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Abstract
In recent years, machine learning for clinical decision support has gained more and more attention. In order to introduce such
applications into clinical practice, a good performance might be essential, however, the aspect of trust should not be underestimated. For
the treating physician using such a system and being (legally) responsible for the decision made, it is particularly important to understand
the system’s recommendation. To provide insights into a model’s decision, various techniques from the field of explainability (XAI)
have been proposed whose output is often enough not targeted to the domain experts that want to use the model. To close this gap, in this
work, we explore how explanations could possibly look like in future. To this end, this work presents a dataset of textual explanations
in context of decision support. Within a reader study, human physicians estimated the likelihood of possible negative patient outcomes
in the near future and justified each decision with a few sentences. Using those sentences, we created a novel corpus, annotated with
different semantic layers. Moreover, we provide an analysis of how those explanations are constructed, and how they change depending
on physician, on the estimated risk and also in comparison to an automatic clinical decision support system with feature importance.
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1. Introduction
Machine-learning-based recommendation or decision
support systems have become a commodity in online
shopping, entertainment platforms and other consumer
apps and services. In many professional domains, the
uptake has been comparably slower, and especially
in “high-risk” domains such as medical services, a
number of requirements and concerns still need to be
addressed before applications from research will find
broad usage, e.g., in hospitals and clinical care.
In the context of automatic clinical decision support,
research has shown that machine learning can outper-
form physicians on very particular, narrow tasks, or can
help physicians to work more efficiently (see, e.g., Gul-
shan et al. (2016) or Rajpurkar et al. (2017)). Still,
good performance is only one building block towards
the final goal of trustworthy AI. Among the many is-
sues that need to still be figured out in these complex
socio-technical systems, explainability is a prominent
one (Markus et al., 2021).
Trying to ‘explain’ a decision made by a machine learn-
ing model (or the model itself) is currently a research
topic with an increasing popularity - not only in the
medical context, but overall in the machine learning
community. In recent years, a large variety of novel
techniques were presented in the context of making ma-
chine learning models – in particular neural networks
– and their decisions more transparent, e.g., by pre-
senting the most relevant input features in the form of
saliency maps (Feldhus et al., 2021), generating coun-
terfactuals (Wu et al., 2021), explaining them in natu-
ral language (Wiegreffe and Marasović, 2021), or find-

ing influential instances in the training data (K and
Søgaard, 2022).
Most of these explainable AI (XAI) approaches includ-
ing our own previous work were technology-driven in
the sense that they served for model debugging pur-
poses in the first place. Often, the results have not been
evaluated by domain experts, i.e., potential users of the
system, at all. And if so, are the system generated ex-
planations useful to understand a decision made? Con-
versely, a relevant question would be, how would the
potential users like to get the explanation?
In this work, we approach the question of how an expla-
nation for clinical decision support could ideally look
like, from a different angle. Instead of focusing on the
machine learning component, we targeted the physi-
cian and asked, how would physicians provide an ex-
planation? Within previous work, we carried out a
study comparing the performance of a machine learn-
ing model and different physicians to estimate the risk
of some negative patient outcomes (Roller et al., 2022).
In addition to the actual study, we asked the participat-
ing physicians to justify their estimation. This collec-
tion of textual justifications in the context of clinical
decision support shows the perspective of physicians,
how they would describe and explain their decision -
possibly to a peer. This dataset has been annotated on
different levels and analysed in detail to help and en-
dorse the development of trustful clinical decision sup-
port systems in the future. The dataset is made publicly
available here1. Although the sentences of our dataset

* Shared last authorship.
1https://github.com/DFKI-NLP/Ex4CDS
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are in the German language, we try to generalize cer-
tain explanation patterns, in order to make a general
contribution for the research community.

2. A Dataset of Textual Explanations
In the following, we describe how the data was col-
lected and in which way we annotated it, to provide a
more detailed analysis.

