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ABSTRACT
Item response theory (IRT) is a popular method to infer
student abilities and item difficulties from observed test re-
sponses. However, IRT struggles with two challenges: How
to map items to skills if multiple skills are present? And how
to infer the ability of new students that have not been part
of the training data? Inspired by recent advances in vari-
ational autoencoders for IRT, we propose a novel method
to tackle both challenges: The Sparse Factor Autoencoder
(SparFAE). SparFAE maps from test responses to abilities
via a linear operator and from abilities to test responses via
an IRT model. All parameters of the model offer an in-
terpretation and can be learned in an efficient manner. In
experiments on synthetic and real data, we show that Spar-
FAE is similar in accuracy to other autoencoder approaches
while being faster to learn and more accurate in recovering
item-skill associations.

Keywords
item response theory, logistic models, variational autoen-
coder, sparse factor analysis

1. INTRODUCTION
A foundational problem in educational data mining is to
automatically infer students’ ability from their observed re-
sponses in a test. Item response theory (IRT) addresses
this problem by fitting a logistic model that describes how
student ability and item difficulty interact to generate an
observed response [5]. However, IRT faces at least two chal-
lenges. First, whenever a test involves multiple skills, we
need to model the relation between skills and items, which
standard IRT does not do [10]. Second, an IRT model con-
tains student-specific parameters which are fitted to a spe-
cific population. For any new student, we need to fit at least
one new parameter.

The former challenge can be addressed via automatic meth-
ods for item-skill association learning, such as the Q-matrix
method of Barnes et al. [2], the alternating least squares
method [12], or sparse factor analysis [7]. The second chal-
lenge requires a student-independent parametrization of the
model, which is offered by variants like performance factor
analysis [11] or variational autoencoders [3]. In the present
paper, we propose to address both challenges at once by
combining sparse factor analysis with autoencoders, yield-
ing a new method which we call sparse factor autoencoder
(SparFAE).

In more detail, our contributions are: We introduce Spar-
FAE, a sparse factor autoencoding method for IRT. We pro-
vide an interpretation for all parameters in the SparFAE
model, as well as an efficient learning scheme. Further, we
empirically compare SparFAE to sparse factor analysis [7]
as well as variational autoencoders [16] on synthetic and
real data and show that SparFAE is similar in accuracy to
other encoders but is much faster to learn and more accu-
rate in recovering item-skill associations. Finally, we use
SparFAE to analyze an expert-designed math test and ver-
ify the identified Q-matrix against the expert-designed Q-
matrix. The source code for all experiments can be found
at https://github.com/bpaassen/sparfae.

2. BACKGROUND AND RELATED WORK
IRT models the responses of m students on a test with n
items. In particular, let yi,j be a random variable, which
is 1 if student i answered item j correctly and 0, other-
wise. We assume that yi,j is Bernoulli-distributed, where
the success probability is given as pi,j = σ(θi − bj), where
σ(x) = 1/(1 + exp[−x]) is the logistic link function, θi is an
ability parameter for student i, and bj is a difficulty param-
eter for item j [5]. The parameters θi and bj need to be
fitted to observed training data, for example, via likelihood
maximization or Bayesian parameter estimation [1]. In par-
ticular, the negative log likelihood of the data (also known
as crossentropy loss) is expressed by the formula

` =
m∑
i=1

n∑
j=1

−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ]. (1)

This loss is convex in the parameters θi and bj , meaning
that an optimal model can be found efficiently via nonlinear
optimization algorithms.
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Over the decades, numerous extensions of this basic scheme
have been proposed, such as a discrimination parameter for
each item (two-parameter model), a minimum probability of
correct answers for each item (three-parameter model), par-
tial credit, and hierarchical models [1, 4, 5]. In this paper, we
care particularly about the extension to multiple underlying
skills, sometimes called multidimensional IRT [10]. In such
a model, we represent a student’s ability by a K-dimensional
vector ~θi, where θi,k models the ability of student i for skill
k. A consequence of including multiple skills is that we need
to model the relationship between skills and items. In this
paper, we assume a linear relationship that is captured by
an n×K matrix Q, where qj,k models how important skill k
is to answer item j correctly. Overall, our model is described
by the two equations:

pi,j = σ(zi,j) and ~zi = Q · ~θi −~b, (2)

where ~zi is the vector of response logits for student i, and ~b
is the vector of all item difficulties.

