
Chapter 1

A UNIFORM METHOD FOR AUTOMATICALLY
EXTRACTING STOCHASTIC LEXICALIZED
TREE GRAMMARS FROM TREEBANKS
AND HPSG

Günter Neumann
DFKI
66123 Saarbrücken, Germany
neumann@dfki.de

Abstract We present a uniform method for the extraction of stochastic lexicalized
tree grammars (SLTG) of different complexities from existing treebanks
as well as from competence-based grammars , which allows us to analyze
the relationship of a grammar automatically induced from a treebank
with respect to its size, its complexity, and its predictive power on un-
seen data. Processing of different SLTG is performed by a stochastic
version of the two-step Early-based parsing strategy introduced in Sch-
abes and Joshi, 1991.

Keywords: Grammar extraction, treebanks, Head-Driven Phrase Structure Gram-
mars, general learning method

1. INTRODUCTION
In this paper1 we present a uniform method for the extraction of

stochastic lexicalized tree grammars (SLTG) from existing treebanks
as well as from competence-based grammars, especially Head-Driven
Phrase Structure grammars (HPSG), Pollard and Sag, 1994. The use of
SLTGs is motivated for two reasons. First, it is assumed that SLTGs cap-
ture distributional and hierarchical information better than stochastic
CFG (cf. Schabes, 1992; Schabes and Waters, 1996), and second, they
allow the factorization of different kinds of recursion, viz. extraction
of left, right, and wrapping auxiliary trees and possible combinations
thereof. Processing of different SLTG is performed using a stochas-

1

2

tic version of the two-phase Early-based parsing strategy introduced in
Schabes and Joshi, 1991.

Existing treebanks are used because they allow corpus-based analy-
sis of grammars of realistic size. HPSG is used in order to extract a
domain-independent, phenomena-oriented subgrammar. The ultimate
goal then is to merge SLTGs extracted from both sources in order to 1)
improve the coverage of treebank grammars on unseen data, and to 2)
ease adaptation of treebanks to new domains (see also 6.).

2. RELATED WORK
Before describing our method in detail, we will first discuss alternative

approaches for automatically converting treebanks into tree grammars,
namely the Data-oriented Parsing (DOP) framework and approaches
based on applying Explanation-based Learning (EBL) to NL parsing.

The general strategy of our approach is similar to DOP (the origi-
nal DOP model was presented in Bod, 1993, but see also Bod, 2000)
with the notable distinction that in our framework all trees must be
lexically anchored and that in addition to substitution, we also consider
adjunction and restricted versions of it. Furthermore, since DOP tries
to compute all possible decompositions of a treebank, the training phase
is very complex (actually it is exponential), whereas our approach is
polynomial since we consider only a subset of all possible decomposi-
tions. A similar approach can be found in van Genabith et al., 2000
who derive an LFG grammar from treebanks, and Xia, 1999; Chen and
Vijay-Shanker, 2000; Chiang, 2000 who derive lexicalized tree adjoining
grammars from treebanks (based on and partially extending the work
presented in Neumann, 1998 and in this paper).

In the EBL approach to NL parsing, the core idea is to use a com-
petence grammar and a training corpus to construct a treebank. The
treebank is then used to obtain a specialized grammar which can be pro-
cessed much faster than the original one at the price of a small loss in
coverage. Samuelsson, 1994, presents a method in which tree decompo-
sition is completely automatized using the information-theoretical con-
cept of entropy, after the whole treebank has been indexed in an and-or
tree. This implies that a new grammar has to be computed if the tree-
bank changes (i.e., reduced incrementality) and that the generality of
the induced subtrees depends much more on the size and variation of
the treebank than ours. On the other hand, there approach seems to be
more sensitive to the distribution of sequences of lexical anchors than
ours, so that we will explore its integration in the future.

Stochastic Lexicalized Tree Grammars 3

In Srinivas, 1997, the application of EBL to parsing of LTAG is pre-
sented. The core idea is to generalize the derivation trees generated by
an LTAG and to allow for a finite state transducer representation of the
set of generalized parses. The POS sequence of a training instance is
used as the index to a generalized parse. Generalization with respect
to recursion is achieved by introducing the Kleene star into the yield of
an auxiliary tree that was part of the training example, which allows
generalization about the length of the training sentences.

