IFSE - Knowledge-based Intelligent Quiz Generator

X. Wang, H. Li, A. Zimmermann, N. Pinkwart
Education Technology Lab
German Research Centre for Artificial Intelligence
Berlin, Germany
first.last@dfki.de

C. de Witt, S. Werde, B. Baudach, L. van Rijn
Research Cluster DFL²
FernUniversität in Hagen
Hagen, Germany
first.last@fernuni-hagen.de

Abstract—An AI-based quiz subsystem is presented which customizes personalized exercises for individual learners together with accurate instant feedback and knowledge recommendation after taking quizzes, eventually aiming to intelligently assist learners with self-regulated learning. A knowledge-based quiz generation algorithm and a set of intelligent feedback recommendation algorithms are proposed, which are designed for a large number of exercise materials from various courses for numerous students’ self-learning and, generically, for all kinds of knowledge domains. An application program for intelligent feedback to student exercise was implemented and integrated into the Moodle learning management system in order to conduct field experiments and to be evaluated by university students.

Index Terms—Personal Quiz, Intelligent Feedback, Ontology, Knowledge Graph, Knowledge Recommendation, Self-regulated Learning

I. INTRODUCTION

According to Pega1, now around 77% of the users actually use AI-powered smart services or devices. Furthermore, one of the Sustainable Development Goals (SDG) set by the United Nations and to be reached by the year 2030 is to “ensure inclusive and equitable quality education and promote lifelong learning opportunities for all”. In the era of digitization and informatization, with the rapid development of AI applications and the surge in online learning, lifelong and quality learning (especially during the pandemic) in higher education must change completely and systematically. With new AI learning systems in use, the way of teaching and learning will be quite different.

Aiming to apply the latest AI methods in higher education and effectively assist students’ quality online learning, we encountered many difficulties at the beginning of our Lab research project ALEDU Lab. In full compliance with data protection regulations, we found that the learning management system (LMS) in use to be coarse-grained and digitizing learning content on a small scale, only. The collected data sets (for specified data analysis purposes) are generally partial and fragmented, or even missing. For instance, in the current quiz component, the provided quiz questions come in small amounts, are fixed and created manually by tutors without being linked to or annotated with the tested knowledge concepts. Only the students’ answers might be tracked and collected. Thus, it is barely possible to apply machine learning for any profound data-centered analysis and to expect meaningful results.

Based on the prevailing requirements and real use cases, we started to design a new AI-based learning system piece by piece and case by case [2], named as iLS. The development take place in three steps, viz., first building a new LMS with AI-enabled and trackable new features, deploying it and having it tested by university students and, finally, based on the collected anonymous data, conducting various machine learning data analytics to obtain new learning insights and to improve students’ self-regulated learning (SRL). This paper only focuses on the quiz/exercise subsystem of iLS, named IFSE (see Section VI).

The proposed quiz subsystem changes the ways of teaching and learning due to the use of new designs and algorithms. Basically, two types of algorithms are applied, one for generating personalized quizzes (denoted as PQ, see Section IV), and the other one for learning and knowledge recommendation (denoted as KR, see Section V).

Innovative in our quiz system is to separate quiz questions from their options into a question pool and an option pool, respectively, and to formally model them with ontologies. Each quiz question and question option is semantically linked to knowledge concepts or learning objects (defined in a domain knowledge graph) being tested. Meanwhile, an individual student’s knowledge competence mastery is updated in real time and propagated based on the evidence of the student’s quiz results. With these innovations, the semantic relations between domain knowledge, learning objects, and learning resources are retrieved in depth. They are specified with formal logic in order to eventually migrate system functions from the static to the dynamic and, ultimately, to the personalized level.

II. RELATED WORK

For more than two decades, self-regulated learning (SRL) is an important research area within education psychology, especially right now in the era of increasingly prevalent online learning and digitalization [12], [13]. SRL is learning guided by metacognition, strategic action (planning, monitoring, and evaluating personal progress against a standard), and motivation to learn [5]. As pointed out by [7], the most effective learners are self-regulating. A self-regulated learner monitors, directs, and regulates actions towards goals of information...
acquisition, expanding expertise, and self-improvement. Feedback is inherent in and a prime determiner of the SRL process and affects students' cognitive engagement with tasks and achievement.

