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A Data-driven Approach to

Head-driven Phrase-Structure

Grammar
Günter Neumann, DFKI, Saarbrücken

We present HPSG–DOP, a method for automatically extracting a Stochas-
tic Lexicalized Tree Grammar (SLTG) from a HPSG source grammar
and a given corpus.1 Processing of a SLTG is performed by a specialized
fast parser. The approach has been tested on a large English grammar
and has been shown to achieve additional performance increase com-
pared to parsing with a highly tuned HPSG parser. Our approach is
simple and transparent. The extracted grammars are declaratively rep-
resented and have a high degree of practical applicability.

1.1 Introduction
Head Driven Phrase Structure Grammar (HPSG) has proven to be a
quite successful formalism for specifying natural language grammars in
a highly modular and compact manner (Pollard and Sag 1994) support-
ing the definition of complex linguistic information and interactions be-
tween information on different strata systematically using typed feature
constraints. On the other hand, inefficiency in processing such gram-
mars is the major obstacle for using the HPSG formalism in practical
NL applications (Makino et al. 1998).

1This work was supported by a research grant from the German Federal Min-
istry of Education, Science, Research and Technology (BMBF) to the DFKI project
whiteboard, FKZ: 01 IW 002.
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In recent years several approaches have been proposed to improve
the performance of an HPSG system. For example, Van Noord describes
a selective memoization technique used in combination with head-corner
parsing (van Noord 1997). Where Van Noord focuses on improved pars-
ing strategies, (Makino et al. 1998) focus on the compilation of typed
feature structures into an abstract machine for attribute-value logics.
Another approach is described in (Kasper et al. 1995) which focuses on
the compilation of HPSG into Tree Adjoining Grammar (TAG). Re-
cently, (Kiefer et al. 1999) have presented a bag of useful techniques
which are particularly useful to increase the efficiency of unification–
based parsing. In (Torisawa et al. 2000) a method to approximate an
HPSG–based grammar with a CFG is presented, which is used during
HPSG parsing to filter out impossible parse trees.

Common to all of these approaches is that the coverage of the original
general grammars is not affected. Thus if the original grammar is defined
domain-independently it might also define a great many theoretically
valid analyses covering a wide range of plausible linguistic constructions,
including the rarest cases. However, in building real-world applications
it has been shown to be a fruitful compromise to focus on frequency and
plausibility of linguistic structures wrt. a certain domain. A number of
attempts have been made to automatically adapt a general grammar to a
corpus in order to achieve efficiency through domain-adaptation, e.g., us-
ing PATR-style grammars (Briscoe and Carroll 1993, Samuelsson 1994,
Rayner and Carter 1996) or lexicalized TAGs (Srinivas 1997).

In this paper we apply the idea of data–oriented approaches for
achieving domain-adaptation as an alternative approach to improve ef-
ficient processing of HPSG grammars. Beyond efficiency, major goals of
our HPSG–DOP approach are 1) to take full advantage of the HPSG
formalism when constructing the specialized grammar, and 2) to favor
simple and transparent strategies and interfaces, such that the method
can be used without any details of the learning strategy, and such that
the extracted grammars are declarative.

1.1.1 Overview of HPSG–DOP

The basic idea of HPSG–DOP is to parse all sentences of a represen-
tative training corpus using an HPSG grammar and parser in order to
automatically acquire from the parsing results a stochastic lexicalized
tree grammar (SLTG; see sec. 1.3.4 for formal properties of an SLTG
and its relationship to Stochastic Tree–Substitution Grammars STSG)
such that each resulting parse tree is decomposed into a set of subtrees.
The decomposition operation is guided by the head feature principle of
HPSG, which requires that the head features of a phrasal sign be shared
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with its head daughter. This implies that in general the daughter nodes
of a phrase can be divided into a head daughter and into non-head daugh-
ters (e.g., in a simple verb phrase like V P → V NP PP , the verb V is
the head element of the verb phrase V P , and NP and PP are the non-
head daughters of the V P ). Now, the decomposition operates in such a
way, that each non-terminal non-head subtree (i.e., a subtree of a tree
whose root node is labeled as a non-head daughter, e.g., nominal phrases
NP ) is cut off, and the cutting points are marked for substitution. The
same process is then recursively applied to each extracted subtree. Each
extracted tree is automatically lexically anchored and each node label
of the extracted tree compactly represents a set of relevant features by
means of a simple symbol (these are specific category labels defined as
part of the HPSG source grammar, cf. 1.3.2). For each extracted tree a
frequency counter is used to estimate the probability of a tree, after all
parse trees have been processed.