Our setup begs the question: how to learn the matrix Q?
Such coupling matrices between items and skills have been
popularized by Tatsuoka [13], who imposed qj,k = 1 if skill
k is required for item j and qj,k = 0, otherwise. Tradition-
ally, such Q-matrices have been hand-designed by domain
experts [9], but recently, automatic methods to learn Q have
emerged, such as the method of Barnes [2] or the alternating
recursive method [12]. Crucially, finding an optimal binary
Q-matrix is challenging due to the discrete search space. To
simplify the search, Lan et al. [7] have relaxed the problem
by assuming continuous, non-negative entries of Q and ap-
plying methods from sparse coding, resulting in a method
called Sparse Factor Analysis (SPARFA).

SPARFA applies an alternating optimization scheme. First,
we initialize student abilities ~θi randomly, for example with
Gaussian noise. Second, for each item j, we adapt the jth
row of Q and the difficulty bj by solving the following opti-
mization problem:

min
~qj ,bj

`+ λ1 · ‖~qj‖1 + λ2 · (‖~qj‖2
2 + b2

j )

s.t. qj,k ≥ 0 ∀ k ∈ {1, . . . ,K}, (3)

where ` is the crossentropy loss (1), ‖~qj‖1 =
∑K
k=1 |qj,k| is

the 1-norm of ~qj , ‖~qj‖2
2 =

∑K
k=1 q

2
j,k is the squared Euclidean

norm of ~qj , and λ1 as well as λ2 are hyperparameters of
the method. The squared Euclidean norm is intended to
regularize the model parameters with a Gaussian prior, as
usual in IRT [1] (chapter 7). The 1-norm is motivated by
sparse coding and encourages sparsity in Q, meaning that
the optimization process tends to find solutions where many
of the entries in Q are zero [17]. In other words, the model is
encouraged to connect any item j only to a few skills instead
of all skills. This is reminiscent of traditional Q-matrices,
where qj,k is only nonzero if skill k is required to answer item
j correctly [13]. Finally, SPARFA enforces that no entry qj,k
can become negative, because a negative qj,k would imply
that a higher ability in skill k reduces my chance to answer
item j correctly, which does not make sense [7]. Note that
problem (3) is convex, such that it can be solved efficiently
with nonlinear optimizers.

The third step of SPARFA is to optimize the ability param-
eters ~θi for each student i. This is done by minimizing the
crossentropy (1) plus a regularization term λ2 ·

∑K
k=1 θ

2
i,k.

We now iterate steps two and three of the SPARFA algo-
rithm until the parameters converge.

Just as in standard IRT, a challenge of SPARFA is that we
can not immediately apply a learned model to new students.
For every new student i, we need to fit new parameters ~θi.
Many extensions of IRT have circumvented this problem by
removing ability parameters altogether and only using item
parameters. For example, performance factor analysis re-
places the ability parameter by a weighted count of correct
and wrong responses on past items for the same skill [11].
More recently, Converse et al. [3] proposed a variational au-
toencoder model to simplify the application of IRT models
to new students.