Six SRL models have been well-reviewed in depth from a number of aspects by [8]. At this moment, our work is more inclined to refer to Winne’s and Hadwin’s model [9], [10], because it is strongly influenced by the Information Processing Theory [6] and emphasizes domain knowledge, knowledge tasks, and knowledge beliefs. From the implementing learning setting, we currently focus on how to enhance the external feedback of this model with AI, which means more intelligently generating proper tasks, tracking performance, providing feedback, self-adapting tasks with cues, and computing knowledge beliefs. The other parts of Winne’s and Hadwin’s model, such as profiling a goal, cognitively evaluating the discrepancy between goal and current learning state, and contextual or collaborative learning, we consider as our future work.

With time, quite a number of intelligent tutoring systems (ITS) [11] has emerged to support self-regulated learning [23], [24]. In general, an ITS is an AI-powered computer system that aims to provide customized instruction or feedback to learners without intervention from teachers. For example, in a dialogue-based ITS with almost the same goal as ours, aiming to pinpoint in-/correct concepts in student answers, [22] uses neural discourse segmentation and classification methods to yield a relational graph and to match student answers with reference solutions, and to generate personalized feedback. The difference is that they use a bottom-up approach in the context of discourse analysis.

Moreover, increasingly machine learning, deep neural networks (NNs), and natural language processing (NLP) are used to generate recommendations [14]–[16] in e-learning. Although different methods are employed, there are three main kinds of recommendations, viz., content-based, collaborative filtering-based, and knowledge-based. For knowledge-based recommendation, applying ontologies is a feasible approach in order to formally represent knowledge and pedagogical rules and to provide potential reasoning ability. For exactly this reason, we invited several domain experts to manually build our domain ontologies. Although it is time-consuming and difficult, the domain knowledge built provides solid structured content for future accurate recommendation.

On the other hand, quizzes are normally generated by teachers or tutors who teach the subjects and know their students’ learning states to some extent. Automatically generating quizzes is an attractive research challenge, especially when fusing technologies of neural networks and natural language processing [17]–[21]. For example, [19] uses NLP and optical character recognition (OCR) technologies to extract keywords from uploaded text images (e.g., scanned books) and from the internet to generate facts-based multiple choice questions (MCQ). Moreover, [17], [18] work on generating distractors of MCQ from free text with different methods, such as a point-wise ranking support vector machine, a list-wise ranking

Fig. 1. Quiz Ontology in Protégé v5.5.
neural network and a ranking generative adversarial network (GAN). The results of their experiments are very inspiring. Compared with their work, we are focusing more on forming adaptive and personalized quizzes based on existing quiz material and the domain knowledge linked. Automatically and semantically generating quizzes from raw resources will be the next step.

III. SEMANTIC FOUNDATION

Before presenting any core algorithm, how to model a quiz and how to define the domain knowledge have to be addressed, because they are the semantic foundation of our work. To this end, ontologies and the tool Protége v5.5 are used.

A. Quiz Ontology

 Oriented at massive exercise material from numerous courses to serve a large number of students in real time, moreover, aiming to reduce teachers’ manual effort and eventually to provide much better, intelligent exercises automatically, we first separate quiz questions from their options and put them into a question pool and an option pool, respectively. Thus, teachers can focus on teaching, and need to create/update quiz questions or options inside the two pools once in a while, only.

Fig. 1 presents the Quiz Ontology with some example instances. Four concepts, viz., Quiz, Question, Option, and QuestionStudentAnswer, are formally defined. Quiz consists of a number of Questions. Question has a series of properties, such as hasTitle, hasBody, hasType, hasKeyKnowledgeConcepts, hasCompetenceLevel, hasDifficultyLevel, hasOptions, and answeredBy. Every instance of Quiz or Question is created on the fly for a specific individual student. Question is answered by QuestionStudentAnswer.

There are numerous options in the option pool. Each one can belong to multiple questions. When specifying an option belonging to a question, also the correct answer must be provided. An Option contains an OptionBody, some KeyKnowledgeConcept, some isOptionOf and two optional properties (i.e., correctFeedback and incorrectFeedback). The isOptionOf property has a pair of subproperties, questionID and isCorrectAnswer.

