
WHAT: An XSLT-based Infrastructure for the Integration of Natural
Language Processing Components

Ulrich Schäfer
Language Technology Lab, German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
Ulrich.Schaefer@dfki.de

Abstract

The idea of the Whiteboard project is to integrate
deep and shallow natural language processing
components in order to benefit from their synergy.
The project came up with the first fully integrated
hybrid system consisting of a fast HPSG parser that
utilizes tokenization, PoS, morphology, lexical,
named entity, phrase chunk and (for German)
topological sentence field analyses from shallow
components. This integration increases robustness,
directs the search space and hence reduces
processing time of the deep parser. In this paper, we
focus on one of the central integration facilities, the
XSLT-based Whiteboard Annotation Transformer
(WHAT), report on the benefits of XSLT-based
NLP component integration, and present examples
of XSL transformation of shallow and deep
annotations used in the integrated architecture. The
infrastructure is open, portable and well suited for,
but not restricted to the development of hybrid NLP
architectures as well as NLP applications.

1 Introduction

During the last decade, SGML and XML have become
an important interchange format for linguistic data, be
they created manually by linguists, or automatically by
natural language processing (NLP) components.
LT-XML (Brew et al. 2000), XCES (Ide and Romary
2001) and many other are examples for XML-based or
XML-supporting software architectures for natural
language processing.
The main focus of the Whiteboard project (2000-2002)
was to integrate shallow and deep natural language
processing components. The idea was to combine both
in order to benefit from their advantages. Successful and
beneficial integration included tokenization, PoS,
morphology, lexical, named entity, phrase chunk and
(for German) topological sentence field levels in a fully
automated XML-based system. Crysmann et al. (2002)
and Frank et al. (2003) show that this close deep-
shallow combination significantly increases robustness
and performance compared to the (already fast)
standalone deep HPSG parser by Callmeier (2000). The

only comparable architecture so far was described by
Grover et al. (2002), but their integration was limited to
tokenization and PoS tagging (the shallow chunker did
not guide or contribute to deep analysis).
In this paper, we will focus on one of the central
integration facilities, the XSLT-based Whiteboard
Annotation Transformer (WHAT), report on the
benefits of XSLT-based NLP component integration,
and present examples of XSL transformation of shallow
and deep annotations used in the integrated architecture.
Because the infrastructure is in general independent of
deep or shallow paradigms, it can also be applied to
purely shallow or deep systems.

2 Whiteboard: Deep-Shallow Integration

Deep processing (DNLP) systems1 try to apply as much
linguistic knowledge as possible during the analysis of
sentences and result in a uniformly represented
collection of the knowledge that contributed to the
analysis. The result often consists of many possible
analyses per sentence reflecting the uncertainty which
of the possible readings was intended – or no answer at
all if the linguistic knowledge was contradictory or
insufficient with respect to the input sentence.
Shallow processing (SNLP) systems do not attempt to
achieve such an exhaustive linguistic analysis. They are
desigend for specific tasks ignoring many details in
input and linguistic framework. Utilizing rule-based
(e.g., finite-state) or statistics-based approaches, they
are in general much faster than DNLP. Due to the lack
of efficiency and robustness of DNLP systems, the trend
in application-oriented language processing system
development in the last years was to improve SNLP
systems. They are now capable of analyzing Megabytes
of texts within seconds, but precision and quality
barriers are so obvious (especially on domains the
systems where not designed for or trained on) that a
need for 'deeper' systems re-emerged. Moreover,

1 In this paper, 'deep' is nearly synonymous to typed
unification-based grammar formalisms, e.g. HPSG
(Pollard and Sag 1994), although the infrastructure may
also apply to other deep linguistic frameworks.

