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ABSTRACT

Several researchers have focused on studying driver cognitive be-
havior and mental load for in-vehicle interaction while driving.
Adaptive interfaces that vary with mental and perceptual load
levels could help in reducing accidents and enhancing the driver
experience. In this paper, we analyze the effects of mental work-
load and perceptual load on psychophysiological dimensions and
provide a machine learning-based framework for mental and per-
ceptual load estimation in a dual task scenario for in-vehicle inter-
action (https://github.com/amrgomaaelhady/MWL-PL-estimator).
We use off-the-shelf non-intrusive sensors that can be easily in-
tegrated into the vehicle’s system. Our statistical analysis shows
that while mental workload influences some psychophysiological
dimensions, perceptual load shows little effect. Furthermore, we
classify the mental and perceptual load levels through the fusion
of these measurements, moving towards a real-time adaptive in-
vehicle interface that is personalized to user behavior and driving
conditions. We report up to 89% mental workload classification
accuracy and provide a real-time minimally-intrusive solution.
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1 INTRODUCTION

Driving is an everyday task in which lapses in attention can have
fatal consequences. The driving task is still one of the most complex
tasks for the human brain despite large advancements in the auto-
motive industry [35, 41]; drivers perform several visual and auditory
mental sub-tasks to be able to drive adequately, such as perception,
expectation, judgment, planning, and execution [29]. According
to the WHO, approximately 1.3 million people die each year as a
result of road traffic accidents'. Since almost half of all vehicular
accidents involve driver inattention [95], driving safety could bene-
fit from advances in attention research. Additionally, the number
of available secondary tasks and therefore the number of distrac-
tions rises with the advancement of in-vehicle human-machine
interfaces (HMI) [102, 105]. Thus, recent research advancements
focus on designing interfaces with minimal interference on the
driving task, while providing features aiding the driver’s comfort
and safety [17, 37, 80]. One way of evaluating in-vehicle interfaces
is measuring the mental effort they put on the driver, specifically,
perceptual load (PL) and mental workload (MWL). MWL has been
a topic of interest for the research community for the last 50 years,
since Casali et al’s work on defining and estimating mental ef-
fort [19]. PL has been discussed since the mid 1980s and solved
a long-standing debate between early and late selection in visual
attention processes [50]. Both MWL and PL play an important role
in driver safety and the driving experience in terms of auditory and
visual distractions. In this paper, we analyze different methods for
objectively estimating the driver’s MWL and PL (as separate con-
structs) while performing the dual task of controlling a secondary
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system while driving. We provide an end-to-end machine learning
(ML) based framework for MWL and PL estimation separately using
non-intrusive easily integrable sensors that are in concurrence with
current sensors in modern vehicles [2, 47, 98].

2 BACKGROUND AND RELATED WORK
2.1 Mental Workload (MWL)

Mental workload is an important factor in human-machine inter-
action and has often been studied in the context of driving [9,
15, 16, 45, 63, 65, 101]. Although no universal definition of MWL
has been proposed to date, several authors agree that MWL is
an interaction of task demands, other environmental factors, and
human characteristics (e.g., attentional capacities or task experi-
ence) [65, 96]. Hart and Staveland [43] state that “workload is a
hypothetical construct that represents the cost incurred by a hu-
man operator to achieve a particular level of performance”. This
means that a driver is expending mental effort to maintain a subjec-
tively safe driving behavior [9], while various mediating factors are
continuously changing (e.g., different road conditions [24]). There
have been several attempts to explain MWL, however, the mul-
tiple resource theory by Wickens [104] is the most widely used
approach. It assumes that several modality-specific attentional re-
sources are used when performing a mentally demanding task. In
dual task scenarios, several mental resources (e.g., visual or audi-
tory) can process information simultaneously. This suggests that
driving could be defined mainly as a mental, visual, and physical
task [65]. One task commonly performed secondary to driving is
talking and dialing on a phone or talking to a passenger. The latter
task uses more auditory and verbal resources, while the former
requires visual and manual resources [15]. Caird et al. [15] showed
that dialing a number has highly detrimental effects on driving
performance increasing accidents risk [45]. A performance loss
may even occur when the secondary task uses different modalities
than the driving task. Thus, hands-free and handheld phone con-
versations both had a negative influence on driving performance,
compared to a single-task condition. This means that even using
different modalities, MWL still rises with higher task demand [15].
Similar effects could also be detected when interacting with an
in-vehicle interface while driving [89]. Traditionally, MWL can
be estimated in three ways: using performance measures on the
primary task, using self-reported subjective measures, or using psy-
chophysiological measurements such as electroencephalography
(EEG), electrocardiogram (ECG), electromyography (EMG), pupil-
lometry, etc. [26, 63, 65, 73, 96]. However, subjective measures are
hard to obtain in real time as the driver’s tasks must be interrupted
to report his mental state. Additionally, most of the previous work
studying MWL in the driving context use the n-back paradigm as
the secondary task [4, 70, 71, 90, 92]. The 1,2,3-back versions of
the task (the 0-back version is designed for vigilance and does not
induce mental workload [56]) induce continuous task demand on
the working memory, like monitoring, updating information, and
rule-based task decisions [82]. As the performance of the primary
task in dual task conditions is modulated by the modality of the sec-
ondary task [15, 104], we induce MWL by a secondary task with no
attention interference on the driving (i.e., only MWL interference)
through an auditory n-back task version.