Processing of an SLTG is performed by a two level parser. In a first
step a new sentence is completely parsed using the extracted SLTG, fol-
lowed by a second step where the SLTG-valid parse trees are expanded
off-line by applying the corresponding feature constraints of the origi-
nal HPSG-grammar giving our approach an LFG-style processing flavor,
(Kaplan and Bresnan 1982). The performance of both steps directly de-
pends on the number of SLTG-valid parse trees found for a new sentence.
Our approach has many advantages:

• An SLTG has context-free power and meets the criteria of a lexi-
calized CFG.

• The off-line step guarantees that no information of the original
grammar is lost (including semantics).

• Since the SLTG learning phase is driven by the HPSG principles
of the source grammar, the whole extraction process is simple and
transparent.

• Our approach allows a proper embedding of statistical information
into HPSG structures, which supports preference-based and robust
processing.

• The whole approach has an important application impact, e.g., for
controlled language processing or information extraction, making
use of rich and linguistically motivated information from HPSG.
Furthermore, the same mechanism can also be applied to NL gen-
eration (cf. (Neumann 1997)), as well as to efficient interleaved
parsing and generation (cf. (Neumann 1998b)).

The approach has been implemented on top of the LKB (Linguis-
tic Knowledge Building) system, a unification–based grammar devel-
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opment, parsing and generation platform currently being developed at
CSLI (Copestake 1999), and has been tested using the large HPSG–
based English Resource Grammar being developed as part of the LinGO
(Linguistic Grammars Online) project also at CSLI (cf. section 1.2).

The rest of the paper is organized as follows. Firstly, we provide
some background information of the used HPSG source system in the
next section. In section 1.3 we describe details of the learning phase.
In section 1.4, the parsing strategy is described, as well as some pro-
gramming issues. In section 1.5 we report on several experiments which
have been performed in order to measure the performance of the SLTG
parsing results. We relate our work to others in section 1.6 and give a
conclusion and outline of future work in section 1.7.

1.2 The HPSG source system
1.2.1 The LinGO grammar
The grammar used in our study is the English Resource Grammar being
developed as part of the LinGO (Linguistic Grammars Online) project
at CSLI, Stanford University, (Copestake et al. 2000). The LinGO gram-
mar consists of a rich hierachy of 1,663 abstract lexical types, a smaller
hierarchy of 180 rules types, 58 specific phrasal and lexical rules, and
6,766 lexical entries.

The grammar uses 79 features defined on the lexical and phrasal
types of the 4,562 lexical semantic predicates. Syntactic coverage of the
grammar is relatively broad, with a central focus on providing precise se-
mantic interpretations for each phenomenon that is assigned an analysis,
using the Minimal Recursion Semantics framework of (Copestake et al. 1995),
(Copestake et al. 1997). As one measure of breadth, the LinGO gram-
mar provides correct syntactic and semantic analysis for 83% of 8,520
well–formed utterances found in the transcriptions of 175 human–humans
dialogues recorded as part of the Verbmobil spoken language translation
project, cf. (Wahlster 2000). Sentence length in this sample average 8.5
words, with the conversations on the topics of scheduling meetings and
making hotel reservations (see (Flickinger et al. 2000, Flickinger 2000)
for a detailed discussion of the grammar’s architecture and coverage).

