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Abstract—Object permanence is the concept that objects do not
suddenly disappear in the physical world. Humans understand
this concept at young ages and know that another person is still
there, even though it is temporarily occluded. Neural networks
currently often struggle with this challenge. Thus, we introduce
explicit object permanence into two stage detection approaches
drawing inspiration from particle filters. At the core, our detector
uses the predictions of previous frames as additional proposals
for the current one at inference time. Experiments confirm the
feedback loop improving detection performance by a up to 10.3
mAP with little computational overhead.

Our approach is suited to extend two-stage detectors for
stabilized and reliable detections even under heavy occlusion.
Additionally, the ability to apply our method without retraining
an existing model promises wide application in real-world tasks.

I. INTRODUCTION

Object detection has made significant advancements in the
last decade and is applied to numerous new domains and
live systems with increasing risks for humans and the envi-
ronment. However, operating on single frames detectors lack
understanding of object permanence. Object permanence [24]
is the concept that objects in a physical world continue to exist
despite the observers inability to sense them. This can result in
temporally unstable detections and poor occlusion robustness.

These approaches without an understanding of object per-
manence are applied in domains where safety is critical such
as robotics and autonomous vehicles. However, especially in
these domains object permanence can greatly increase safety.
For example, when a pedestrian disappears behind a pole, in
the physical world the object is still there, but a common
perception algorithm without object permanence does not de-
tect the person anymore. Based on the most recent detections,
the vehicle might optimize its trajectory to collide with the
occluded pedestrians trajectory. Without prior knowledge of
preceding time steps the model is unable to recover a detection
precisely if the features computed from a single frame are
ambiguous.

Object permanence is the understanding that an object still
exists despite the inability to sense the object directly. This
knowledge can help with disambiguation of features in the
case of occlusions. In Figure 1 a person behind the pole is
imperceptible to a Faster-RCNN [28]. When applying our
approach giving the Faster-RCNN prior knowledge of the

Fig. 1. A single frame object detector (left) cannot detect the pedestrian
behind the street light, our approach leveraging object permanence (right)
detects the person despite the major occlusion lasting 30 frames avoiding the
overhead of tracking approaches.

existence of the object, it is able to detect the person again
without changing the weights of the model.

In tracking, object permanence is used in integrated trackers
to generate tracklets where an object has been. However, these
trackers are computationally more expensive than detectors
and require an altered training schema and special sequential
data, limiting their availability to much rarer tracking data
sets. Non integrated approaches like Kalman Filter [14] can
be applied on detectors without special training requirements.
However, temporal information is used only after the network.
Thus the network lacks temporal information, leading to
missing detections and lower precision.

We present an approach to integrate object permanence in
two-stage object detectors using dynamic proposal priors. In
contrast to full tracking approaches our goal is to improve
detection performance with as little overhead and modification
to the original task as possible. Thus, our approach does not
produce full tracklets, but has little computational overhead.
Further distinguishing our approach from current tracking
approaches is that we integrate it into the model at test time,
without re-training an existing two-stage single frame detector.



II. RELATED WORK

Object Detection is the task of predicting a bounding box
for an object in an image or scene. The most common setup
is 2D object detection, where the 2D axis aligned bounding
box with a position and a size has to be predicted from
an image. To achieve this goal various solutions have been
proposed which can be generally categorized into single stage
approaches and two stage approaches.

Based on the work of LeCun et al. [19], [20], OverFeat [30]
was one of the first single stage approaches for object de-
tection, followed by SSD [23], [7], YOLO [25], [26], [27],
RetinaNet [22] and others like the CenterNet [40]. These
approaches consist of a single CNN as a feature extractor and
then directly predict the positions and classes of the objects.

In contrast to these approaches, two-stage detectors are de-
scendants of traditional object detection, where algorithms find
regions of interest (ROIs) in the image in a first step and then
classify these in a subsequent step into foreground and back-
ground. Region-CNN [10] used a classical proposal algorithm
and after cropping the ROIs used a CNN to extract the features
and a support vector machine (SVM) for the classification
to great success. However, as the inference speed was very
slow, Fast-RCNN [9] and Faster-RCNN [28] improved this
by computing proposals using a CNN and sharing the feature
encoder between the proposal stage named Region Proposal
Network (RPN) and the classification and refinement stage
often referred to as the second stage (Figure 2). This greatly
improved inference speed and accuracy of the models. Later
adaptations of this methodology include Mask-RCNN [11] and
others [12], [21]. The two stage-approaches can be further
found in 3D object detectors [17] and 3D pose estimation [8]
where fusion of multiple sensor streams is done.

