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ABSTRACT
In this paper, we propose a novel approach to combine do-
main modelling and student modelling techniques in a single,
automated pipeline which does not require expert knowl-
edge and can be used to predict future student performance.
Domain modelling techniques map questions to concepts
and student modelling techniques generate a mastery score
for a concept. We conducted an evaluation using six large
datasets from a Python programming course, evaluating the
performance of different domain and student modelling tech-
niques. The results showed that it is possible to develop a
successful and fully automated pipeline which learns from
raw data. The best results were achieved using alternating
least squares on hill-climbing Q-matrices as domain mod-
elling and exponential moving average as student modelling.
This method outperformed all baselines in terms of accuracy
and showed excellent run time.
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1. INTRODUCTION
The idea of mastery learning was first proposed by Bloom [3]
as an educational philosophy based on the belief that nearly
all students can master a studied subject when given enough
time and support. Nowadays, the term more commonly
refers to an educational approach where test questions as-
sess certain concepts and a mastery of prerequisite concepts
is required before moving to harder concepts [11]. A con-

cept or skill (we use this terms interchangeably) can be
thought of as a unit of knowledge that is assessed by a ques-
tion; for example, a mathematics question might assess the
concepts of ”addition” and ”subtraction”, or a programming
question might assess the concepts of ”print statements” and
”strings” [7]. A common application of this approach is for
task sequencing in intelligent tutoring systems, where reme-
dial questions for students are selected based on concepts
they are weak at [11]. These approaches can also be used
for providing automated feedback to students and hint gen-
eration [8]. But how do we know the full set of concepts in
a set of questions? How do we know which questions assess
which concepts? How do we measure the extent to which a
student has ”mastered”each concept? There are two distinct
but related fields of research that attempt to answer these
questions—domain modelling and student modelling [12].

Domain modelling is concerned with knowing the full set
of concepts in a set of questions, and knowing which ques-
tions assess which concepts. This mapping of questions to
concepts can be represented as a Q-matrix, a m questions×
k concepts matrix, where each entry is either 1 or 0, with 1
representing that the question in the row assesses the con-
cept in the column [13]. Several previous studies have pro-
posed methods for generating a Q-matrix based on student
performance data on question sets; e.g. Barnes [2] intro-
duced a hill-climbing algorithm, and Desmarais et al. [5] pro-
posed a method in which Alternating Least Squares (ALS)
method is used to refine an expert-designed Q-matrix.

Student modelling is concerned with measuring the extent to
which a student has mastered a concept, or how to generate
a mastery score. For instance, Corbett et al. [4] introduced
Bayesian Knowledge Tracing, which uses a Markov model
with two hidden states (a concept is either ’known’ or ’un-
known’ by a student), with further refinements to this tech-
nique proposed by Pardos et al. [9] and Yudelson et al. [14].

In this paper, we aim to combine domain and student mod-
elling in a single, automated pipeline. In other words, is it
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Figure 1: Expert Q-matrix for Intermediate-2018. Questions
are rows and concepts/skills are columns.

possible to go from domain modelling to student modelling
in a single pipeline on a single dataset, and thus predict fu-
ture student performance? Solving this problem would be of
significant benefit for intelligent tutoring systems, for exam-
ple for task sequencing. Using only historic student perfor-
mance data on questions, it would be possible to automat-
ically generate a mapping between questions and concepts,
and generate a mastery score for each student for each con-
cept. This can then be used to sequence remedial tasks for
students, i.e., for recommending tasks which assess the con-
cepts at which the students were the weakest, with minimal
human input.

This study attempts to explore this question, and has three
main contributions. First, it provides an implementation
and analysis of a pipeline that includes different combina-
tions of three domain modelling and three student modelling
techniques, where the results are based on predicting future
student performance using the mastery score. Second, it
performs this analysis on large datasets from an online pro-
gramming course - 6 datasets across 2 years with 3 levels
of expertise (beginners, intermediate and advanced), with a
total of 144 questions and 28,466 students - demonstrating
consistent results across all datasets. Third, it introduces a
new Q-matrix generation technique - ALS on Hill-Climbing
Q-matrix. The results show that the proposed technique is
the most successful student modeling - it is best combina-
tions of domain and student modelling in 5/6 cases.