2.1. Context and Data Collection
Our dataset of textual explanations has been collected
within a previous study2 in which we tested the per-
formance of a machine learning (ML) model against
physicians predicting some future outcomes (Roller et
al., 2022). In the context of kidney disease, the task was
to predict a score (likelihood) from 0-100, if the given
patient would suffer a 1) rejection, 2) death-censored
graft loss, and 3) infection, within the next 90 days. We
refer to those three risks, as endpoint. The experiment
has been carried out as a reader study using retrospec-
tive data, with overall 120 different patients at a certain
point of their patient life. Using this given point in time,
the physician (and the decision support system) could
consider all data of that patient until this point in time,
and made an estimation.
The experiment has been conducted in two phases: A
first phase without decision support and a second phase
in which the physician first received the estimation of
the machine learning model, along with a dashboard
presenting the risk score together with a ‘traffic light’,
and the most influential features, responsible for the
model decision. Most influential features were divided
into global and local features.
Overall, eight physicians participated in this study, four
junior and four senior physicians. Each physician re-
ceived 15 patients in each phase - both times different
patients. Each physician had up to 30 minutes time to
analyse the history of each patient, in order to make
the estimations for each endpoint. Along with each
risk estimation, the physician provided an explanation
to support the decisions. This collection of human ex-
planations describes the foundation of our dataset. In
addition to our annotated dataset, we also publish the
explanations (relevant features) of the machine learn-
ing component.

2.2. Corpus
The original reader study included 120 patients at a par-
ticular time in their life. For each of those patients, each
physician (4 senior, 4 junior) had to make three estima-
tions, one for each endpoint. Moreover, the experiment
has been carried out in two rounds, once without au-
tomatic decision support and a second round with de-
cision support. Each time, the participating physician
analysed 15 patients, and in each round a different set

2The main study is not the focus of this work.

of patients. Therefore the dataset results in 720 dif-
ferent notes (120 patients, times 3 endpoints, and two
rounds).

2.3. Annotation Layers
According to a first manual analysis, explanations can
be constructed from the following parts: events of the
past (which might be still valid), a description of the
current situation, and an outlook and conclusion. Those
explanation ‘blocks’ can be ordered in different ways,
and can even be mixed with each other. Most explana-
tions contain a description about the current situation.
Each of those parts mentions different factors which
increase or decrease the overall risk that the given end-
point occurs. In most cases those factors are diseases,
symptoms, but also particular negative/positive devel-
opments of lab values or the intake of particular med-
ications. Similarly as in normal clinical text, explana-
tions include a large number of negations and other fac-
tors which change the level of truth of entities.
The main goal of our annotations is to find a struc-
tured way to analyse the human explanations. Mainly
we want to find out how justifications/explanations are
structured and which content they provide. Moreover,
we are particularly interested in aspects which are re-
sponsible for increasing or decreasing the risk that one
of the endpoints occurs. For this reason, the annotation
has been carried out on different levels, as described
below:

Temporal Aspects As mentioned above, explana-
tions include information about the past, the present,
but also about the future of the patient. In order to
cover and examine this aspect in more detail, we as-
sign different labels to the corresponding phrases of the
explanation, as presented in Table 1.

Label Description

past Event occurred in the past and is over.
past present Event occ. in the past, but is still valid in present time.
present Event which is present/relevant for the present time.
future Event which might occur in future.

Table 1: Annotated Temporal Aspects

Entities and Relations In order to cover the most
frequent and most relevant information in the explana-
tions, we define a set of entities and relations to be an-
notated, as presented in in Table 2 and 3. The schema
itself was built upon the work of Roller et al. (2020).
While the upper part of Table 2 describes the core en-
tities, such as the positive or negative health status or
laboratory values which are present or absent, the lower
part of the table relates to some essential risk factors:
Age of the transplanted patients, age of the transplant
and also time since the last transplantation (there can
be multiple ones in the life of a patient) can have a
significant influence on the risk of certain endpoints.
Age, Donor Age and Tx Time are all expanded by the



2319

Figure 1: Two annotated explanations translated from German to English, including negations (red X), increas-
ing (INC) and decreasing (DEC) factors. The upper explanation is partially extracted from a positive (end-
point=rejection, score=0) and the lower one partially from a negative (endpoint=graft loss, score=78) explanation.

attributes high, middle, low, which describe a high/low
age or a long/short time since transplantation.