Tracking-by-detection are algorithms which build on above
object detectors and extend them by a tracking module. The
core idea of these approaches is to use the detections, i.e. the
bounding boxes, and track objects based on them. One of the
simplest solutions is to use a Kalman Filter [14], [33] or a
Particle Filter [3] on the detections.

A particle filter is a three step process, using a large number
of particles representing a multimodal distribution. The par-
ticles are scored in a measurement step and then resampled
based on the scores to better represent the distribution. Finally,
it predicts the motion of particles over time. In object tracking,
a particle usually is a tracklet with a history of past positions,
a current position and a size for the bounding box.

Over time more complex approaches like [2], [6], [18], [29],
[35], [41] have evolved. A key difficulty remains the associa-
tion of predicted boxes to the boxes in the tracking filter. Thus,
methods using appearance features [34], re-identification [32]
and 3D shape information [31] have been applied.

Known limitations of tracking-by-detection are discarding
image information in the data association step or using ex-
pensive feature extractors as pointed out by CenterTrack [39].
Beyond that, the tracking and detection are separated and prior
knowledge of previous frames in the tracker cannot be used
for better detection.
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Fig. 2. Faster-RCNN [28] consists of three main building blocks. First is a
shared encoder which produces feature maps used by both stages. Next is the
Region Proposal Network (RPN) generating the proposals of the first stage in
Faster-RCNN. Last is the scoring and refinement of the proposals based on
the features extracted from the feature map.

Integrated Detection and Tracking: Due to the above
limitations of tracking-by-detection effort has been spend on
integrated detection and tracking. Integrated Detection [38]
conditions the RPN and second stage on the tracklets. Kang
et al. [15], [16] and Zhu et al. [42] use detection for a whole
video segment and flow-warped intermediate features with a
Faster-RCNN. TransCenter [36] uses transformers for tracking,
while FairMOT [37] focuses on providing fair features for
detection and re-identification to boost the performance of
integrated tracking.

Tracktor [1] uses the second stage of Faster-RCNN to re-
align the boxes for the next time step and uses proposals form
the RPN which have no substantial IoU with the existing tracks
to generate new tracks. This approach is most similar to ours,
but using only proposals with a low IoU with existing tracks,
they limit the potential for exploration and multi hypothesis
modeling in case of pedestrian to pedestrian occlusions, which
cause high IoUs while still representing different objects.

The box and IoU centric nature of Faster-RCNN based
approaches is, according to CenterTrack [39], the cause for
association difficulties. Thus, they follow the idea of Cen-
terNet [40] to predict the center of the bounding box as a
heatmap and extends this by using the heatmap of the previous
frame as an input to the current frame. Further they predict
the offset of the center from the current to the last frame
to solve the association problem. We agree, that IoU based
suppression of detections is an issue for multi-modal bounding
box distributions, specifically in the case of occlusions, but we
emphasize that Faster-RCNN does not rely on the IoU based
suppression to generate new proposals.

Other methods than IoU based suppression and selection
have been successfully applied. A particle filter has various
particles which not directly suppress each other, but by scoring
and re-sampling a selection process is taking place. This
makes particle filters optimal filters for complex multi-modal
distributions, given sufficient particles.

In contrast to other approaches like Tracktor which used
manual proposal selection via IoU thresholding, we propose
an approach inspired by the implicit scoring of particle filters
and integrate it into a pre-trained Faster-RCNN at inference
time. To our knowledge there have been no experiments on
full integration of particle filter concepts and a Faster-RCNN.
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Fig. 3. The core of our approach is integrating the particle filter into the Faster-RCNN as their modules share similar functionality. We combine the RPN
and proposal (re-sample) step from the Faster-RCNN into one and integrate the scoring of both into a single step, resulting in the approach on the right, a
two-stage object detector with integrated object permanence. As the integration does not change the weights of the model, there is no re-training of an existing
detector required. Further, leveraging the synergies reduces the computational complexity and is favorable in terms of accuracy as shown by our experiments.

III. APPROACH

In this work we present an approach for object permanence
in detection which is heavily inspired by particle filters.
Particle filters propagate box candidates between frames, re-
sample and score them. By propagating the box candidates
between frames the approach has an explicit model for object
permanence.

As our approach requires some understanding of a tradi-
tional baseline using Faster-RCNN and a separate particle fil-
ter, we will present that first and then describe how to integrate
the particle filter into the model to derive our Faster-RCNN
detector with object permanence. All changes to the model will
not require any re-training and have minimal computational
overhead, when the particle filter is fully integrated.