2.2 Perceptual Load (PL)

Another factor affecting task demands is perceptual load. Lavie’s
PL theory [58-60] states that perceptual capacity is a limited re-
source that is always involuntarily used. Thus, PL is the extent
to which a task consumes available capacity. When perceptual ca-
pacity is exhausted due to a high PL, no additional task-irrelevant
stimuli are processed, and an inevitable early selective process is
triggered [93, 97]. When perceptual capacity is not exhausted, the
remaining perceptual resources spill over to task-irrelevant stim-
uli. This leads to a late selective process that requires available
cognitive resources [23]. When cognitive load is kept constant, a
higher PL leads to less interference of irrelevant stimuli due to early
processing, while a lower PL is related to a higher interference
of stimuli. For the driving context, a higher PL would lead to a
reduced awareness of unexpected stimuli (e.g., a deer crossing the
street) or induce inattentional blindness as well as inattentional
deafness [64, 91], possibly leading to a safety hazard in driving.
Despite the load theory being relevant to different processes while
driving, there is a lack of applied evidence for the model [76], specif-
ically differentiating between PL and MWL. Murphy & Greene [75]
manipulated PL separately from MWL via a visual search task and
found significantly increased inattentional blindness and deafness
in the high PL condition and higher reaction time to hazards, thus
demonstrating that PL is an important factor in driving perfor-
mance. Similarly, we implement a visual search task with variable
difficulty. However, the visual search task is implemented on an in-
vehicle HMI by varying the set size of stimuli to measure the effect
of limiting available information, which is proven to be a factor
influencing PL [59]. Furthermore, the visual search task mimics the
task of navigating an in-vehicle HMI, providing ecological validity.
As far as we know, there is also a lack of studies aiming to con-
nect PL to psychophysiological measurements. Chen & Epps [20]
attempted to separate PL and MWL as two distinct sources of task
difficulty and found a significantly higher variation in pupil dilation
for high PL, while Oliva [81] focused on the selection mechanisms
of the load theory and found larger peak pupil dilation for the high
PL condition.

2.3 HMI Design in Automotive Domain

Car manufacturers are continuously adding features to modern cars
moving towards smart autonomous vehicles and ease of driving [3].
However, these features add further complexity to the driving envi-
ronment [7, 62, 92]. Thus, recent research advancement is oriented
towards more user-centered design approaches for in-vehicle in-
terfaces in order to alleviate the mental effort accompanying these
added features [17, 37, 54, 77, 80]. Consequently, multiple designs
emerged for seamless non-intrusive in-vehicle interfaces [1, 10, 12,
32, 36, 39, 40, 55, 57, 94, 99]. While these previous approaches and
studies focus on enhancing user experience and reducing drivers’
MWL through offline pre-design feedback (e.g., gathering users’ re-
quirements and designing a universal semi-customizable interface),
others focus on real-time (and semi-real-time) approaches to obtain
user feedback and adapt the interface based on the user’s MWL
and stress levels. Hence, a method for estimating MWL through
psychophysiological measures [16, 34, 48, 63, 65, 101] and PL is
needed [75]. Researchers [70, 92, 96] classified MWL in field studies



using two types of psychophysiological dimensions: Skin Conduc-
tance Level (SCL) and Heart Rate (HR). However, while a field study
provides better external validity, it imposes a safety restriction that
limited these studies. They mostly used a simple driving task to
avoid accidents, which meant that the primary driving task induced
minimal mental load. On the other hand, Barua et al. [4] classify
MWL using both psychophysiological methods and driving perfor-
mance in a simulated environment. They were able to introduce
a high mentally loading task in the simulation environment and
assess the MWL based on the driving performance. Unlike these pre-
vious methods, this paper focuses on both MWL and PL estimation
using psychophysiological dimensions.

Our contributions can be summarized as follows: 1) We
propose an MWL and PL estimation approach assessed on a dual
task scenario involving a non-trivial driving task. This MWL and PL
estimation approach can be used for adapting interfaces, triggering
warnings, or managing the transfer of control of semi-autonomous
vehicles. 2) We select psychophysiological dimensions that can be
realistically obtained in a non-intrusive way for a real driving sce-
nario (e.g., with a non-wearable eye-tracker and heart rate sensors
that currently exist in modern vehicles [2, 47, 98]). 3) We provide
a novel multimodal open-source framework with an anonymized
dataset for MWL and PL classification in a dual task driving sce-
nario.

2.4 Empirical Hypotheses

In this work, we propose an end-to-end predictive ML-based classi-
fication framework for MWL and PL estimation. Furthermore, we
evaluate the sensitivity of psychophysiological measures in the de-
tection of elevated levels of MWL and PL, paving the way towards
adaptive in-vehicle HMIs reactive to momentary changes in MWL
and PL. We formulated four hypotheses for this work as follows.

e H1: Correlations between measurements from a similar phys-
iological channel (e.g., heart data) should be higher than
correlations between different physiological channels (e.g.,
heart data and pupillometry) [69]. Previous studies show
that convergent validity is higher than discriminant validity
for selected MWL measurements [69]. However, since these
measurements reflect the same latent construct, we should
find a significant inter-correlation.

e H2: Psychophysiological measures can distinguish different
n-back task levels while driving in a lane-change task, reflect-
ing a difference in MWL levels [71]. This distinction between
MWL levels should be reflected in both statistical analysis
and the predictive ML classifier that would be deployed in
the vehicle’s system.

e H3: Similar to [90], MWL levels are distinguishable by the
driving performance during the lane-change task.

e H4: Similar to the previous hypotheses, PL induced by visual
search task affects both psychophysiological measurements
and driving performance in the lane-changing task [20, 81].
Similar to MWL, the distinction between PL levels should be
reflected in both statistical analysis and the predictive ML
classifier.

(b)

Figure 1: Our lane-changing task. (a) OpenDS driving simu-
lator. (b) Schema (not to scale) of driving performance eval-
uation as in [68].