 Edmonton, May-June 2003
 of Language Technology Systems , pp. 9-16
 HLT-NAACL 2003 Workshop: Software Engineering and Architecture

semantics construction from an input sentence is quite
poor and erroneous in typical shallow systems.
But also development of DNLP made advances during
the last few years, especially in the field of efficiency
(Callmeier 2000).
A promising solution to improve quality of natural
language processing is the combination of deep and
shallow technologies. Deep processing benefits from
specialized and fast shallow analysis results, shallow
processing becomes 'deeper' using at least partial results
from DNLP.
Many natural language processing applications could
benefit from the synergy of the combination of deep and
shallow, e.g. advanced information extraction, question
answering, or grammar checking systems.
The Whiteboard architecture aims at integrating
different language technology components. Both online
and offline coupling of existing software modules is
supported, i.e., the architecture provides direct access to
standoff XML annotation as well as programming
interfaces. Applications communicate with the
components through programming interfaces. A multi-
layer chart holds the linguistic processing results in the
online system memory while XML annotations can be
accessed online as well as offline. Figure 1 gives an
overview of the general architecture called WHAM
(WHiteboard Annotation Machine).
There are two main points of the architecture that are
important to stress. First, the different paradigms of
DNLP and SNLP are preserved throughout the
architecture, e.g. there is a shallow and a deep

programming interface.
The second point is that the WHAM offers
programming interfaces which are not simply DOM
interfaces isomorphic to the XML markup they are
based on, but hierarchically defined classes. E.g., a fast
index-sequential storage and retrieval mechanism based
on XML is encapsulated through the shallow
programming interface. However, while the typed
feature structure-based programming interface to deep

components is stable, it turned out that the XML-based
interface was too inflexible when new, mainly shallow,
components with new DTDs had to be integrated.
Therefore, a more flexible approach had to be devised.

3 WHAT: The Whiteboard Annotation
Transformer

The main motivation for developing an XSLT-based
infrastructure for NLP components was to provide
flexible access to standoff XML annotations produced
by the components.
XSLT (Clark 1999) is a W3C standard language for the
transformation of XML documents. Input of an XSL
transformation must be XML, while output can be any
syntax (e.g., XML, text, HTML, RTF, or even
programming language source code, etc.). The power of
XSLT mainly comes from its sublanguage XPath (Clark
and DeRose 1999), which supports access to XML
structure, elements, attributes and text through concise
path expressions. An XSL stylesheet consists of
templates with XPath expressions that must match the
input document in order to be executed. The order in
which templates are called is by default top-down, left
to right, but can be modified, augmented, or suppressed
through loops, conditionals, and recursive call of
(named) templates.
WHAT, the WHiteboard Annotation Transformer, is
built on top of a standard XSL transformation engine. It
provides uniform access to standoff annotation through
queries that can either be used from non-XML aware
components to get access to information stored in the
annotation (V and N queries), or to transform (modify,
enrich, merge) XML annotation documents (D queries).

While the WHAT is written in a programming language
such as Java or C, the XSL query templates that are
specific for a standoff DTD of a component's XML
output are independent of that programming language,
i.e., they must only be written once for a new

XML
standoff
markup

component-
specific XSLT

template library

constructed
XSLT

stylesheet

query

result

XSLT
processor

WHAT

Figure 1: Whiteboard Architecture: WHAM

Figure 2: WHAT Architecture

deep NLP
components

program-
ming

interface

shallow
NLP

components
XML

standoff
annotation

multilayer
chart

NLP-based
application

WHAT

WHAM

component and are collected in a so-called template
library.

3.1 WHAT Queries

Based on an input XML document (or DOM object), a
WHAT query that consists of

• component name,
• query name, and
• query-specific parameters such as an index or

identifier
is looked up in the XSLT template library for the
specified component, an XSLT stylesheet is returned
and applied to the XML document by the XSLT
processor. The result of stylesheet application is then
returned as the answer to the WHAT query. There are
basically three kinds of results:

• strings (including non-XML output, e.g. RTF or
even programming language source code)

• lists of unique identifiers denoting references to
nodes in the XML input document

• XML documents
In other words, if we formulate queries as functions, we
get the following query signatures:

• getValue: C× D × P* → S*
• getNodes: C× D × P* → N*
• getDocument: C× D × P* → D

where C is the component, D an XML document, P* a
(possibly empty) sequence of parameters, S* a sequence
of strings, and N* a sequence of node identifiers.
We now give examples for each of the query types.

