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Emotional expressions are inherently multimodal — integrating facial behavior, speech, and gaze — but
their automatic recognition is often limited to a single modality, e.g. speech during a phone call. While
previous work proposed crossmodal emotion embeddings to improve monomodal recognition performance,
despite its importance, an explicit representation of gaze was not included. We propose a new approach to
emotion recognition that incorporates an explicit representation of gaze in a crossmodal emotion embedding
framework. We show that our method outperforms the previous state of the art for both audio-only and video-
only emotion classification on the popular One-Minute Gradual Emotion Recognition dataset. Furthermore,
we report extensive ablation experiments and provide detailed insights into the performance of different
state-of-the-art gaze representations and integration strategies. Our results not only underline the importance
of gaze for emotion recognition but also demonstrate a practical and highly effective approach to leveraging
gaze information for this task.
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1 INTRODUCTION

Automatic recognition of emotional expressions is an inherently multimodal task [51, 67]. Many
state-of-the-art approaches combine information extracted from multiple modalities, e.g. expres-
sions in a persons’ face with speech-based features [56, 59, 66]. While these approaches consistently
outperform uni-modal alternatives [19, 56] they share one crucial limitation: They require all
modalities to be simultaneously present at both training and test time. However, this assumption
rarely holds in application scenarios for emotion recognition. For example, emotion recognition
systems have to rely on audio only at test time if used for telephone-based screening in the medical
domain [38], or when users are outside the field of view of the camera in a video conference. In
contrast, if a user is silent or strong background noise overlays a conversation, video analysis might
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be the only usable modality. To combine the advantages of multimodal training with the flexibility
of only requiring a subset of these modalities at test time, recent work proposed cross-modal emotion
embeddings [26]. In this approach, a helper modality (e.g. video) is used during training time to
improve the latent representation of a second modality (e.g. audio). This approach was shown to
improve performance when only using the second modality (audio) at test time.

At the same time, a large body of work has demonstrated the close link between gaze and
emotional expressions [1, 2, 22, 34, 40]. For example, gaze aversion was shown to impair the
perception of anger and happiness [2, 10], and embarrassment is connected to more downward gaze
than amusement [34]. Despite the importance of gaze, relatively few works have studied emotion
recognition based on gaze location and pupil size [5] or combined gaze with other channels of
affective information [3, 50, 62]. While the performance improvements demonstrated by these
approaches underline the importance of integrating gaze into emotion recognition systems, they
either rely on video information only [62] or assume both video-based gaze features and speech
input to be available both at training and test time [3, 50]. In particular, so far gaze has not been
integrated in multi-modal (i.e. video and audio) emotion recognition approaches that only require
unimodal (i.e. either video or audio) data at test time.

In this work, we are first to propose to include an explicit representation of gaze in a cross-
modal learning framework for emotion recognition. More specifically, our approach builds on
the crossmodal emotion embeddings model (EmoBed) by Han et al. [26]. We augment the visual
pipeline of EmoBed with a state-of-the-art gaze feature representation for gaze-based emotion
recognition [50]. The resulting novel feature representation of the video modality acts as a helper
modality during training for speech-only testing, or is supported by speech during training when
performing video-only test evaluations. With a model-level fusion strategy of gaze and facial
features, we achieve a F1 score of 45.0 for video-only testing on the One-Minute Gradual Emotion
Recognition dataset [9], clearly improving over the previous state of the art by [26]. For audio-only
testing, we reach 43.4 F1 with an early fusion approach for gaze integration at training time, also
outperforming the previous state of the art [26]. !

The specific contributions of our work are threefold: First, we present a novel state-of-the-
art crossmodal learning approach for emotion recognition that, for the first time, makes use of
an explicit representation of gaze. Second, we conduct experiments on the One-Minute Gradual
Emotion Recognition dataset [9], improving over the previous state of the art both for video-only as
well as audio-only testing. Third, we perform extensive ablation experiments and report results for
different gaze integration strategies, including early versus model-level fusion, as well as different
state-of-the-art gaze feature representations [50, 62].

2 RELATED WORK

Our work is related to 1) the connection between gaze and displays of emotions, 2) gaze-based
automatic emotion recognition, as well as 3) multimodal approaches to emotion recognition.

2.1 Gaze and Emotions

Eye gaze behavior (coupled with other modalities such as facial expressions) has been studied
widely in psychology of emotion expression and perception [30, 36, 41, 42, 63]. Gaze can reveal
information about the users attention and intentions [30], and specific eye movement behaviors
(e.g., gaze direction) coupled with facial movements [1, 10, 64] are relevant when expressing and
perceiving specific kinds of emotion classes. With such facial/eye region expressions, the additional

1Code and other supporting material is made publicly available at https://perceptualui.org/publications/abdou22_etra/
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use of perceived gaze direction (either directed or averted) has been shown to better assist humans
to distinguish between emotion classes [1, 22, 40-42].