3. GRAMMAR EXTRACTION
Given a set of parse trees, grammar extraction is the process of de-

composing each parse tree into smaller units called subtrees. In our
approach, the underlying decomposition operation

1. should yield lexically anchored subtrees, and

2. should be guided by linguistic principles.

The motivation behind (1) is the observation that in practice stochas-
tic CFGs perform worse than non-hierarchical approaches, and that lex-
icalized tree grammars may be able to capture both distributional and
hierarchical information, Schabes and Waters, 1996. Concerning (2) we
want to take advantage of the linguistic principles explicitly or implic-
itly used to define a treebank. This is motivated by the hypothesis that
it will better support the development of on-line or incremental learn-
ing strategies (the cutting criteria are less dependent from the quantity
and quality of the existing treebank than purely statistically based ap-
proaches, see also section 2.) and that it renders possible a comparison
and integration of a grammar which has been extracted from a treebank
with a linguistically based competence grammar. Both aspects (but es-
pecially the latter one) are of importance because it is also possible to
apply the same extraction strategy to a treebank computed by some
competence grammar, and to investigate novel methods for combining
treebanks and competence grammars (see section 6.).

A common extraction strategy. In the following we introduce a
general method for the extraction of stochastic lexicalized tree gram-
mars (SLTG) from treebanks and HPSG, before its specialization to the
different data sources at hand are described in the sections 1.2 and 5.

The extraction method is applied on a set of sentences which have
been annotated with their corresponding syntactic tree structure or parse
trees. For the extraction method, it does not matter what source has
been in order to determine the parse trees. Thus, the method abstracts

4

away from the fact whether the set of sentences has been decorated
manually (a treebank) or whether a parser and a source grammar has
been used to compute the parse trees automatically.

The major operation of the extraction method is a recursive tree de-
composition operation starting from the root node of a parse tree. As
already noted above, the tree decomposition operation should be guided
by linguistically oriented decomposition principles. During the traver-
sal of a tree these principles specify which subtrees of a current node
should be cut off or not. A major aspect for the definition of meaningful
cutting criteria is an assumed classification of the parse tree nodes into
head and modifier nodes. We can now define a quite simple head–driven
decomposition principle: cut off all non-head subtrees. Using HPSG this
is (should be) quite a simple task directly making use of the HPSG-
principles. In case of treebanks, we assume that a treebank comes with
a notion of lexical and phrasal head, i.e., with a kind of head principle.

Now we can describe the performance of the extraction method more
precisely as follows: Using the head–driven decomposition principle, each
tree from the set of parse trees is decomposed from the top downwards
into a set of subtrees, such that each non-terminal non-head subtree
is cut off, and the cutting point is marked for substitution. The same
process is then recursively applied to each extracted subtree. Due to the
assumed head notion, each extracted tree will automatically be lexically
anchored (and the path from the lexical anchor to the root can be seen
as a head-chain). Furthermore, every terminal element which is a sister
of a node of the head-chain will also remain in the extracted tree. Thus,
the yield of the extracted tree might contain several terminal substrings,
which gives interesting patterns of word or POS sequences (see also figure
1.1). For each extracted tree, a frequency counter is used to compute the
probability p(t) of a tree t, after the whole treebank has been processed,
such that

∑
t:root(t)=α p(t) = 1, where α denotes the root label of a tree

t.

Lexical anchors. Each extracted subtree will automatically be lex-
ically anchored. The lexical anchors are later used as indices for the
retrieval of subtrees during parsing. We have parameterized our extrac-
tion method with respect to the exact definition of what counts as a
lexical anchor, e.g., a word, stem, part-of-speech (POS) and in case of
HPSG the lexical type of a lexical element. This allows us to investigate
the trade-off between space (i.e., size of grammar) and time (i.e., more
combinatorial power). For example, if we use words as lexical anchors,
then each word of an input sentence will be able to identify its individual
set of trees. However, the size of the grammar will be quite large. On

Stochastic Lexicalized Tree Grammars 5

the contrary, if we use POS as lexical anchors the size of the SLTG will
be smaller, but different words will retrieve the same set of trees if they
belong to the same POS (see also sec. 4.1).