3.1.1 V-queries (getValue)

V-queries return string values from XML attribute
values or text. The simplest case is a single XPath
lookup. As an example, we determine the type of named
entity 23 in a shallow XML annotation produced by the
SPPC system (Piskorski and Neumann 2000).
The WHAT query
getValue("NE.type", "de.dfki.lt.sppc", 23)

would lead to the lookup of the following query in the
XSLT template library for SPPC

<query name="getValue.NE.type" component="de.dfki.lt.sppc">
<!-- returns the type of named entity as number -->
<xsl:param name="index"/>
<xsl:template match="/WHITEBOARD/SPPC_XML//NE[@id=$index]">

<xsl:value-of select="@type"/>
</xsl:template>

</query>

On appropriate SPPC XML annotation, containing the
named entity tag e.g. <NE id="23"

type="location"…> somewhere below the root tag,
this query would return the String"location" .
By adding a subsequent lookup to a translation table
(through XML entity definitions or as part of the input
document or of the component-specific template

library), it would also be possible to translate namings,
e.g. in order to map SPPC-annotation-specific namings
to HPSG type names.
We see from this example how the WHAT helps to
abstract from component-specific DTD structure and
namings. However, queries need not be that simple.
Complex computations can be performed and the return
value can also be numbers, e.g., for queries that count
elements, words, etc.

3.1.2 N-queries (getNodes)

An important feature of WHAT is navigation in the
annotation. N-queries compute and return lists of node
identifiers that can again be used as parameters for
subsequent (e.g. V-)queries.
The sample query returns the node identifiers of all
named entities (NE tags) that are in the given range of
tokens (W tags). The template calls a recursive auxiliary
template that seeks the next named entity until the end
of the range is reached. The WHAT query
getNodes("W.NEinRange", "de.dfki.lt.sppc",3,19)

would lead to the lookup of the following query in the
XSLT template library for SPPC.

<query name="getNodes.W.NEinRange" compon.="de.dfki.lt.sppc">
<!-- returns NE nodes starting exactly at token $index to

(at most) token $index2 -->
<xsl:param name="index"/> <xsl:param name="index2"/>
<xsl:template match="/">

<xsl:variable name="startX"
select="/WHITEBOARD/SPPC_XML//W[@id=$index]/ancestor::NE"/>

<xsl:if test="$startX//W[1]/@id = $index">
<xsl:call-template name="checknextX">

<xsl:with-param name="nextX" select="$startX"/>
<xsl:with-param name="lastW" select="$index2"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
<xsl:template name="checknextX">

<!-- auxiliary template (recursive) -->
<xsl:param name="nextX"/>
<xsl:param name="lastW"/>
<xsl:variable name="Xtokens" select="$nextX//W"/>
<xsl:if test="number(substring($Xtokens[last()]/@id, 2))

<= number(substring($lastW, 2))">
<xsl:value-of select="$nextX/@id"/>
<xsl:text> </xsl:text>
<xsl:call-template name="checknextX">

<xsl:with-param name="nextX"
select="/WHITEBOARD/SPPC_XML//NE[@id=concat('N', string(1 +
number(substring($nextX/@id,2))))]"/>

<xsl:with-param name="lastW" select="$lastW"/>
</xsl:call-template>

</xsl:if>
</xsl:template>

</query>

Again, the query forms an abstraction from DTD
structure. E.g., in SPPC XML output, named entity
elements enclose token elements. This need not be the
case for another shallow component; its template would
be defined differently, but the query call syntax would
be the same.