Label Description

Condition A pathological medical condition of a pa-
tient, can describe for instance a symptom
or a disease.

DiagLab Particular diagnostic procedures which
have been carried out.

Lab Values Mentions of lab values.
HealthState A positive condition of the patient.
Measure Mostly numeric values, often in context

of medications or lab values, but can also
be a description if a value changes, e.g.
raises.

Medication A medication.
Process Describes particular process, such as

blood pressure, or heart rate, often related
to vital parameters.

TimeInfo Describes temporal information, such as 2
weeks ago or January.

Other Additional relevant information which in-
fluence the health condition, and the risk

Age Describes the age of the patient
Donor Age Describes the age of the donor
Tx Time Time since the transplantation

Table 2: Annotated Entities

Label Description

has Measure Connects Measurements to mainly
Medications and Lab Values.

has State Connects Condition and HealthState
to other entities, such as Process or
Lab Values.

has TimeInfo Connects TimeInfo entities to other
entities, such as Condition.

Table 3: Annotated Relations

Factuality Typically clinical notes contain a large
number of negations and vague expressions, as it makes
a difference if something is currently not present (e.g.
a symptom), or cannot be completely verified at this
point. This phenomena can be also observed in our
textual explanations, and can express something pos-
itive or negative. Related work in clinical context often

targets factuality regarding symptoms and diseases and
include negations and speculations (hedges). As the
clinical world tends to be more complex than negations
and speculations, we extend the standard schema with
the attributes: a) positive, b) negated, c) speculated, d)
unlikely, e) minor, and f) possible future.
The last three items describe an extension of the orig-
inal schema used for NegEx (Chapman et al., 2001).
unlikely defines a kind of speculation, but expresses a
tendency towards negation. minor expresses that some-
thing is present, but to a lower extent or in a lower
amount. Finally, possible future expresses that some-
thing is not there, but might occur in the future. The
attribute positive is not annotated explicitly.

Progression To analyse the explanations in more de-
tail, entities are extended with some additional infor-
mation, as presented in Table 4. Firstly we label, if an
entity increases or decreases the risk that the endpoint
occurs, and if the entity is a risk or a symptom of the
endpoint itself.

Label Description

risk factor A state/process that causes/prevents the
respective endpoint (upstream in a causal
chain). Increases/decreases risk causally
and probabilistically.

symptom A state/process whose occur-
rence/absence is a consequence of
the respective endpoint (downstream in
a causal chain). Increases/decreases risk
probabilistically, but not causally.

increase increases the risk that endpoint occurs
decrease decreases the risk that endpoint occurs
conclusion physician makes a concluding statement

Table 4: Annotation of the progression

2.4. Annotation Process
The annotation process has been carried out in different
steps, using the brat rapid annotation tool (Stenetorp et
al., 2012). First we ran an automatic annotation. This
included the partial automatic labelling of the semantic
layer using mEx (Roller et al., 2020) for named en-
tity recognition and relation extraction. Although the
schema of mEx partially differs, it includes various of
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Figure 2: Overview about the normalized frequency of the different entities across all endpoints.

our entities and is a good start to speed up the annota-
tion. Then we applied the German adaptation of NegEx
(Cotik et al., 2016) (negation, speculation) to the Con-
dition labels of the automatic generated labels.
In the next step, two physicians corrected the automat-
ically generated labels and included the additional an-
notation layers temporal aspects and progression. Both
physicians annotated the complete dataset and resulted
in an inter-annotator agreement (IAA) of 0.825 mean
F1 for the entities on token level3. Finally the disagree-
ments of the physicians have been analysed by the first
author to make a final decision. Two example annota-
tions are provided in Figure 1, more examples can be
found on our github repository.

3. First Quantitative Data Analysis
In the following we provide an analysis of the textual
explanations on different levels.