A. Baseline: Extending Faster-RCNN with Particle Filter

First we establish a baseline by extending Faster-RCNN
with particle filter as a pre-cursor to our approach. We choose
to use a particle filter, as it shares the conceptual foundation for
our approach. Sharing concepts it is a straightforward stepping
stone and allows to clearly attribute all observed performance
changes to our contributions.

Faster-RCNN: In our implementation we use a regular
Faster-RCNN [28] re-implementation without any bells and
whistles, since it is widely used and a can be considered the
gold-standard of two-stage detection. For example, the MOT
Dataset [4] uses Faster-RCNN to provide baseline predictions.

RCNNs are a two stage approach meaning it has a region
proposal and a refinement stage. The region proposal stage
uses the entire image to find regions of interest (ROIs) where
objects are likely. The refinement stage then uses ROI crops of
the image to refine the proposals by scoring them for the object
that is visible and predicting deltas between the proposal and
the actual box. In Faster-RCNN [28] the first and second stage
share an encoder which predicts a feature map and apply the
ROI pooling on the feature map greatly reducing the inference
time. Figure 2 visualizes the architecture.

Particle Filter: A Particle Filter predicts the behavior of
objects over time using particles. A particle is a detection with
velocity as an additional attribute, that is estimated by the filter.

Our implementation is build from three core components:
Resample, measure and predict.

The prediction step in our implementation uses a simple
constant velocity linear motion model to predict the position
of the particle in the next frame. We assume a fixed frame rate
by using a constant ∆t.

In the measurement step, errors made by the prediction
are partially corrected by assigning the particles to detections
from the detector and in the case of a successful assignment
interpolating linearly. For this assignment and correction an
IoU with the predictions is computed and used to update the
scores of particles for subsequent re-sampling step.

The resampling step creates a distribution of particles
around interesting regions, compensating uncertainties of the
system, e.g. motion changes. To re-sample, we simply use
existing particles, remove the particles with the lowest scores
and re-sample new particles with a bias towards detections
from the Faster-RCNN which have a low IoU with all particles.
This bias helps to reduce the number of required particles for
the filter and improves FPS.

By using a baseline that is consistent with the benchmark
defaults and adding a particle filter we can focus on the
integration of the particle filter into the model and attribute
all improvements to the integration. An overview over our
baseline architecture is given in Figure 3 on the left.

B. Two-Stage Detection with Integrated Object Permanence
(IOP)

To integrate object permanence into two stage detection,
we merge the particle filter and the Faster-RCNN. Their
components have similar functionalities enabling this integra-
tion. As described in our baseline, a particle filter consists
of three steps: Resample, predict and measure. The goal of
the resample step can be described as generating proposals
of ROIs and is similar to the RPN in Faster-RCNN. The
measurement step then scores these proposals by their plau-
sibility based on the measurements and can be compared to
the scoring and refinement stage in Faster-RCNN. Finally, the
prediction step is used to relate two timesteps and propagate
the particles through time, there is no equivalent in two-stage
object detectors.



Leveraging the similarities, we merge resampling (proposal
generation) and the RPN, as well as the measurement step of
the particle filter with the refinement of Faster-RCNN. The
prediction step from particle filter is then used to connect
the refinement with the proposal stage. We call the resulting
architecture Integrated Object Permanence (IOP) and visualize
it in Figure 3 on the right side. However, design decisions
when implementing lead to IOP with particles, IOP lite and
IOP with history, with varying precision and inference speed.

IOP with particles the most similar to the particle filter
baseline. For resampling, we apply the traditional resample
of the particle filter and then use the particle detections as
additional proposals for the second stage by concatenating.
Assigning the outputs of the second stage to the particles again
is done via IoU based assignment. This extra step is required,
since we use a standard detector without any knowledge of
tracklets. After assignment, the particle filter can be used to
predict for the next time frame. Figure 4 including the dashed
boxes visualizes this architecture.

IOP lite applies the least changes to an existing two-stage
detector, completely omitting tracklets. The resampling step
concatenates the unchanged predictions from the previous
frame to the proposals of Faster-RCNN from the current
frame, as the RPN is sampling new meaningful proposals. The
measurement step is just the second stage of Faster-RCNN and
the prediction step is a simple time-delay. Figure 4 without the
dashed boxes visualizes this architecture.