3.1.3 D-queries (getDocument)

D-queries return transformed XML documents - this is
the classical, general use of XSLT. Complex
transformations that modify, enrich or produce

(standoff) annotation can be used for many purposes.
Examples are

• conversion from a different XML format
• merging of several XML documents into one
• auxiliary document modifications, e.g. to add

unique identifiers to elements, sort elements etc.
• providing interface to NLP applications (up to

code generation for a programming language
compiler…)

• visualization and formatting (Thistle, HTML,
PDF, …)

• perhaps the most important is to do (linguistic)
computation and transformation in order to turn a
WHAT query into a kind of NLP component
itself. This is e.g. intensively used in the shallow
topological field parser integration we describe
below. Multiple queries are applied in a sequence
to transform a topological field tree into a list of
constraints over syntactic spans that are used for
initialization of the deep parser's chart. One of
these WHAT queries has more than 900 lines of
XSLT code.

We can show only a short example here, a query that
inserts unique identifier attributes into an arbitrary XML
document without id attributes.

<query name="getDocument.generateIDs">
<!-- generate unique id for each element -->
<xsl:template match="*">

<xsl:copy select=".">
<xsl:attribute name="id">

<xsl:value-of select="generate-id()"/>
</xsl:attribute>
<xsl:for-each select="@*">

<xsl:copy-of select="."/>
</xsl:for-each>
<xsl:apply-templates/>

</xsl:copy>
/xsl:template>

</query>

Note that this is an example for a stylesheet that is
completely independent of a DTD, it just works on any
XML document – and thus shows how generic XSL
transformation rules can be.
Another example is transformation of XML tree
representations into Thistle trees (arbora DTD; see
Calder 2000). While the output DTD is fixed, this is
again not true for the input document which can contain
arbitrary element names and branches. Thistle
visualizations generated through WHAT are shown in
Fig. 4, 5 and 6 below.

3.2 Components of the Hybrid System

The WHAT has been successfully used in the
Whiteboard architecture for online analysis of German
newspaper sentences. For more details on motivation
and evaluation cf. Frank et al. (2003) and Becker and
Frank (2002). The simplified diagram in Figure 3
depicts the components and places where WHAT comes
into play in the hybrid integration of deep and shallow

processing components (V, N, D denote the WHAT
query types). The system takes an input sentence, and
runs three shallow systems on it:

• the rule-based shallow SPPC (Piskorski and
Neumann 2000) for named entity recognition,

• TnT/Chunkie, a statistics-based shallow PoS
tagger and chunker by (Skut and Brants 1998),

• LoPar, a probabilistic context-free parser (Schmid
2000), which takes PoS-tagged tokens as input,
and produces binary tree representations of
sentence fields, e.g., topo.bin in Fig. 4. For a
justification for binary vs. flat trees cf. Becker and
Frank (2002).

The results of the components are three standoff
annotations of the input sentence. Then, a sequence of
D-queries is applied to flatten the binary topological
field trees (result is topo.flat, Fig. 5), merge with
shallow chunk information from Chunkie (topo.chunks,
Fig. 6), and apply the main D-query computing bracket
information for the deep parser from the merged topo
tree (topo.brackets, Fig. 7).
Finally, the deep parser PET (Callmeier 2000), modified
as described in Frank et al. (2003), is started with a
chart initialized using the shallow bracket information
(topo.brackets) through WHAT V and N queries. PET
also accesses lexical and named entity information from
SPPC through V queries.

input sentence

SPPC TnT

LoPar Chunkie

topo.bin

topo.flat

topo.brackets

topo.chunks

PET

D

D

D

D

V, N

WHAT-based application

D,V,N

Figure 3: WHAT in the hybrid parser

Again, WHAT abstraction facilitates exchange of the
shallow input components of PET without needing to
rewrite the parser's code.
The dashed lines in Figure 3 indicate that a WHAT-
based application can have access to the standoff
annotation through D, V or N queries.
The Thistle diagrams below are created via D queries
out of the intermediate topo.* trees.

Figure 4. A binary tree as result of the topoparser
(topo.bin).

Figure 5. The same tree after flattening (topo.flat).

Figure 6. The topo tree merged with chunks
(topo.chunks).