A variational autoencoder (VAE) views the student abili-
ties ~θi as a compressed representation of the student’s re-
sponse vector ~yi. More precisely, a VAE tries to learn an
encoder function which compresses ~yi to abilities ~θi, and
a decoder function which de-compresses ~θi back into esti-
mated responses ŷi, such that ~yi and ŷi are close and such
that ~θi is standard normal distributed [6]. As decoder, we
use a multi-dimensional IRT model (2), whereas the encoder
could be a multi-layer artificial neural network [3]. In con-
trast to traditional IRT models, a VAE model is typically
non-convex and multi-layered, and thus needs to be opti-
mized with deep learning methods [3, 6]. Wu et al. [16] have
further extended the VAE version of IRT by analyzing the
theory more closely and including the difficulty parameters
~b as an additional input to the encoder. Fig. 1 illustrates the
approach for a single-layer encoder. The encoder is given as
~θi = A ·~yi+B ·~b+~γ for some bias ~γ (Fig. 1, left, in orange),
whereas the decoder is a multi-dimensional IRT model like
in (2) (Fig. 1, right, in blue). Note that we obtain all models
in this section as special cases of this diagram. If we set the
connections B to zero, we obtain the IRT-VAE of [3]. If
we, further, remove the connections A and treat ~θi as pa-
rameters, we obtain SPARFA. Finally, if we set K = 1 and
qj,1 = 1 for all j, we obtain a classic IRT model.

Interestingly, the state-of-the-art VAE approaches do not
apply a sparsity penalty to facilitate interpretability of Q.
Further, deep learning can be quite slow. To address these
limitations, we propose an autoencoder model based on the
SPARFA loss, which we describe in the next section.

3. METHOD
Our proposed model is a single-layer autoencoder as illus-
trated in Fig. 1. More formally, our model can be concisely
expressed in the following equations:

~θi = A · ~yi,

~zi = Q · ~θi −~b, and
pi,j = 1/

(
1 + exp(−zi,j)

)
, (4)

where the first equation expresses the encoder and the sec-
ond and third equation the decoder.

Our interpretation of the parameters is as follows. A maps
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Figure 1: A sketch of a one-layer autoencoder for student responses, following Algorithm 1 of [16]. The Encoder is shown in
orange (left), the decoder in blue (right). Encoder bias parameters are not shown for simplicity.

from responses to student ability, with αk,j modeling the
amount of ability in skill k that is expressed by answering
item j correctly. Conversely, Q maps from abilities to re-
sponses, with qj,k modeling how much skill k helps to answer
item j correctly. bj models the difficulty of item j, as before.
Note that our model requires no student-specific parameters,
such that it can be directly applied to new students.

Note that we do not include “backward” connections B or
encoder bias parameters ~γ in our model because they do not
contribute to the model’s expressive power in the single-layer
case. Consider a “full” model with ~θi = A · ~yi +B ·~b+ ~γ. If
we plug this expression into our equation for zi, we obtain

~zi = Q ·
(
A ·~yi+B ·~b+~γ

)
−~b = Q ·A ·~yi+Q ·B ·~b+Q ·~γ−~b.

We now absorb B and ~γ into ~b by re-defining ~b as Q ·B ·
~b+Q ·~γ−~b, yielding Equations (4). Accordingly, our model
requires only 2K + 1 parameters per item.

We can train the parameters of our model by solving the
following minimization problem, inspired by SPARFA.

min
A,Q,~b

m∑
i=1

n∑
j=1

−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ] (5)

+λ1 · (‖A‖1,1 + ‖Q‖1,1) + λ2

2 · (‖A‖
2
F + ‖Q‖2

F + ‖~b‖2)

s.t. αk,j ≥ 0, qj,k ≥ 0 ∀ k ∈ {1, . . . ,K}, j ∈ {1, . . . , n}

where ‖A‖1,1 =
∑n
j=1

∑K
k=1 |αk,j | denotes the entry-wise

1-norm, and where ‖A‖2
F =

∑n
j=1

∑K
k=1 α

2
k,j denotes the

squared Frobenius norm. Since the resulting model is an
autoencoder-variant of Sparse Factor Analysis, we call it
Sparse Factor Autoencoder (SparFAE). We denote the ob-
jective function as `SparFAE. As in SPARFA, the Frobenius
norm applies a Gaussian prior on the parameters, whereas
the 1-norm encourages sparsity. We also apply the same
non-negativity constraints as in SPARFA to ensure a mean-
ingful interpretation of A and Q. Additionally, the non-
negativity constraints are likely to further enhance sparsity,
as indicated by non-negative matrix factorization [8].