3.1. Document Length
First, explanations were split into single tokens. On av-
erage, each document consists of 18.62 tokens with a
standard deviation of 11.45. Analysing the documents
on endpoint level we see slight variations: Explana-
tions about graft loss tend to be slightly longer than
rejection, with 20.60 (12.40) avg tokens per document,
in comparison to 19.30 (11.73) avg tokens. Infection
has the lowest number of avg tokens with 15.96 (9.60).
Moreover, the mean content word usage per explana-
tion (Lexical Density) is 79.62%, which shows a very
high information density of each explanation.
Figure 3 presents the avg number of tokens per physi-
cian. The table shows how the average length of
the formulated explanations differs between the physi-
cians. While one physician in particular (S8) uses very
short explanations (avg. 9 tokens), many others write
much longer texts, even with up to 28 tokens (S5) on
average per document.

3.2. Annotated Information
Figure 2 shows the frequency of each entity in the fi-
nal dataset, overall and also according to each end-
point. The bars in the figure are normalized (divided

3https://github.com/kldtz/bratiaa

Figure 3: Avg. length of the different physician expla-
nations (junior in orange and senior in green).

by the overall number of annotated entities); the true
frequency is displayed above each bar. In the case of
Condition, for instance, the entity occurs 1296 times in
the overall dataset, and 520 times in the infection sub-
set. The figure shows that human explanations for the
explanation subset infection include the concept Con-
dition more frequently (in percentage) compared to re-
jection or graft loss. Similarly, it seems that LabValue,
Process, HealthState and Measure are more frequently
used for the explanations of rejection and graft loss.
Overall, Condition and LabValue are the most frequent
entities in the dataset. Therefore, we infer that those
are particularly important to define an explanation.

Token Description Entity #

Krea creatinine LabValue 176
IS immunosuppression Medication 73
CRP c-reactive protein LabValue 65
stabile stable HealthState 64
PU proteinuria LabValue 61
aktuell currently TimeInfo 60
DSA donor-specific antibody LabValue 54
Tx Funktion transplant function Process 54
Rejektion rejection Condition 52
stabil stable HealthState 42

Table 5: Top-10 Frequency of Annotated Tokens

The Top-10 most frequent annotated strings in the
dataset are presented in Table 5. Since the most crucial
information in the explanations was annotated, the list
presents words of high relevance to our explanations,
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such as creatinine (Krea) or CRP. Both laboratory val-
ues are of great interest for the given tasks. Creatinine
gives information about kidney function, which can be
impaired in the case of rejection, graft loss or infection.
CRP is a marker of inflammation and is increased dur-
ing infection. Depending on the endpoint, the list of
most frequent annotations change.
Overall, 692 hasMeasure, 397 hasState and 343 has-
TimeInfo relations have been annotated. hasMeasure is
mostly a connection between a LabValue, a Medication
or a Condition, together with a Measure entity, has-
State describes in most cases a connection between a
Process or a LabValue together with a HealthState, and
finally hasTimeInfo connects in most cases Condition
or LabValue with TimeInfo.

Factuality: Regarding factuality, the dataset includes
a majority of negations in comparison to the other el-
ements, as listed in Table 6. In most cases factuality
attributes are connected to Condition (74%) and Lab-
Values (16%) entities.

negation specul. pos. future minor unlikely

#318 #111 #89 #32 #20
55.8% 19.5% 15.6% 5.6% 3.5%

Table 6: Annotated factuality attributes: Overall fre-
quency (upper line), and percentage in comparison to
other factuality attributes (lower line).

3.3. Influence of Risk Score
Now we try to find out if the explanations differ de-
pending on the expected risk score of the physician.
For this purpose, the explanations with their associated
risk score have been sorted into four different bins. As
shown in Table 7, the largest number of explanations
are sorted in the bin with a low risk score. Although
estimations of the physicians are not necessarily cor-
rect, this roughly corresponds to the true distribution -
in most cases the endpoint did not occur. Moreover, the
table shows that explanations which include a higher
risk score, tend to be longer, than explanations with a
lower score.