<TOPO2HPSG type="root" id="5608">
<MAP_CONSTR id="T1" constr="v2_cp" left="W1" right="W13"/>
<MAP_CONSTR id="T2" constr="v2_vf" left="W1" right="W2"/>
<MAP_CONSTR id="T3" constr="vfronted_vfin+rk" left="W3" right="W3"/>
<MAP_CONSTR id="T4" constr="vfronted_vfin+vp+rk" left="W3" right="W13"/>
<MAP_CONSTR id="T5" constr="vfronted_vp+rk" left="W4" right="W13"/>
<MAP_CONSTR id="T6" constr="vfronted_rk-complex" left="W7" right="W7"/>
<MAP_CONSTR id="T7" constr="vl_cpfin_compl" left="W9" right="W13"/>
<MAP_CONSTR id="T8" constr="vl_compl_vp" left="W10" right="W13"/>
<MAP_CONSTR id="T9" constr="vl_rk_fin+complex+f" left="W12" right="W13"/>
<MAP_CONSTR id="T10" constr="extrapos_rk+nf" left="W7" right="W13"/>

</TOPO2HPSG>

Figure 7. The extracted brackets (topo.brackets)

3.3 Accessing and Transforming Deep
Annotation

In the sections so far, we showed examples for shallow
XML annotation. But annotation access should not stop
before deep analysis results. In this section, we turn to
deep XML annotation. Typed feature structures provide
a powerful, universal representation for deep linguistic
knowledge.
While it is in general inefficient to use XML markup to
represent typed feature structures during processing
(e.g. for unification, subsumption operations), there are
several applications that may benefit from a
standardized system-independent XML markup of typed
feature structures, e.g., as exchange format for

• deep NLP component results (e.g. parser chart)
• grammar definitions
• feature structure visualization or editing tools
• feature structure 'tree banks' of analysed texts

Sailer and Richter (2001) propose an XML markup
where the recursive embedding of attribute-value pairs
is decomposed into a kind of definite equivalences or
non-recursive node lists (triples of node ID, type name
and embedded lists of attribute-node pairs). The only
advantage we see for this kind of representation is its
proximity to a particular kind of feature structure
implementation.
We adopt an SGML markup for typed feature
structures originally developed by the Text Encoding
Initiative (TEI) which is very compact and seems to be
widely accepted, e.g. also in the Tree Adjoining
Grammar community (Issac 1998). Langendoen and
Simons (1995) give an in-depth justification for the
naming and structure of a feature structure DTD. We
will focus here on the feature structure DTD subset that
is able to encode the basic data structures of deep
systems such as LKB (Copestake 1999), PET
(Callmeier 2000), PAGE, or the shallow system
SProUT (Becker et al. 2002) which have a subset of
TDL (Krieger and Schäfer 1994) as their common basic
formalism2:

<?xml version="1.0" ?>
<!-- minimal typed feature structure DTD -->
<!ELEMENT FS (F*) >
<!ATTLIST FS type NMTOKEN #IMPLIED

coref NMTOKEN #IMPLIED >
<!ELEMENT F (FS) >
<!ATTLIST F name NMTOKEN #REQUIRED >

The FS tag encodes typed Feature Structure nodes, F
encodes Features. Atoms are encoded as typed Feature
structure nodes with empty feature list. An important

2 Encoding of type hierarchies or other possibly system
or formalism-specific definitions are of course not
covered by this minimal DTD.

point is the encoding of coreferences (reentrancies)
between feature structure nodes which denote structure
sharing. For the sake of symmetry in the
representation/DTD, we do not declare the coref
attribute as ID/IDREF, but as NMTOKEN.
An application of WHAT access or transformation of
deep annotation would be to specifiy a feature path
under which a value (type, atom, or complex FS) is to
be returned. The problem here are the coreferences
which must be dereferenced at every feature level of the
path. A general solution is to recursively dereference all
nodes in the path.
We give only a limited example here, a query to access
output of the SProUT system. It returns the value (type)
of a feature somewhere under the specified attribute in a
disjunction of typed feature structures, assuming that we
are not interested here in structure sharing between
complex values.