In contrast to SPARFA, we can not decompose this prob-
lem into independent problems for each item because there
are item-to-item-dependencies: Manipulating αk,j also in-
fluences the abilities θi,k, which in turn influence the prob-
ability pi,j′ for any item j′ with qj′,k 6= 0. Accordingly, we

need to perform a joint optimization of all parameters. How-
ever, we do not need to resort to deep learning. Instead, we
propose a standard L-BFGS solver, as implemented in the
minimize method of scipy [14]. This is facilitated by the
surprisingly simple expression for the gradients:

∇A`SparFAE = QT ·∆T · Y + λ1 · 1 + λ2 ·A,

∇Q`SparFAE = ∆T · Y ·AT + λ1 · 1T + λ2 ·Q, and

∇~b`SparFAE = −~1T ·∆ + λ2 ·~b, (6)

where Y is the m×n matrix of all responses, where ∆ is the
m × n matrix with entries δi,j = pi,j − yi,j , where 1 is the
K×n matrix of only ones, and where ~1 is an m-dimensional
vector of ones. Regarding computational complexity, notice
that the matrix products in (6) require min{2 ·K ·m ·n, n2 ·
(m+K)} operations, such that each optimization step is in
O(m · n) for constant K. We can simplify our optimization
further by inspecting the relationship between A and Q.

3.1 Single Matrix Variant
Note that the matrices A and Q have related interpreta-
tions. Intuitively, if skill k helps more with item j (high
qj,k), we would also expect that answering item j correctly
is an indicator for skill k (high αk,j). Accordingly, it stands
to reason that A = QT .

We can also motivate this setting mathematically. In partic-
ular, A = QT is optimal if Q is orthogonal, meaning QT ·Q
equals the identity matrix I. In that case, Q ·QT · ~yi is the
orthogonal projection of ~yi onto the hyperplane spanned by
Q. In other words, Q ·QT · ~yi is the most similar point to
~yi we can achieve with the decoder Q.

However, is it plausible that Q is orthogonal? Indeed, QT ·
Q becomes a diagonal matrix (orthogonal up to scaling)
if every item tests exactly one skill. Let Jk be the set of
items which test skill k. Then, we obtain: (QT · Q)k,l =∑n
j=1 qj,k · qj,l =

∑n
j∈Jk

q2
j,k along the diagonal and zero off

the diagonal. In other words, the sparser Q becomes, the
closer A = QT is to optimal.



When we plug A = QT into problem (5), we obtain:

min
Q,~b

m∑
i=1

n∑
j=1

−yi,j · log[pi,j ]− (1− yi,j) · log[1− pi,j ]

+ λ1 · ‖Q‖1,1 + λ2

2 · (‖Q‖
2
F + ‖~b‖2)

s.t. qj,k ≥ 0 ∀ k ∈ {1, . . . ,K}, j ∈ {1, . . . , n}, (7)

where ~zi = Q ·QT · ~yi −~b. The gradient becomes:

∇Q`SparFAE =
(
Y T ·∆ + ∆T · Y + λ2 · I

)
·Q + λ1 · 1T .

This concludes our description of the proposed method.

4. EXPERIMENTS
In our experiments, we evaluate our proposed approach,
Sparse Factor Autoencoder (SparFAE), on both synthetic
and real-world data. We compare Sparse Factor Analysis
(SPARFA) [7], Variational item response theory with a novel
lower bound (VIBO) [16], the two-matrix version of Spar-
FAE (SparFAE2), as well as the single-matrix version (Spar-
FAE1). As optimizers, we used L-BFGS for SPARFA and
both SparFAE versions, and an Adam optimizer with learn-
ing rate 0.005, 100 epochs, and minibatch size 16 for VIBO
(these settings are as similar as possible to the original work
of [16]). The experimental source code with all details is
available at https://github.com/bpaassen/sparfae.

4.1 Synthetic Experiments
First, we consider synthetic data, which we sample from a
multivariate IRT model with K = 5 skills, standard nor-
mally distributed abilities θi,k, and standard normally dis-
tributed difficulties bj . We introduce two different sampling
conditions for Q: A) We sample a unique skill k for each
item j and set qj,k = 1, whereas all other entries of Q remain
zero. B) We first sample a number of skills Kj ∈ {1, . . . , 5}
for each item j with probability p(Kj) = 6−Kj

15 . Then, we
draw Kj skills k without replacement and uniform probabil-
ity for item j and set qj,k to a uniform random number in
the range [0.5, 1].