Additional operations. In order to automatically enrich the cover-
age of the extracted grammar, two additional operations are performed
during decomposition. Firstly, each subtree of the head-chain is copied
and the copied tree is processed individually by the decomposition op-
eration (e.g., in figure 1.3, the tree T3 is copied from the head chain of
T1.). This means that a phrase which occurs only in a head-position
in the training corpus can now also be used in nonhead-positions by
the SLTG-parser when parsing new sentences. Secondly, if the SLTG-
tree has a modifier phrase attached, then a new tree is created with the
modifier “unattached” (applied recursively, if the tree has more than one
modifier). Unattachment of a modifier m is simply done by raising the
head daughter into the position of m (e.g, in figure 1.3, the tree T4 is
obtained by replacing the subtree rooted at HAdj I of tree T1 with the
subtree rooted at HComp. In a similar way, T5 is created from T2). The
advantage of unattaching modifiers is that we will be able to also recog-
nize sentences with fewer or no modifiers using our extracted grammar.
Note that the possible maximum number n of modifier sequences is con-
strained by the training corpus, i.e., modifiers are implicitly represented
as iterations from 0 to n.

Two-phase parsing of SLTG. The resulting SLTG will be processed
by a two-phase stochastic parser along the line of Schabes and Joshi,
1991. In a first step the input string is used for retrieving the relevant
subset of elementary trees. Note that the yield of an elementary tree
may consist of a sequence of lexical elements. Thus in order to support
efficient access, the deepest leftmost chain of lexical elements is used
as index to an elementary tree. Each such index is stored in a decision
tree. The first step is then realized by means of a recursive tree traversal
which identifies all (longest) matching substrings of the input string (see
also section 4.1). Parsing of lexically triggered trees is performed in the
second step using an Earley-based strategy. In order to ease implementa-
tion of different strategies, the different parsing operations are expressed
as inference rules and controlled by a chart-based agenda strategy along
the line of Shieber et al., 1995. So far, we have implemented a version
for running SLTIG which is based on Schabes and Waters, 1995. The in-
ference rules can be triggered through boolean parameters, which allows
flexible hiding of different kinds of auxiliary trees .

6

�
�

HHHH

daran teilhaben

Proav-MO Vvinf-HD

VP-OC

VP-OC

Vvinf-HD

kann

���� HHH
�
��

b
bb

!!!!!!

aaaaaa

J
JJ

H
HH

�
�

�
�

A
AA

�
���

���
��

aaaaaaaaaaa

��
���

���

HH
HHH

�
�

HH
HH

NP-SB# VP-OC#

S

S-SB

Kous-CP Vmfin-HD

dass kann

AP-PD#

sdfg

S-SB

AP-PD

jedoch dass kaum jemand kannSchade

Adjd-HD Adv-MO Kous-CP Vmfin-HD

S

Adv-MO Pis-NK

NP-SB

teilhaben

Proav-MO#Vvinf-HD

VP-OC

Figure 1.1 The Negra-parse tree of the sentence “Schade jedoch, daß kaum jemand
daran teilhaben kann.” (*Unfortunate however that almost nobody participate can)
and some of the extracted SLTG-trees. # denotes the substitution marker.

4. SLTG FROM TREEBANKS
We will now decribe how the general method is used for extracting

an SLTG. First we will focus on the use of existing treebanks using the
Penn-treebank (Marcus et al., 1993) and the Negra-treebank, a treebank
for German, Skut et al., 1997.

In the Negra-treebank, dependence theory has been chosen in order
to account for the free word order property of German. The Negra-
treebank follows an hybrid framework that combines the advantage of
phrase-structure and dependency grammars: They do employ phrasal
nodes, but try to keep the structure flat such that a phrasal node mostly
corresponds to one lexical head (see figure 1.1). The branches of such
trees may cross in order to treat non-local dependencies. Negra comes
with a tool that transforms the Negra-format to the Penn-format by
transforming crossing edges into non-crossing edges and by the intro-
duction of corresponding gap nodes, Skut et al., 1997; Brants et al.,
2000. We are using these transformed Negra-trees in our experiments.