The concept QuestionStudentAnswer is designed for tracking a student’s accomplishments in answering quiz questions. For instance, the example instance qsa_1234 (see Fig. 1) is the learning record of the learner_l234, who selected the options qo_2 and qo_5 as answers to the question instance q_1234 and scored 0.5 (since the correct answers were qo_2 and qo_4). Therefore, this student’s knowledge mastery regarding the knowledge concepts C3 and C5 are updated subsequently and accordingly (see Section IV).

The separation of questions and options makes it possible to dynamically generate personal quizzes and questions, since every option specifies the knowledge concepts which it is testing. This is the way we connect the exercise system with the knowledge domain. Moreover, connecting knowledge concepts directly to quiz options (instead of questions) makes it possible to adaptively provide accurate and specific knowledge-based feedback (see Section V). This quiz model is used as blueprint of the data structure in the implementation of IFSE.

B. Domain Knowledge

Just digitizing learning content and material is not enough to intelligently assist self-learning. Instead, formally and deeply mining the semantics of a content’s knowledge concepts and learning objects is key. Therefore, we started with an example course in the domain of Media Education and Communication, namely Module 3A, and used ontologies to model its knowledge base. As Fig. 2 shows, the knowledge graph of Module 3A currently consists of 41 knowledge concepts, 168 individuals, 14 data properties, 26 object properties, 845 logical axioms, 248 declaration axioms, 715 assertions and so on.

Several domain experts and tutors of this course carefully defined 41 core knowledge concepts based on the textbook named StudyLetter_33051. There are 168 learning objects directly connecting to actual learning resources. The mapping relationship between learning objects and learning resources is \(n : m \). It means, a learning object may connect to several learning resources. The linked resources may have different types, e.g., textbooks, reading articles, audios, videos, slides, or images. The learning resources of course Module 3A are currently all from its textbook. For example, in Fig. 2 the concept Ziel_-und_Aufgabenbereiche_für_Erziehung_und_Bildung has an individual Kompetenz and it links to a resource element Kompetenz. The resource element Kompetenz specifies the learning content referring to the pages 79–80 in Chapter I.4 of StudyLetter_33051.

Since learning materials are connected to quiz options, it becomes easy to locate where exactly the knowledge weakness or mistakes of students are when they submit their quiz answers, and it is possible to provide accurate feedback or to recommend very specific content.

IV. PERSONALIZED QUIZ GENERATION

In essence, algorithms heavily depend on the data processed. The following data are collected from the current student learning testbed (see Fig. 3):

- \(Q \): option matrix of quiz questions. It is assumed that there are \(n \) options in the option pool.
- \(K \): knowledge concept vector with the specified knowledge difficulties. It is assumed that in the domain ontology \(m \) knowledge concepts and learning objects are defined.
- \(SK \): mastery matrix of students’ knowledge competence. It is assumed that \(k \) students are involved in testing.
- \(SQ \): student learning cube of quizzes. For instance, entry \(SQ_{ij} \) tracks the learning records of an individual student \(i \) on the quiz option \(j \), where \(i \leq k \) and \(j \leq n \).

Based on the matrices \(Q, K \) and the data cube \(SQ \), the Item Response Theory (IRT) [3] and the Transferable Belief Model (TBM) [4] from our previous work are reused to generate, update, and propagate the personal competence mastery values of students [1], denoted as \(SK \). Basically, every time a student
took some quizzes, his/her results are taken as evidence to update his/her own knowledge mastery values, either increasing or decreasing them. These values are used to measure the degree of knowledge mastery of students, which lie in $[0, 1]$.

Fig. 3 is an illustration of the collected datasets. For instance, the shape of the option matrix Q is $(n, (2+m))$ and the ith row of Q represents the option i with its features, i.e., the competence level with value 3, the difficulty level with value 1, the connected knowledge concepts as kc_2 and kc_5. Similarly, the vector K lists the combined competence level and difficulty level of all defined concepts, e.g., saying CD level of the knowledge concept kc_5 is 1.5.