As evaluation measures, we use the area under the receiver-
operator-curve in predicting correct responses (AUC), the
correlation between the learned difficulties bj and the actual
difficulties (rb), the correlation between the learned abili-
ties θi,k and the actual abilities (rθ), fraction of agreeing
nonzero entries between the learned Q matrix and the true
Q-matrix (rQ), the time needed for training, and the time
needed for prediction on new students. Since the order-
ing of skills is undefined, we allow arbitrary permutations
of the skills in the learned Q-matrix before computing rQ.
In practice, we re-order the columns of Q according to the
linear_sum_assignment function of scipy with the ground-
truth Q matrix [14]. We evaluate all measures on a separate
sample of m′ = 100 new students. We repeat all experiments
10 times for each of the hyperparameter settings in Table 1.

First, we inspect the effect of hyperparameters for m = 100
students and n = 20 items. Fig. 2 shows, from left to right,
how AUC, rb, rθ, and rQ change for higher regularization in
conditions A (top) and B (bottom). For AUC, we observe

Table 1: Hyperparameter settings considered in the experi-
ments.

setting λVAE λ1 λ2

1 10−5 10−3 10−3

2 10−4 0.05 10−3

3 10−3 1 10−3

4 0.01 0.05 0.05
5 0.1 1 0.05
6 1 1 1

a slight degradation of all methods for higher regulariza-
tion, with a notable decline for VIBO at the last setting. rb
generally rises for higher regularization, with the exception
of SparFAE1, which stays relatively stable around 0.5. rθ
appears stable across regularization and improves only for
SPARFA. rQ improves for all methods with higher regular-
ization in condition A (top), and remains roughly stable in
condition B (bottom). For the remaining synthetic experi-
ments, we report the results using hyperparameter setting 6
for SparFAE2 and SparFAE1, and hyperparameter setting
5 for SPARFA and VIBO. These settings maximize rb, rθ,
and rQ while retaining high AUC.

Fig. 3 displays the performance measures for varying num-
bers of students. We observe that AUC, rθ, and rQ tend
to slightly increase for more students across methods and
conditions, with only slight deviances for small numbers of
students. The most striking impact is on rb, which increases
for SparFAE1 and VIBO, but decreases for SPARFA and
SparFAE2.

Fig. 4 displays the performance measures for varying num-
bers of items. Across methods, AUC decreases, whereas rb
and rθ increase and rQ remains roughly stable for higher
number of items. The decrease in AUC is likely explained
by the fact that the models need to compress the informa-
tion of more items into the same number of skills, which
is bound to decrease performance. Conversely, it becomes
easier to tease apart the difficulty of each single item for a
higher number of items per skill (hence the improvement in
rb). Further, the more items we have in a test, the more
accurate we can estimate the underlying ability, which is
reflected in better rθ values.

Finally, Fig. 5 summarizes the effect of hyperparameter set-
ting, number of students, and number of items on training
time in logarithmic plots. We observe that stronger regular-
ization reduces the training time for both SparFAE variants,
whereas it stays roughly constant for VIBO and SPARFA.
This is likely because training time for SPARFA and VIBO
is driven by the repeated optimization steps over students,
whereas the training time for SparFAE is dominated by a
single optimization process. Hence, SparFAE profits more
from the simpler loss surface offered by higher regulariza-
tion. As one would expect, all methods scale roughly lin-
early with the number of students, SPARFA with roughly
18 ms per student, VIBO with roughly 6 ms per student,
and both SparFAE variants with roughly 1.5 ms per stu-
dent (refer to the gray dashed reference lines). For the num-
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Figure 2: The effect of hyperparameter settings from Table 1 on various performance measures (from left to right) on the
synthetic data, either with one skill per item (A, top), or multiple skills per item (B, bottom).
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Figure 3: The effect of increasing the number of students on various performance measures (from left to right) on the synthetic
data, either with one skill per item (A, top), or multiple skills per item (B, bottom).
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ber of items, the runtime for SPARFA and VIBO remains
roughly constant, whereas it increases almost quadratically
for both SparFAE variants. This is because the optimization
for SPARFA and VIBO is dominated by iterations over stu-
dents. By contrast, for SparFAE, every single gradient com-
putation already depends linearly on n, and more items may
also increase the number of required gradient computations
until convergence, thus yielding the super-linear behavior.