Risk Score Bins
[0-25] [26-50] [51-75] [76-100]

# 217 94 47 75
length 17.85 18.73 19.6 20.11

Table 7: Overview about the number of documents as-
signed to each risk score bin (#, upper part), and the
average length of each explanation in each bin (length,
lower part).

Figure 4 depicts the relative usage of the different (se-
lected) entity types within the different risk score bins.
As seen in the figure, the usage of the entity Condition
is much lower, in case of a low risk in comparison to

the other risk groups. At the same time the frequency
of HealthState is much higher in the explanation, the
lower the risk of the estimation. While this phenom-
ena appears to be obvious, we can also observe other
effects, such as a stronger usage of Measure in case of
a high risk, or a lower mentioning of Medication.

Figure 4: Overview usage of different entity types ac-
cording to the different risk score bins [0-25], [26-50],
[51-75] and [76-100].

Table 8 presents the average usage of progression in
each explanation according to the different risk score
bins. We can see that explanations with a lower risk
score tend to include more decreasing (and less increas-
ing) factors in comparison to explanations with a higher
risk score. Similarly in case of explanations with a
higher risk score, finding is annotated more frequently.

risk bin increase decrease risk factor finding

0-25 1.04 1.91 1.86 1.37
26-50 1.97 1.04 1.88 1.42
51-75 2.96 0.36 2.09 1.50
76-100 3.58 0.10 1.83 2.10

Table 8: Average occurrence of given progression at-
tributes per explanation - according to risk score bin.

3.4. General Analysis
As seen in Figure 2, Condition and LabValue are used
very frequently in our explanations. However, other
entities also play an important role describing a high,
medium or low risk in the context of a particular
endpoint. The entities TimeInfo and Measure them-
selves might contribute only marginally to the expla-
nation, but get higher values by connecting them to
other entities. While TimeInfo defines when some-
thing happened, Measure adds information about cer-
tain measurements of lab values, tendencies or medi-
cation dosages, etc.. Together with the connected en-
tity, a lab value might then transform into something
positive (decrease risk) or something negative (increase
risk). While the interpretation of such an explanation
requires expert knowledge, in various cases the core
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entity can be extended by some HealthStatus (e.g. ‘sta-
ble’, ‘good’) or Condition. Similar scenarios can be
observed also for Processes and other entities. Overall,
explanations contain much implicit information.
Some explanations go even further and provide (par-
tially) high-level justifications such as ‘Risk results
from anamnesis (case history).’ (risk score of 90). For
this explanation, the author just refers to the given pa-
rameters in the database without further explanation
and assumes that the situation and the risk factors are
obvious. Other explanations include positive mentions
(HealthState) such as ‘good general condition’ which
appears to be more of a summarization of different fac-
tors, or ‘good transplant function’.

4. Thoughts about developing
explainable decision support

In this section, we first analyse the feature-based expla-
nations of our machine learning system to illustrate on
which basis current systems arrive at their predictions.
We then present different explanation types which have
been found across the human dataset and discuss the
possibility to integrate them into an textual explanation
of an automatic clinical decision support system.

4.1. Feature-based model explanations
Although the machine learning model and its explana-
tions are rather simple, the analysis might be still of
interest for the development of future decision support
systems.
The features of the machine learning model mainly
take structured data into account. This includes, for
instance, demographics, lab values, vital parameters,
medication (changes) and diagnoses. As patients tend
to have several visits per year, the models included the
last two occurring values in many cases. In addition to
that, some features were explicitly modelled, such as
for instance the temporal distance to particular events
(e.g. transplantation, or last rejection), number of mea-
sured values, length of stay in a hospital, or the in-
crease/decrease of values. However, in comparison to
the physicians, the machine learning model could not
access detailed information about hospitalizations, and
did not consider textual information (e.g. clinical text).
Table 9 presents the overall (“global”) most relevant
features for each model and for each endpoint. In com-
parison to the most frequently annotated information
in the explanations of the physicians (see Table 5), we
can see a certain overlap. Generally, the explanations
do consider the lab values creatinine and CRP, and also
talk about the time since transplantation, or recent in-
fections or rejections. However, it is interesting to note
in particular that time distances or frequencies appear
to be of valuable information rather than a particular
value, such as the number of infections in the last 360
days. Most notable are the features #lab values in the
last 60 days and days since last lab value. Both features
appear to be very different from explanations a human

feature value import.