1.2.2 The LKB system
Parsing and hence the training phase (see below) with the LinGO gram-
mar is performed using the LKB (Linguistic Knowledge Building) sys-
tem, (Copestake 1999). The LKB passive chart parser uses a breadth–
first CKY–like algorithm which is highly tuned for efficient process-
ing of HPSG grammars. For example, the use of a unification quick
check reduces parsing time by approximately 75%. The quick check (cf.
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FIGURE 1 Some trees extracted from I guess we need to figure out a day,
within the next two months. The symbols S, NP , V P , TP , Det, PP I have

been determined by means of specialization (see text). # denotes the
substitution marker.

(Kiefer et al. 1999)) is invoked before each unification attempt to check
the most frequent failure points, each stored as a feature path. Frequency
information is obtained by processing a set of sentences in an off–line
mode, and the n paths with the highest failure counts are saved.

1.3 Learning of SLTG

Learning of an SLTG starts by first parsing each sentence si of the
training corpus with the source HPSG system. The resulting feature
structure fssi

of each example also contains the parse tree pti, where
each non-terminal node contains the label of the HPSG-rule schema (e.g,
head-complement rule) that has been applied during the corresponding
derivation step as well as a pointer to the feature structure of the corre-
sponding sign. The label of each terminal node consists of the lexical type
of the corresponding feature structure. For example, the lexical type of
the verb to guess is NonTransLE decoding general properties of non-
transitive verbs, and the lexical type of a noun like month is NounLE,
the lexical type for nouns.2. Each parse tree pti is now processed by the
following interleaved steps (see also figure 1).

2Note that this means, that we abstract from specific information of the word form
like morphosyntactic information. This presupposes of course that for the processing
of new sentences we do firstly have to determine the lexical types of each word before
we can apply the SLTG–trees, see also sec. 1.4
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1.3.1 Decomposition

Each parse tree is decomposed into a set of subtrees such that each non-
head subtree is cut off, and the cutting point is marked for substitution.
Testing whether a phrase is a head phrase or not can be done very easily
by checking whether the top-level type of a rule’s label feature structure
is a subtype of a general headed phrase which is defined in the LinGO
grammar. The same holds for adjunct phrases (see below).

The decomposition process is recursively applied on each extracted
subtree. Each extracted tree is automatically lexically anchored, where
the anchor consists of a lexical type and the path from the lexical anchor
to the root defines a head-chain. For each extracted tree a frequency
counter is used to estimate its probability after all parse trees of the
training set have been processed.

In order to automatically enrich the coverage of the extracted gram-
mar, two additional operations will be performed during decomposition.
Note that these two additional operations applied on the training mate-
rial can be considered as linguistically justified tree induction operations.

Firstly, each subtree of the head-chain is copied and the copied tree
is processed individually by the decomposition operation (e.g., in figure
1, the tree T3 is copied from the head chain of T1.). This means that
a phrase which occurs only in a head–position in the training corpus
can now also be used in nonhead-positions by the SLTG-parser when
parsing new sentences. We say that a phrase X occurs in head–position
of a phrase Y if the root node of X is the head daughter of Y . If the
root node of a phrase is a nonhead–daughter of another phrase (e.g., a
modifier), then we say that the phrase is in nonhead–position.

Secondly, if the SLTG-tree has a modifier phrase attached, then a
new tree is created with the modifier unattached (applied recursively, if
the tree has more than one modifier). Unattachment of a modifier m is
done by raising the head daughter of m into the position of m (e.g, in
figure 2, the tree T4 is obtained from the tree T1 by replacing the subtree
rooted at HAdj I of tree T1 with the subtree rooted at HComp).3 Note,
that unattaching a modifier actually means that a copy of a tree is made
(a copy of T1 is made which is then named T4, see figure 2) and that
this copied tree is destructively changed by unattaching the modifier as
described above (which finally yields tree structure of T4 below in fig.
2). In general this means that for a tree tn with n modifiers we obtain a
sequence of n trees tn−1 . . . tn−n by iterating the process of unattachment

