

exploitation capabilities to the search algorithm.  

Due to the limited energy storage onboard of an AUV, a 

maximum travel distance for each AUV is defined. 

Therefore the maximum number of waypoints, utilising 

the given travel distance, are generated to maximize the 

search capabilities. All waypoints are chosen during a 

planning phase prior the search take place. During this 

planning phase, new waypoints are added iteratively to 

the paths until the expected path length is longer than the 

maximum travel distance of the AUV. The waypoint 

generation can be viewed as a travelling salesman 

problem (TSP) (Lawler 1995). Algorithm 1 shows 

pseudocode for the waypoint-planning algorithm. 

Figure 2 shows an example trajectory of a single AUV 

utilising the BB algorithm as search strategy. It can be 

observed that the generated waypoints are spread over the 

whole search area, allowing the exploration of the entire 

area under investigation. However, the search strategy 

does not utilise the information gained during the search 

to adapt the search path to exploit promising regions in 

more detail. 

Algorithm 1: Pseudocode for waypoint creation of the 

bumblebee (BB) algorithm 

1 WP = generate two random position 

2 max_dist_reached = false 

3 while not max_dist_reached do 

4   distance = calc_travel_dist() 

5   if distance < max_distance do 

6     WP = [WP , random position] 

7   else  

8     max_dist_reached = true 

9   end if 

10 end while  

11  

12 function dist = calc_travel_dist() 

13   N = number of WP 

14   dist = N*4*π*r+O 
15   current_point = startpoint 

16   open_list = WP 

17   for I = 1 : N do 

18     td = vector of distances between 

current_point and all elements of 

open_list 

19     n = index of min(td) 

20     if td(n) > threshold do 

21       dist = dist + td (n) 

22       current_point = open_list(n)  

23       delete open_list(n) 

24     else do 

25       %Drop WP, too near to other WP 

26       delete open_list(n) 

27     end if 

28   end for 

29 end function 

 

 
Figure 2: Example path of the BB search algorithm, start 

and end point of the autonomous underwater vehicle 

(AUV) are marked by the blue circle and diamond, 

respectively; Position of submarine groundwater 

discharges (SGDs) are marked by red crosses 

During the generation of the waypoints, direct travelling 

in a straight line between two waypoints is assumed. 

However, due to self-localisation errors, the AUV is not 

travelling in a straight line. It rather produces zigzag 

paths resulting in a waste of energy between two 

waypoints. Therefore, not all waypoints generated can be 

visited (Tholen et al. 2022). Hence, in most cases, the BB 

strategy is not able to guide the AUV to investigate all 

parts of the search area, resulting in a poor search 

performance of the BB strategy, compared to other 

strategies (Tholen et al. 2022).  



 

 

Optimising the path, i.e. find a shorter path to visit all 

waypoints, might be a suitable solution to tackle the 

problem described above. A shorter path will save energy 

which then can be used to visit more waypoints from the 

list of generated waypoints. This will increase the 

coverage of the search area and therefore potentially 

increase the search performance of the BB algorithm. 

The following research hypothesis will be addressed in 

this paper: “For an AUV, which utilises BB search 

strategy, optimising, i.e. minimizing, its path length can 

increase the search performance”. A positive correlation 

between the saved path length and the performance of the 

search strategy is assumed.  

Different approaches to optimise TSP problems, like 

ACO (Dorigo et al. 2006), simulated annealing (Linhares 

and Torreão 2011) or k-opt heuristic (Chandra et al. 

1999) were proposed in the past.  

 

K-opt Optimisation 

In this research, k-opt optimisation was used, due to the 

simple implementation. Other optimisation strategies, for 

instance simulated annealing would require additional 

afford for parameter tuning. To answer the research 

questions of this paper a simple optimisation strategy is 

sufficient. During the optimisation process, k points from 

the list of waypoints are randomly chosen. In the next 

step, all possible permutations of the k points are 

calculated. For each of the permutations, the travel length 

for visiting all points is calculated. The permutation of 

the points is kept, if this calculated travel length is shorter 

than the travel length without the permutation. 

Otherwise, the permutation is rejected. The optimisation 

process is repeated n times. Algorithm 2 shows 

pseudocode of the optimisation process described.  

 

Algorithm 2: Pseudocode of the k-opt strategy used  

1 for I = 1:n do 

2   k_WP = select k WP randomly 

3   perm_k = all permutations of k_WP 

4   for j = 1:k! do 

5     temp_W P= WP using perm_k(j) 

6     temp_tl = calculate travel length 

with temp_WP 

7     if temp_tl < best_tl do 

8       best_tl = temp_tl 

9       WP = temp_WP 

10     end if 

11   end for 

12 end for  

 

It can be observed from Algorithm 2 that the 

computational costs of the optimisation process depend 

on the chosen values for k and n. The number of 

optimisation steps can be calculated as follows:  

𝑆 = 𝑛 ∙ 𝑘!. (1) 

Where S represents the total number of optimisation 

steps, k represents the number of WP chosen for 

optimisation and n is the number or repetitions.  