We suggested that tree-decomposition should be guided by a head–
driven decomposition principle and that we assumed that a treebank
comes with a kind of a head principle. In the Negra-treebank, head

Stochastic Lexicalized Tree Grammars 7

�� HH
det

the flood

np

nn

XXXX
��� aaa

sbar

whnp# s

np-sbj

none

t

vp

vbd

worried

"" aaa
vbd

vp

worried

pp-clr#

XXXX

��� aaa

sbar

whnp# s

np-sbj

none

t

�� HH
det#

flood

np

nn
"" aaa

about

pp-clr

np#in
"" aaa

vbd

vp

worried

pp-clr#

whnp

wp

who

XXXX
��� aaa

"" aaa
""
PPP

sbar

vbd

about

s

np-sbj

none

t1

vp

in

pp-clr

whnp-1

wp

who

worried

Figure 1.2 The Penn-parse tree of the sentence “who worried about the flood ” and
some of the extracted SLTG-trees. Here we used the word form as lexical anchor and
POS for all other terminal elements. # denotes the substitution marker.

and modifier elements are explicitly tagged. For example, each head is
marked by the suffix hd or nk which allows straightforward definitions
of the decomposition principles. In case of the Penn-treebank (see figure
1.2), the head relation has been determined manually and stored in a
head-percolation table.2 In case it is not possible to uniquely identify one
head element, there exists a parameter called direction which speci-
fies whether the left or right candidate should be selected. Note that
by means of this parameter we can also specify whether the resulting
grammar should prefer a left or right branching.

Using the head information, each tree from the treebank is decom-
posed from the top downwards into a set of subtrees as described in
section 3. After a tree has been decomposed completely, we obtain a set
of lexicalized elementary trees where each nonterminal of the yield is
marked for substitution. In a next step the set of elementary trees is
divided into a set of initial and auxiliary trees applying the standard def-
initions as known from the TAG literature. The set of auxiliary trees is
further subdivided into a set of left, right, and wrapping auxiliary trees
following Schabes and Waters, 1995 (using special foot node labels, like
:lfoot, :rfoot, and :wfoot). Note that the identification of possible auxil-
iary trees is strongly corpus-driven. Using special foot node labels allows

8

us to trigger carefully the corresponding inference rules. For example,
it might be possible to treat the :wfoot label as the substitution label,
which means that we consider the extracted grammar as a SLTIG, or
only highly frequent wrapping auxiliary trees will be considered. It is
also possible to treat every foot node label as the substitution label,
which means that the extracted grammar only allows for substitution.
At this point we must stress that we do not factor out modifier recursion
explicitly from the Penn-treebank. The major reason is that arguments
and modifiers for the same head are both sisters of the head. In the
Negra-treebank, modifiers are explicitly marked by means of the suffix
mo (see figure 1.1). However, since the parse trees are flat, we cannot
simply factor out recursion without changing the topological structure
of the parse trees. For this reason we “re-do” modifier attachment by
iteratively visiting all modifier nodes of an elementary tree etree. In
each iteration, etree is copied and the current modifier is destructively
deleted from etree (as described in 3.).3

4.1 EXPERIMENTS
We will briefly report on first results of our method using the Negra-

treebank (4270 sentences) and the sections 02, 03, 04 from the Penn-
treebank (the first 4270 sentences). In both cases we extracted three
different versions of SLTGs (note that no normalization of the tree-
banks was performed): (a) lexical anchors are words, (b) lexical anchors
are part-of-speech, and (c) all terminal elements are substituted by the
constant :term, which means that lexical information is ignored. For
each grammar we report the number of elementary trees, left, right,
and wrapping auxiliary trees obtained for the different sorts of lexical
anchors. The following two tables summarize the results:

Extracted number of trees for the Negra-treebank.

trees anchor=word anchor=pos anchor=:term
elem. trees 26553 10384 6515
leftaux trees 184 60 40
rightaux trees 54 35 25
wrapping trees 39 36 29