3The current grammar is binary branching, so it suffices to raise the head daughter.
If a flat representation of modifiers is used one would remove the modifier daughters
first, before the head daughter would be raised.
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FIGURE 2 Unattachment of a modifier is obtained by first copy the tree t1
which yields the tree t4 in the right corner of the figure. From this tree the
subtree in head–position of the tree rooted with the modifier is raised into

the position of the modifier node, which yields the final tree t4.

on each copied tree ti unless no more modifier can be identified.
The advantage of unattaching modifiers is that we will be able to

also recognize new sentences with fewer or no modifiers using our ex-
tracted grammar by using only the substitution operation. The possible
maximum number n of modifier sequences is constrained by the training
corpus. Note that this actually means that we do not explicitly factor
out the recursion of adjuncts, as is done in recent approaches of extract-
ing lexicalized tree adjoining grammars from tree–banks (e.g., (Xia 1999,
Chen and Vijay-Shanker 2000, Chiang 2000, Frank 2001)), which would
have the advantage of a higher degree of generalization. However, the
disadvantage is that we would need additional adjunction operations
during parsing of an SLTG.4 In our approach, the substitution opera-
tion suffices because all possible modifier attachments are already spelled
out.

4Implementation of the adjunction operation would also require more a fined–
grained representation of the extracted trees, at least if we follow common practice
in parsing of TAGS, cf. (Schabes and Waters 1995). Our parser directly operates on
the SLTG-trees, where (Schabes and Waters 1995) first “explode” a tree by mapping
it to a set of local trees of depth one. These local trees define the items in the chart
parser. Compared to that, our system treats whole trees as items, and thus has to
process significantly fewer items.
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1.3.2 Specialization
The root node as well as all substitution nodes of an extracted tree
are further processed by replacing the rule label with a corresponding
category label. The possible set of category labels is defined in the type
hierarchy of the HPSG source grammar. They express equivalence classes
for different phrasal signs. For example, phrasal signs whose value of the
local.cat.head feature is of type noun, and whose value of the lo-
cal.cat.val.subj feature is the empty list, are classified as NP s. Now,
if the associated feature structure of a rule label HeadAdjunct of the cur-
rent training sentence is subsumed by the NP type, then HeadAdjunct
is replaced by NP . Note that this step actually performs a specialization
of the current tree, because the same tree might occur in another tree
in verbal position. In that case, HeadAdjunct might be replaced by the
type V P .

The definition of category labels is declarative. Thus it is possible to
define more fine-grained labels directly as part of the source grammar
leading to more specific SLTG trees. This can be done by the grammar
writer without knowing any details of the learning strategy.

1.3.3 Probability
For each extracted tree a frequency counter is maintained. After all parse
trees of the training set have been decomposed and specialized, we esti-
mate a tree’s probability as follows: First we count the total number n of
all trees which have the same root label α. Then we divide the frequency
number m of a tree t with root α by n. This gives the probability p(t).
In doing so, the sum of all probabilities of trees ti with root α is 1 (i.e.,∑

ti:root(ti)=α p(ti) = 1). Since we have only the substitution operation,
the probability of a derivation will be the product of the probabilities of
the trees which are involved in the derivation, and the probability of a
parse tree is the sum of the probabilities of all derivations (see also next
section).

1.3.4 Properties of an SLTG
Compared to the original HPSG source grammar, the SLTG has the
following properties:

• An SLTG has context-free power, since it allows center embedding
(note that it has been extracted from a finite set of parse trees).
Recursion of modifiers is actually “spelled out” where the training
sentence with the largest number of modifiers defines the upper
bound.

• A SLTG cannot derive the empty element, because every SLTG
tree has a lexical anchor and they are finitely ambiguous, because
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every tree introduces a lexical item into the resulting string. Thus
an SLTG meats the criteria of lexicalized CFG.

• SLTG trees have a larger domain of locality than the HPSG rule
schemata or CF rules. Thus parsing can benefit from a high de-
gree of top-down information. Furthermore, since every tree is lexi-
cally anchored, parsing will produce less spurious ambiguities than
would be the case for P-CFG.