2. RELATED WORK
2.1 Domain Modelling (Q-matrix Generation

Algorithms)
A Q-matrix is a mapping between questions in a set, and the
skills or concepts that they assess [13]. An example is shown
in Fig. 1. Such matrices are used to determine the proba-
bilities that certain skills are learned by a student, and to
select and sequence tasks in mastery learning environments.
While Q-matrices are traditionally designed by experts, we
have to consider disagreement between experts, the amount
of time and effort needed to do this process manually, as well
as disagreement between expert opinion and what students

actually experience.

Barnes [2] introduced an algorithm that can derive a Q-
matrix from student response data. The algorithm initial-
izes a m× k matrix (m being the number of students, k the
number of skills) with random values for each cell in range
[0, 1]. Given the current Q-matrix, it computes, for each stu-
dent, the binary knowledge states which best describe the
student’s actual test responses. Then, hill-climbing is per-
formed to improve the Q matrix given the current knowledge
state estimate. This is repeated until convergence, and re-
peated for different numbers of concepts.

By contrast, Desmarais et al. [5] propose to let an expert
design the initial Q-matrix, and then optimising via the ALS
method. This is motivated by expressing the m× n matrix
of student responses R (n being the number of students) as
a product of two matrices Q and S; the Q matrix being an
m×k matrix as before, and the S matrix being a k×n matrix
that represents student mastery profiles. The ALS method
minimizes the squared error ‖R−Q · S‖2 with respect to Q
and S in an alternating fashion until convergence.

In this paper, we propose a new method which combines hill-
climbing and ALS, called ALS on Hill-climbing Q-Matrix. It
uses a hill-climbing algorithm to derive an initial Q-matrix,
and then ALS to refine it. We evaluate the performance
of three methods: Hill-climbing Q-matrix, ALS on Expert
Q-matrix and ALS on Hill-climbing Q-matrix.

2.2 Student Modelling (Mastery Score Algo-
rithms)

Once a Q-matrix is known, the students’ learning process
can be described by modelling which skill is mastered at
what time by which student.

Kelly et al. [6] conducted a study to determine the accuracy
of two methods, namely N -Consecutive Correct Responses
(N -CCR) and Knowledge Tracing (KT) [4] in detecting con-
cept mastery in students. The study defined mastery of a
concept as a binary attribute. N -CCR is a simple algo-
rithm that considers a skill mastered once a student gives
N consecutive correct responses on questions related to the
skill. By contrast, KT models student knowledge as a latent
variable in a Hidden Markov Model, with the parameters up-
dated based on whether or not the student gets each question
in a sequence of questions correct or wrong (more detail on
this below). The algorithm computes the probability that
a student has mastered a skill after each observation of a
correct or incorrect answer. The study concluded by stating
that 3-CCR was the better approach for next-problem cor-
rectness, and 5-CCR was the better approach for predicting
performance on a transfer task, with both methods being
more accurate than knowledge tracing.

However, N -CCR has drawbacks which are not discussed
in the paper. Consider two students who answered a se-
quence of 6 questions, and assume we consider 5-CCR, with
the vectors representing the correctness of the answers of
each student being [0, 0, 0, 0, 0, 0] and [1, 1, 1, 1, 0, 1]. 5-CCR
would determine that both students have the same level of
mastery, which can be argued is not true. One way to miti-
gate this is to introduce a method where more recent answers



Table 1: Dataset statistics
Questions Students

Beginners-2018 29 7956
Intermediate-2018 25 4756
Advanced-2018 22 731
Beginners-2019 28 8662
Intermediate-2019 25 5423
Advanced-2019 15 938

carry more weight in determining the measure of mastery.
The exponential moving average (EMA) technique [10] es-
timates the mastery of a student after answering the tth
question via the expression

∑∞
τ=0 rt−τ · wτ , where rt−τ is

1 if the student answered question t − τ correctly and 0,
otherwise, and where wτ = (1 − λ) · λτ is a weight for past
states, with λ ∈ (0, 1) being a hyperparameter that controls
how fast this weight decays into the past.

Corbett et al. [4] introduced the concept of Bayesian Knowl-
edge Tracing (BKT). BKT assumes that a concept is a la-
tent binary variable (either mastered or not mastered by a
student) in a Hidden Markov Model, with observations also
being binary (a student can get a question correct or incor-
rect). There are 4 parameters in this model; the probability
p(L0) that a student has mastered the skill prior to attempt-
ing the first question, the probability p(T ) that a student
will master the concept after one opportunity to apply the
concept in a question, the probability p(G) that a student
will get a question correct given they have not mastered a
concept (’guess’), and the probability p(S) that a student
will get a question incorrect given that they have mastered
a concept (’slip’). One model is built for each concept k,
assuming that the concepts assessed in a given question are
known.