Stochastic Lexicalized Tree Grammars 9

Extracted number of trees for the Penn-treebank.
trees anchor=word anchor=pos anchor=:term
elem. trees 31944 11979 8132
leftaux trees 701 403 293
rightaux trees 649 246 153
wrapping trees 386 306 249

In a second experiment we evaluated the performance of the imple-
mented SLTIG parser using the extracted Penn-treebank with words
as lexical anchors. We applied all sentences on the extracted grammar
and computed the following average values for the first phase: sentence
length: 27.54, number of matching substrings: 15.93, number of elemen-
tary trees: 492.77, number of different root labels: 33.16. The average
run-time for each sentence (measured on a Sun Ultra 2 (200 mhz): 0.0231
sec. In a next step we tested the run-time behaviour of the whole parser
on the same input. The average run-time for each sentence (exhaustive
mode) is 6.18 sec. This is promising, since the parser has not yet been
optimized.

We also tried initial blind tests, but it turned out that the current
size of the considered treebanks is too small to get reliable results on
unseen data (randomly selecting 10 % of a treebank for testing; 90 % for
training). The reason is that if we consider only words as anchors then
we rarely get a complete parsing result, very often due to unknown words
and different punctuation. If we consider only POS, then the number of
elementary trees retrieved through the first phase increases causing the
current parser prototype to be slower by factor of about 1/5 (due to the
restricted annotation scheme).4 A better strategy seems to be the use
of words for lexical anchors only and POS for all other terminal nodes,
or to use only closed-class words as lexical anchors (assuming a head
principle based on functional categories).

5. SLTG FROM HPSG
The same approach5 has been applied to a set of parse trees com-

puted by using an English HPSG-grammar. The grammar used in our
study is the English Resource Grammar being developed as part of the
LinGO (Linguistic Grammars Online) project at CSLI, Copestake et al.,
2000, Stanford University. The grammar consists of about 7000 types,
arranged in a multiple-inheritance hierarchy which defines the properties
of lexical entries, lexical rules, and syntactic phrase structure rules. The
lexicon includes hand-built entries for about 5000 stems, along with the
full set of inflectional lexical rules and 15 derivational rules which are

10

.......................... bb

!! bb

bb

!! bb

bb

!! bb

!! bb

bb

bb
.......................... bb

S#

Subj

NP# HComp

T5

Subj

NP# HAdj I

HComp TP#

Det# NounLe

Det# NAdj I

PP I#

HComp TP#

S#

T4

T3T1
T2S

NP VP

S

NP

S#

NonTransLe

NonTransLe

NounLe NonTransLe

Figure 1.3 Some trees extracted from I guess we need to figure out a day, within the
next two months. The symbols S, NP , V P , TP , Det, PP I have been determined
by means of specialization (see text). # denotes the substitution marker. Note that
the lexical type of a lexical element is used as lexical anchor.

executed at run time. Syntactic coverage of the grammar is relatively
broad, with a central focus on providing precise semantic interpretations
for each phenomenon that is assigned an analysis, using the Minimal Re-
cursion Semantics framework of Copestake et al., 1997 (see Oepen and
Flickinger, 1998 for more detailed discussion of the grammar’s coverage
and of the issues related to such measurement).

Training of an SLTG starts by first parsing each sentence si of the
training corpus with the source HPSG system.6 The resulting feature
structure fssi of each example also contains the parse tree pti, where
each non-terminal node contains the label of the HPSG-rule schema (e.g,
head-complement rule) that has been applied during the corresponding
derivation step as well as a pointer to the feature structure of the cor-
responding sign. The label of each terminal node consists of the lexical
type of the corresponding feature structure. Each parse tree pti is now
processed by the following interleaved steps (see also figure 1.3).