R
ej

ec
tio

n

last creatinine value float 12.78
months since transplantation int 7.66
had rejection in last 180 days binary 6.69
days since transplantation int 6.69
#lab values in the last 60 days int 3.18

G
ra

ft
L

os
s months since transplantation int 35.12

#transplantations int 23.76
last creatinine value float 8.99
days since transplantation int 3.04
gfrhp float 2.26

In
fe

ct
io

n

#infections in the last 180 days binary 8.75
#days since last lab value int 7.67
crphp outside norm binary 6.42
#infections in the last 360 days int 6.41
rdweb (last value) float 6.28

Table 9: Most relevant (global) model features of de-
cision support system according to the different end-
points, including their importance.

would provide. On the other hand, the features might
make sense and carry valuable high-level information,
such as the ‘patient underwent a lot of different exami-
nations’ implying the treating physician thinks that the
patient might be in a serious condition.

feature frequency

body size 134
blood pressure (diastolic) 118
last creatinine value 94
# hospitalizations in last year 67
mean CRP value 59
current weight 57
last hsthp value 55
age 54
mean creatinine value 53
body temperature 48

Table 10: Most frequent (local) features presented by
system. Features have been extracted from the Top-5
list of all 720 predictions.

Table 10 presents the most frequent (local) features for
the different endpoint predictions. Besides some obvi-
ous lab values and age, the table shows that the ML
system takes additional features into account, which
have not been mentioned by the physicians. Firstly, it
considers some mean lab values to be relevant. While
general norm values for e.g. particular age groups ex-
ist, patients might also have a personalized score which
could in theory be naturally higher/lower compared to
other patients. Moreover, features such as body tem-
perature (possibly an indication for infection) or weight
are taken into account. In general, an increase in weight
within a short period of time can be a negative symp-
tom, but the weight itself does not seem to be a use-
ful feature. Finally, some features, such as body size,
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appear to be not relevant at all. However, besides
that body size tends to occur with low risk predictions,
this feature might not be necessarily the reason for the
model prediction - instead it could be connected to a
sub-optimal (‘local’) feature extraction.

4.2. Aspects of Human Explanations
From a technical point of view, a textual explanation
for an automatic clinical decision support system can
be implemented - at least in parts. In the following
we present different aspects in human explanations we
observed, and discuss how those could be technically
implemented by an XAI model which has access to the
relevant local features for each decision.
Explicit Description is the most obvious explanation
pattern of the physicians, which mentions a given fea-
ture and its value, for instance a systolic blood pressure
of 125. This can be easily implemented from a techni-
cal point of view, using the current value of the relevant
local feature, and then inserted into a template.
Tendencies and fluctuations of values are frequently
used in the explanations. However, they might be
more difficult to be identified by XAI methods, as they
describe a correlation between subsequent values. If
those aspects play an important role for the given pre-
diction task, it is not enough to report just actual mea-
surement of the value. Instead, it might be helpful to
summarize the information into natural language state-
ments, e.g. ‘the value rises (sharply)’. In this way, in-
formation could more easily be perceived by a human
reader. However, it is not clear how much sequential in-
formation needs to be taken into account, or how long
the target period should be. This might depend on the
context and the given task.
Factuality partially also plays an important role, e.g.
the explicit absence of symptoms, lab values or med-
ication can describe something positive or negative.
The explicit absence of information might be more
difficult to take into consideration to an XAI learning
model. One way to address this issue could be an abla-
tion study which explores how the decision of a model
changes if something would be present. As the number
of missing values can be arbitrarily large, it would be
important to identify the really relevant ones, otherwise
the explanation would be filled with irrelevant missing
facts. Aspects such as speculations or possible future
might be much more difficult to introduce.
Values in-/outside the norm are frequently reported in
the explanations and represent a high level description
of values, connected with an assessment - something
is rather positive if inside the norm. This explanation
might make it easier for a reader, as the actual value
might not be that important, but rather the aspect that
something is a borderline case, etc. From a technical
perspective, this can be implemented, but requires ad-
ditional world knowledge and could be included in the
form of rules. Note, if a value is within the norm often
depends on multiple factors, such as person itself, age