IOP with history is identical to the above except for
the resampling step. Here, predictions from the N previous
frames are concatenated to the proposals from the RPN. One
advantage is if an object is fully occluded for a frame and
rejected by the second stage, the history allows for quicker
recovery once the object is partially visible again.

We trained Faster-RCNN once and all presented variations
use the same weights. There is no training of the individual
variations required, as the integration does not change the
model itself. This allows our approach to be integrated into any
pre-trained two-stage approach. Independent of the training
data this improves models for inference on sequential data,
despite a training on sequential data.

In summary, the core idea of our approach is the feedback of
previous predictions as proposals into the model. Inspired by
particle filter, it allows varying degrees of complexity. Further,
keeping weights of the model intact, this idea can be applied
to a wide variety of approaches and use cases.

IV. EXPERIMENTS

Our approach is an improvement for object detection. How-
ever, since object permanence is a temporal aspect, we need
a tracking dataset for our evaluation. The evaluation on the
tracking dataset will evaluate mainly detection performance
gains and computational overhead during inference time. How-
ever, a brief comparison to other trackers on applicable metrics
will be done.

For evaluation of our approach for integrated object per-
manence the challenging MOT17 and MOT20 [4] dataset is
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Fig. 4. At the core of our implementation for Integrated Object Permanence
(IOP) is the depicted information flow. The concatenation of previous predic-
tions and current proposals is a critical component for object permanence in
two stage-detection. Other components denoted by dashed boxes are optional
and can be removed for faster inference speed.

ideal. One of the baselines on the dataset is Faster-RCNN
which is also part of our baselines: Faster-RCNN with Par-
ticle Filter and Faster-RCNN with Kalman Filter. Comparing
against these baselines we will show the effectiveness of the
components in our approach.

A. Experimental Setup

The MOT17 and MOT20 [4] dataset consists of 1.423
Frames with 80.274 annotated pedestrians in 11 sequences
in total for validation. The dataset contains heavy occlusions
induced by the environment and other pedestrians. Thus the
dataset is very challenging and has multiple situations where
object permanence is key for correct detection.

We train Faster-RCNN on this dataset from scratch without
any additional datasets or augmentation apart from the pre-
trained VGG16 encoder. SGD optimizer with momentum (0.9)
and a learning rate of 0.001 is used to train the model for
30 epochs. As an encoder, the model uses VGG16 with
batch norm pre-trained on ImageNet [5]. For training we
follow the standard procedures of Faster-RCNN with sampling
128 samples from the ROIs for training attempting balanced
sampling and filling with negative samples.

Kalman Filter still is the gold standard in application. Thus,
we also evaluate a simple Kalman Filter implemented in C++.
This baseline uses above trained Faster-RCNN and no special
configuration.

For the particle filter baseline, the same pre-trained Faster-
RCNN is used. The particle filter baseline is optimized for
sample efficiency and 200 particles produce sufficiently good
results at acceptable inference speed. Thus we use 50, 75, 100
and 200 particles respectively for our evaluations.

Our approaches, described in Section III-B, use again the
same Faster-RCNN. The configuration named IOP uses the
same number of particles as the particle filter for best com-
parability. IOP lite has no configuration options and for IOP
with history we evaluated different history lengths from 1-19
frames, but limit reporting to the best history length of 5 and
9 for IOP and IOP lite respectively in the tracking section.

B. Detection Performance

As an improvement for detectors, measuring gains in the
detection performance is the most important evaluation. As



TABLE I
COMPARISON OF MAP GAINS ON DIFFERENT DATA SEQUENCES. OUR INTEGRATED OBJECT PERMANENCE (IOP) WITH PARTICLES IS BEST OVERALL,

WHEREAS OUR IOP LITE NEVER DEGRADES PERFORMANCE AT SECOND BEST OVERALL MAP GAINS.

Sequence FRCNN FRCNN
+ KF

Baseline (FRCNN+ PF) IOP with Particles [ours] IOP Lite
[ours]50 75 100 200 50 75 100 200