Gaze direction has been shown to be associated with "the underlying behavioral intent (approach-
avoidance) communicated by an emotional expression” [2]. Milders et al. [42] showed that the gaze
direction of another person can affect your emotion recognition accuracy and the intensity by
which you perceive the emotional stimuli. Moreover, results showed that averted gaze is a useful
feature when detecting fear over happiness or anger and the exact opposite with a direct gaze. In
addition, [34] indicated that when humans experience embarrassment, they first avert their gaze
and then subsequently additional expressions occur, such as shifting eye, abnormal speech sounds,
and smiling.

2.2 Gaze-based Emotion Recognition

Given the strong link between gaze and emotions, a large body of research has explored the use of
gaze for automatic emotion recognition. For example, Jaques et al. [31] explored different machine
learning algorithms for gaze-based recognition of two emotional states, curious and bored, in an
e-learning environment. They found that while predicting curiosity was not possible above chance
level, predicting boredom showed more promise. Similarly, [5] trained a shallow feed-forward
neural network to predict positive, negative, or neutral emotion classes. To improve performance,
they suggested to include additional modalities and gaze features in future work. O’Dwyer et al. [50]
explored the use of a larger gaze feature set to train an LSTM network for the task of continuous
affect prediction from the RECOLA dataset [55]. They found that their model performed better for
arousal prediction when trained on gaze features.

A number of works have provided strong evidence for the benefit of using gaze for emotion
recognition. Anwar [4] proposed a method to predict seven basic emotion classes from facial action
units and gaze with 93% accuracy. Similarly, Alhargan et al. [3] explored the use of speech and
gaze features for affect recognition in a gaming environment and reported top performance when
combining both modalities. Their results further showed that gaze features were even more helpful
than speech. In a study by O’'Dwyer et al. [49], the addition of eye gaze features to speech yielded an
improvement of 19.5% for valence prediction and 3.5% for arousal prediction. An opposing pattern
was found by O’ Dwyer et al. [50] who employed pupillometry and gaze features for valence and
arousal estimation on the RECOLA dataset [55]. While eye-based features did not perform well
for arousal prediction, the best performance was achieved when combining eye-based features
and speech features. Van Huynh et al. [62] presented a neural network approach for emotion
recognition based on facial expression and gaze and showed clear improvements when using gaze
features to representations of facial expressions. Despite all of these works, to the best of our
knowledge, no emotion recognition approach incorporating gaze with both facial expressions and
speech has been proposed.

2.3 Multimodal Emotion Recognition

Due to their ubiquity, most works on multimodal emotion recognition have focused on combining
audio and video [56, 66], but how to combine them remains an open question. In early fusion, inputs
or raw feature representations are merged before they are fed into a joint network [17, 57]. In model-
level fusion, each modality is processed by a dedicated network before both intermediate feature
representations are merged and then passed through a joint network [16, 54]. Finally, in late fusion,
modalities are fused on the level of predictions [29, 66]. Caridakis et al. [14] built a multi-modal
discrete emotion classification system based on facial expressions, body movement/gestures, and
speech. While all fusion methods improved over monomodal classification, feature fusion provided
the best performance. Hu et al. [28] won the EmotiW challenge in 2017 by proposing a novel score
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function that added model-level fusion at multiple levels within a neural network. [43] obtained
state of the art results on the IEMOCAP dataset [12] by separately learning spatio-temporal features
using a recurrent neural network. Recently, Schoneveld et al. [59] combined a recurrent neural
network with model-level fusion and reported state-of-the-art results on the RECOLA dataset [55].
Although integrating audio and video generally increases emotion recognition performance, a
common limitation of all previous methods is that all modalities also need to be present at test
time. However, this is rarely the case in real-world applications. To address this limitation, Han
et al. [26] proposed EmoBed — an approach that only required a single modality at test time, yet
could still profit from both modalities during training. To this end, EmoBed aligned video and
audio embeddings in a joint space and used a subsequent network to predict emotion labels from
embeddings of either modality. Most recently, [53] proposed Stronger Enhancing Weaker (SEW), a
method that allowed to exploit a stronger modality during training to improve test performance of
a weaker modality. The crucial difference to EmoBed is that this method cannot improve the test
performance of a strong modality by training jointly with a complementary but weaker modality.
While these “asymmetric” approaches were shown to improve monomodal testing performance,
they disregarded gaze for emotion recognition. In stark contrast, we show that integrating an
explicit gaze representation into the visual pipeline of such an asymmetric approach improves test
performances both on video- as well as on audio alone. Given that our literature review did not
indicate a clear preference for early- or model level fusion of feature representations, we evaluate
the performance of both alternatives of joining gaze features with the visual processing stream.