and gender.
Interpretation of given facts are used by the physi-
cians and has similarities to the aforementioned expla-
nation aspect. The physicians often use interpretations
in such a way that values are either good, bad, or sta-
ble, rather than on a continuous scale. This, however,
might depend on the physician’s experience and ex-
isting medical guidelines. While the experience of a
physician could be difficult to capture within an XAI
(and is possibly not wanted), aspects related to medical
guidelines can be implemented similarly as in the case
above. However, to go from e.g. being inside the norm
to something being good is even one step further and
moves from pure facts to interpretation. Therefore, it
can be implemented, but might be more difficult and
opens additional susceptibility to errors.
High-level interpretations such as ‘good/bad general
condition’ or ‘fit patient’ are an easy way to provide an
easily understandable and fast overview about the pa-
tient’s health condition. From XAI perspective, those
explanations might be difficult to generate. Techni-
cally, a set of such conditions (‘fit’, ’good condition’)
could be defined, identified within a classification (re-
gression) task, and then mapped to an explanation.
However, this would require sufficient training data and
adds new sources of error (misinterpretation). More-
over, it is not clear if those kinds of high-level interpre-
tations would actually be wanted by users of an auto-
matic decision support system. We presume that if the
XAI provides less information, and mainly high-level
interpretations, this could not necessarily increase its
trustworthiness.

5. Related Work
Explainable artificial intelligence (XAI) in the med-
ical domain State-of-the-art machine learning ap-
proaches, usually based on neural networks, reveal a
black-box nature, so automated predictions and deci-
sions are barely comprehensible to humans. This harms
trust which is crucial in high-stakes settings such as the
medical domain (Rudin, 2019; Bruckert et al., 2020).
Since computer-aided diagnosis can have a direct in-
fluence on the well-being of patients, transparent and
justifiable explanations are of utmost importance for
real-world clinical practice (Lucieri et al., 2020).
According to Holzinger (2020), there is a need for
causality in XAI for medicine: “In the same way that
usability encompasses measurements for the quality
of use, causability encompasses measurements for the
quality of explanations produced by XAI.” XAI sys-
tems should “allow a domain expert to ask questions to
understand why an AI came up with a result, [...] to
gain insight into the underlying independent explana-
tory factors of a result”. We argue that dataset contri-
butions like ours advance the field in this direction: We
follow Holzinger (2020) in that we contribute explicit
knowledge in the form of natural language explanations
made by domain experts. It can be used to build inter-
faces which generate more plausible explanations.
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Natural language explanations Wiegreffe and
Marasović (2021) provided a survey of datasets
containing human-annotated natural language ex-
planations (NLEs, also referred to as rationales).
They identified three distinct categories: Highlights,
free-text, and structured explanations. Our work
concerns itself with free-text explanations which
are not constrained to the words or modality of the
explanandum.
There exist very few corpora containing free-text NLEs
in the medical domain as NLEs themselves are tradi-
tionally underrepresented in the medical XAI canon
(Tjoa and Guan, 2021). Firstly, DeYoung et al. (2020)
introduced the EVIDENCE INFERENCE corpus consist-
ing of biomedical articles that describe randomized
control trials and associated prompts. These can be
used for an evidence extraction task, i.e. the task of in-
ferring the relationship between a treatment and a com-
parator with respect to an outcome. Annotators were
asked to provide rationales for their answers (what type
of relationship: increase, decrease, no difference) in the
form of text highlights. Secondly, Kotonya and Toni
(2020) presented the PUBHEALTH corpus for explain-
able fact-checking of claims in the public health set-
ting. It contains the full text of the fact-checking ar-
ticle discussing the veracity of the claim and a justifi-
cation as explanation for the veracity label. The work
of Kotonya and Toni (2020) and DeYoung et al. (2020)
both focus on explanations in the context of biomedical
articles. Our work instead, targets explanations made
by physicians, for clinical decision support with cer-
tainty scores as the primary application.
Regarding certainty scores in NLP, Chen et al. (2020)
proposed a refinement of natural language inference,
enhancing datasets with additional human judgments
about the likelihood of a categorical label on a proba-
bilistic scale. Our dataset also contains likelihood esti-
mates and allows for subtle distinctions.
Lastly, Taylor et al. (2021) aimed to predict the like-
lihood of patients being re-admitted to a hospital af-
ter a prior ICU stay and generate an NLE alongside it.
However, the adoption of the MIMIC-III dataset was
rather unsuccessful and the authors reported the need
for clinically-derived ground truths.

