
RealAIGym: Education and Research Platform for
Studying Athletic Intelligence

Felix Wiebe∗, Shubham Vyas∗, Lasse Jenning Maywald∗, Shivesh Kumar∗ and Frank Kirchner∗†
∗ Robotics Innovation Center DFKI GmbH, Bremen Germany, email: firstname.lastname@dfki.de

† AG Robotics Department of Mathematics and Computer Science University of Bremen

I. INTRODUCTION

Traditional robots today (such as the ones used in factories)
have a fixed base and are fully actuated under their operat-
ing conditions. However, modern robots inspired by animals
are not bound to one place and are always underactuated.
Like animals, these robots can perform dynamic movements,
demonstrate compliance, and are robust to contact during
their movements. The interest in dynamic robot behaviors has
increased significantly due to the impressive athletic behaviors
shown by robots developed by e.g. Boston Dynamics [3], MIT
mini cheetah [17] and Agility Robotics [2]. This gives rise to
the need for canonical robotic hardware setups for studying
underactuation and comparing learning and control algorithms
for their performance and robustness. These hardware setups
and the accompanying software should be affordable, open and
accessible. Similar to OpenAIGym [10] and Stable Baselines
[20] which provide simulated benchmarking environments and
baselines for Reinforcement Learning (RL) algorithms, the
concept of RealAIGym (Real Athletic Intelligence Gym) is in-
troduced for benchmarking dynamic behaviors on real robots.
RealAIGym provides instructions for building reproducible
robotic systems based on Quasi-Direct Drives as well as
software to operate them for establishing a baseline for the
application of dynamic control algorithms on real hardware.

II. REALAIGYM

RealAIGym aims to provide an affordable and open-source
robotics platform for studying athletic intelligence. The avail-
ability of Quasi-Direct Drives allow for high bandwidth torque
control as well as standard position/velocity feedback control
in robotic systems with low friction and high mechanical
transparency. These drives were made popular with the MIT
mini-cheetah robot [17] and are now easily available from
multiple manufacturers such as mjbots [7] or CubeMars [4]
along with open source firmware and CAN communication
drivers. This allows to use a standardized actuation principle
based on torque control in RealAIGym.

While there exist some platforms for robotics/controls ed-
ucation from commercial companies such as Quanser [8] and
Acrome [1], recently the community has been moving to open-
source platforms such as Open Dynamic Robot Initiative [12].
There are also standalone systems such as HOPPY [21], MIT
mini-cheetah [5] and mjbots quad [6]. However, these do not
yet fully reduce the entry barrier to education and research for

Quanser Acrome Open Dynamic
Robot Initiative RealAIGym

Cost
Entry Barrier
API MATLAB™ MATLAB™1 C++2 Python
Reproducibility
Open Source
Built-in Controllers
Benchmarking
Education

 = good, = partial, = poor
1 Interfaces exist for some plants.
2 Python binding available.

TABLE I: Brief comparison between similar platforms.

dynamic robots (see Table I for a comparison). The following
points are addressed by RealAIGym:

Overall Cost: The currently available hardware platforms
are either commercially sold or are open-source. The com-
mercial platforms are more expensive than their open-source
counterparts. Additionally, Quanser and Acrome both use
MATLAB/Simulink as the programming language which adds
an additional cost burden. RealAIGym embraces a complete
open-source model for the motor firmware, communications,
and controllers which makes the software free for anyone to
use, modify, and improve without the need of any commercial
licenses.

Entry Barrier and Programming Language: In order to
ensure accessibility, we use Python 3 as the main programming
language for RealAIGym. Components that require higher
performance are written in C++ with Python bindings. We
provide motor drivers in Python as well as a high level API
for using the motors with custom designed controllers. We
benchmarked closed loop control for a single motor in Python
at a maximum of ≈1.5 kHz. Having multiple motors divides
the control frequency accordingly. Using Python allows us
to quickly prototype and test new control methods along
with having a short onboarding time for new members. For
example: A bachelors intern student needed less than 3 months
for simulating a hopping and backflip on a 2-DoF hopping leg
and then successfully demonstrated it on the real system.

Reproducibility: The reproducibility of experimental re-
sults is a central aspect of this project. Standardized hardware
and a detailed documentation from the motor drivers to
the controllers is supposed to make it possible for different
working groups to obtain the same results.

Open Source: The transparency of open source software
at all levels facilitates other researchers to confirm the im-

plemented functionalities and allows students to learn about
all aspects of robot control without barriers. The project
also benefits from other open projects. For example the in-
crease in availability of open-source Optimal Control (OC)
([19, 22, 15]) and Machine Learning (ML) ([11]) libraries
reduces the access barrier to modern control methods. Using
these allows the users to quickly synthesize and test new
controllers on real systems to test their performance.