3 METHOD
3.1 Participants

In total, 49 participants were recruited for the study?. Four partici-
pants were excluded for the following reasons: two due to recording
errors, one due to a cardiac disease, and one due to incorrect task
execution. The remaining 45 participants (42.2% female, 2.2% non-
binary) with a mean age of 30.07 years (SD = 10.38) completed the
entire driving route while doing a secondary task. The majority
of participants were of German nationality (62.2%). 48.9% had a
high school degree, 24.4% had a bachelor’s degree, and 26.7% had a
master’s degree. Regarding handedness, 88.9% of participants were
right-handed. As for visual acuity, 37.8% had corrected eyesight in
the form of contact lenses only for compatibility with the eye tracker
glasses. Concerning participants’ driving experience, participants
had their driver’s license on average for 10.20 years (SD = 8.74).
Most participants reported driving often (13.3% daily, 44.4% several
times per week, 17.8% several times per month), and 71.1% reported
previous experience with automatic transmission cars, while only
37.8% reported previous experience with a simulator.

3.2 Design

We designed a within-subject dual task counterbalanced driving
experiment in a simulated study [67]. The participants completed
a primary lane-changing task (LCT) on a straight three-lane road
along each of the secondary tasks. For the secondary task, the
participants performed both a visual search task (PL-correlated

2The number of participants needed for the study was calculated with G*Power [30],
using an effect size of f = 0.229 from [69]. It estimated n = 45.



stimuli) and an n-back task (MWL-correlated stimuli) separately.
Each of the two secondary tasks was conducted in three different
difficulty levels (easy, medium, and hard), resulting in a 2x3 within-
subject factor design. The experiment was piloted to mitigate design
issues. For the primary driving task, our LCT was adapted from [68],
a procedure commonly employed in driving simulator studies [13,
46, 87]. The target lane was marked with an upward arrow (), while
the other two lanes were marked with an (X) symbol. The lane-
change task was divided into 6 road segments: one segment per
difficulty level per secondary task, and it lasted between 120 to 160
seconds based on the driving speed with a 90-second pause between
segments to allow the workload to return to baseline. There were
no vehicular traffic or environmental changes to avoid confounding
factors. For the visual secondary task, a visual search task [59] was
presented on a tablet on the right side of the steering wheel. This
task simulates the distraction of interacting with the in-vehicle
infotainment systems. The task difficulty was manipulated by the
number of items on the display (i.e., set size). The levels consisted of
a 2x2, 3x3, and 4x4 matrix of items (see Figure 2). Each level had 40
stimulus arrays. Each stimulus array was presented for 2000ms with
a 1000ms pause in between. During this stimulus, the participant
had to identify the existence of an L-shaped target item among T-
shaped distracting items and response by pressing an “OK” button
only (see Figure 2). All the items were randomly rotated between
0° and 360°. L-shaped targets were present in 50% of the trials.
As for the auditory secondary task, an n-back task was utilized
where participants had to listen to numbers and respond when the
current number matched a previously presented number. This task
simulates the distraction of talking on a phone or to a passenger.
Numbers from zero to nine were used as stimuli and presented in
German through automated speech. Each number was presented
for the three difficulty levels consisting of a 1-back, 2-back, and
3-back task. The task was to listen to each number and to respond
by saying “Yes” in German (i.e., “Ja”) when the currently presented
number was the same as the number presented one, two, or three
positions before it, respectively. The numbers were presented in
total 40 times, as in the visual search task; however, targets were
present in 25% of the cases. Responses were coded manually and
were verified with an inter-rater reliability analysis [86]. Random
samples were assessed by a second rater from a video recording.
An intra-class correlation (ICC) was calculated with SPSS using a
two-way mixed model yielding a value of r = .96 (F(17,17) = 33.29,
p < .001) constituting excellent reliability.

3.3 Apparatus and Procedure

The driving simulator setup consisted of a driver’s seat surrounded
by three 55-inch LCD screens, two were rotated at a 45-degree angle

Figure 2: The stimulus array for the visual search task per
difficulty level. From left to right are the 2x2, 3x3, and 4x4
matrices.

Figure 3: Driving simulator setup overview showing the
lane-changing task and the secondary visual search task.

towards the driver to allow for a wider field of view, as in Figure 3.
The simulator vehicle was on automatic transmission and controlled
via a steering wheel, and gas and brake pedals. Heart rate data was
collected through a commercial ECG-based sensor attached to the
chest (Polar H10) and eye data was collected by a head-mounted
Pupil Labs Core eye-tracker [52]. Participants were introduced to
the sensors and completed a short training in the LCT and secondary
tasks. Then, they completed the designed dual task procedure while
instructed to prioritize the secondary tasks. Both the difficulty levels
of each secondary task as well as the order of the tasks themselves
were counterbalanced. Finally, they filled out a post-experiment
questionnaire and received monetary compensation.

3.4 Data Preprocessing and Measurements

In this work, we rely on two non-intrusive psychophysiological
(ECG and pupillometry) measurements, as well as primary and
secondary task performance, to estimate the driver’s MWL and PL.
These are described as follows.