4.2 NeurIPS 2020 education data
Next, we consider the NeurIPS 2020 education challenge
data by Wang et al. [15]. The data set consists of multiple
choice questions to assess mathematics knowledge. Items
are grouped into different quizzes. We restricted the data
set to the 948 items from task 3 of the challenge and quizzes
with at least 50 students1, which left 65 quizzes. On av-
erage, these quizzes contained 14.02 items and had 1675.06
students responding. To estimate the number of skills K,
the first author analyzed all 948 items and assigned them to
skills. This yielded 14 distinct skills, the most common ones
being fractions (190 items), basic algebra (140 items), and
algebra with variables (127 items). On average, quizzes in-
volved 3.21 skills. For each quiz, we set K to the first-author
estimate, but we upper-bounded K to be at most half the
number of items in the quiz.

Based on the pre-defined Q-matrix by the first author, we
included two more baselines: A VIBO model, where we fixed
the decoder matrix to the pre-defined Q-matrix, and a Spar-
FAE1 model, where we fixed the Q-matrix and only trained
the difficulty parameter for each item using logistic regres-
sion. We denote these methods as VIBOf and SparFAEf ,
respectively.

To perform hyperparameter optimization, we randomly set
aside 10 quizzes and evaluated the AUC of all methods for
all hyperparameter settings in Table 1 in a 10-fold cross-
validation over students, that is, in each fold we used 90%
of students as training data and 10% as test data. The
hyperparameter settings which maximized AUC were 2 for
SPARFA and SparFAE2, 3 for VIBO, and 4 for SparFAE1.

Next, we performed a 10-fold crossvalidation over students
for the remaining 55 quizzes. Note that we can not evaluate
rb, rθ, or rQ, because we have no access to a ground truth
for b, θ, and Q. However, we can evaluate the sparsity of
Q, that is, the fraction of zero entries. Sparsity is a rough
proxy for the plausibility of a learned Q-matrix because high
sparsity indicates that Q assigns items to distinct skills.

Table 2 reports the average performance measures across
quizzes. Regarding AUC, Wilcoxon signed-rank tests re-
vealed that SPARFA had the highest AUC, followed by
SparFAE2, VIBO, SparFAE1, SparFAEf , and finally VIBOf

(p < 10−3 for all tests after Bonferroni correction). That be-
ing said, the AUC of all methods except SPARFA is very
close (at most 2% difference between means). In terms
of sparsity, SparFAE1 clearly outperforms SPARFA, VIBO,
and SparFAE2 (p < 10−3). Note that VIBO does not achieve
any sparsity, as it does not encourage sparsity during train-

1We also excluded one outlier quiz with more than 100 items
and a lot of missing data.

ing. The sparsity of the pre-defined Q-matrix was very high
(94%) as it assigned each item to only one skill.

With respect to training time, SparFAE1 is considerably
faster than SPARFA (ca. 15x), VIBO (ca. 4x), and Spar-
FAE2 (ca. 8x). In terms of prediction time, SparFAE1,
SparFAE2, and VIBO perform similarly as their prediction
scheme is almost the same (although SparFAE1 is still sig-
nificantly faster, p < 10−3). Only SPARFA is much slower
(ca. 300x) because it needs to fit new ability parameters to
new students for each prediction.