Following the same setting as Moodle, students are allowed to have 3 attempts on a quiz option. For example, the student i was successful on his/her first attempt on option j and took 5 seconds to answer this question. As students continue to take exercises, their mastery of knowledge constantly changes and is updated in real time. For instance, after a while, the mastery value of the student i on the knowledge concept kc_5 becomes 0.58.

The sizes of these data and data features could expand over time or grow on demand. Due to the popularity of online learning and the currently on-going pandemic, the numbers of students and learning materials could easily surge by many thousands or ten thousands. Hence, we are systematically preparing for a massive computational workload. At this moment, our testbed is dimensioned for some 600 students, 360 quiz question options, and 1059 learning objects.

A. Personalized Quiz Algorithm (PQ)

In order to generate personalized quiz questions in a dynamic format, students can simply specify their own selection criteria (further explained in Fig. 6), e.g., explicitly indicating a certain knowledge concepts and a competence level. Besides, a selector matrix of weights, W, is applied to tune the results.
Fig. 4 gives an example of the combination of multiple criteria for generating a personalized quiz. These criteria are, respectively,

- the quiz option competence level and the difficulty level,
- the specified knowledge concepts,
- the mastery value of knowledge concepts,
- the CD level of knowledge concepts,
- the personal failed quiz options, e.g., the options for which a student failed.

Therefore, with the selectors given, a series of data transformations and normalizations are applied to Q and W. Taking the example of Fig. 4, one of the transformations observes two rules, viz., (1) selecting all quiz options with a list of knowledge concepts, such as kc_{1}, kc_{3}, and kc_{12}; and (2) selecting quiz options with competence level not less than 2.

Eventually, the current rule-based PQ algorithm is executed resulting in a matrix G,

$$G_{i,j} = F_j \times R_j^T, i < k, j < n$$

where F and R are the new matrices into which W and Q were transformed, respectively, and where the vector G_i represents the current states of all quiz options for the individual student i. Fig. 4 also gives an example of 4 final quiz options winners with a threshold of 0.6. The algorithmic pseudocode is presented in the Fig. 5.

Algorithm 1 Selects question options by filter

1. $results = \emptyset$
2. for Every filter parameter p do
 3. $set_p = select options from database by p$
 4. Calculate $score_p$ for every element in set_p
 5. Remove the long tail of set_p
 6. Add all elements from set_p into $results$
3. end for
4. while size($results$) < required size do
 5. Add more related options into $results$
4. end while
5. for Every option $op \in results$ do
 6. $score(op) = \sum_{p} score_p(op) \times weight_p$
5. end for
6. Sort options in $results$ by score
7. Remove the long tail of $results$
8. return $results$

Fig. 5. Pseudocode of the Personalized Quiz Algorithm.

Based on the semantic relationships of quiz questions and options (defined by the quiz ontology), quiz questions can easily and automatically be formed, and the top s of them are returned as personalized quiz to student i.

B. Personal Quiz Filter

During self-regulated learning, students may want to test their knowledge from time to time and expect to get useful feedbacks instantly. Fig. 6 is the filter being used to capture students’ requirements in order to generate proper quizzes adaptively. Students can set the knowledge coverage by selecting multiple courses or all of them in their learning programme, specify the number of questions, the competence and difficulty levels of question options. As we have a well defined knowledge domain, students can even select knowledge concepts from a dropdown menu.

Since we are recording students’ learning, it is possible for students to set the percentage of the new and learned knowledge in their quizzes to test or review their knowledge. There are also three smart switches. Switching on adapted means to automatically fill the whole filter with system-recommended values, which the students can still change by sliding bars. If $myFailed$ is on, then some previously failed questions may appear again. And if dynamic is on, then quiz questions are generated one by one on the fly. The next question is adaptively created based on the previous question’s result.

V. KNOWLEDGE RECOMMENDATION ALGORITHMS

Every quiz option connects to the knowledge concepts being tested: Thence, it is possible to accurately distinguish and exactly position the errors when students submit wrong
answers. Currently, the knowledge recommendation algorithm (KR) consists of a set of query rules. Basically, IFSE provides individual instant feedback to both the selected incorrect question options and unselected correct options (see rule1), and also gives recommendations to correct answers (see rule4). Feedback is formed based on the linked resources. Students can visit the given resources immediately to either correct their knowledge or further study from here.