In this paper, we will evaluate all three approaches: N -CCR,
EMA and BKT.

3. DATA AND PREPROCESSING
The data used in this study was provided by Grok Academy
(groklearning.com) and comes from three online Python pro-
gramming courses for high school students. In total it comes
from 28,466 students and includes 144 questions. In this
learning platform, students complete coding tasks and re-
ceive automated feedback in the form of passed test cases
and feedback about the failed cases, e.g. comparison be-
tween the expected output and the student’s output.

Our study uses a total of 6 datasets from 2 years (2018
and 2019), with each year having one set of questions from
3 difficulty levels (beginners, intermediate and advanced).
Table 1 summarises the dataset statistics.

For each student, we collected a ’trace’ of all their submis-
sions on each question. A student may submit solutions
multiple times for a question, each time getting feedback in
terms of expected vs actual program output, and the num-
ber of test cases passed. However, domain and student mod-
elling approaches typically require a single binary value of
correctness for each student on each question. To obtain
such a value, we used 1 if the average number of passed test

Table 2: Runtimes for generating 10 Q-matrices (with 1 to
10 concepts) per dataset via hill-climbing

Dataset Hill-climbing Q-matrix Runtime
Beginners-2018 5 hours

Intermediate-2018 4 hours
Advanced-2018 30 minutes
Beginners-2019 7 hours

Intermediate-2019 5 hours
Advanced-2019 45 minutes

cases per submission exceeded the median, and 0, otherwise.
For example, if a student attempts a question 3 times and
passes 0/10, 5/10 then 10/10 test cases, then we take the
average over the 3 attempts, which is 5/10, and map this to
1 if 5/10 is larger than the median value over all students
for this question.

4. METHOD
There are two main steps, namely domain modelling and
student modelling. The first step infers the relation between
questions and concepts in a form of Q-matrix. The second
step builds a model to predict a student’s future performance
based on their past responses.

We consider three algorithms for domain modelling, namely
Hill-climbing Q-matrix [2], ALS on Expert Q-matrix [5],
and ALS initialized with Hill-climbing Q-matrix. The last
one is our proposed method and it combines hill-climbing
and ALS algorithms. Further, we consider three algorithms
for student modelling, namely N -CRR, EMA, and BKT.
The pipeline for each combination of domain modelling and
student modelling components is as follows.

First, infer a Q-matrix using the domain modelling com-
ponent. Second, for each student, extract one sequence of
correct and wrong responses to questions that are related to
that skill. Finally, use the student modelling component to
model the mastery of each student for each skill.

For prediction, we consider the mastery score after respond-
ing to the tth question and predict a successful response if
the mastery score exceeds a threshold. Our evaluation mea-
sure is the RMSE between the mastery scores and the actual
responses.

5. EXPERIMENTAL SETUP
Combining each domain modelling algorithm (Hill-climbing
Q-matrix, ALS on Expert Q-matrix, ALS on Hill-climbing
Q-matrix) with each student modelling algorithm (N -CCR,
EMA, BKT) yields nine combinations. We evaluate each
combination on each data set from Table 1. For brevity and
lack of space reasons, we discuss in detail the 2018 datasets
but provide only the best results for the 2019 datasets.

Using hill-climbing, we generate 10 Q matrices for each data-
set with k = 1 to k = 10 concepts. The runtime needed for
the Q matrix generation is shown in Table 2.

To evaluate the student modelling, we use five-fold cross
validation over students. For N -CCR and EMA, we also



Table 3: Performance of the three baselines (RMSE) on the
2018 data sets

Baseline Method beginner intermediate advanced
random 0.7065 0.7054 0.7131
majority 0.6576 0.6447 0.5270
BKT-1 0.4899 0.4880 0.4280

Table 4: Performance of BKT, EMA and N -CCR when com-
bined with Hill-climbing Q-matrix - RMSE on Beginners-2018
dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)

1 0.4453 0.1, 0.1487 1, 0.1482
2 0.4316 0.1, 0.1588 1, 0.1594
3 0.4352 0.1, 0.2476 1, 0.2484
4 0.4391 0.1, 0.2261 1, 0.2276
5 0.4368 0.1, 0.2274 1, 0.2286
6 0.4351 0.1, 0.2280 1, 0.2293
7 0.4340 0.1, 0.2193 1, 0.2208
8 0.4318 0.1, 0.2114 1, 0.2131
9 0.4305 0.1, 0.2463 1, 0.2491
10 0.4309 0.1, 0.2389 1, 0.2417

(sec) 54.1 49.7 48.5

evaluate the results for different hyperparameter values: N
from 1 to 10 and λ from 0.1 to 0.9.