Finally, we analyzed the relation of AUC to the numbers of
students, items, and skills, as well as the amount of missing
data in quizzes. Fig. 6 displays scatter plots, where each dot
represents one quiz and lines show linear fits. Interestingly,
the behavior is very similar for all methods. The linear
correlation is r ≈ 0.3 with number of students (r = 0.4
for VIBO; p < 0.05), r ≈ −0.4 with number of items (p <
0.01), r ≈ 0.6 with number of skills (p < 10−3), and around
zero with the amount of missing data (insignificant). This
is in line with our results on synthetic data. The strong
correlation with the number of skills is explained by the fact
the methods have more parameters to fit the data when we
increase K.

4.3 Math assessment data
In a final experiment, we evaluated the ability of SparFAE1
to identify a fitting Q-matrix in comparison to an expert-
designed Q-matrix on real data. To that end, we used data
from m = 30 students (ages 16-19) on a math assessment
test for vocational education in chemistry2. The test con-
sisted of n = 21 questions, covering K = 5 topics, namely
basic algebra, fractions, equation solving for a single vari-
able, text tasks with two variables, and (linear) functions.
Fig. 7 (top) shows the assignment of items (x-axis) to these
five topics (y-axis) as provided by the test designers.

We applied a slightly adapted variant of SparFAE1 with the
regularization

∑K
k=1

(∑n
j=1 qj,k − 1

)2
, that is, we punished

deviations of the column sums from 1, thereby encouraging
orthogonality in Q. As regularization strength, we set 1.
We performed 30 repeats of SparFAE1 and then selected
the Q-matrix which maximized accuracy in a leave-one-out
crossvalidation over students (the resulting best accuracy
was 89%).

The learned Q-matrix is shown in Fig. 7 (bottom). We ob-
serve that the matrix assigns every item to only one skill, in
line with the expert prediction. We further observe that—in
line with the experts—the learned Q tends to group items
for the basic topics (basic algebra and fractions) together
and tends to avoid grouping items for basic topics with items
for advanced topics. However, there are also notable dif-
ferences to the expert Q-matrix. In particular, SparFAE1
merges basic algebra and fractions into one skill (except
for item 8, which is in skill 4), and includes items 13 and
14. Overall, skill 1 accumulates relatively easy tasks with-
out text- and function components. All other skills con-
tains items which required text comprehension and/or un-
2https://projekte.provadis.de/showroom/provadis/
Mathematik_Orientierungstest/online



Table 2: Performance measures on the NeurIPS 2020 education data.
method AUC sparsity training time [s] prediction time [ms]
VIBOf 0.88± 0.05 0.94± 0.00 8.01± 5.59 1.31± 2.76

SparFAEf 0.88± 0.04 0.94± 0.00 0.05± 0.03 0.15± 0.13
SPARFA 0.93 ± 0.05 0.16± 0.06 31.0± 20.9 633± 444

VIBO 0.89± 0.05 0.00± 0.00 7.83± 5.12 0.31± 0.18
SparFAE2 0.90± 0.05 0.33± 0.10 15.7± 15.9 0.20± 0.13
SparFAE1 0.89± 0.04 0.46 ± 0.13 1.94 ± 1.78 0.19 ± 0.12
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Figure 6: Scatter plots of AUC versus quiz metadata (from left to right: number of students, number of items, number of skills,
and fraction of missing data). Lines indicate linear regression fits.
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Figure 7: The expert-designed Q-matrix (top), and the
learned Q-matrix via SparFAE1 (bottom) for the math as-
sessment data.
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Figure 8: The item-to-item correlations for the math assess-
ment data.

derstanding of functions, but the correspondence to expert-
defined skills is less obvious.

To gain deeper insight into the learned Q-matrix, we in-
spected the item-to-item correlations cj,j′ =

∑m
i=1 xi,j ·xi,j′/√(∑m

i=1 xi,j
)
·
(∑m

i=1 xi,j′

)
, which are shown in Fig. 8.

We observe that items 1-7, 9, and 13-14 exhibit relatively
high pairwise correlation, explaining why SparFAE1 grouped
them together in skill 1.

Skill 2 groups items 16 and 18, which are both text problems
covering variable solution problems, but it also includes item
21, which is a question on functions. Inspecting the correla-
tion matrix, we observe that item 21 generally exhibits low
correlation, except for items 16 and 18, which explains the
grouping.