• Since decomposition is linguistically guided, the resulting SLTG-
trees are linguistically oriented. On the other hand, the statisti-
cal information expresses a relationship between lexical types and
their probable syntactic context.

Formally, an extracted SLTG for HPSG–DOP constitutes a partic-
ular application of the Stochastic Tree–Substitution Grammar (STSG),
described in Chapter 1 in this volume. The major difference is that
in SLTG each elementary tree must has at least one terminal element.
Thus, one might adapt the definition of STSG as follows.
A Stochastic Lexicalized Tree Grammar G is a 5-tuple 〈VN , VT , S,R, P 〉
where:

1. VN is a finite set of nonterminal symbols.
2. VT a finite set of terminal symbols.
3. S ∈ VN is the distinguished symbol.
4. R is a finite set of elementary trees whose top nodes and interior

nodes are labeled by nonterminal symbols, and whose yield nodes
are labeled by terminal or nonterminal symbols. At least one yield
node must be a terminal symbol, i.e., ∀t ∈ R : ∃x : x ∈ yield(t) ∧
x ∈ VT .

5. P is a function which assigns to every tree t ∈ R a probability
P (t). For a tree t with root node root(t) = α, P (t) is interpreted
as the probability of substituting t on a node α. Therefore, we
require that 0 ≤ P (t) ≤ 1 and

∑
t:root(t)=α p(t) = 1.

The definitions for derivation, probability of a derivation and of prob-
ability of a parse tree are as for STSG.

1.3.5 Representation of an SLTG
Once an SLTG has been learned all trees are stored in an array, and
a lexicon is computed using all lexical anchors (types) from the SLTG.
Each lexical element keeps a list of indexes for the corresponding trees
in the array. In addition a table is compiled from the HPSG source
grammar, which assigns to each lexical type its corresponding phrase
type. This table is used for speeding up parsing of an SLTG. All data
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structures of the SLTG are stored in a grammar file in readable form,
so that the complete grammar can easily be loaded and processed when
needed.

1.4 Parsing of SLTG
In HPSG–DOP, parsing of an SLTG is performed by a chart-based
agenda-driven bottom-up parser (following (Schabes and Joshi 1991)).
The two major steps are:

• tree selection: selection of a set of SLTG-trees associated with the
lexical items in the input sentence,

• tree combination: parsing of the sentence with respect to this set.

After parsing, each SLTG-parse tree is “expanded” by unifying the
feature constraints of the HPSG source grammar into the parse trees.
If successful, it determines a complete valid feature structure wrt. the
HPSG grammar (e.g., all agreement and semantic information). If uni-
fication fails, the SLTG parse tree is rejected, and the next most likely
tree is expanded.

1.4.1 Tree selection
All SLTG-trees are lexically anchored. A lexical anchor is a lexical type.
Since different words can have the same lexical type, they are comparable
to pre-terminal elements in a CFG. Thus for each word wi of a new input
sentence we determine its lexical type li (in general we will have a set
of types) and use this information to retrieve the corresponding set of
SLTG-trees Ti with anchor li.5 All extracted trees and all pairs 〈wi,li〉
are used to initialize the SLTG-parser’s chart, where 〈wi,li〉 is interpreted
as a passive item (i.e., an item which has no substitution node), and a
selected SLTG-tree is interpreted as an active item, if it has at least one
substitution node. The position of the word in the input sentence is used
as initial span information for an item.