Each parse tree is decomposed from the top downwards into a set of
subtrees such that each non-head subtree is cut off as described above.
In case of the HPSG-grammar, testing whether a phrase is a head phrase
or not can be done very easily by checking whether the top-level type of
a rule’s label feature structure is a subtype of a general headed phrase
which is defined in an HPSG grammar. The same holds for adjunct
phrases (see section 3.). The root node as well as all substitution nodes
of an extracted tree are further processed by replacing the rule label

Stochastic Lexicalized Tree Grammars 11

with a corresponding category label. The possible set of category labels
is defined in the type hierarchy of the HPSG source grammar. They ex-
press equivalence classes for different phrasal signs. For example, phrasal
signs whose value of the local.cat.head feature is of type noun, and
whose value of the local.cat.val.subj feature is the empty list, are
classified as NP s. Now, if the associated feature structure of a rule label
HeadAdjunct of the current training sentence is subsumed by the NP
type, then HeadAdjunct is replaced by NP . Note that this step actually
performs a specialization of the current tree because the same tree might
occur in another tree in verbal position. In this case, HeadAdjunct may
be replaced by the type V P . The definition of category labels is declar-
ative. Thus it is possible to define more fine-grained labels directly as
part of the source grammar leading to more specific SLTG trees. This
can be done by the grammar writer without knowing any details of the
learning strategy.

After all parse trees of the training set have been decomposed and
specialized, we compute a tree’s probability as described in section 1.2

Experiments. We trained the HPSG-system on a corpus of 2000 En-
glish sentences from Verbmobil dialogs (with an average length of 11.5
words per sentence). The size of the extracted SLTG before applying
the additional operations (copy of trees of the head-chain and unattach-
ment) is 1922 elementary trees. Copying of trees of the head chain yields
3828 trees, considering only unattachment as additional operation gives
2427 elementary trees. Applying both operations gives an SLTG with a
total of 4195 trees.

Using the extracted SLTG-grammar we ran initial performance tests
on the training corpus. The average run-time of the SLTG-parser (i.e.,
without off-line expansion, but including morphological and lexical pre-
processing) is 170 msec for all readings and 20 msec for the best reading.
The overall speed (i.e., including lexical lookup and off-line expansion
of the corresponding feature structure of the found SLTG-parse tree
by unifying lexical information and the HPSG principles of the source
grammar) is improved by a factor of 12 compared to parsing with the
original highly tuned HPSG parser at the time of our study. Figure 1.4
shows the number of readings found by the SLTG parser. From the curve
we can see that for most sentences the number of readings lies between
1 and 12 and that only very few sentences have extreme numbers of
readings (in one pathological case we had 1024).

12

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

”readings”

Figure 1.4 In almost all cases the SLTG-parser computes less than 16 readings per
sentence.

6. FUTURE STEPS: TOWARDS MERGING
SLTG

In the near future, we wish to investigate methods for merging SLTGs
extracted from treebanks and competence grammar in order to 1) im-
prove the coverage of treebank grammars on unseen data, and to 2) ease
adaptation of treebanks to new domains. The core idea behind 1) is the
extension of an SLTG extracted from a treebank through the domain-
independent SLTG extracted from HPSG. It seems that current state-of-
the-art treebank grammars can achieve an accuracy of about 87% (see
Charniak, 1997). We wish to explore whether integrating knowledge
from a competence grammar can improve the accuracy. We believe that
SLTGs are well suited since they capture distributional and hierarchical
information better than stochastic CFGs. The major obstacle for merg-
ing the current grammars is the different nature of syntactic constituent
levels. For example, the Penn-treebank modifier structure is flat com-
pared to that of an HPSG-based SLTG. Recently, Xia, 1999; Chen and
Vijay-Shanker, 2000, have shown how the Penn-treebank can be fully
bracketed in order to factor out the recursive structures for elementary
trees. This is actually done by inserting additional non-terminal nodes
into the treebank trees on the basis of Penn-treebank specific head-

Stochastic Lexicalized Tree Grammars 13

perlocation and argument table lists. Using an HPSG-based SLTG it
would be possible to use HPSG-based trees as static tree-patterns and
to create new trees from similar trees found in the treebank-SLTG such
that the HPSG-SLTG serves as “building plans”. Xia and Palmer, 2000,
have very recently presented a method for comparing the hand-crafted
lexicalized XTAG English grammar (cf. Doran et al., 1994) with one ex-
tracted from the Penn-treebank. The core idea is to find out how many
trees in one grammar match trees in the other. We will explore its use
for our proposed HPSG-based approach.