Psychophysiological Measurements. An electrocardiogram (ECG)
measures the electrical signals from a person’s heart to determine
the heart rate (HR) in beats per minute. Heart rate variability
(HRV) [74] is defined as the variation of the peak-to-peak time
interval (RR interval) between two consecutive heartbeats. Accord-
ing to several previous studies, average HR and HRV can be used to
estimate MWL levels [22] where an increase in MWL level would
increase HR values while decreasing the HRV values. Multiple
features can be extracted from both HR and HRV over the time
interval, indicating the MWL and PL level. For HR, we used av-
erage HR, minimum, maximum, and standard deviation. As for
HRYV, there are several features divided into three categories: time
domain, frequency domain, and non-linear features. However, we
used only the time-domain-related root mean square of the succes-
sive differences between RR intervals (RMSSD) feature, which is
the most used feature for mental load level estimation with HRV.
Pupillometry is defined as the study of pupil size (i.e., diameter)
and reaction. According to [5, 6, 81, 100], it is possible to estimate
MWL and PL levels using pupil diameter. However, pupil diameter
is not lighting invariant, which makes it unsuitable for a generic
light-independent setting [100]. Hence, researchers attempted dif-
ferent preprocessing steps that would result in a light-invariant
pupil-dependent method for mental load estimation, such as the
index of cognitive activity (ICA) [66], the index of pupillary activity
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Figure 4: System architecture showing our minimally intrusive framework for MWL and PL estimation separately.

(IPA) [28], and the low/high index of pupillary activity (LHIPA) [27].
While ICA is the most common method in previous studies, it is
a patented approach. Therefore, Duchowski et al. developed the
IPA and LHIPA as an open-source alternative for ICA. The IPA
algorithm is constrained to a fixed-head setting only, which does
not apply to a generic use-case such as driving, while LHIPA is
an enhancement to the IPA algorithm with fewer constraints and
more applicability. In our study, we use LHIPA as an input feature
to our algorithm. We calculate it for each eye separately based on
their respective pupil diameter variations.

Primary and Secondary Tasks Measurements. For the driving per-
formance, the participant’s position in the driving task was com-
pared to a pre-calculated ideal path in terms of lateral deviation
in meters with a 33 Hz sampling rate. A standardized procedure
(ISO 26022:2010) commonly used to access the LCT driving per-
formance [13, 14, 21, 46, 68, 85]. The results were sorted into their
corresponding tasks and different metrics including average devi-
ation, median, minimum and maximum, and standard deviation.
The ideal path was defined to be the center of the lane where the
driver should drive except when close to lane changes. Pilot runs
showed that drivers needed approximately 36 meters to complete
the lane change when driving undisturbed at 60 km/h, which was
considered when defining the ideal path. Figure 1b highlights the
structure of the ideal route and its comparison to the actual driving.
Since the vehicle was on automatic transmission, further analysis
of gear changing, clutch pressure, and other vehicle-related mea-
surements is not applicable. In the visual search task, performance
was measured as the reaction time between stimulus onset and
the pressing of the “OK” button. As for the n-back task, perfor-
mance was calculated by subtracting false positives from correct
responses and dividing the result by the total number of possible
correct responses.

3.5 Classification Framework

The classification task aims to differentiate between different MWL
levels for the performing the n-back task while driving and different
PL levels for performing the visual search task while driving. Fig-
ure 4 shows an overview of the MWL or PL level classification
approach. It starts with the data collection and preprocessing stage

(discussed earlier), followed by the input features extraction stage,
and ends with a model training and prediction stage to determine
the MWL or PL level (based on the load-inducing task). Features
extraction and the ML models are described as follows.

3.5.1 Input Features and Output Classes.

To classify the different MWL levels based on the acquired mea-
surements, we utilize machine learning (ML) techniques to learn
from the features generated from these measurements and create
a prediction model for real-time inference during deployment. Ta-
ble 1 shows the generated possible input features per output class.
In total, our model has eight possible input features calculated per
output class. The classification model uses these input features to
classify between two pairs of three output classes (i.e., easy, medium,
and hard) for each n-back task (inducing MWL changes) and visual
search task (inducing PL changes).

3.5.2 Dataset Split.

The entire dataset covers 45 participants and is split into training,
validation, and test sets using an adaptation of the nested cross-
validation [11] approach with 5-fold cross-validation in the outer
loop and a one-third holdout test set in the inner loop. Note that
all the splits are done on the participant level and not on the data
point level. This way, no data from the same participant is used
in training, validation, or testing for the same model. This is to

Table 1: Input features generated for the machine learning
models.

Data Type Description of Input Fea- Number of Input Features

tures

ECG Mean, minimum, maxi- 5
mum, standard deviation
of heart rate, and HRV-
RMSSD

Pupillometry Left and right eyes’ 2
low/high index of pupil-
lary activity (LHIPA)

Driving Performance Average deviation during 1
lane switching




Table 2: Descriptive analysis (Mean+Std) of the psychophysiological measurements and driving performance per condition.

N-Back Difficulty Visual Search Difficulty
Easy Medium Hard Easy Medium Hard
Heart Rate 77.49 £ 12.60 82.54 +14.17 82.97 +£14.78 77.29 +11.81 78.58 +£12.00  78.63 + 12.7
HRV-RMSSD 37.79 £19.50 31.86 £15.99 30.34 + 14.42 38.37 £ 18.53 36.52+17.20 37.70 = 19.36
LHIPA Right Eye 2.38 +0.50 2.28 +0.31 2.29 +£0.43 2.46 £ 0.58 2.39 +0.56 2.44 +0.58
LHIPA Left Eye 2.37 £ 0.51 2.34+0.34 2.29 +0.30 2.3+0.22 2.3+£0.24 2.30 £0.24
Driving Performance 0.15 £ 0.08 0.21£0.13 0.23 +£0.16 0.24 £ 0.11 0.24 £ 0.12 0.27 £0.12

ensure external validity and model generalization while avoiding
data leakage [53].