Note that once tree selection has been performed, a subset of the
grammar has been selected, i.e., no more trees can enter the parsing
step (observations from first experiments support the assumption made
in (Schabes and Joshi 1991) that the tree selection phase is the most

5In the HPSG source system, lexical processing consists of morphological process-
ing followed by unification of lexical-specific syntactic and semantic information. In
order to speed up processing and to be able to use the whole SLTG system with-
out the HPSG system, we have compiled the lexicon into a full-form lexicon, which
directly gives us the set of possible lexical types for a given word-form in the input
sentence. Lexical access is a little bit more complicated than simple lookup because
we have to deal with multi-word entries, e.g., “a little bit”. The current full-form
lexicon has more than 25,000 entries.
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FIGURE 3 Left substitution of an active item with string s1 and span 〈i,j〉
with a passive item with string s2 and span 〈i-l,i〉 yields a new item with

string s2+s1 and span 〈i-l,j〉.

significant factor for a two-phase parsing strategy; see also sec. 1.5). Fur-
thermore, the anchor positions express restrictions on the possible com-
binations of trees, because an anchor actually splits the set of trees it can
combine with into a left and right subset (see also (Schabes and Joshi 1991)).

1.4.2 Tree combination
This is the process of building a complete parse tree for the input sen-
tence by combining active and passive items until one passive item for
the whole input has been found. The main operation is tree substitution,
which substitutes a substitution node with label α of an active item with
span 〈i,j〉 with a passive item with root node α with span 〈i-l,i〉 (left
substitution, where 1 ≤ l ≤ i) or 〈j,j+k〉 (right substitution, where 1 ≤
k ≤ n-j & n = length(input)) (see also figure 3).6 The probability of a
new item is obtained by multiplying the probability of the passive and
active items. Terminal elements, i.e. passive items created directly from
the input words, receive probability one.

Thus described, tree combination extends the string of an active
item from its lexical anchor in the left as well as the right direction.
However, the whole input string is processed incrementally left-to-right
controlled by a chart-based agenda-driven bottom-up control strategy.
Both strategies together will automatically complete all left substitution
nodes of an active item before the right substitution nodes are considered
from left to right (we call this the left completion condition). Only items
contained in the chart can be combined. If tree combination creates a

6We are using the Gorn number for efficiently referring to a substitution node in
an active item (see also (Schabes 1990)).
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Well I think we need to meet, for another, two hours, to
discuss this matter further.
What is a convenient time, for like a two hour slot, within
the next couple weeks, for you.
Well, I am free on Monday, except for, ten to twelve in the
morning.
and I am free, on Tuesday, in the afternoon.
And, actually, I am also free, Wednesday and Thursday in
the afternoon.
And, Thursday all day.
Well actually, next week is not, that, great for me.
Because, Wednesday through Friday, I am like in a,
in seminars all day.
So, how does the week of, the, either the thirty thirty first of
May, or some time the, beginning of June, look for you.
Well, I am, out of town, Monday through Wednesday, of that
week.
I will be free, that Thursday the third, in the afternoon, or
Friday morning.
And again I am also still free, afternoons of Monday and
Tuesday next week.
Well then, Thursday afternoon looks good.

FIGURE 4 The first fourteen utterance from the chosen VerbMobil corpus.

new item it is inserted into the agenda from which it will eventually be
inserted into the chart. The agenda mechanism sorts new items based on
an item’s probability p and its span 〈i,j〉 computing p+(j-i), i.e. “most
probable, longest matching”.

Some pruning techniques are applied in order to keep the chart as
small as possible (see also 1.6). Currently, pruning is used for filtering
out impossible combinations of SLTG-trees, namely those which would
lead to invalid spans of new items.

1.5 Experiments
We have conducted initial experiments using a VerbMobil corpus

of 2000 utterances from dialogs about scheduling of meetings, with an
average sentence length of 7.8 words (see figure 4 for some example
utterances from that corpus).