Diagnostic captioning We also draw a connection to
the task of diagnostic captioning (or biomedical image
captioning; radiology report generation). While the
task has an inherent multimodal nature building upon
the task of image-to-text generation, the textual reports
written by doctors are detailed diagnoses that are self-
explanatory to domain experts (Lucieri et al., 2020).
The ‘Impression’ (“a short summary of the most im-
mediately relevant findings”) and ‘Findings’ (“a natu-
ral language description of the important aspects in the
image”) metadata fields of MIMIC-CXR (Johnson et
al., 2019) instances can be interpreted as a decision-
explanation pair. Nevertheless, explicit justifications
for classification labels or annotations are not present.

Spinks and Moens (2019) pointed out several issues
with the annotations of such datasets. This means that
for a proper evaluation of an NLE, the data has to be
drastically limited to specific subsets and labels.
Many models trained on these datasets have been ex-
amined with different local explanation methods such
as saliency maps (Messina et al., 2022). A drawback
of their interpretability, however, is that their outputs
provide no information about why particular pixels are
important for the outcome or to what class they belong
(Spinks and Moens, 2019). Moreover, they have yet to
be evaluated for plausibility to explainees and faithful-
ness to the underlying model and – as previously stated
– ground truth explanations covering both image and
text dimension are hard to come by. Our dataset cir-
cumnavigates this issue, since it strictly contains tex-
tual data and rich annotations allowing for thorough
causal analyses.

6. Conclusion
In this work we presented a dataset of human justifica-
tions/explanations in the context of predicting possible
outcomes in medicine. Due to the annotations of differ-
ent layers (semantic, factuality, temporal information)
our data will certainly be a useful resource in the con-
text of clinical text processing. Moreover, although it
might be difficult to use this data to directly setup an
XAI system, this work provides insights into how hu-
mans would provide an explanation on the given task.
We draw a comparison to a feature based XAI system,
present different explanation patterns of human physi-
cians, and discuss how they could possibly be techni-
cally implemented.
We think that this corpus potentially constitutes a valu-
able resource for different scholars interested in ethical,
legal and social implications (ELSI) of human-machine
interaction (to be precise: human-human interaction
enhanced by machine output in our scenario). From
an ethical standpoint, one might, e.g., be interested in
how responsibility is shared, which may lead over to
legal questions of liability and probably several other
related topics.
What we envision as a particularly interesting future
work would be to cluster and abstract the explana-
tions into certain explanation types (e.g., the formalised
checklist type vs. the global estimation type). From our
first studies of the corpus, we are convinced that it will
not be possible to come up with a one-size-fits-all kind
of blueprint for the “ideal” explanation. We think it
will rather be a question of personal taste that should be
studied in future experiments, e.g., using Wizard-of-Oz
systems that are configurable regarding the explanation
types and that assess the effectiveness and efficiency of
the explanations for different test subjects.
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