3.5.3  Machine Learning Models.

For our machine learning architecture, we utilize Fuerer et al’s [31]
auto-sklearn python library for classification (based on scikit-learn
[84]) that automates finding the optimal machine learning model
and its corresponding hyperparameters. This approach automat-
ically searches for the optimum machine learning model using
Bayesian optimization methods in a structured search space con-
sisting of the combination of 15 classifiers, 14 feature preprocessing
methods, and 4 data preprocessing methods. It also utilizes an en-
semble approach that combines several optimum machine learning
models to enhance prediction accuracy [18]. In this method, we
compare an ensemble approach to one of the top 3 best-performing
classifiers selected by the Bayesian optimization process. The best-
performing classifiers for our dataset were the k-nearest neighbors
(KNN) [38], the linear discriminant analysis (LDA) classifier [61],
and AdaBoost [33].

4 RESULTS

Results are divided into two sections. Section 4.1 shows the statisti-
cal results, while section 4.2 shows the results of the multimodal
machine learning based MWL and PL classification models.

4.1 Statistical Results

For the main statistical analysis, statistical significance is deter-
mined using a p-value below 0.05 unless otherwise mentioned.
Extreme outliers were excluded; thus, the number of participants
varies between analyses.

4.1.1 Descriptive Analysis.

The psychophysiological data was evaluated for each condition
of each secondary task and averaged across all conditions. The
subjects showed a mean HR of 79.58 bpm (SD = 12.57), a mean
HRV-RMSSD of 35.29 milliseconds (SD = 16.72), and a mean LHIPA
value of 2.37 (SD = 0.25) for the right eye and 2.33 (SD = 0.16)
for the left eye. Mean driving performance was 0.22 (SD = 0.24).
Further mean and standard deviation details are shown in Table 2.

4.1.2  Correlations and Reliability.

To investigate H1 (convergent and discriminant validity), we cal-
culated Pearson’s correlation for the averaged psychophysiologi-
cal measurements and additionally for all conditions. Only HRV-
RMSSD and HR were significantly correlated (r(44) = —.53;p <
.001). The higher the HR, the lower the HRV-RMSSD. The average
values of the LHIPA did not reveal any significant relationship with
any of the other dimensions (all p values > .177). The same pattern
was found when comparing each dimension for each secondary task
per difficulty level. HR and HRV-RMSSD were without exception
highly inter-correlated, but the values for LHIPA showed almost
non-significant interactions, whether with each other or with any
of the heart rate measurements. The detailed correlations for each
secondary task per difficulty level and per measurement can be
found in Appendix A.

For reliability analysis, we calculated Cronbach’s alpha to an-
alyze the internal consistency of the data [25]. We performed an
analysis for each of the five dimensions for the six conditions. HR
and HRV-RMSSD yielded significant internal consistencies (HR:
a = .98; HRV-RMSSD: a = .98). As expected by the correlations,
the reliability for LHIPA was unacceptable (right eye: & = .36; left
eye: a = .31). Therefore the reliability criteria for LHIPA was not
met for H2 (MWL distinction) and H4 (PL distinction) and had
to be excluded from the analyses. The internal consistency of the
driving performance showed a Cronbach’s alpha of a = .33, which
is considered as unacceptable. Consequently, we excluded driving
performance for further analysis in the statistical testing [8, 78],
since the reliability criteria for driving performance was not met
for H3 and H4.

4.1.3  Effects of Mental Workload and Perceptual Load.

To test if the manipulation of the study for MWL and PL was
successful, we performed paired t-tests per secondary task. For the
n-back task, the performance rate (correct response - false positives
/ total number of possible correct responses) was used to indicate
effects of induced MWL per level. Participants were significantly
better at the easy condition (M = 0.96; SD = 0.07) compared to the
medium level (M = 0.85; SD = 0.15; t(42) = 4.72; p < .001) and
were significantly better at the medium level compared to the hard
level (M = 0.36; SD = 0.21; t(41) = 11.86; p < .001). For the visual
search task, we used the reaction time as a suitable indicator of
task performance. This was the case because the performance rate
was close to 100 % for most participants in all three levels (easy:
M =0.99,SD = 0.02; medium: M = 0.99, SD = 0.02; hard: M = 0.95;



Table 3: N-back multi-class average test accuracy and standard deviation (i.e., Mean%=Std). The random chance level is 33.33%.

All Features Eye & Drive ~ Heart & Eye = Heart & Drive ~ Heart alone
LDA 43779 36.3+2.8 42.2+9.0 43.7+ 6.4 43.7+7.2
Without
42.2+4.4 31.9+£9.0 459+ 7.6 43.0 +£9.8 40.0 +7.2
Ensemble
AdaBoost 38.5+£9.8 28.9 £10.6 43.0 £10.6 43.0+ 1.8 38.5+11.1
With Ensemble 489+ 4.9 37.0+7.8 42.2+5.5 45.9 +£10.1 489 +11.1