3 METHOD

Our method extends the crossmodal emotion embedding (EmoBed) [26] framework by integrating
an explicit gaze representation into the visual pathway (see Figure 1). EmoBed consists of a visual
and a speech stream, each of which produce embeddings of the same size. These pathways are
trained in two ways. First, a downstream network is trained on the embeddings without knowledge
of the embeddings’ source modalities to predict the ground truth emotion labels. Second, in a shared
embedding space, intra- as well as inter-modal triplet losses are applied to improve and align visual
and audio embeddings. This training setup only requires a single modality at test time. Due to the
inter-modal triplet loss applied to the embedding space, a second modality supplied at training
time is able to improve the embeddings of the test modality.

3.1 Gaze-enhanced Visual Stream

We propose a novel gaze-enhanced visual stream network for EmoBed (see Figure 1). This network
incorporates a dedicated gaze representation into the visual stream of EmoBed, mapping both input
features to an embedding space in RE.

3.1.1 Feature fusion. As from our literature review it remained unclear what is the best way to
fuse feature representation for emotion recognition, we study two alternatives: (1) early fusion,
and (2) model-level fusion.

In early fusion, we concatenate the visual and gaze data before passing it to the encoder. In other
words, the early fusion process can be expressed as eﬁgrly = fog([x0; x4]) where foq(.) : RV*CG — RE,
V, G, and E denote the dimension of visual data input, gaze data input, and the embedding size,
respectively.

In model-level fusion, we employ a separate encoder for each of the two data streams. Their
corresponding embeddings are subsequently concatenated, forming an embedding of twice the
original size (i.e. 2E). Finally, we pass this new embedding into a projection layer to transform it to the
original embedding size E. In other words, the visual encoder can be expressed as f,(.) : R — RE,
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Fig. 1. Overview of our proposed gaze-enhanced crossmodal emotion embeddings method. Top: general
structure of the crossmodal emotion embeddings framework. Audio and video signals are encoded in separate
streams. A crossmodal triplet loss is applied to the embedding space to align embeddings from the two
modalities. For classification, the embeddings are fed to a joint classification network that is agnostic of the
embeddings’ source modality. Bottom Left: Our proposed model-level fusion network for integration of
gaze information into the visual encoder. Here, VGG FACE features and gaze features are concatenated after
application of the encoder networks. Bottom right: Our proposed early-fusion network. Here, gaze features
are concatenated and subsequently fed through a joint encoder network.

the gaze encoder as f;(.) : R — RE, and the projection network as H Q) R?F — RE. After
passing the visual input x, and gaze input x, into their corresponding encoders we get e, = f;(x,)
and e; = f;(x,). Finally, we project them again into the RE dimension by ez’,’;"del = fo(lews eg])-

3.2 Audio Stream

Similarly, the goal of the audio stream is to map each audio input to an embedding space of the
same dimensionality of the gaze-enhanced visual embeddings (i.e. RE). To this end, we feed the
audio input x, € RM into the audio encoder network which can be expressed as f;(.) : RM — RE.
We obtain the resulting audio embeddings e, = f;(x,).

3.3 Triplet Training

Triplet training is applied on the gaze-enhanced visual embeddings and the audio embeddings. The
goal of the triplet training is to align the two different types of embeddings in a shared embedding
space. The embeddings in the new space, regardless of their input source, should be close to each
other if they have the same label, and far from each other otherwise. We quantify the semantic
similarity using the euclidean distance. Le. the similarity between two embeddings e; and e; is
defined as d(e;, e;) = [|e; — ejl|2.

The triplet loss consists of an intra-modal as well as an inter-modal component. The intra-
modality loss ensures that embeddings that carry the same label within the same modality are close
to each other and far from each other otherwise. The inter-modality on the other hand ensures
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that embeddings carrying the same label across modalities are close to each other and far from
each other otherwise.

3.3.1 Intra-modality loss. Given a batch of n embeddings A from a single modality, the intra-
modality loss is calculated by first computing the nxn pairwise distance matrix. The elements on
its diagonal are zero as they represent the distance between each embedding and itself. For each
embedding e € A, we followed [26] in the triplet mining technique, i.e. we choose the hardest
positive- as well as the hardest negative example. The hardest positive example e* is defined as
the example with the same label that is farthest from e in the embedding space. Similarly, the
hardest negative example e~ is the the example that is closest to e in the embedding space, but has
a different label than e. Then, the intra-modalitiy loss of modality A is defined as as:

Lintra(A) = ) (d(eq €) = d(ea €) ()

3.3.2 Inter-modality loss. Given a batch of n examples with both embeddings e, of modality A
and corresponding embeddings e, of modality B, we first compute the cross-modality nxn distance
matrix. This matrix contains the distances d(e,, ep) for all e, € A and e, € B. The elements on
its diagonal represent the distances between the e, and e, embeddings belonging to the same
video instance. Then, with the same strategy for searching for hardest positives and negatives, the
inter-modality loss is calculated by

Linter (AB) = " (d(eq, €f) = d(eas €;)) @)

3.3.3 Full triplet loss. For two batches of embeddings A and B of size n coming from two different
modalities, we calculate the final triplet loss as follows:

Ltriplet = Lintra (A) + Lintra (B) + Linter (AB) 3)

Thus, regardless of their modality, the triplet loss pulls embeddings that have the same label
close to each other while it pushes embeddings with different labels apart.