Built-in Controllers: A collection of built-in controllers
shows the capabilities of the systems, provides examples for
the APIs within the library and establishes the basis for
reproducible results.

Benchmarking: Benchmarking controllers by comparing
their performances is a scientific contribution of this project.
Quantitative measurements of various control methods’ advan-
tages and disadvantages gives an objective characterisation of
the controllers’ capabilities.

Education: We consider a low entry barrier via the choice
of programming language and API, a detailed documentation
and free software are the cornerstones for a library to be
suitable for education.

III. GYM EQUIPMENT

The intention of RealAIGym is to study dynamic control
of underactuated systems. On one hand, the studied systems
should be simple in order to be easily reproducible and
accessible, whereas on the other hand the complexity of the
control problems they offer should be non-trivial, so that
qualitative and quantitative results can be obtained by testing,
comparing and benchmarking various control methods. The
current version of RealAIGym accommodates five robotic
systems (see Fig. 1) of varying Degrees of Freedom (DoF):

Simple Pendulum: A torque-limited simple pendulum is
arguably the simplest underactuated robotic system one could
imagine. With only one motor, a link and a weight it can be
reproduced easily. A natural control problem for the pendulum
is to swing up from the hanging position to the upright position
and stabilize the pendulum there with a torque limitation.
The RealAIGym simple pendulum [24] can be found on
github [9] and youtube https://www.youtube.com/watch?v=
JVvwMGYiH3A.

Double Pendulum: A double pendulum is a simple 2-
DoF system with chaotic dynamics. The system consists of
two links and two motors at the joints. By disabling one of
the motors and using it as a passive joint, the system can
be operated either as an acrobot or as a pendubot system.
Similar to the simple pendulum, a natural control problem is
to swing up the double pendulum from the hanging position
to the upright position and stabilize it there.

Hopping Leg: The hopping leg is a 3-DoF system with
two motors and one passive vertical DoF. The leg is able
to jump by pushing itself off from the ground. Interesting
control problems are maintaining a constant jumping height
and performing a backflip during the aerial phase.

Acromonk: An acromonk consists of two links which are
joined together by a single motor. Two hooks at the external

Fig. 1: The gym equipment currently available in the Re-
alAIGym include: (a) simple and double pendulum, (b) hop-
ping leg, (c) acromonk and, (d) boomstick hopper

ends of both links facilitate the acromonk to hold onto hori-
zontal bars. As a free and wireless system the acromonk is ca-
pable of performing brachiation behavior similar to primates.
The system is similar to an acrobot system from dynamics
perspective but provides an additional control challenge in
form of the brachiation task. The RealAIGym Acromonk is
explained in more detail here [16].

Boomstick Hopper: The boomstick hopper is similar to
the hopping leg but instead of the upright pole the hopper is
attached to a boomstick which allows it to hop along a circle.

IV. EXERCISE RESULTS

RealAIGym implements a variety of learning and control
methods on the same system to achieve a certain task and
benchmark the performances with full transparency. For exam-
ple, in case of the simple pendulum, several control methods
have been compared with respect to different criteria in simu-
lation and and their proper functioning has been shown on the
real hardware [24, 9]. The stabilization of the pendulum can be
achieved with a Linear Quadratic Regulator (LQR). The LQR
controller can be combined with an energy shaping controller
which swings the pendulum up towards the upright position
before applying the LQR stabilization. Alternatively, a swing
up trajectory can be computed via trajectory optimization for
which iterative LQR (iLQR) [23], direct collocation (dircol)
[14] and Differential Dynamic Programming (DDP) [19] have
been used. Trajectories found on this way can be executed on
the system either by simply applying feed-forward torque (ff)
or by stabilizing the trajectory with a PID controller or a Time-
Varying LQR (TVLQR) controller. The iLQR optimization can
also be processed online as part of the control loop resulting
in a Model Predictive Control (MPC) controller. Lastly, two
reinforcement Learning (RL) algorithms, Soft Actor Critic
(SAC) [13] and Deep Deterministic Policy Gradient (DDPG)
[18] have been tested for the comparison of optimal control
and learning based control. The benchmark criteria are:

• Frequency: The inverse of the time the controller needs
to process state input and return a control signal.

• Swing up time: The time it takes for the controller to
swing up the pendulum.

• Energy consumption: The energy the controller uses
during the swing up and stabilization.

https://www.youtube.com/watch?v=JVvwMGYiH3A
https://www.youtube.com/watch?v=JVvwMGYiH3A

Fig. 2: Benchmark results for various control methods. Long
green bars and short red bars indicate better results.

• Smoothness: Measures how much the controller changes
the control output during execution.

• Consistency: Measures if the controller is successful for
different starting states.

• Robustness: Tests the controller abilities to recover from
perturbations during the swing up motions.