<query name="getValue.fs.attr" component="de.dfki.lt.sprout">
<xsl:param name="disj"/>
<xsl:param name="attr"/>

<xsl:template match='DISJ[$disj]'>
<xsl:variable name="node" select='.//F[@name=$attr]/FS'/>

<xsl:choose>
<xsl:when test="$node/@type">

<xsl:value-of select="$node/@type"/>
</xsl:when>
<xsl:otherwise>

<xsl:if test="$node/@coref">
<xsl:call-template name="deref">

<xsl:with-param name="coref"
select="$node/@coref"/>

</xsl:call-template>
</xsl:if>

</xsl:otherwise>
</xsl:choose>

<xsl:apply-templates/>
</xsl:template>

<xsl:template name="deref">
<xsl:param name="coref"/>
<xsl:for-each select=".//FS[@coref=$coref]">

<xsl:if test='@type'>
<xsl:value-of select="@type"/>

</xsl:if>
</xsl:for-each>

</xsl:template>
</query>

To complete the picture of abstraction through WHAT
queries, we can imagine that the same types of query are
possible to access e.g. the same morphology
information in both shallow and in deep annotation,
although their representation within the annotation
might be totally different.

3.4 Efficiency of XSLT Processors

Processing speed of current XSLT engines on large
input documents is a problem. Many XSLT
implementations lack efficiency (for an overview cf.
xmlbench.sourceforge.net). Although optimization is
possible (e.g. through DTD specification, indexing etc.),
this is not done seriously in many implementations.
However, there are several WHAT-specific solutions
that can help making queries faster. A pragmatic one is
pre-editing of large annotation files. An HPSG parser
e.g. focuses on one sentence at a time and does not

exceed the sentence boundaries (which can be
determined reliably by shallow methods) so that it
suffices to split shallow XML input into per-sentence
annotations in order to reduce processing time to a
reasonable amount.
Another solution could be packing several independent
queries into a 'prepared statement' in one stylesheet.
However, as processing speed is mainly determined by
the size of the input document, this does not speed up
processing time substantially.
WHAT implementations are free to be based on DOM
trees or plain XML text input (strings or streams). DOM
tree representations are used by XSLT implementations
such als libxml/libslt for C/Perl/Python/TCL or Xalan
for Java. Hence, DOM implementations of WHAT are
preferable in order to avoid unnecessary XML parsing
when processing multiple WHAT transformations on
the same input and thus help to improve processing
speed.
As in all programming language, there a multiple
solutions for a problem. An XSL profiling tool (e.g.
xsltprofiler.org) can help to locate inefficient XSLT
code.

3.5 Related Work

As argued in Thompson and McKelvie (1997), standoff
annotation is a viable solution in order to cope with the
combination of multiple overlapping hierarchies and the
efficiency problem of XML tree modification for large
annotations.
Ide (2000) gives an overview of NLP-related XML core
technologies that also strives XSLT.
We adopt the pragmatic view of Carletta et al. (2002),
who see that computational linguistics greatly benefits
from general XMLification, namely by getting for free
standards and advanced technologies for storing and
manipulating XML annotation, mainly through W3C
and various open source projects. The trade-off for this
benefit is a representation language somewhat limited
with respect to linguistic expressivity.
NiteQL (Evert and Voormann 2002) can be seen as an
extension to XPath within XSLT, has a more concise
syntax especially for document structure-related
expressions and a focus on timeline support with
specialized queries (for speech annotation). The query
language in general does not add expressive power to
XSLT and the implementation currently only supports
Java XSLT engines.
Because of unstable standardization and implementation
status, we did not yet make use of XQuery (Boag et al.
2002). XQuery is a powerful, SQL-like query language
on XML documents where XPath is a subset rather than
a sublanguage as in XSLT.

3.6 Advantages of WHAT

WHAT is
• based on standard W3C technology (XSLT)
• portable. As the programming language-specific

wrapper code is relatively small, WHAT can
easily be ported to any programming language for
which an XSLT engine exists. Currently, WHAT
is implemented in Java (JAXP/Xalan) and C/C++
(Gnome libxml/libxslt). Through libxml/libxslt, it
can also easily be ported to Perl, Python, Tcl and
other languages

• easy to extend to new components/DTDs. This
has to be done only once for a component through
XSLT query library definitions, and access will be
available immediately in all programming
languages for which a WHAT implementation
exists

• powerful (mainly through XPath which is part of
XSLT).