3.4 Joint Training

At the same time when the embedding space is trained with the triplet loss, the embeddings from
each modality are passed to a shared classifier. This classifier is agnostic to the source modality of
the embeddings. It is trained to classify emotion categories based on the embeddings it receives.
That is, given an embedding e € RF the classifier is a function f(e) = 7, where §j € R is the
predicted label for e. Thus the total loss of the classifier can be expressed as:

Ljoint = L(A) + L(B) (4)
where L(A), L(B) are the cross entropy loss for inputs embeddings A and B.

3.5 Features

3.5.1 Gaze Features. As a basis for gaze feature computation, we make use of OpenFace [8].
OpenFace makes use of a Constrained Local Neural Field (CLNF) landmark detector presented
in [7, 65] for eyelids, iris, and the pupil detection. OpenFace is trained using the SynthesEyes
dataset [65] which contains photorealistic close-up images of eyes and is widely used for training
and evaluating gaze estimation models. The gaze estimation of OpenFace Baltrusaitis et al. [8] was
originally evaluated on the MPIIGAZE dataset [68], which is widely used for appearance based gaze
estimation and contains realistic in-the-wild images of users taken from webcams. OpenFace reached
an angular error of 9.1 in the challenging cross-dataset evaluation scenario, clearly outperforming
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Table 1. Base features from OpenFace output and the corresponding statistical features. These 103 features
are subset of the feature set in [50]. LR refers to a linear regression fitted to the time series of feature values
in the window. Time ratio is the proportion of time during which a binary feature is detected in the analysis
window. IQR denotes the interquartile range, i.e. IQR 2-3 refers to the difference between third and second
quartile.

Base feature Statistical functionals # Features
gaze angle x, gaze angle y, A gaze min, max, mean, median, quartile 1, quartile 60
angle x, A gaze angle y, pupil di- 3, std, IQR 1-2, IQR 2-3, IQR 1-3, LR intercept,

ameter mm LR slope

A pupil diameter mm min, max, mean, quartile 1, quartile 3, std, IQR 11

1-2, IQR 2-3, IQR 1-3, LR intercept, LR slope

eye blink intensity max, mean, median, quartile 3, std, IQR 1-2, 10
IQR 2-3, IQR 1-3, LR intercept, LR slope

pupil dilation, pupil constriction  time ratio, mean time, max time, total time 8

gaze approach time ratio, mean time, max time, median time 4

eyes closed, gaze fixation time ratio, min time, max time, mean time, 10

median time

previously proposed methods [8]. Openface was subsequently used for a multitude of tasks, such
as mutual gaze prediction for human-robot interaction [58], improving methods for controlling
devices with gaze [35], and anticipating averted gaze [47]. As such, Openface is a well established
and accurate toolkit for facial landmark detection and gaze estimation, particularly for real world
person independent gaze estimation. While a dedicated eye tracking device can reach higher gaze
estimation accuracy, this would limit our approach to highly controlled lab-based scenarios.

Based on the gaze estimates obtained by OpenFace, we compute a set of statistical features from
the recently proposed gaze feature set by O’'Dwyer et al. [50]. We observed that some features
of O'Dwyer et al. [50] can have zero variance during a time window, rendering computation of
skewness and kurtosis impossible. As a consequence, we restrict our set of features to those from
O’Dwyer et al. [50] that are not subject to this issue.

In particular, we extracted a base set of 9 gaze related features, on top of which we computed
several statistical functionals, resulting in 103 features in total. The base set consists of 4 numerical
and 5 binary features. The numerical features are eye gaze direction in radians in world coordinates
averaged for right and left eyes, the pupil diameter estimated from the left eye landmarks, and
the eye blink intensity (i.e. Facial Action Unit 45%). The binary features are the pupil dilation time,
constriction time, eye closed time, gaze approach time, and gaze fixation time. Gaze approach is
calculated by taking the derivative of the average depth of the eye landmarks. If the derivative is
above zero, it is counted as gaze approach. See Table 1 for an overview over all base features and
the applied statistical functionals.

OpenFace outputs pupil diameter in millimeters based on the detected facial landmarks [8]. As
we do not assume knowledge of the camera intrinsics, the absolute value of the estimated pupil
diameter may be inaccurate, as it is the case in previous work that computed pupil diameter features
based on OpenFace output [50]. However, for the task of gaze-based emotion recognition, we are

2list of action units and their description https://imotions.com/blog/facial-action-coding-system/
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Fig. 3. Facial keypoints and gaze estimates fn randomly chosen frames where landmarks detected with low
OpenFace confidence

only interested in relative differences in pupil diameter that are preserved even if the absolute value
is incorrectly estimated. We still use “millimeter” to be in line with the terminology of [50].