We run the first 1000 sentences for training of an SLTG as described
above using the LKB parser system. The LKB parser was able to find
a valid analysis for 831 sentences which corresponds to a coverage of
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(21
(("root_cl" . S)
("subjh" ((:SUBST . NP))
("hcomp" (MV_CP_PROP_NON_TRANS_LE-FIN-VERB-LEX)
((:SUBST . S)))))

9 0.0059920107)

(29
(("hspec" . NP) ((:SUBST . DET))
("adjh_i" ((:SUBST . ADJ)) (NOUN_PPCOMP_LE-NOUN-LEX)))
14 0.009247027)

(2163
(("root_cl" . S)
("subjh" ((:SUBST . NP)) ("hcomp" (WOULD_AUX_POS_LE)

((:SUBST . VP)))))
19 0.012649801)

(2164
(("nadj_rr" . NP) ("hcomp" (HOUR_LE) ((:SUBST . ADJ)))

((:SUBST . PP-I))) 14
0.07526882)

FIGURE 5 Some of the extracted lexically anchored trees in Lisp list
representation. The first number is the tree’s index, followed by the tree

itself, followed by its frequency and its computed probability.

83.1%. In each case the first reading is selected for the training which
corresponds to a corpus size of 831 parse trees.

Processing of this HPSG–based tree–bank yields an SLTG containing
3818 different lexicalized trees anchored with a lexical type (see figure
5 for some extracted trees using the external Lisp list representation).
There were 180 different lexical types computed which gives an average of
about 21 trees per lexical anchor. In some cases – mostly for lexical types
of auxiliar and modal verbs – more than hundred trees were obtained,
e.g., for the lexical type would aux pos le 138 different trees, and for
the lexical type be c am le even 355 different trees are extracted. It
is clear that this high number of trees will effect the performance of
the SLTG–parser (as already observed through our experiments), and is
therefore a good source for improving the performance of the parser.

From the original 2000 sentences, the next 1000 sentences were used
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for testing the coverage of the extracted SLTG. We first run the LKB
parser to measure its coverage on this test corpus, which resulted in
a coverage of 803 analyzed sentences. We used this subset of parsed
sentences to test the coverage of the SLTG. For the computation of the
first reading of each sentence, the LKB parser needed 1.40 seconds on
average .7 Actually this shows that the LKB HPSG parser (including
rule filters and unification quick checks) is already quite fast, at least for
this sort of corpus.

Then, the SLTG parser was called in off–line unification mode such
that for each sentence it stopped after the first complete SLTG-tree
could successfully be “expanded” by unifying the feature constraints of
the HPSG source grammar. Thus seen, we consider a sentence analysis as
valid, if it is consistent with respect to the HPSG constraints (including
all lexical constraints, of course). Following this way, 704 sentences were
recognized which corresponds to a coverage of 87.67%. On average, the
SLTG parser needed 0.48 seconds per sentence.

We then run the SLTG-parser without the off-line unification step,
but in exhaustive mode (computing an average of 58 alternative parse
trees for each sentence). For each sentence, we checked whether the set
of possible analysis also contained the first reading of the HPSG parser
considering only the parse tree, i.e., no constraints other than those
conflated into the category labels (cf. 1.3.2). This was the case for 551
sentences which means that we obtained an exact derivation accuracy
(exact match of the resulting parse trees) of 68.61%.

We have not yet made a detailed qualitative evaluation, however it
seems clear, that the coverage of an SLTG grammar can be improved,
if a larger corpus is used for training. This assumption is supported by
the experiments reported in (Rayner and Carter 1996) (see also section
1.6). They found, for example, that the coverage loss (compared to the
orginal source grammar) for a training size of 1000 sentences is 10.8%,
where it is only 5.0% for a training size of 15,000 sentences. The increase
in coverage can be interpreted such that the more example analysis a
system has observed, the more grammatical variations will be detected.
Of course, this increase in grammatical variation might negatively effect
the performance of the SLTG parser, which directly shifts our focus to
performance issues.

Concerning efficiency, the current speed up is by a factor of 2.92. This
is already a quite promising result. On the one hand side, the parser of
the LKB system is a highly tuned one which already uses a kind of

7Processing was done on a SUN Ultra Enterprise 450, 4 CPUs (400MHz) and 4GB
RAM.
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data–driven approach through the quick check mechanism. As already
described in section 1.2, the quick check results in an performance im-
provement of 75%. On the other hand side, our SLTG parser is still not
optimized. For example, we assume that the number of trees selected for
an input sentence can be reduced substantially using more specific lexical
types (which would have to be defined as part of the grammar), making
use of pruning strategies based on (Rayner and Carter 1996) in order
to filter out unplausible intermediate tree structures or to induce more
word-based statistical information, e.g., exploring strategies to statisti-
cally “connect” word forms or word stems with certain tree structures,
or to make use of anchored–based n–grams.