WHAT can be used
• to perform computations and complex

transformations on XML annotation,
• as uniform access to abstract from component-

specific namings and DTD structure, and
• to exchange results between components (e.g., to

give non-XML-aware components access to
information encoded XML annotation),

• to define application-specific architectures for
online and offline processing of NLP XML
annotation.

4 Conclusion and Future Work

We have presented an open, flexible and powerful
infrastructure based on standard W3C technology for
the online and offline combination of natural language
processing components, with a focus on, but not limited
to, hybrid deep and shallow architectures.
The infrastructure is part of the Whiteboard architecture
and is employed and will be continued in several
successor projects. The infrastructure is well suited for
rapid prototyping of hybrid NLP architectures as well as
for developing NLP applications, and can be used to
both access NLP XML markup from programming
languages and to compute or transform it.
Because WHAT is an open framework, it is worth
considering XQuery as a future extension to WHAT.
Which engine to ask, an XSLT or an XQuery processor,
could be coded in each <query> element of the WHAT
template library.
WHAT can be used to translate to the ingenious Thistle
tool (Calder 2000) for visualization of linguistic

analyses and back from Thistle in editor mode, e.g. for
manual, graphical correction of automatically annotated
texts for training etc.
A proximate approach is to combine WHAT with SDL
(Krieger 2003) to declaratively specify WHAT-based
NLP architectures (pipelines, loops, parallel
transformation) that can be compiled to Java code.
The proximity to W3C standards suggests using WHAT
directly for transformation of NLP results into
application-oriented (W3C) markup, or to use W3C
markup (e.g. RDF) for semantic web integration in
NLP, VoiceXML, etc.

5 Acknowledgements

I would like to thank my collegues, especially Anette
Frank, Bernd Kiefer, Hans-Ulrich Krieger and Günter
Neumann, for cooperation and many discussions.
This work has been supported by a grant from the
German Federal Ministry of Education and Research
(FKZ 01IW002).
This document was generated partly in the context of
the DeepThought project, funded under the Thematic
Programme User-friendly Information Society of the 5th
Framework Programme of the European Community –
(Contract N° IST-2001-37836). The author is solely
responsible for its content, it does not represent the
opinion of the European Community and the
Community is not responsible for any use that might be
made of data appearing therein.

6 References

Markus Becker and Anette Frank. 2002.A Stochastic
Topological Parser of German.Proceedings of
COLING-2002, pp 71-77, Taipei.

Markus Becker, Witold Droÿdÿy� ski, Hans-Ulrich
Krieger, Jakub Piskorski, Ulrich Schäfer, Feiyu Xu.
2002. SProUT - Shallow Processing with Typed
Feature Structures and Unification. Proceedings of
the International Conference on NLP (ICON 2002).
Mumbai, India.

Scott Boag, Don Chamberlin, Mary F. Fernandez,
Daniela Florescu, Jonathan Robie and Jérôme
Siméon. 2002. XQuery 1.0: An XML Query
Language. http://www.w3c.org/TR/xquery

Chris Brew, David McKelvie, Richard Tobin, Henry
Thompson and Andrei Mikheev. 2000.The XML
Library LT XML. User documentation and reference
guide.LTG. University of Edinburgh.

Joe Calder. 2000.Thistle: Diagram Display Engines
and Editors.Technical report. HCRC. University of
Edinburgh.

Ulrich Callmeier. 2000. PET - A platform for
experimentation with efficient HPSG processing
techniques. Natural Language Engineering, 6 (1)
(Special Issue on Efficient Processing with HPSG:
Methods, systems, evaluation). Editors: D. Flickinger,
S.Oepen, H. Uszkoreit, J. Tsujii, pp. 99 – 108.
Cambridge, UK: Cambridge University Press.