We extract the features on windows of 1 second, resulting in as many feature values per window
as there are frames per second in the input video. These window-based features can be used both in
the early- as well as the model-level fusion model discussed in Section 3.1.1, as they can be aligned
with the frame-wise facial features. In the model-level fusion scenario, we also investigate a version
of the gaze features where we average the features that were first computed on the window level
across the whole utterance. We suspect this could lead to a more robust gaze feature representation
that is less prone to random fluctuations.

3.5.2  Facial Features. We used OpenFace [8] for face detection and face alignment. We pass the
aligned face images to the VGG-Face model [52] and extract the the 4096 length feature vector
from the "fc-7" layer. If k is the number of frames in the video, this results in (k,4096) feature values
for that video.

3.5.3 Audio Features. In line with [26], we extracted the eGemaps feature set [23] using the
OpenSMILE toolkit [24]. This results in a 88-dimensional feature vector per video.

4 EXPERIMENTAL EVALUATION
4.1 Training Details

Inspired by Han et al. [26], we used GRU-RNN layers for each modality encoder as well as for the
shared classification network. We used a single hidden layer for both the encoders as well as the
shared network with 120 units each. We applied L2 regularization of 10~* via weight decay, and
chose a batch size of 64. We found that using the Adam optimizer [37] with a 107* learning rate
yielded the best generalization results on the OMG dataset. Moreover, all inputs were standardized
to their mean and variance on the training set. Each batch of input data yielded two batches
of the same size: One batch containing gaze-enhanced visual embeddings and another batch of
audio embeddings. Crossmodal triplet loss is applied on both batches. Furthermore, the batches
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Table 2. F1 scores for different approaches and test modalities on the OMG [9] dataset. Scores are averaged
across 20 runs with different random intialisations and corresponding standard errors are shown in brackets.

Approach | || Test Modality — Audio Video
OMG baseline [9] 33.0 37.0
EmoBed [26] 41.7 43.9
monomodal
no gaze 41.3(0.15) 42.8 (0.24)
averaging, model-level fusion - 43.8 (0.21)
windowing, early fusion - 43.0 (0.23)
windowing, model-level fusion - 43.7 (0.20)

crossmodal triplet training

no gaze 42.9(0.17) 43.5(0.25)
averaging, model-level fusion 42.6 (0.19) 45.0(0.22)
windowing, early fusion 43.4 (0.17) 43.7 (0.26)

windowing, model-level fusion 42.8 (0.15) 44.5(0.20)

were passed in an alternating fashion to the joint classification network. That is, the classification
network receives the audio embeddings of batch 1, then the gaze-enhanced video embeddings of
batch 1, the audio embeddings of batch 2 and so forth.

4.2 Dataset

We evaluated our gaze-enhanced crossmodal triplet training on the popular One-Minute Gradual
Emotional (OMG) Behavior dataset [9]. We opted for this dataset given that it is well suited for
the task and has been used in closely related prior work [26]. The OMG dataset [9] consists of
567 monologue videos collected from YouTube with an average video length of one minute and a
frame rate of 29 fps. Each monologue video contains various emotional behaviors shown by the
person in the video. Each video was subdivided into several utterances with an average length of
8 seconds. The utterances were subsequently annotated by 5 different Amazon Mechanical Turk
(AMT) workers each with discrete labels for the six basic emotions according to Ekman and Friesen
[21]. Addition of a neutral class resulted in the seven classes: disgust, anger, fear, happy, neutral, sad,
and surprise. Annotators saw the utterances in sequence, i.e. they could take into account context
information from preceding utterances of the same video. As annotations are based on the full
array of human behavior channels including speech, gaze, and facial expressions, this dataset is
well suited to evaluate our gaze-enhanced crossmodal embedding approach.

Before feature extraction, we removed four utterances from the training set for which neither
OpenFace could detect any face nor OpenSMILE could detect any audio signal. This resulted in
a training dataset of 2,438 utterances in training and 617 utterances in the validation set. All
experiments and results reported in the following have been performed on the validation set given
that the test labels are not available for OMG. Using the OMG validation set allows us to directly
compare our results with those of [26].

The facial landmark detector of OpenFace 2.0 [8] reported a confidence score of more than 0.9 for
91.2% of all frames in the OMG dataset, indicating that in the vast majority of frames high-quality
gaze estimates can be expected. For a qualitative analysis we randomly sampled one frame for each
gaze direction (left, right, up, down, straight) from the set of frames with confidence score of at
least 0.9 (see Figure 2). All sampled frames show accurate estimates of gaze direction. Figure 3

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. ETRA, Article 138. Publication date: May 2022.



138:10 Ahmed Abdou et al.