Skill 3 groups items without obvious mathematical connec-
tion. Item 10 is a fraction problem, item 12 is a variable
algebra problem, and item 20 is a function problem. Fur-
ther, these items exhibit only moderate pairwise correlation.
However, the only items with higher correlations are already
contained in skill 1 and are, thus, unavailable for skill 3, thus
indirectly explaining the grouping.

Skill 4 contains a variable algebra item (8), an equation
solving problem (17), and a function problem (19). Gen-
eral variable algebra capacity (8) plausibly enhances equa-
tion solving (17) but the function question (19) seems less
connected. The correlation matrix reveals that item 19 has
generally low correlations, except for items 3, 7, 14, and 17,
explaining its grouping with item 17.

Skill 5 contains two equation problems, one symbolic (11)
and one text-based (15). Further, item 15 has very low



correlations with any other item, except for items 9 and 11,
and 20, which explains the grouping with item 11.

Overall, we observe that the learned Q-matrix tended to
group more basic items together and more advanced items
together, in line with expert opinion. Sometimes, the learned
Q matrix groups items which do not have an obvious con-
nection, content-wise. In such cases, we could explain the
grouping by inspecting the item-to-item correlation matrix.

5. DISCUSSION AND CONCLUSION
We proposed a novel method for factor analysis which ex-
tends Sparse Factor Analysis (SPARFA) [7] to an autoen-
coder approach. Hence, we call our proposed method Sparse
Factor Autoencoder (SparFAE). More specifically, our ap-
proach encodes student responses to abilities via a linear
map A and decodes it again to predicted responses via a
multi-dimensional item response theory model with a linear
skill-to-item map Q. Like SPARFA, our approach encour-
ages sparsity in the Q-matrix via non-negativity constraints
and L1 regularization. In contrast to SPARFA, we do not
need to fit new ability parameters for new students. In-
stead, we can simply apply A, which automatically yields
the desired ability parameters. We investigated two ver-
sions of SparFAE: One with separate matrices A and Q for
encoding and decoding (SparFAE2), and one where we set
A = QT , that is, we use the Q-matrix for both encoding
and decoding (SparFAE1).

In experiments on synthetic as well as real data, we showed
that SparFAE1 is considerably faster than SPARFA, vari-
ational autoencoding [16], and SparFAE2. SparFAE1 also
achieves higher sparsity, and higher correlation with ground
truth Q-matrices and student abilities. This comes at the
price of slightly lower AUC and less accuracy in recover-
ing ground truth difficulties. We also observed that AUC
differences between autoencoder variants were quite small,
whereas SPARFA achieved noticeably higher AUC, indicat-
ing that student-specific ability parameters allow for a better
fit of the data than autoencoding. We also compared the
learned Q-matrix via SparFAE1 with an expert Q matrix
on a math assessment test, revealing some overlap but also
meaningful differences which could be explained by item-to-
item correlations.

Overall, our results indicate that SparFAE1 is a promising
method for fast factor analysis, especially when each item in
a test only refers to a single skill. As such, we believe that it
can be an interesting tool for test designers who wish to ana-
lyze the factor structure of their test on a sample of students.
While the learned Q-matrix should still be interpreted with
care, it can uncover latent item relationships (as we saw on
the math assessment data). Our results also motivate the
use of Q-matrices for both decoding and encoding, which
can serve as a starting point for future research.

Limitations of SparFAE1 lie in the slightly lower AUC com-
pared to other autoencoders, the ability to recover ground
truth difficulty parameters, and the superlinear scaling with
respect to the number of items. Future work could address
each of these shortcomings. Further, our experimental evalu-
ation is limited to multiple choice m math assessment ques-
tions. Future work should include further data sets from

other educational domains to ensure that SparFAE1 gener-
alizes. Finally, just as any autoencoders, SparFAE1 makes
the assumption that abilities do not change during a test.
Future work may consider more dynamic settings, e.g. by
incorporating concepts from performance factor analysis or
knowledge tracing models.
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