SD = 0.04). Participants reacted significantly faster in the easy level
(M = 1.29; SD = 0.16) compared to the medium level (M = 1.44;
SD = 0.18; t(44) = —10.28; p < .001) and significantly faster in the
medium level compared to the hard level (M = 1.75; SD = 0.22;
t(44) = —16.78; p < .001). This indicates that the manipulation
check was successful, and the levels were sufficiently different.
Additionally, we performed two separate MANOVAs to test the
effect of MWL and PL on HR and HRV-RMSSD individually. To test
H2 for differences in MWL levels across various physiological mea-
sures, we calculated a MANOVA with the n-back task levels for HR
and HRV-RMSSD. The n-back task yielded a highly significant effect
for HR and HR-RMSSD (Wilks—A = .409; F(4,40) = 14.45;p < .001;
1712, = .591). Both univariate ANOVAs showed a significant result
for HR (F(1.68,72.28) = 32.19; p < .001; 1712, = .428; Greenhouse-
Geisser corrected) and likewise for HRV-RMSSD (F(1.55, 66.48) =
19.50; p < .001; ryf, =.312; Greenhouse-Geisser corrected). Helmert
contrasts revealed that for HR and HRV-RMSSD, this effect is de-
rived from the difference between the easy level compared to the
medium and hard ones combined (HR: F(1, 43) = 47.46; p < .001;
n% = .525; HRV-RMSSD: F(1,43) = 24.35; p < .001; % = .362).
No significant effect was found between the medium level and
hard level, neither for HR (F(1,43) = 0.68; p = .413; nj, = .016)
nor for HRV-RMSSD (F(1,43) = 3.19; p = .081; 15 = .069). This
means that participants showed a lower heart rate in the easy level
compared to the medium and hard levels combined, while the HR
and HRV-RMSSD remained the same in the medium and hard load
levels as seen in Table 2. A second MANOVA was performed to
test H4 and analyze the influence of the different PL levels (set
sizes in the visual search task) on the HR and HRV-RMSSD. There
was a marginally non-significant effect for HR and HRV-RMSSD
(Wilks — A = .807; F(4,41) = 2.45; p = .062; r]f, =.193). There was
also a marginally non-significant result in the univariate analysis for
HR (F(1.74,76.67) = 3.27; p = .050; qf, = .069; Greenhouse-Geisser
corrected). Notably, the Helmert contrast for HR revealed that there
was a significant effect for the easy level compared to the medium
and hard ones in HR(F(1,44) = 10.39; p = .002; 7712, =.191), while
the medium level compared to the hard one was not significant
(F(1,44) < 0.01;p = .984; r]f, < .001). There was no univariate effect

in HRV-RMSSD for PL (F(1.77,77.96) = 1.03; p = .360; 13 = .023).

4.2 Machine Learning Results

In this section, we show the results of the machine learning analysis
using different learning models. As mentioned earlier, we compare
an ensemble-based prediction approach vs. a single-model, and
we test them using a 5-fold nested cross-validation approach. This

approach was implemented for the two secondary tasks: the n-back
task to estimate MWL level and the visual search task to estimate
PL level. Table 3 highlights the classification results of the n-back
task (i.e., MWL classification). It can be seen that using an ensemble
model approach is superior to the use of a single model approach for
all input feature types. This suggests high complexity in the input
features that are difficult to learn using a single model approach
for the multi-class classification use case. Moreover, it can be seen
that the model combining eye features (i.e., LHIPA) and driving
performance features alone (without the heart rate features) outputs
random chance accuracy. This is in line with the statistical analysis
which shows that both eye features and driving performance are
unreliable (according to the Cronbach’s alpha analysis). This can
also be seen when comparing the “all features” model with the
“heart data only” model as both have almost identical accuracy for
all the applied learning models.

Moreover, the statistical analysis also showed that only the 1-
back task (i.e., low load) is statistically significant with higher load
levels. This is also seen in Table 3 as the accuracy values are on av-
erage only 49% with a maximum of 63%. Therefore, a further binary
classification model was implemented to classify between the two
classes low load and medium load. Table 4 highlights the results for
this binary classification which also aligns with the statistical anal-
ysis. It shows that eye features and driving performance features
are performing only at a random chance level, while the heart rate
data has an average classification accuracy of 72.2%, up to 89% for a
single fold. Additionally, it can be seen that using ensemble models
is comparable to the use of a single model approach. This suggests
that the difference in heart rate features is more pronounced for
the binary classification approach compared to the multi-class one.
As for the visual search task (i.e., PL classification), all the machine
learning models resulted in random chance accuracy. This result
also aligns with the statistical analysis that shows minor statistical
significance, although the manipulation check was successful. This
would suggest that while the visual search difficulty levels were
comparable to each other, they had a small effect on the selected
psychophysiological dimensions. Similar to the MWL classification,
a binary classification approach was attempted. However, it did not
improve the accuracy values compared to the multi-class approach.

5 DISCUSSION AND LIMITATIONS

5.1 User-Centered Design Implications

This study aims to evaluate the sensitivity of differing psychophys-
iological dimensions for MWL and PL as well as to build a pre-
dictive classification model that differentiates between different



Table 4: N-back binary-class average test accuracy and standard deviation (i.e., Mean%=+Std). The random chance level is 50%.

All Features Eye & Drive ~ Heart & Eye =~ Heart & Drive ~ Heart Alone
LDA 66.7 + 11.7 58.9+£10.3 70.4 +10.4 68.9+9.0 66.7 + 6.1
Without
72.2+7.9 54.4+8.2 61.4+9.3 70.0 £ 10.9 62.2+4.2
Ensemble —
AdaBoost 733+54 48.9 £ 8.9 67.9 £13.5 65.6 £5.4 72.2+7.9
With Ensemble 70.0 9.7 53.3+10.9 69.0 + 10.8 70.0 +10.3 70.0+12.0

levels of MWL and PL. Our framework uses minimally invasive
and widely used psychophysiological measurements that exist in
modern cars [2, 47, 98] to classify MWL and PL levels towards
a user-centered design approach that accommodates the driver’s
mental capacities. We mimic the driver’s interaction with the vehi-
cle’s interface while driving through the auditory n-back task and
the visual search task, which are equivalent to a speech-based and
a touch-based interaction respectively. While our work focuses on
this general dual task approach of manipulating an interface while
driving, it is also applicable to more specific applications such as
transfer-of-control scenarios for automated and semi-automated
vehicles [79]; simplified interfaces, or personalized warnings for
mentally exhausting situations [88]; and increasing the user’s trust
through system awareness and transparency [44]. Thus, an adaptive
personalized interface observant of the driver’s mental capacities
can be implemented. For example, high MWL and PL classification
can be utilized to simplify the interaction approach with the in-
vehicle HMI while driving [88], or to alert the user to stop driving
entirely if needed until mental or perceptual “cool-down”. Finally,
while the n-back task is widely used to control MWL levels in the
driving context [4, 70-72, 90, 92], it is limited in regards to con-
struct, concurrent, and ecological validity [49, 51]. Therefore, future
studies could investigate other MWL-inducing forms such as traffic
or road manipulation [29, 83].