 

Simulation environment 

In this research, a dynamic simulation based on a real 

harbour environment was used. As shown in Figure 2, the 

dimensions of the simulated environment are 

330 m x 200 m. The environment contains 20 SGDs. The 

number, position, strength and composition of the SGDs 

are randomly selected. The simulated environment used 

in this research is described in detail in Tholen et al. 

(2022).  

To measure the success of the search strategy, the 

following error calculation was used:  

𝐸 =
1

𝑛
∑

1

𝛽𝑖
∙ min(𝑑1:𝑡,𝑖)

𝑛

𝑖=1

. (2) 

Where 𝐸 represents the error of the search run, 𝑛 denotes 

the number of SGDs in the environment, 𝛽 represents the 

flowrate coefficient of the SGD and 𝑑1:𝑡,𝑖 denotes the 

distances between the AUV and the SGD i for all time 

steps {1 ... t} of the simulation. 

This measure reflects which search strategy best fulfils 

the intended aims of the search. In this work, the 

environment contained n SGDs with different flowrates. 

In the best case, the search strategy would be able to 

guide the AUV to visit all SGDs within the given 

maximum travel path length. Hence, the minimum 

distance between the AUV and all SGDs is used for 

fitness evaluation. In addition, the flowrate of the 

different SGDs is kept into account. That means it is more 

important to investigate SGDs with higher inflow, rather 

than visiting SGDs with lower inflow.  

 

EXPERIMENTS 

To answer the research question of this work, a set of 

1,000 experiments was conducted. The number of 

experiments was chosen as a trade-off between 

computing time and number of results. In each 

experiment, different values of 𝑘 ∈ {2,3,4} were 

investigated. In each experiment, the optimisation 

process was repeated for n = 1,000 times.  

For a fair comparison, all four different options, i.e. not-

optimised-BB, 2-opt-BB, 3-opt-BB and 4-opt-BB, were 

evaluated at the same time within the same simulated 

environment. Each search option is assigned to a single 

AUV. Here, in the first step of the setup, a set of 

waypoints is generated according to Algorithm 1.  

The set of waypoints is directly used by the not-

optimised-BB and used as starting point for the 2-opt-

BB, 3-opt-BB and 4-opt-BB.  

After the optimisation is finished, all four solutions are 

executed simultaneously within the same environment. 

The simulation is iteration based, while the time-lapse of 

each iteration step is 1 second. In each iteration, the four 

AUVs are moved and the performance, following 

equation (2) is updated. At the end of each experiment, 

the performance of the four options is stored for later use. 

This will allow for a fair comparison between the four 

different options. 



 

 

For the experiments, the maximum travel length of the 

AUVs was set to 2,700 m. The radius r was set to 6 m 

and the offset between the circles was 3 m. The self-

localisation of the AUV was error affected using a 

Gaussian error model with a standard deviation of 0.5 m. 

These values were chosen according to the findings 

presented in Tholen et al. (2022). 

 

RESULTS AND DISCUSSION 

The length of the optimised paths should be shorter than 

the length of the not-optimised path. Figure 3 shows a 

histogram of the path length saved by the three optimised 

BB compared to the not-optimised BB. Statistical 

parameters for the different optimised BB are 

summarised in Table 1. It can be observed that the 

average amount of path length saved is positive 

correlated with the value chosen for k. Hence, the chosen 

k-opt optimisation strategy is able to optimise the path 

generated by the BB algorithm presented in Algorithm 1. 

 

 
Figure 3: Histogram of path length saved by the three 

optimised BB compared to the not-optimised BB 

Table 1: Summarised statistical parameters of the path 

length saved by the three optimised BB 

 
Strategy 

2-Opt 3-Opt 4-Opt 

Median 33.8 m 43.5 m 52.6 m 

Mean 49.3 m 61.4 m 70.4 m 

Standard 

deviation 
52.8 m 62.2 m 67.5 m 

Minimum 0 m 0 m 0 m 

Maximum 402.0 m 328.5 m 402.0 m 

 

The length of the paths are calculated prior the search 

took place. Direct movement is assumed between the 

waypoints. However, as mentioned above, the movement 

of the AUV is affected by a self-localisation error of the 

AUV. Therefore, in most cases, the AUVs are not able to 

visit all waypoints generated before the energy of the 

AUV is consumed. Figure 4 shows a histogram 

summarising the percentage of remaining waypoints for 

the four different BBs. The remaining waypoints, are the 

waypoints that cannot be visited by the AUV due to 

energy restrictions. It can be seen from the figure that the 

optimisation process is capable of reducing the number 

of waypoints that the AUV was not able to visit.  

 

 
Figure 4: Histogram of the remaining waypoints for the 

not-optimised BB and the three optimised BB  

 

Figure 5 shows the histogram of the error, calculated 

following equation (2). In Table 2 statistical parameters 

of the error scored by the different options are 

summarised. It can be seen from the figure and the table 

that all optimised versions of BB gave better results than 

the not-optimised BB. However, the results for all three 

optimised BB are in the same order of magnitude.  