Another line of future research will be the use of an HPSG-SLTG
in order to initialize the induction of a domain-specific SLTG on the
basis of a small number of annotated parse trees making use of similar
tree matching methods to those as described above. Now, it would be
possible to adapt an HPSG-SLTG to a new domain following a minimally
supervised learning approach by automatically creating new trees using
an evolutionary strategy and to measure the fitness of such trees through
the application of HPSG principles. Implementation of this method has
already been started and we hope to be able to report on first results
soon.

Acknowledgments
The research carried out for this paper was supported by a research grant from the

German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

(BMBF) to the DFKI project whiteboard (“Multilevel Annotation for Dynamic

Free Text Processing”), FKZ 01 IW 002. I would like to thank Thorsten Brants

for providing me with the Negra Corpus, as well as Tilman Becker, Ann Copestake,

Anoop Sarkar, and Ivan Sag for many helpful comments. Many thanks also to Dan

Flickinger for the very fruitful cooperation. I also would like to thank the anonymous

reviewers for their valuable comments.

Notes
1. This paper is an extension of a previous version published in the Proceedings of the

4th workshop on tree-adjoining grammars and related frameworks, Philadelphia, PA, USA,
August, 1998.

2. Of course, we are assuming that the Penn-treebank developers made use of a kind
of head-principle, e.g., by assuming that the head of an NP is the main noun or that the
head of a VP is the main verb, see also Charniak, 1997. Chen and Vijay-Shanker, 2000
describe a sophisticated method carefully considering the determination of a node’s status as
a complement or adjunct, which I plan to integrate in the near future.

14

3. I am aware of the fact that this might not be the best strategy. Johnson, 1999 presents
an interesting tree transformation procedure which maps a flat modifier construction of trees
in the Penn-treebank into Chomsky adjunction representations, and shows that such a rep-
resentation actually gives better predictive information on unseen data than the original rep-
resentation. Johnson also remarks that argument PPs are not systematically distinguished
from adjunct PPs in the Penn-treebank, and states that “. . . reliably determining whether a
particular PP is an argument or an adjunct is extremely difficult, even for trained linguists.”,
Johnson, 1999, page 624. It is clear that it is not plausible to check a large enough treebank
manually, in order to completely “extract” the implicitly made linguistic assumptions. Thus,
only if a treebank comes with an explicit declaration of the used general linguistic princi-
ples, will it be possible to predict and interpret the influence of the effect of different tree
transformation and extraction methods on the quality of a statistically driven parser.

4. Applying the same test as described above on POS, the average number of elementary
trees retrieved is 2292.86, i.e., the number seems to increase by a factor of 5.

5. This part of the work has been carried out together with Dan Flickinger, from CSLI,
Stanford. For a more detailed description of the approach see Neumann and Flickinger, 1999.

6. Kasper et al., 1995, describe a method for compiling an HPSG source grammar to an
LTAG. The basic idea here is to construct elementary trees starting from lexical elements from
the bottom-up applying the HPSG-principles. In some sense our approach performs in the
opposite direction by decomposing an HPSG-parse tree from the top downwards applying the
HPSG principles for guiding the decomposition operation. Furthermore, since our approach
is data driven, we are able to capture statistical information into an HPSG framework. Note
further that once we have built up an HPSG-SLTG parse tree we are able to reconstruct the
whole feature structure by applying the lexical information and all HPSG principles including
semantic information of the source grammar. Hence, the resulting feature structure of an
input sentence is correct and compatible with respect to the HPSG source grammar.

References
Bod, R. (1993). Using an annotated language corpus as a virtual stochas-

tic grammar. In Proceedings of AAAI’93, Washington, D.C.
Bod, R. (2000). Extracting stochastic grammars from treebanks. This

volume.
Brants, T., Skut, W., and H.Uszkoreit (2000). Syntactic annotation of a

german newspaper corpus. This volume.
Charniak, E. (1997). Statistical parsing with a context-free grammar and

word statistics. In AAAI-97, Providence, Rhode Island.
Chen, J. and Vijay-Shanker, K. (2000). Automated extraction of tags

from the penn treebank. In 6th International Workshop on Parsing
Technologies (IWPT’2000), Trento, Italy.