5.2 Sensitivity of Psychophysiological
Measurements

We found a significant correlation between heart rate and heart rate
variability, indicating a convergent validity for heart features. The
analysis of the performance measures of the two secondary tasks
revealed that the manipulation of three load levels resulted in three
difficulty levels each. For the n-back task, there was a significant
effect of MWL on the psychophysiological dimensions. This was
the case for HR and HRV between the low load and the higher
ones. The visual search task showed a non-significant effect for PL
for the same dimensions. However, in follow-up tests, there was
a significant effect for HR only between the low level and above
for PL. Similarly, our classification model was able to differentiate
between the low MWL (i.e., 1-back task) and the higher ones (i.e., 2
and 3-back tasks), aligning with the statistical analyses. However,
it was not able to differentiate between the medium and high MWL
levels. Next, we further discuss our interpretation and reasoning
for these results, as well as the hypotheses.

5.3 Empirical Hypotheses

H1 expects to find meaningful correlations between the psychophys-
iological measurements, since they all relate to MWL [27, 65, 96].
However, these correlations should be higher for the same measure-
ment type than for different measurement types (i.e., convergent vs.
discriminant validity). Since there was only one negative significant
correlation between HR and HRYV, the convergent validity for heart
features is fulfilled [69]. However, there was no significant correla-
tion between the heart features and the eye features, as well as no
significant correlation between the eye features among themselves.
Besides, the reliability of LHIPA for both eyes was unacceptably low.
While ICA shows significant correlations with heart rate dimension
in previous studies [69], LHIPA (a non-patented alternative) fails to
do so in our study. This could perhaps be due to light variations as
LHIPA is still not thoroughly tested for light invariance and needs
further investigation as mentioned by the authors [27]. Moreover,
while LHIPA was tested on several controlled environments, it was
applied to a much less controlled one in our study (e.g., extreme
light variance, head movements, eye movements).

H2 states that the psychophysiological dimensions should show
differences in MWL. Due to LHIPA’s unreliability, we were able to
analyze this hypothesis for heart features only. Both HR and HRV
showed significant effects for MWL and were able to distinguish
between the low load level compared to higher ones; however, an
effect between medium and high load levels could not be identified.
While Mehler et al. [70] were able to identify differences for MWL
on three load levels (for heart rate using a similar setup), they used
a 0-, 1-, and 2-back task as manipulation in contrast to our study
that utilized a 1-, 2-, and 3-back task due to our interest in extremely
high load levels. Thus, we hypothesize that in our study, the driver’s
MWL reached a level of mental saturation such that its effect can
no longer be seen in the psychophysiological dimensions for higher
load levels [103, 104].

H3 states that MWL affects driving performance in the LCT. This
hypothesis could not be tested, because the reliability of the driving
performance did not meet the minimum acceptable requirements.
This could be due to the measured deviation from the reference
ideal route not being pronounced enough, or the effect of the mental
distraction being just momentary and thus masked in the averaging
process. As for H4, it relates to the PL effect. For the same previously
mentioned reasons, this hypothesis could not be analyzed for the
driving performance. As for the psychophysiological measurements,
the statistical analysis revealed that there is a non-significant effect
for the heart features. However, this does not necessarily mean that
PL does not influence psychophysiological data. Previous studies
showed that other psychophysiological measures (e.g., eye features)



can be influenced by the PL of a task [20, 81]. Since we measured
the effects of HR and HRV in a dual task scenario, it could be that
having to perform a PL task as a secondary task compared to a single
task is already load-inducing for HR and HRV. Therefore, these
dimensions are more affected by the difference between driving
without a secondary task and driving while using an HMI [89].
Despite that, we found a highly significant effect for mean heart
rate when comparing low and higher PL levels (with a high effect
size). This might suggest that mean heart rate is affected by PL,
especially in lower PL levels. However, since there is a lack of
studies analyzing PL effects on heart data, it should also be further
investigated in future studies.

Finally, participants’ demographics were limited in our study.
Drivers were relatively young (30.07 mean age) and experienced
(10.20 mean driving years). This might have a different effect on
their MWL, PL and driving performance compared to older and
less experienced drivers [16, 42, 83].

6 CONCLUSION AND FUTURE WORK

Driving remains a complex task that is performed by hundreds of
millions of people every day. With the increase in the number of
distractors in a car, more personalized and adaptive in-vehicle inter-
faces are needed. In this paper, we have shown possible approaches
to analyze mental and perceptual loads as well as classifying their
elevated levels. Elevated load estimation is quite important in an-
ticipating a driver’s distraction level, fatigue, stress, and inatten-
tiveness. In our analysis, we were able to show a high correlation
between heart rate data and elevation in mental workload. We
propose a machine learning based framework for workload level
classification through non-intrusive real-time measurements that
is technologically ready for use in terms of deployment and ap-
plicability. Moreover, our work highlights a potential for further
investigation of important factors in driver distraction and cognitive
resource management.
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CORRELATION MATRICES

This appendix shows intra- and inter-correlation matrices for the
psychophysiological dimensions. Table 5 shows the intra-correlations
between the left and right eye features (i.e., LHIPA) per secondary
task per load level while Table 6 shows the similar intra-correlations
calculations for the heart features (i.e., HR and HRV-RMSSD). Fi-
nally, Table 7 shows the inter-correlations across these two psy-
chophysiological dimensions.
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Table 5: Pearson’s correlation between eye features (i.e., LHIPA calculation of the right eye and the left eye) per mental work-
load level for the n-back task and per perceptual load level for the visual search task. (*) highlights a correlation with p < .05
and (**) highlights a correlation with p < .001.