Table 3. Average of F1 scores for each emotion class for cross modal triplet training. Standard errors across
20 runs are shown in brackets.

Approach | || Emotion —» Neutral Happy Sad Anger  Disgust Fear Surpr.

Train Samples 888 713 346 293 112 60 26
Validation Samples 196 207 79 61 48 18 8
test modality: video
averaging, 49.6(0.5) 55.7(0.4) 32.7(0.8) 29.2(1.3) 4.7(13) 0 0
model-level fusion
no gaze 48.1(0.6) 52.3(0.4) 29.7(15) 32.5(1.5) 11.6(1.7) 0 0
test modality: audio
windowing, 49.7(0.4) 49.7(0.5) 34.8(0.8) 25.3(1.5) 0 0 0
early fusion
no gaze 49.2(0.4) 49.8(0.5) 33.9(0.8) 23.4(1.1) 0 0 0

shows five frames where facial landmark detection failed. Such complete failures occur seldom
(2.5% on the training set) and are often due to occlusions, motion, or extreme head poses.

4.3 Results

In line with previous work [9, 26], we use the micro F1 score as our general performance metric. It
is calculated by counting the total true positives, false negatives and false positives globally across
all classes.

4.3.1 Effect of Gaze Integration. We compare our proposed method with the previous state of the
art reported by Han et al. [26] as well as ablated versions in Table 2. For video as test modality, we
achieve 45.0 F1 for our crossmodal triplet training method that uses averaged gaze features and
model-level fusion. This is a clear improvement over the previous state of the art of 43.9 F1. In the
case of audio-only testing, our crossmodal triplet training method with gaze features extracted
on windows and early fusion achieves the best result with 43.4 F1. Again, this outperforms the
previous state of the art of Han et al. [26] at 41.7 F1.

At the same time, our best gaze integration methods for each test modality improve over their
corresponding no gaze ablation at 43.5 F1 for video testing, and 42.9 F1 for audio testing. The “no
gaze” ablation represents our implementation of the EmoBed framework. For audio-only testing, it
improves over the performance originally reported in Han et al. [26] by 1.2 F1, and for video only
testing it is worse by 0.2 F1. While all gaze integration strategies improve over the no gaze triplet
training alternative for video testing, the results are more mixed for audio-only testing. Here, only
windowed gaze extraction combined with early fusion improves over the no gaze ablation.

In addition to crossmodal training setups, we investigate purely monomodal training. Most
importantly, all our crossmodal triplet training models improve over their monomodal counterparts.
Furthermore, the pattern of results for different gaze integration strategies in monomodal video
models follows the corresponding pattern of results for our crossmodal triplet training models.
This indicates that the advantage of averaging and model-level fusion for video-only testing is
stable across evaluation conditions.

4.3.2  Analysis of improvements per emotion class. To gain a deeper insight into the performance of
our gaze integration method, we conducted a performance analysis per emotion class. In Table 3,
we compare the performances of our gaze-enhanced crossmodal triplet training approaches to
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Table 4. F1 scores of different gaze feature representations in the crossmodal triplet training formulation on
the OMG [9] dataset. Standard errors across 20 runs are shown in brackets.

Gaze Features | || Test Modality — Audio Video
O’Dwyer et al. [50]
averaging, model-level fusion 42.6 (0.19) 45.0(0.22)
windowing, early fusion 43.4 (0.17) 43.7 (0.26)

windowing, model-level fusion 42.8 (0.15) 44.5(0.20)

Van Huynh et al. [62]
averaging, model-level fusion 43.1(0.16) 44.8 (0.24)
windowing, early fusion 43.2 (0.18) 43.6 (0.28)
windowing, model-level fusion 42.8 (0.18) 43.5(0.23)

the corresponding no-gaze ablations. For video testing, we observe an improvement for our the
gaze-enhanced method for the classes neutral (+1.5 F1), happy (+3.4 F1), and sad (+3.0 F1). On the
other hand, our gaze-enhanced method obtains a lower F1 score for anger (-3.3 F1) and disgust
(-6.9 F1). The improvements are aligned with the number of training samples available for each
class. Our gaze-enhanced approach improves for classes with high numbers of training samples
and has a disadvantage on classes with low numbers of training samples. A different pattern can
be observed in the audio testing case. Here, our gaze-enhanced approach improves for the classes
neutral (+0.5 F1), sad (+0.9 F1), as well as anger (+1.9 F1), and is on par with the no gaze baseline
for happy (-0.1 F1). These varied behaviors point to the different roles gaze features play when
incorporated into the helper modality (audio testing), or when used as a direct basis of test time
prediction in video testing (see our Discussion in Section 5.1).

Interestingly, all approaches only reach a very low performance on classes with a low number
of training samples (i.e. disgust, fear, and surprise). To check whether this might be due to not
yet converged training for these emotion classes, we tried training our model for a large number
epochs (250). This did not resolve the issue but lead to overfitting.