Additionally, we compare the performance with three base-
lines, namely random guessing (random), predicting the ma-
jority label for each question (majority), and BKT with a
single concept per question (BKT-1).

All six techniques were implemented in Python. For hill-
climbing, ALS, N -CCR, and EMA we used our own imple-
mentation, and for BKT we used the pybkt toolbox [1].

6. EXPERIMENTAL RESULTS
6.1 Beginners-2018
The performance of the three baselines on the 2018 datasets
is shown in Table 3. We can see that the most accurate
baseline on all 3 datsets is BKT-1, followed by majority and
random.

Table 4 shows the RMSE for BKT, EMA, and N -CCR on
the Beginners-2018 dataset for Q-matrices that were gener-
ated via hill-climbing; the best results are shown in bold.
For EMA and N -CCR, we only report the results for the
best-performing values of λ and N (the results for other hy-
perparameter values are shown in Table 5). Each row repre-
sents the results obtained for a certain number of concepts.
Here, it is interesting to see that, for EMA and N -CCR,
the best Q-matrix is the one with only 1 concept, while, for
BKT, the best Q-matrix had 9 concepts. The RMSE stays
relatively stable for the different Q-matrices for BKT. For
BKT and N -CCR, the RMSE stays relatively stable only
for Q-matrices with 3 concepts and above. The last row
of the table shows the prediction runtime; we can see that
all methods were fast and had similar prediction runtime -
48-54 seconds.

Table 5: Hyperparameter values of EMA (λ) andN -CCR (N)
vs RMSE for n con = 1 when combined with Hill-climbing Q-
matrix on Beginners-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE

0.1 0.1487 1 0.1482
0.2 0.1624 2 0.1742
0.3 0.1857 3 0.2068
0.4 0.2148 4 0.2524
0.5 0.2470 5 0.3067
0.6 0.2809 6 0.3231
0.7 0.3159 7 0.3059
0.8 0.3523 8 0.3893
0.9 0.3927 9 0.4257

Table 6: Performance of BKT, EMA and N -CCR when com-
bined with ALS on Expert Q-matrix - RMSE on Beginners-
2018 dataset

n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
8 0.3908 0.3, 0.1874 1, 0.2176

(sec) 12.3 6.78 6.24

It is also interesting to note that, regardless of the number
of concepts, λ = 0.1 and N = 1 are the best-performing
hyperparamters for EMA and N -CCR, respectively (see Ta-
ble 4). In other words, it was always best to predict the
performance on the next question based on the question im-
mediately before it. Table 5 provides more details about the
impact of the hyperparameters λ = 0.1 and N = 1 on the
RMSE. We see a clear trend: as λ and N increase, RMSE
rises as well.

Next, we evaluate BKT, EMA, and N -CCR on the Q-matrix
derived by ALS when initialized with an expert Q-matrix.
The expert Q-matrix covers eight skills (refer to Fig. 1).
Table 6 shows the results, indicating that EMA with λ = 0.3
performs best. Table 7 shows the performance of EMA and
N -CCR for different hyperparameter choices. For N -CCR
we observe the same trend as before, for EMA we observe
that low λ-values generally perform better, with a minimum
at 0.3.

Finally, we evaluate BKT, EMA, and N -CCR on the Q-

Table 7: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 8 when combined with ALS on
Expert Q-Matrix on Beginners-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE

0.3 0.1874 1 0.2176
0.4 0.1874 2 0.2468
0.2 0.1905 3 0.2725
0.5 0.1909 4 0.2908
0.1 0.1966 5 0.3086
0.6 0.1986 6 0.3254
0.7 0.2122 7 0.3373
0.8 0.2340 8 0.3497
0.9 0.2676 9 0.3553