MOT17-02 39.6 +5.6 +7.3 +7.3 +7.3 +7.3 +11.6 +11.6 +11.6 +11.6 +5.9
MOT17-04 78.5 +4.0 +3.5 +4.4 +4.4 +4.4 +6.1 +6.2 +6.2 +6.2 +2.5
MOT17-05 73.3 -13.3 +0.3 +0.3 +0.3 +0.3 -3.1 -3.1 -3.1 -3.1 +0.0
MOT17-09 73.2 +2.5 +7.4 +7.4 +7.4 +7.4 +8.1 +8.1 +8.1 +8.1 +4.5
MOT17-10 26.1 +3.6 +3.2 +3.2 +3.2 +3.2 +8.8 +8.8 +8.8 +8.8 +7.4
MOT17-11 51.7 -0.4 +1.5 +1.5 +1.5 +1.5 +0.0 +0.0 +0.0 +0.0 +0.0
MOT17-13 12.7 +2.5 -2.4 -2.4 -2.4 -2.4 +7.3 +7.3 +7.3 +7.3 +7.9
MOT20-01 66.6 +7.4 +12.6 +12.6 +12.6 +12.6 +16.1 +16.1 +16.1 +16.1 +12.1
MOT20-02 72.3 +5.3 +6.9 +8.3 +8.3 +8.3 +11.0 +11.0 +11.0 +11.0 +5.5
MOT20-03 41.9 +19.9 -10.7 +3.2 +12.6 +20.2 -8.1 +5.6 +18.4 +28.3 +22.2
MOT20-05 55.4 +14.3 -25.2 -11.2 -0.4 +14.5 -24.3 -7.7 -0.7 +18.7 +12.6
MINIMUM 12.7 -13.3 -25.2 -11.2 -2.4 -2.4 -24.3 -7.7 -3.1 -3.1 +0.0
MAXIMUM 78.5 +19.9 +12.6 +12.6 +12.6 +20.2 +16.1 +16.1 +18.4 +28.3 +22.2
AVERAGE 53.8 +4.7 +0.4 +3.2 +5.0 +7.0 +3.0 +5.8 +7.6 +10.3 +7.3

TABLE II
AVERAGE LATENCY OVERHEAD OF THE TESTED APPROACHES ON MOT.

Approach #Particles mAP Latency
Faster-RCNN - 53.8 550 ms
Kalman Filter - +4.7 +3 ms

Particle Filter

50 +0.4 +76 ms
75 +3.2 +57 ms

100 +5.0 +60 ms
200 +7.0 +63 ms

IOP with Particles [ours]

50 +3.0 +91 ms
75 +5.8 +74 ms

100 +7.6 +79 ms
200 +10.3 +79 ms

IOP Lite [ours] - +7.3 +3 ms

common in object detection we use the Pascal VOC [13] mean
average precision (mAP) metric for evaluation. We evaluated
on a per sequence basis and an average over all sequences (see
Table I), allowing for further insights into the performance.

Averaged over all sequences, our integrated object perma-
nence approach with 200 particles with a gain of +10.3 mAP is
best. IOP lite which is faster and requires no particles achieves
an average improvement of +7.32 mAP. Kalman Filter and
Particle Filter can also increase the performance by +4.7 mAP
and +7.0 mAP but are outperformed by our IOP or IOP lite.

On MOT20 gains are larger than on MOT17. It can be
observed, that gains are larger on sequences with elevated
camera position and lower ego-motion. In scenes with higher
perceived camera motion the gains are smaller and sometimes
performance degrades. This can be explained by the large
motion objects have in the image plane and the lack of an ego-
motion model to compensate this in all presented approaches.

Overall, our integrated object permanence approach with
200 particle is best in 8 out of 11 sequences. Our IOP lite
is second best in the average category and never degrades
the performance of Faster-RCNN, which no other approach
was able to achieve. We explain this by the fact, that IOP lite
injects additional proposals and does not remove any proposals
or predictions from Faster-RCNN.

C. Latency Overhead

As latency is an important factor for predictors, we mea-
sured the overhead produced by each of the presented ap-
proaches compared to the original Faster-RCNN. We averaged
the latency over all samples, to minimize effects caused by the
underlying operating systems scheduler.

Our IOP lite (implemented in Python) and Kalman filter
(implemented in C++), share the same overhead of 3 ms. Using
particles in a particle filter and our IOP with particles, the
overhead is 60-91 ms (see Table II). The number of particles
has little impact on the overhead.

When speed is more important than the best possible mAP,
it is recommended to use IOP lite over IOP with particles, as
the overhead is significant.

D. Tracking Metrics

Evaluation of tracking metrics was done on the MOT17 val-
idation dataset to evaluate our four best configurations against
the other state-of-the-art approaches. Since the numbers for
the other approaches were extracted from the papers, we can
only compare against reported numbers. For CenterTrack [39]
FP, FN and IDS are not comparable, since they are reported
in percent.

In Table III it can be seen that our IOP outperforms Track-
tor [1], CenterTrack [39] and FairMOT [37] in all captured
metrics except MT. Our approach is designed to improve
detection performance and not primarily as a tracker, however,
the integration makes the outputs of the model easily usable
by simple IoU based association.