For generating accurate feedbacks, the complex relations among all kinds of elements have to be specified at first. Suppose a question option \(o \) connects to a set of knowledge concepts \(oc \), where \(oc = \{ c_1, c_2, ..., c_i \} \); and each concept links to multiple resources \(re \), where \(c_i = \{ re_1, re_2, ..., re_j \}, i, j \in \mathbb{N} \). Further suppose \(Re_{\text{ALL}} \) to be the resource set of all corrected selected options and \(Re_X \) the resource set of a wrongly selected or a missed option \(X \). Now the following rules are defined:

\[
\text{rule1: Generate feedback for either a wrong or missed option one by one, only.}
\]

\[
\text{rule2: If } Re_X \neq \emptyset \text{ and } Re_X \cap Re_{\text{ALL}} = \emptyset, \text{ then return } Re_X.
\]

\[
\text{rule3: If } Re_X \neq \emptyset \text{ and } Re_X \cap Re_{\text{ALL}} \neq \emptyset, \text{ then return } (Re_X - Re_{\text{ALL}}).
\]

\[
\text{rule4: Generate recommendations for a fully correct answer, only.}
\]

\[
\text{rule5: First, a recommendation is derived from the siblings of the existing knowledge concepts and, then, from their superclass concepts. Moreover, the knowledge concepts with low mastery value siblings or superclasses are set to be recommended first.}
\]

Taking the case presented in Fig. 7 as an example, supposing a student’s answers to a question are the option \(A \) and \(B \), unfortunately the correct answers are \(A \) and \(E \), then following rule1, the feedback should be generated only on the options \(B \) and \(E \). Further, supposing that \(oc_A = \{ c_5 \}, oc_B = \{ c_6 \}, \) and \(oc_E = \{ c_7 \} \), where \(c_5 \) and \(c_6 \) share the same resource \(re_b \). Then, the final feedback is generated for option \(B \) based on the resource \(re_a \), and for option \(E \) with the resource \(re_c \) (which is quite similar to the case in Fig. 8).

![Fig. 7. Example case for demonstrating query rules.](image)

VI. INTELLIGENT FEEDBACK TO STUDENT EXERCISES

The two algorithms, \(PQ \) and \(KR \), were implemented in our Intelligent Feedback to Student Exercise (IFSE) application, which is gradually being tested and released in the winter semester 2021/22 at FernUniversität Hagen.

IFSE is an AI-based quiz subsystem designed for both teachers and students. Its objective is to effectively provide learners/students with adaptive quizzes/exercises and precise personal feedback according to their particular levels of knowledge during their independent and self-regulated learning. For this purpose, the levels of knowledge are first determined using various quiz formats based on a knowledge-based expert system. On this basis, the students receive learning recommendations for both content and cognitive learning strategies.

Up to the current stage, three major features were developed (see Fig. 8). First, personal quiz questions are generated for students and, based on the performance for the respective previously answered question, the next question is dynamically and intelligently adjusted in their difficulty levels and adapted to the students’ knowledge competence levels detected. Secondly, instant individual feedback and knowledge recommendations to quiz question answers are automatically generated and delivered. The third function is that students can graphically overview their knowledge mastery at any time via a knowledge visualization (similar to the one used in [2]).

A. IFSE Implementation as a Moodle Plug-in

IFSE is planned to be a standalone application for generic purposes and versatile domains, which means that its core algorithms can be applied to any pluggable specific knowledge domain and student learning data. Since our current testbed is a Moodle learning system, we also implemented it as a Moodle plug-in.

Although Moodle itself has already a quiz module, IFSE’s core (i.e., features, workflow, and user navigation) is totally different, and most of the existing functionalities cannot be reused directly. Therefore, we followed a standard-compliant
approach to implement IFSE as a type of *Moodle Activity Module*, which can seamlessly and without any problem be integrated into any Moodle topic.

Thence, IFSE includes an entry point view for quiz creation, quiz navigation and attempts overview. These generated views closely resemble the Moodle quiz activity to reduce user confusion. The views’ behaviour is strongly reinforced by asynchronous Javascript to reduce page reloads. This plug-in also includes an administration view for configuring backend connectivity parameters.