Table 8: Performance of BKT, EMA and N -CCR RMSE
when combined with ALS on Hill-climbing Q-matrix on
Beginners-2018 dataset

n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
1 0.4262 0.3, 0.1319 1, 0.1482
2 0.4054 0.5, 0.2164 1, 0.2507
3 0.4196 0.4, 0.1937 1, 0.2220
4 0.4260 0.3, 0.1760 1, 0.1901
5 0.4210 0.3, 0.1963 1, 0.2103
6 0.4232 0.2, 0.2094 1, 0.2196
7 0.4199 0.3, 0.2216 1, 0.2331
8 0.4231 0.3, 0.1714 1, 0.1861
9 0.4215 0.4, 0.1829 1, 0.2017
10 0.4214 0.4, 0.1945 1, 0.2129

(sec) 53.2 55.8 52.1

Table 9: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 8 when combined with ALS on
Hill-climbing Q-matrix on Beginners-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE

0.3 0.1319 1 0.1482
0.4 0.1327 2 0.1542
0.2 0.1350 3 0.1580
0.5 0.1396 4 0.1627
0.1 0.1407 5 0.1641
0.6 0.1556 6 0.1898
0.7 0.1839 7 0.1953
0.8 0.2289 8 0.2106
0.9 0.2971 9 0.2348

matrix derived by ALS when initialized with a hill-climbing
Q-matrix. Table 8 shows the results. Again, EMA with
λ = 0.3 performs best. Indeed, the results for EMA with
λ = 0.3 are better than any other result we obtained across
all domain modelling approaches. Interestingly, different λ
values are optimal, depending on the number of concepts.

In Table 9, we see that the RMSE of N -CCR steadily wors-
ens as N increases. By contrast, the RMSE for EMA has
a minimum at λ = 0.3 and increases for smaller or larger
values.

6.2 Intermediate-2018
From Table 10, it is interesting to note that the best models
use Q-matrices with more concepts than seen in the pre-
vious dataset. For BKT, 3 concepts is optimal, for EMA
and N -CCR it is 10 concepts. We also observe that, for
EMA and N -CCR, the more concepts we consider, the bet-
ter performance gets (considering only the model with the
best parameters), which is something that we did not ob-
serve in the previous dataset. While N -CCR still selects 1
as the best N for all the Q-matrices, for EMA, most of the
Q-matrices give either 0.3 or 0.2 as the best λ.

From Table 11, we can see that λs of 0.1, 0.2 and 0.3 actually
have very similar RMSE, with 0.4 and above steadily wors-
ening in RMSE as λ increases. N -CCR exhibits the pattern
of RMSE worsening as N increases.

Table 10: Performance of BKT, EMA and N -CCR when com-
bined with Hill-climbing Q-matrix - RMSE on Intermediate-
2018 dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)

1 0.4364 0.3, 0.3793 1, 0.3925
2 0.4037 0.3, 0.2977 1, 0.3083
3 0.4012 0.3, 0.2751 1, 0.2842
4 0.4050 0.3, 0.2610 1, 0.2726
5 0.4021 0.3, 0.2469 1, 0.2578
6 0.4045 0.3, 0.2433 1, 0.2541
7 0.4072 0.3, 0.2370 1, 0.2455
8 0.4068 0.3, 0.2306 1, 0.2389
9 0.4076 0.2, 0.2213 1, 0.2281
10 0.4060 0.2, 0.2175 1, 0.2242

(sec) 29.1 28.7 28

Table 11: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 10 when combined with Hill-
climbing Q-matrix on Intermediate-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE

0.2 0.2175 1 0.2242
0.3 0.2176 2 0.2354
0.1 0.2197 3 0.2429
0.4 0.2203 4 0.2573
0.5 0.2265 5 0.2758
0.6 0.2373 6 0.2989
0.7 0.2543 7 0.3217
0.8 0.2793 8 0.3550
0.9 0.3127 9 0.3870

Table 12: Per-concept RMSE for BKT, EMA and N -CCR
(best models) for Hill-climbing Q-matrix on intermediate
2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.4366 0 0.3803 0 0.3925
1 0.3851 1 0.1844 1 0.1897
2 0.3970 2 0.2245 2 0.2282

3 0.2155 3 0.2339
4 0.1790 4 0.1854
5 0.2279 5 0.2339
6 0.1856 6 0.1854
7 0.1792 7 0.1854
8 0.1137 8 0.1071
9 0.1786 9 0.1854



Table 13: Performance of BKT, EMA and N -CCR when
combined with ALS on Expert Q-matrix - RMSE on
Intermediate-2018 dataset

n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
8 0.3930 0.4, 0.2815 1, 0.1977