Chiang, D. (2000). Statistical parsing with an automatically–extracted
tree adjoining grammar. In 38th ACL, Honk Kong.

Copestake, A., Flickinger, D., and Sag, I. (1997). Minimal recursive se-
mantics: An introduction. Technical report, CSLI, Stanford Univer-
sity.

Copestake, A., Flickinger, D., and Sag, I. (2000). Linguistic grammars
online (lingo) project. http://hpsg.stanford.edu/hpsg/lingo.html.

Doran, C., Egedi, D., Hockey, B., Srinivas, B., and Zeidel, M. (1994).
Xtag system - a wide coverage grammar for english. In Proceedings

Stochastic Lexicalized Tree Grammars 15

of the 15th International Conference on Computational Linguistics
(COLING), Kyoto, Japan.

Johnson, M. (1999). Pcfg models of linguistic tree representations. Jour-
nal of Computational Linguistics, 24(4):613–632.

Kasper, R., Kiefer, B., Netter, K., and Vijay-Shanker, K. (1995). Com-
pilation of hpsg into tag. In 33rd Annual Meeting of the Association
for Computational Linguistics, Cambridge, MA.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building
a large annotated corpus of english: The penn treebank. Computa-
tional Linguistics, 19:313–330.

Neumann, G. (1998). Automatic extraction of stochastic lexicalized tree
grammars from treebanks. In 4th workshop on tree-adjoining gram-
mars and related frameworks, Philadelphia, PA, USA.

Neumann, G. and Flickinger, D. (1999). Learning stochastic lexicalized
tree grammars from hpsg. Technical report, DFKI, Saarbrücken.

Oepen, S. and Flickinger, D. (1998). Towards systematic grammar profil-
ing: Test suite technology ten years after. Journal of Computer Speech
and Language, 12:411–435.

Pollard, C. J. and Sag, I. A. (1994). Head-Driven Phrase Structure
Grammar. Studies in Contemporary Linguistics. University of Chicago
Press, Chicago, London.

Samuelsson, C. (1994). Grammar specialization through entropy thresh-
olds. In Proceedings of the 32nd Annual Meeting of the Association
forComputational Linguistics, pages 188–195.

Schabes, Y. (1992). Stochastic lexicalized tree-adjoining grammars. In
Proceedings of the 14th International Conference on Computational
Linguistics (COLING), pages 426–432, Nantes.

Schabes, Y. and Joshi, A. K. (1991). Parsing with lexicalized tree ad-
joining grammar. In Tomita, M., editor, Current Issues in Parsing
Technology, pages 25–48. Kluwer, Boston.

Schabes, Y. and Waters, R. (1995). Tree insertion grammar: A cubic-
time parsable formalism that lexicalizes context-free grammar without
changing the trees produced. Computational Linguistics, 21:479–513.

Schabes, Y. and Waters, R. (1996). Stochastic lexicalized tree-insertion
grammar. In Bunt, H. and Tomita, M., editors, Recent Advances in
Parsing Technology, pages 281–294. Kluwer Academic Press, London.

Shieber, S., Schabes, Y., and Pereira, F. (1995). Principles and imple-
mentation of deductive parsing. Journal of Logic and Computation,
24:3–36.

Skut, W., Krenn, B., Brants, T., and Uszkoreit, H. (1997). An anno-
tation scheme for free worder order languages. In 5th International

16

Conference of Applied Natural Language, pages 88–94, Washington,
USA.

Srinivas, B. (1997). Complexity of Lexical Restrictions and Its Relevance
to Partial Parsing. PhD thesis, University of Pennsylvania. IRCS Re-
port 97–10.

van Genabith, J., Sadler, L., and Way, A. (2000). Deriving an lfg gram-
mar from treebanks. This volume.

Xia, F. (1999). Extracting tree adjoining grammars from bracketed cor-
pora. In Proceedings of the 5th Natural Language Processing Pacific
Rim Symposium(NLPRS-99), Beijing, China.

Xia, F. and Palmer, M. (2000). Comparing and integrating tree adjoining
grammars. In Proceedings of the 5th TAG+ workshop, Paris, France.