IFSE totally inherits all the standard Moodle question types, such as True/False, Multi-choice, Single-choice, Gap Select, Matching, Image drag/drop, and Short Answer. Moreover, IFSE’s immediate intelligent feedback solution replaces the existing preset and fixed feedback.

Fig. 8 is a screenshot from the IFSE plug-in, supposing a student is answering a multiple-choice question. Unfortunately, this student fails. The correct answers are A, C, and E, but the student went for A and B. Therefore, the instant feedback suggests him/her to correct his/her knowledge on B and review again the knowledge on C and E. Moreover, if the student clicks the provided linked resource, the student can directly start his/her learning from there.

When this student chooses to take his/her quiz dynamically, then every time only one quiz question is generated for him/her on the fly. If the student answered wrongly, then his/her next question might be an easier one or a similar question (according to the system setting). This student also gets a chance to review his/her own knowledge graph to have an overview of the learning progress and how good he/she is mastering the knowledge.

B. Simulation and Evaluation

Since IFSE will be put into use in the winter semester 2021/22, some simulation experiments were designed to conduct a preliminary evaluation on the feasibility and efficiency of the quiz generation algorithm. Besides, we try to gain as much insight as possible into the key parameters, and how they affect the efficiency of the algorithm.

First, we assume that each question contains 6~10 options, and the number of one option to belong to multiple questions is temporarily kept around 10~15%. Our current domain knowledge contains 305 key knowledge concepts (KCs). We then created two datasets, the small dataset with 1,000 students and 10K question options, and the big dataset with 10K students and 100K options. We carried out four experiments on the different combinations of four features, i.e., competence levels (cLevel combining difficult levels (dLevel)), coverage of knowledge concepts, mastery value, and myFailed (see Table I). We also simulated two different distributions (i.e., Uniform and Normal distribution) regarding the 25 categories of competencies (resulting from 5 competence levels with 5 difficult levels). When the number of question options is large enough, intuitively a tendency towards a uniform distribution is expected, but a normal distribution turned out to be much closer to the actual situation (with $\mu = 0, \sigma = 5$).

Moreover, for example, we ran the first experiment altogether 2250 times (randomly selecting 3 students on 25 C/D levels and repeating about 30 times) and recorded the minimum, maximum, and average times of quiz generation. The results shown in Table I give rise to the following findings:

- It takes less than 2 sec to generate a quiz with 30 questions for a student both on the small dataset and the big one.
- When a certain knowledge concepts is specified, the time (of the query contained query and the generation) drops by nearly 40% (i.e., from 400+ to 200+ msec).
- When more parameters are considered, less calculation time is required (see Fig. 9). The two features mastery value and myFailed have no significant effect on the results.
- Since mainly querying a MongoDB, basically the time complexity of this algorithm is $O(\log(n))$. Comparing the two datasets reveals that the more question options there are the more calculation time is needed.

So far we are quite satisfied with the results of our experiments. They demonstrate our algorithm to work quite efficiently, and to operate well with even relatively large datasets.

VII. Conclusion and Future Work

An AI-based quiz subsystem with a completely new design for quizzes was proposed, which separates questions and their options according to the semantics formally defined by a quiz ontology. Two novel algorithms for quiz generation and knowledge recommendation were applied in order to adaptively generate personalized quizzes for individual learners. The intelligent instant feedback to students’ quiz results aims to provide accurate knowledge feedback after locating students’ incorrect knowledge concepts. This IFSE quiz application software was developed as a Moodle plug-in and ready for testing. The simulation results so far are quite promising.
In the future, IFSE is to incorporate more NLP-featured functions, for example, that students will be allowed to input some plain text to describe their wishes on what knowledge to be tested; on the other side, teachers will be able to assist with automatically generated questions or options as suggestions, which are all fact-/knowledge-based aiming for a given domain’s basic knowledge. Furthermore, as a new learning environment, IFSE is able to collect new type of students’ learning information for more profound machine learning-based analysis, such as the time needed to answer questions requiring specific knowledge, the duration of checking feedback, the number of hits of recommended resource links and so on; besides, the weights W will be tuned and optimized. Pattern and sequence of learning certain content are our major objectives in the future.

REFERENCES