(sec) 8.01 4.95 4.33

Table 14: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 8 when combined with ALS on
Expert Q-matrix on Intermediate-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE

0.4 0.2815 1 0.1977
0.5 0.2821 2 0.2009
0.3 0.2821 3 0.2093
0.2 0.2837 4 0.2145
0.6 0.2844 5 0.2205
0.1 0.2861 6 0.2247
0.7 0.2899 7 0.2365
0.8 0.3018 8 0.2481
0.9 0.3265 9 0.2636

From Table 12, we see that, across all algorithms, the per-
skill RMSE is not uniform at all. For example, for N -CCR,
skill 8 has an RMSE of 0.1071, while skill 0 has an RMSE of
0.3925. This can be interpreted as being caused by a large
variance in student proficiency for certain skills, or that some
skills are a lot harder to learn than others.

From Table 13, we see that N -CCR performs better than
EMA. N -CCR has chosen 1 as the best N, while EMA has
0.4 as the best λ.

From Table 14, we see that—while there is no pattern of
worsening RMSE as λ increases for EMA—the first 7 values
of λ have very very similar RMSE (differences lesser than
0.01). For N -CCR we see that RMSE steadily worsens as
N increases. It is also interesting to note that the worst
N -CCR model (RMSE = 0.2636) performs better than the
best EMA model (RMSE = 0.2815).

From Table 15, we see again that per-concept RMSE has
high variance, more so with EMA and N -CCR than BKT.
Skill 7 has the highest RMSE when EMA is used, with an
RMSE of 0.5888. Meanwhile, the skill with the worst RMSE

Table 15: Per-concept RMSE for BKT, EMA and N -CCR
(best models) on Intermediate-2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.4071 0 0.2691 0 0.1854
1 0.4105 1 0.1787 1 0.1854
2 0.4040 2 0.2079 2 0.2748
3 0.4061 3 0.1787 3 0.1854
4 0.3618 4 0.1788 4 0.1071
5 0.3776 5 0.1787 5 0.1854
6 0.3246 6 0.2079 6 0.1854
7 0.3374 7 0.5888 7 0.2280

Table 16: Performance of BKT, EMA and N -CCR when
combined with ALS on Hill-climbing Q-matrix - RMSE on
Intermediate-2018 dataset
n con BKT (RMSE) EMA (λ, RMSE) N -CCR (N , RMSE)

1 0.4122 0.3, 0.1782 1, 0.1854
2 0.3955 0.4, 0.2341 1, 0.2549
3 0.4152 0.4, 0.2215 1, 0.2377
4 0.4117 0.6, 0.2608 1, 0.2952
5 0.4097 0.6, 0.2448 1, 0.2803
6 0.3990 0.5, 0.2453 1, 0.2693
7 0.3980 0.5, 0.2425 1, 0.2636
8 0.3995 0.5, 0.2593 1, 0.2865
9 0.3998 0.4, 0.2289 1, 0.2465
10 0.4050 0.4, 0.2397 1, 0.2621

(sec) 27.2 31.8 30

Table 17: Hyperparamer values of EMA (λ) and N -CCR (N)
vs RMSE for n con = 1 when combined with ALS on Hill-
climbing Q-matrix on Intermediate-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE

0.3 0.1782 1 0.1854
0.4 0.1787 2 0.1877
0.2 0.1790 3 0.1889
0.5 0.1801 4 0.1896
0.1 0.1813 5 0.2198
0.6 0.1830 6 0.2220
0.7 0.1900 7 0.2248
0.8 0.2092 8 0.2289
0.9 0.2582 9 0.2335

for N -CCR is skill 2 which only has an RMSE of 0.2748.

It is interesting that, compared to the hill-climb Q-matrix
without ALS refinement, the results in Table 16 show that
ALS on Hill-climbing Q-matrix perform best when using Q-
matrices with a smaller numbers of concepts.

From Table 17, we see the familiar pattern of N -CCR se-
lecting 1 to be the best N regardless of number of concepts,
while EMA has many different values of λ being the best
for different numbers of concepts. The largest λ found is 0.6
when we use the Q-matrix with 5 concepts - this yields an
RMSE of 0.2608, which in fact is better than even the best
BKT model by a decent margin.

6.3 Advanced-2018
From Table 18, it is interesting to see that a large number of
concepts (6) was best for EMA and N -CCR as compared to
the Beginner and Intermediate datasets. BKT, on the other
hand, performed best with only 2 concepts. The optimal λ
and N were at 0.1 and 1, respectively.