1.6 Related work

An SLTG is structurally related to lexicalized TAGs. For that reason
one might argue that an SLTG could also be obtained by first com-
piling an HPSG grammar into an LTAG (preserving full coverage, cf.
(Kasper et al. 1995)), and then to approximate the LTAG to a lexical-
ized CFG. Although we are not aware of any work describing such an
approach, the advantage of our approach is that it combines both steps
into one.

Our approach is also related to approaches of grammar specializa-
tion based on Explanation-based Learning (EBL), cf. (Samuelsson 1994,
Srinivas and Joshi 1995, Rayner and Carter 1996). Samuelsson (1994) presents
a method in which tree decomposition is completely automated using
the information-theoretical concept of entropy, after the whole set of
parse trees has been indexed in an and-or tree. This implies that a new
grammar has to be computed if the tree–bank changes (i.e., reduced in-
crementality) and that the generality of the induced subtrees depends
much more on the size and variation of the tree–banks than ours. On
the other hand, this approach seems to be more sensitive to the distri-
bution of sequences of lexical anchors than our approach. Rayner and
Carter (1996) describe an approach in which EBL and constituent prun-
ing is presented. They showed that constituent pruning (i.e. the removal
of edges of a chart that are relatively unlikely to contribute to correct
analysis) in combination with EBL increases system performance con-
siderably, such that processing times of other components (lexical and
morphological processing) become crucial. It should be not difficult to
integrate these or similar pruning strategies into our parser (see sec. 1.4)
which would help us to keep the chart as small as possible during parsing
of one sentence.

In (Carroll and Weir 1997) a classification of different methods (named
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S(1) to S(4)) for encoding frequency information in lexicalized grammars
is given and applied to prominent existing approaches. The one with the
most globally-dependent frequencies is S(4) and Bod’s DOP framework
(Bod 1995) actually belongs to that class. We compute the frequency
information in the same way as in DOP once a parse tree has been de-
composed. The main difference here is that we only allow one lexical
anchor per tree, where Bod also allows for multiple anchors. Although
this implies that we might need less training data than DOP we have
to pay the price of reduced lexical co-occurrence restrictions during ap-
plication, which makes our approach weaker than DOP. However, it is
not difficult to extend our approach to employ multiple lexical anchors
(using the “tree–bank” version described in (Neumann 1998a)). In that
case it would be possible to evaluate the trade-off between training size
and coverage of the extracted grammar.

1.7 Conclusion and Future Work

We have presented an approach for improving parsing with HPSG by
automatically extracting a stochastic lexicalized tree grammar. Gram-
mar extraction is based on linguistically guided tree decomposition tak-
ing full advantage of the HPSG principles. An extracted grammar is
still “HPSG-based” in the sense that the structures computed by the
SLTG-parser are fully compatible with HPSG. Thus our approach could
be characterized as a corpus-driven method for “de-compressing” the
search space of an HPSG grammar rather than for compiling it into some
other format. Nevertheless, the extracted grammars have interesting re-
lationships to lexicalized TAGs which allow us to adapt basic parsing
technology from that area. We also showed how to integrate stochastic
information into the extracted grammars which supports incorporation
of statistically based parsing strategies into our HPSG-based approach.
Our next steps involve more detailed evaluation, improved pruning, as
well as further experimentation with an increased set of more discrim-
inating category labels, which can help to reduce the number of trees
retrieved in parsing. Here, the use of strategies for automatically deter-
mination such a more fined-grained label set is envisaged. We also have
begun to explore strategies for robust processing, especially handling
of unknown words. The main idea here is to classify unknown words
according to the context of SLTG-trees which are anchored by known
words.
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