• Insensitivity: The pendulum model parameters (mass,
length, friction, inertia) are modified without using this
knowledge in the controller.

• Reduced torque limit: The minimal torque limit with
which the controller is still able to swing up.

The benchmark results for the simple pendulum shown in
Fig. 2 are the average or successful percentage of 100
repetitions for every controller and criterion. See [24] for
more details on the results. Similar benchmark experiments
including system specific criteria are planed for the other
systems of the RealAIGym. The software and results for the
other RealAIGym systems will be made open source in the
near future.

REFERENCES

[1] Acrome. https://acrome.net/. Accessed: 20-05-2022.
[2] Agility Robotics. https://agilityrobotics.com/robots. Ac-

cessed: 20-05-2022.
[3] Boston Dynamics. https://www.bostondynamics.com/.

Accessed: 20-05-2022.
[4] CubeMars Motion Advanced Robotic System. https://

cubemars.com/. Accessed: 20-05-2022.
[5] MIT mini Cheetah. https://github.com/mit-biomimetics/

Cheetah-Software. Accessed: 20-05-2022.
[6] mjbots Quad A1. https://github.com/mjbots/quad, . Ac-

cessed: 20-05-2022.
[7] mjbots Robotic Systems. https://mjbots.com/, . Accessed:

20-05-2022.
[8] Quansar. https://quanser.com/. Accessed: 20-05-2022.
[9] RealAIGym Simple pendulum github. https:

//github.com/dfki-ric-underactuated-lab/torque limited
simple pendulum. Accessed: 08-06-2022.

[10] Greg Brockman, et al. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[11] TensorFlow Developers. Tensorflow. May 2022. doi:
10.5281/zenodo.6555127.

[12] F. Grimminger, et al. An open torque-controlled modular
robot architecture for legged locomotion research. IEEE
Robotics and Automation Letters, 5(2):3650–3657, 2020.
doi: 10.1109/LRA.2020.2976639.

[13] Tuomas Haarnoja, et al. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor, 2018.

[14] Charles R Hargraves and Stephen W Paris. Direct Tra-
jectory Optimization Using Nonlinear Programming and
Collocation. Journal of guidance, control, and dynamics,
10(4):338–342, 1987. doi: 10.2514/6.1986-2000.

[15] Taylor A Howell, et al. Altro: A fast solver for con-
strained trajectory optimization. In 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 7674–7679. IEEE, 2019.

[16] Mahdi Javadi. Mechatronic design and control of an un-
deractuated brachiation robot. Master’s thesis, Technical
University of Kaiserslautern, Kaiserslautern, Germany,
2022.

[17] Benjamin Katz, et al. Mini cheetah: A platform for
pushing the limits of dynamic quadruped control. In 2019
International Conference on Robotics and Automation
(ICRA), pages 6295–6301. IEEE, 2019.

[18] Timothy P. Lillicrap, et al. Continuous Control with Deep
Reinforcement Learning, 2019.

[19] Carlos Mastalli, et al. Crocoddyl: An Efficient and
Versatile Framework for Multi-Contact Optimal Control.
In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 2536–2542, 2020. doi:
10.1109/ICRA40945.2020.9196673.

[20] Antonin Raffin, et al. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http://jmlr.
org/papers/v22/20-1364.html.

[21] Joao Ramos, et al. Hoppy: An open-source kit for
education with dynamic legged robots. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 4312–4318. IEEE, 2021.

[22] Russ Tedrake and the Drake Development Team. Drake:
Model-based design and verification for robotics, 2019.
URL https://drake.mit.edu.

[23] Li Weiwei and Emanuel Todorov. Iterative Linear
Quadratic Regulator Design for Nonlinear Biological
Movement Systems. International Conference on Infor-
matics in Control, Automation and Robotics, pages 222–
229, 2004. doi: 10.5220/0001143902220229.

[24] Felix Wiebe, et al. Torque-limited simple pendulum:
A toolkit for getting familiar with control algorithms
in underactuated robotics. Journal of Open Source
Software, 7(74):3884, 2022. doi: 10.21105/joss.03884.
URL https://doi.org/10.21105/joss.03884.

https://acrome.net/
https://agilityrobotics.com/robots
https://www.bostondynamics.com/
https://cubemars.com/
https://cubemars.com/
https://github.com/mit-biomimetics/Cheetah-Software
https://github.com/mit-biomimetics/Cheetah-Software
https://github.com/mjbots/quad
https://mjbots.com/
https://quanser.com/
https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum
https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum
https://github.com/dfki-ric-underactuated-lab/torque_limited_simple_pendulum
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://drake.mit.edu
https://doi.org/10.21105/joss.03884

	Introduction
	RealAIGym
	Gym Equipment
	Exercise Results