Jean Carletta, David McKelvie, Amy Isard, Andreas
Mengel, Marion Klein, Morten Baun Møller. 2002.A
generic approach to software support for linguistic
annotation using XML. Readings in Corpus
Linguistics, ed. G. Sampson and D. McCarthy,
London and NY: Continuum International.

James Clark (ed.). 1999.XSL Transformations (XSLT)
http://www.w3c.org/TR/xslt

James Clark and Steve DeRose (eds.). 1999.XML Path
Language (XPath)http://www.w3c.org/TR/xpath

Anne Copestake. 1999.The (new) LKB system.
ftp://www-csli.stanford.edu/~aac/newdoc.pdf

Berthold Crysmann, Anette Frank, Bernd Kiefer, Hans-
Ulrich Krieger, Stefan Müller, Günter Neumann,
Jakub Piskorski, Ulrich Schäfer, Melanie Siegel, Hans
Uszkoreit, Feiyu Xu. 2002. An Integrated
Architecture for Shallow and Deep Processing.
Proceedings of ACL-2002, Philadelphia, PA.

Stefan Evert with Holger Voormann. 2002.NITE Query
Language.NITE Project Document. Stuttgart.

Anette Frank, Markus Becker, Berthold Crysmann,
Bernd Kiefer and Ulrich Schäfer. 2003.Integrated
Shallow and Deep Parsing. Submitted manuscript.

Claire Grover, Ewan Klein, Alex Lascarides and Maria
Lapata. 2002.XML-based NLP Tools for Analysing
and Annotating Medical Language. Proceedings of
the Second International Workshop on NLP and XML
(NLPXML-2002). Taipei.

Nancy Ide. 2000. The XML Framework and its
Implications for the Development of Natural
Language Processing Tools. Proceedings of the
COLING Workshop on Using Toolsets and
Architectures to Build NLP Systems, Luxembourg.

Nancy Ide and Laurent Romary. 2001.A Common
Framework for Syntactic Annotation.Proceedings of
ACL-2001. pp. 298-305. Toulouse.

Fabrice Issac. 1998.A Standard Representation
Framework for TAG. In Fourth International
Workshop on Tree Adjoining Grammars and Related
Frameworks (TAG+4), Philadelphia, PA.

Hans-Ulrich Krieger. 2003.SDL – A Description
Language for Specifying NLP Systems.DFKI
Technical Report. Saarbrücken.

Hans-Ulrich Krieger and Ulrich Schäfer. 1994.TDL - A
Type Description Language for Constraint-Based
Grammars.Proceedings of COLING-94. Vol. 2 pp.
893-899, Kyoto.

D. Terence Langendoen and Gary F. Simons. 1995.A
rationale for the TEI recommendations for feature-
structure markup. Computers and the Humanities
29(3). Reprinted in Nancy Ide and Jean Veronis, eds.
The Text Encoding Initiative: Background and
Context, pp. 191-209. Dordrecht: Kluwer Acad. Publ.

Jakub Piskorski and Günter Neumann. 2000.An
Intelligent Text Extraction and Navigation System. In
proceedings of 6th RIAO-2000, Paris.

Carl J. Pollard and Ivan A. Sag. 1994.Head-Driven
Phrase Structure Grammar. Chicago: University of
Chicago Press.

Manfred Sailer and Frank Richter. 2001.Eine XML-
Kodierung für AVM-Beschreibungen(in German). In
Lobin H. (ed.) Proceedings of the Annual Meeting of
the Gesellschaft für linguistische Datenverarbeitung,
Giessen. pp. 161 – 168.

Helmut Schmid. 2000. LoPar: Design and
Implementation. Arbeitspapiere des
Sonderforschungsbereiches 340, No. 149. University
of Stuttgart.

Wojciech Skut and Thorsten Brants. 1998.Chunk
tagger – statistical recognition of noun phrases. In
Proceedings of the ESSLLI Workshop on Automated
Acquisition of Syntax and Parsing. Saarbrücken.

Henry S. Thompson and David McKelvie. 1997.
Hyperlink Semantics for standoff markup of read-only
documents.In Proc SGML EU 1997.