E. Qualitative Analysis

When qualitatively analyzing the results, we immediately
find situations in which the integration of object permanence
can change the quality of the output of Faster-RCNN. In
Figure 5 example outputs of Faster-RCNN and our approach
are visualized. It can be seen, that on the left some pedestrians
cannot be recovered by Faster-RCNN, but with the feedback
loop the pedestrian can be successfully detected with high



TABLE III
EVALUATING TRACKING METRICS ON MOT 17 VALIDATION SET, THE OVERALL BEST APPROACH IS IOP LITE WITH A HISTORY LENGTH OF 9 FRAMES.

*NUMBERS IN PERCENT ARE EXCLUDED FROM COMPARISON.

Approach Hist MOTA MOTP IDF1 MT ML FP FN IDS
Tracktor [1] - 61.9 - 64.7 35.3 21.4 323 42454 326
CenterTrack [39] - 66.1 - 64.2 41.3 21.2 4.5%* 28.4%* 1.0%*
FairMOT [37] - 69.1 - 72.8 - - - - 299
IOP w/ Particles [ours] 1 52.3 34.1 67.8 123 12 1591 678 231
IOP w/ Particles [ours] 5 52.5 31.4 69.1 114 12 1554 750 200
IOP lite [ours] 1 69.4 61.7 75.3 89 37 131 1817 46
IOP lite [ours] 9 72.5 63.5 77.1 93 34 83 1685 48

Fig. 5. Qualitative comparison of Faster-RCNN (left), Integrated Object Permanence (IOP) with particles (center) and IOP lite (right). The highlighted persons
are hard to detect but can be recovered by using spatio-temporal information at inference time without sequential training data.

accuracy. In the lower image the person is behind the pole.
During 28 frames Faster-RCNN detects the person only in 5
frames, with a maximum confidence of 0.5. In contrast, our
proposed IOP detects the person in all frames with a minimum
confidence of 0.91. IOP can stabilize and improve the predic-
tions of a pre-trained Faster-RCNN, but it is dependent on the
Faster-RCNN to detect the object in at least a few frames with
low confidence.

V. CONCLUSIONS

Object detection is applied to safety-critical domains, e.g.
robotics and autonomous vehicles. However, current detectors
lack the concept of object permanence, leading to temporally
unstable predictions, e.g. with temporary occlusion. Trackers
solve this but are complex or need special training data.

Our Integrated Object Permanence (IOP) fills this gap
by introducing object permanence into two-stage approaches
without the need for re-training. Inspired by a particle filter, a
feedback loop is integrated into a Faster-RCNN. At the core,
predictions of previous frames are used as proposals for the
next frame.

In multiple experimental setups, the effects of each design
decision are evaluated and we conclude, that for most use-
cases IOP lite is the best option, as it has best or second
to best performance with least computational overhead. IOP
with particles is best in object detection, but IOP lite is best
in inference speed and tracking on most metrics.

Our approach is an ideal solution to improve object de-
tection performance without any need for sequential training
data. As no retraining is needed, we can apply this approach
to already existing two-stage detectors, like Faster-RCNN.
The concept is general and only requires a proposal and
refinement step in the model and has little computational
overhead as exhibited by IOP lite. Thus, we see a wide
range of applications and use-cases where IOP can improve
object detection. For example in instance segmentation or even
human pose estimation.
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[18] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad Schindler. Learn-
ing by tracking: Siamese cnn for robust target association. In IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2016. 2

[19] Yann LeCun, Bernhard Boser, and John S Denker et al. Backpropagation
Applied to Handwritten Zip Code Recognition. Neural computation,
1(4):541–551, 1989. 2

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based
Learning Applied to Document Recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998. 2

[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Har-
iharan, and Serge Belongie. Feature Pyramid Networks for Object
Detection. In CVPR, 2017. 2

[22] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In CVPR, 2017. 2

[23] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In ECCV. Springer, 2016. 2

[24] Jean Piaget. The construction of reality in the child, volume 82.
Routledge, 2013. 1

[25] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In CVPR, 2016. 2

[26] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In
CVPR, 2017. 2

[27] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
1804.02767, 2018. 2

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
NeurIPS, 2015. 1, 2, 3

[29] Samuel Schulter, Paul Vernaza, Wongun Choi, and Manmohan Chan-
draker. Deep network flow for multi-object tracking. In CVPR, 2017.
2

[30] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fer-
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