4.3.3 Comparing Gaze Feature sets. Our gaze-enhanced visual stream utilizes a set of gaze features
proposed for emotion recognition by O’ Dwyer et al. [50]. A different set of features was proposed by
Van Huynbh et al. [62], which to the best of our knowledge, was the only other feature set proposed
in the emotion recognition literature that utilizes gaze estimates extracted from standard RGB
videos (e.g. via OpenFace [8]). The main difference between these feature sets is that the features
of Van Huynh et al. [62] do not contain information about the pupil dilation and constriction, nor
eye blinking. On the other hand, they include information about the iris and the average location
of the eye landmarks. In detail, 51 statistical features were calculated from a base set of features
extracted by OpenFace. These base features include the eye gaze direction vector in 3D and radians
averaged for both eyes, height and width of the pupil for both eyes, the eye locations, as well as the
vertical distances of the iris landmarks.

Table 4 shows the results of a comparison of our gaze featureset inspired by O’ Dwyer et al. [50]
with the one by Van Huynh et al. [62] in the crossmodal triplet training approach. In both audio and
video testing scenarios, the best performance is achieved using the featureset based on O’Dwyer
et al. [50]. While for video-only testing, the features of O’Dwyer et al. [50] are always superior to
those of Van Huynh et al. [62], the results for audio-only testing are more mixed.
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Fig. 4. Visualization of the distribution of OpenFace gaze estimates projected on the camera plane for different
emotion classes.
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4.3.4 Gaze Feature Analysis. We visualized the distribution of gaze estimates for each emotion
class by projecting them on the camera plane. Figure 4 shows the kernel density estimation of these
projections, demonstrating the connection between gaze estimates and the emotions expressed in
the OMG dataset. For instance, the gaze distribution for Sadness is very concentrated which is in
line with passivity that is associated with this emotion. Surprise on the other hand is more spread
out.

We additionally performed a feature importance analysis for each emotion class. We used
maximum relevance minimum redundancy (mRMR) [18] to rank the features that would most
distinguish this class from the others in a one versus all manner. The top 5 features for each class
are shown in Table 5. The dominance of the gaze angle based features is in line with previous
results on feature importance analysis for arousal and valence regression O’Dwyer et al. [50]. The
gaze angle based features, which represent 46.6% of the full feature set, contributed to 71.4% of
the top five ranked features in Table 5. Furthermore, pupil diameter, eye blink intensity, and gaze
approach account for 10.6%, 9.7%, and 3.8% of the full feature set, while contributing to the top
ranked features by 17.1%, 8.5%, and 2.8% respectively.

5 DISCUSSION
5.1 Achieved Performance

In our experiments, gaze integration into the visual stream of the crossmodal emotion embeddings
(EmoBed) [26] framework clearly improved test performances for both video-only as well as audio-
only testing. The precise gaze integration method affected performances differently for different
test modalities, i.e. we did not find a single best gaze integration method that is superior across all
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Table 5. Top five features selected by mRMR for each emotion class.

Neutral Happy Sad Anger Fear Disgust Surprise
gaze angle gaze angle gaze angle A gaze an- gaze angle A gaze an- gaze angle
y median y quartile 3  x SD gle x max y LR inter- gle y quar- xIQR23
cept tile 1
A pupil di- gaze angle A pupil di- A pupil di- A gaze A pupil A gaze
ameter mm  x median ameter mm ameter mm angle x LR diameter angle x LR
LR slope mean mean slope mm LR slope
intercept

A pupil di- A gaze an- A gaze an- A gaze an- A gaze an- eyeblinkin- A pupil
ametermm gle y me- gleyLRin- glexLRin- gle y quar- tensity LR diameter
IQR 2-3 dian tercept tercept tile 3 slope mm LR
intercept
eyeblinkin- A gaze an- A gaze an- A gaze an- gaze angle gaze angle A gaze an-
tensity me- glexIQR 2- gle y quar- gley LRin- x LR inter- y quartilel gle x me-
dian 3 tile 3 tercept cept dian
A gaze an- gaze  ap- gaze angle A gaze an- eyeblinkin- gaze angle A gaze an-
gle x LR in- proachtime xIQR 1-3 gle xIQR 1- tensity me- yIQR 1-2 gle y min
tercept secs mean 3 dian

scenarios. When testing on video, we reached the best performance when averaging gaze features
across the whole input videos and performing model-level fusion. In contrast, when testing on audio,
we achieved best performance for window-based features and early fusion. This difference might be
the result of the different roles gaze features play in each of these test scenarios. In the visual testing
scenario, prediction is performed directly on gaze inputs. A smaller feature representation that is
less subject to noise (i.e. averaged across the whole input video) might help in this scenario. On the
other hand, when gaze features are part of the helper modality, a certain degree of randomness
might be beneficial as it can act as a regularizer in the embedding space. This interpretation is in
line with our analysis of performances achieved in each emotion class (Table 3). Here, in contrast
to the overall improvement, gaze integration for video testing decreased performance for emotion
classes with a low number of samples (disgust and anger). The combination of the low number of
samples with the higher number of features introduced due to gaze integration might be the reason
for impaired performance. In the audio testing scenario however, we did not observe a decrease
in performance for classes with a low number of samples, supporting our reasoning that a larger
feature space of the helper modality might have less detrimental effects.