 

 

Figure 5: Histogram of error values for the not-optimised 

BB and the three optimised BB 

Table 2: Summarised statistical parameters of the error 

for the not-optimised BB and the three optimised BB 

 
Strategy 

Not-Opt 2-Opt 3-Opt 4-Opt 

Median 76.26 71.63 72.02 72.23 

Mean 88.48 83.40 83.99 84.68 

Standard 
deviation 

52.23 48.20 48.74 49.76 

Minimum 13.62 14.35 14.76 12.92 

Maximum 346.61 333.95 348.53 346.93 

 

 



 

 

The optimised BB used the same waypoints as the not-

optimised BB. Therefore, the difference in the error for 

each experiment ∆𝐸𝑖 can be calculated as follows:  

∆𝐸𝑖 =
𝐸𝑛𝑜𝑡−𝑜𝑝𝑡,𝑖−𝐸𝑜𝑝𝑡,𝑖

𝐸𝑛𝑜𝑡−𝑜𝑝𝑡,𝑖
∙ 100. (3) 

Where 𝐸𝑜𝑝𝑡,𝑖 denotes the error value of the k-opt 

optimised BB and 𝐸𝑛𝑜𝑡−𝑜𝑝𝑡,𝑖 denotes the error value of 

the not-optimised BB in the specific experiment i. 

Positive values for ∆𝐸𝑖 indicate a better result achieved 

by the optimised BB, while negative values indicate a 

worse result for the optimised BB compared to the not-

optimised BB. Figure 6 shows the histogram of ∆𝐸𝑖 for 

all three optimised BB strategies investigated. Statistical 

parameters of ∆𝐸𝑖  are summarised in Table 3.  

 
Figure 6: Histogram of ∆𝐸𝑖; positive values are 

representing a decrease in the error, i.e. improvement 

compared to not-optimised, while negative ones 

represent an increase respectively 

Table 3: Summarised statistical parameters of ∆𝐸𝑖  

 
Strategy 

2-Opt 3-Opt 4-Opt 

Median 1.1 % 1.0 % 1.0 % 

Mean 2.2 % 1.2 % -0.14 % 

Standard 

deviation 
24.4 % 26.6 % 32.5 % 

Minimum -219.2 % -227.0 % -258.2 % 

Maximum 74.3 % 73.3 % 74.5 % 

Better 590 550 561 

Worse 410 450 439 

 

It can be seen from the table that, based on the median, 

all three optimised BB performed better than the not 

optimised BB. However, in 41.0 %, 45.0 % and 43.9 % 

of the experiments, the performance of the 2-opt, 3-opt 

and 4-opt BB strategy is worse compared to the not 

optimised BB. A possible explanation for this worse 

performance is shown in Figure 7. In some cases, the 

optimisation process may change the order of the 

waypoints in such a way that the new path does not cross 

the area of the SGD, even if the not-optimised path did.  

 

 
Figure 7: Possible explanation for the decrease in 

performance caused by optimisation; waypoints are 

marked by circles  

If the postulated research hypothesis would be true, a 

positive correlation between ∆𝐸𝑖 and the saved path 

length would be expected. Figure 8 shows a scatter plot 

of ∆𝐸𝑖 over the saved path length for the three different 

optimised BBs. No positive correlation between the two 

variables can be observed for any of the optimised BB. 

In addition, in some experiments with a high saved path 

length, the achieved performance is bad compared to the 

performance of the not-optimised BB. 

 
Figure 8: Scatter plot of ∆𝐸𝑖 over the saved path length  

 

CONCLUSIONS AND FUTURE WORK 

In this research a simple optimisation strategy, i.e. the k-

opt strategy, was used to improve the search performance 

of an AUV utilising the BB search strategy to search for 

SGDs. In this research, 2-opt, 3-opt and 4-opt were used. 

On average, all three optimised BB outperformed the not-

optimised BB. However, the achieved reward of all three 

optimised BB was in the same order of magnitude. 

Therefore, the 2-opt strategy is the best option, due to the 



 

 

much lower computational costs, compared to the 3-opt 

and 4-opt strategy.  

Only in 56.7 % of all conducted experiments the 

optimised BB performed better than the not-optimised 

BB. Therefore, nearly in every second run, the optimised 

BB performed worse compared to the not-optimised BB. 

In the worst case, the error of the 4-opt optimised path 

was 258.2 % inferior to the not-optimised BB. Thus, 

optimising the path of the AUV does not guarantee an 

increasing performance of the search. Another possible 

solution to improve the performance of the BB search 

would be the incorporation of feedback, gained from the 

environment, to guide the search towards more promising 

regions of the search space.  

In future research, different ways for the online 

adaptation of the list of waypoints, based on the current 

state of the search, will be evaluated.  
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