N-Back Visual Search
LHIPA Right Eye LHIPA Left Eye LHIPA Right Eye LHIPA Left Eye
LL ML HL LL ML HL LL ML HL LL ML HL
LL 1
LHIPA Right Eye ML 0268 1
HL 0.075 0.601** 1
N-Back
LL 0.754** 0.080 -0.118 1
LHIPA Left Eye ML -0.120 0.268 0.051 0.162 1
HL -0.207 0.184 0.295 -0.009 0.471** 1
LL  -0.027 -0.101 0.222 0.053  0.022 0.126 1
LHIPA Right Eye ML -0.054 -0.024 0.182 0.098  0.125 -0.025 -0.021 1
HL 0.066 -0.075 -0.140 0.136  0.262 0.066 0.052 0.436** 1
Visual Search
LL 0.251 0.351* 0.157 0.231 0.191 0.020 -0.179 0.063 -0.004 1
LHIPA Left Eye ML -0.247 -0.249 -0.246 -0.215 -0.029 0.129 -0.466** 0.185 -0.018 -0.193 1
HL 0.016 0.178 0.045 0.081 -0.009 -0.004 -0.306* -0.031 -0.009 0.371* 0.231 1

Table 6: Pearson’s correlation between heart rate features (i.e., HR and HRV-RMSSD) per mental workload level for the n-back
task and per perceptual load level for the visual search task. () highlights a correlation with p < .05 and (**) highlights a

correlation with p < .001.

N-Back Visual Search
HRV-RMSSD HR HRV-RMSSD HR
LL ML HL LL ML HL LL ML HL LL ML HL
LL 1
HRV-RMSSD ML 0.875** 1
HL 0.891** 0.936™" 1
N-Back
LL -0.524** -0.519** -0.602** 1
HR ML -0.468** -0.529** -0.594** 0.942** 1
HL -0.445"* -0.496** -0.602** 0.921** 0.963** 1
LL 0.936** 0.825** 0.841** -0.461** -0.411** -0.394** 1
HRV-RMSSD ML 0.888** 0.918** 0.906** -0.505**  -0.474** -0.464** 0.901** 1
HL 0.923** 0.840** 0.850** -0.488**  -0.474** -0.434** 0.919** 0.852** 1
Visual Search
LL -0.510* -0.488"* -0.565"* 0.941**  0.907**  0.884** -0.511**  -0.511** -0.511** 1
HR ML -0.427** -0.438** -0.523** 0.934** 0.889** 0.887** -0.430** -0.485** -0.411** 0.960"* 1
HL -0.474"* -0.456** -0.549** 0.909** 0.904** 0.889** -0.462**  -0.492** -0.527** 0.954** 0.930** 1




Table 7: Pearson’s correlation between heart rate features (i.e., HR and HRV-RMSSD) and eye features (i.e., LHIPA calculation
of the right eye and the left eye) per mental workload level for the n-back task and per perceptual load level for the visual
search task. (*) highlights a correlation with p < .05 and (**) highlights a correlation with p < .001.

N-Back Visual Search
HRV-RMSSD HR HRV-RMSSD HR
LL ML HL LL ML HL LL ML HL LL ML HL

LL 0.114 0.087 0.009 0.169 0.208 0.242 0.235 0.242 0.123 0.095 0.109 0.111
LHIPA Right Eye ML 0.178 0.142 0.123 0.171 0.166 0.166 0.149 0.132 0.181 0.208 0.188 0.157

HL 0.201 0.187 0.157 0.086 0.103 0.063 0.172  0.158 0.160 0.148 0.100 0.161

N-Back

LL 0.161 0.167 0.125 0.055 0.117 0.148 0.287 0.336 0.173 0.045 0.085 0.067
LHIPA Left Eye ML  0.056 0.067 0.098 -0.381* -0.362* -0.324" 0.016 0.080 0.035 -0.278 -0.278 -0.290

HL -0.230 -0.218 -0.172 0.092 0.113 0.051 -0.183 -0.201  -0.220 0.154 0.139 0.166

LL -0.13¢ -0.160 -0.128 0.035 0.035 0.017 -0.152 -0.184 -0.160 0.146 0.068 0.112
LHIPA Right Eye ML 0.322* 0.328* 0.357* -0.381* -0.306" -0.337* 0.230  0.353* 0.264 -0.263 -0.283 -0.293

HL -0.058 -0.138 -0.116 -0.226 -0.236 -0.232 -0.064 -0.115 -0.080 -0.221 -0.172 -0.233

Visual Search

LL 0.084 0.053 -0.012 0.060 0.150 0.201 0.159  0.101 0.127 0.026 0.015 0.055

LHIPA Left Eye ML 0.112 0.135 0.209 -0.314* -0.310* -0.364* 0.101 0.135 0.066 -0.399** -0.368* -0.355"

HL 0.215 0.247 0.221 -0.050 -0.089 -0.108 0.253  0.282 0.187 -0.104 -0.068 -0.063
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