Our class-specific performance analysis in Table 3 also revealed that both our proposed gaze-
enhanced approach as well as our no gaze baseline implementation of EmoBed [26] achieved an
F1 score of 0 on fear and surprise. These low performances are clearly related to the low number
of training examples available for these classes. The consensus performance measurement on the
OMG dataset is micro F1 [9, 26]. We choose this measurement in our evaluations for comparability
with previous work. To improve performance on fear and surprise, a different evaluation metric
(e.g. macro F1), and correspondingly, a different loss formulation giving more weight to those rare
classes would be needed.
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5.2 Limitations and Future Work

While our work showed the importance of gaze integration in flexible emotion recognition systems,
it is still subject to several limitations that should be addressed in future work.

A key prerequisite for every gaze integration method are the available gaze estimates. While our
system was able to clearly improve over no-gaze baselines already with the imperfect estimates
provided by OpenFace [8], it potentially missed subtle gaze cues that are not well represented in these
gaze estimates. More accurate gaze estimates obtained from dedicated eye tracking systems [20, 33]
should be examined in future work as they have the potential to improve performance even further.
Another limitation lies in the dataset we used for training and evaluation. The OMG dataset [9]
consists of monologue videos collected from YouTube. While this covers a wide variety of different
participants and personalities, it poses constraints on the recording situation (i.e. a single person in
front of the camera). Future work should investigate how our approach can be extended to handle
less constrained scenarios. One example is the recognition of emotions embedded in interactions
of freely moving people [48]. This poses several additional challenges. For example, gaze estimates
might not always be available due to occlusions.

While we used recent state-of-the-art gaze features for emotion recognition [50, 62], these
featuresets do not represent the target of a persons’ gaze. An important avenue for future work
on gaze-based emotion recognition will be to investigate ways to integrate information on the
gaze target. This is especially relevant in scenarios with multiple possible gaze targets, e.g. in
group interactions [45]. Such an approach would require eye contact detection [25, 60] during
pre-processing.

Finally, the principle of gaze integration presented is also applicable to tasks beyond emotion
recognition in which gaze plays a prominent role. Examples for such tasks include emergent lead-
ership detection [13, 44], prediction of speaking turns [11], rapport estimation [46], or personality
prediction [27].

5.3 Applications

Our method can be applied in any HCI scenario where an RGB video of adequate quality to
perform gaze estimation is available. OpenFace 2.0 [8] was successfully evaluated in comparison
with state-of-the-art gaze estimation approaches and subsequent work has made use of it in a
variety of settings, including group interactions recorded from ambient cameras [25] and interviews
conducted via teleconferencing [47]. As a result, we expect our method to be applicable to a wide
variety of situations in which emotion recognition is desired. Emotion recognition is key in many
applications, including telemedicine [32], educational technology [6], and artificial mediators [45].
For example, the emotional responsiveness of a psychotherapy patient to her therapist can be
used to estimate therapeutic alliance and potentially predict therapy outcome [39]. Gaze-enhanced
cross-modal emotion embeddings are promising in this application, especially when unstable
network connections result in low-quality or dropped video. In addition a large number of health-
related interactions take place on the phone, without any video availability [38, 61]. This is an ideal
application scenario where speech-based emotion recognition at test time can profit from gaze-
enhanced cross-modal emotion embedding training. In an educational setting, emotion recognition
can be valuable to access students’ evaluation or learning material [15]. As students are often
silent during learning or may be in a location with high ambient noise, gaze-enhanced cross-modal
emotion embeddings can potentially be used to create video-only emotion recognition systems
that can still profit from speech data during training.
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6 CONCLUSION

In this work, we presented the first approach for gaze integration into a crossmodal training
framework that allows single-modality emotion recognition at test time. We introduced a new
module visual stream network to the crossmodal emotion embedding (EmoBed) framework. This
visual stream network combines gaze features with a facial feature representation. With a model-
level fusion approach of gaze and facial features, we outperformed the state of the art for video only
testing on the popular One-Minute Gradual Emotional (OMG) Behavior dataset. Using an early
fusion approach we also improved over the previous state of the art for audio-only testing on the
same dataset. In ablation experiments, we showed that crossmodal training with the gaze-enhanced
visual stream network leads to clear improvements over baselines without gaze integration. Taken
together, our results underline the importance of gaze integration in practical emotion recognition
systems.
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