Another interesting finding is that a different N is optimal
for N -CCR, depending on the number of concepts. For 1 or
2 conepts, the optimal N is 2 instead of 1.

From Table 19, we do see the pattern for both EMA and
N -CCR where performance worsens as the respective pa-
rameters increase in value, with RMSE increasing rapidly



Table 18: Performance of BKT, EMA and N -CCR when com-
bined with Hill-climbing Q-matrix - RMSE on Advanced-2018
dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
1 0.3573 0.1, 0.2117 2, 0.2115
2 0.3439 0.2, 0.2130 2, 0.2178
3 0.3580 0.2, 0.2215 1, 0.2254
4 0.3618 0.1, 0.2074 1, 0.2102
5 0.3557 0.1, 0.2086 1, 0.2114
6 0.3555 0.1, 0.2048 1, 0.2081
7 0.3581 0.2, 0.2308 1, 0.2346
8 0.3631 0.2, 0.2228 1, 0.2274
9 0.3636 0.2, 0.2191 1, 0.2233
10 0.3660 0.2, 0.2157 1, 0.2204
(sec) 6.22 5.55 5.33

Table 19: Hyperparameter values of EMA (λ) and N -CCR
(N) vs RMSE for n con = 6 when combined with Hill-
climbing Q matrix on Advanced-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE

0.1 0.2048 1 0.2081
0.2 0.2050 2 0.2168
0.3 0.2079 3 0.2191
0.4 0.2133 4 0.2215
0.5 0.2216 5 0.2241
0.6 0.2333 7 0.2295
0.7 0.2497 9 0.2305
0.8 0.2716 6 0.2309
0.9 0.2994 8 0.2310

Table 20: Per-concept RMSE for BKT, EMA and N -CCR
(best models) on Advanced-2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.3589 0 0.2117 0 0.2159
1 0.3283 1 0.2127 1 0.2159

2 0.2347 2 0.2378
3 0.1553 3 0.1551
4 0.2119 4 0.2159
5 0.1787 5 0.1843

Table 21: Performance of BKT, EMA and N -CCR RMSE
when combined with ALS on Expert Q-matrix - RMSE on
Advanced-2018 dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)

9 0.3667 0.4, 0.3116 1, 0.4160
(sec) 1.67 0.841 0.846

Table 22: Hyperparameter values of EMA (λ) and N -CCR
(N) for n con = 9 when combined with ALS on Expert Q-
matrix on Advanced-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE

0.4 0.3116 1 0.4160
0.3 0.3119 2 0.4173
0.5 0.3122 3 0.4186
0.2 0.3129 6 0.4274
0.6 0.3143 7 0.4274
0.1 0.3145 4 0.4286
0.7 0.3190 5 0.4286
0.8 0.3283 8 0.4323
0.9 0.3447 9 0.4327

as λ rises to 0.8 and 0.9.

From Table 20, we see that per-concept RMSE is relatively
stable for EMA and N -CCR as compared to the previous
dataset, with BKT in fact having very close RMSE between
the two concepts. This could be interpreted as concepts
having less variance in difficulty, though we have to keep
in mind that this is the Advanced dataset, which has the
least number of students by far (731) compared to the Be-
ginner and Intermediate datasets of the same year (7956 and
4756). It also has the least number of questions (22) com-
pared to Beginner and Intermediate which have 29 and 25
respectively.

From Table 21, we can see that performance across all 3 al-
gorithms with 9 concepts from an expert Q-matrix passed
through ALS is worse compared to the previous Hill-climbing
Q-matrix method. N -CCR with an N of 1 performed worse
than EMA with an λ of 0.4.

From Table 22, we see that there is no pattern of worsening
performance as parameters increase for both EMA and N -

Table 23: Per-concept RMSE for BKT, EMA and N -CCR
(best models) on Advanced-2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.3483 0 0.3251 0 0.1843
1 0.3263 1 0.1719 1 0.1843
2 0.3730 2 0.3250 2 0.1843
3 0.3675 3 0.1726 3 0.1843
4 0.3874 4 0.1727 4 0.1843
5 0.4161 5 0.1748 5 0.1843
6 0.3486 6 0.1726 6 0.1843
7 0.3352 7 0.5223 7 0.7709
8 0.3021 8 0.4796 8 0.8846



Table 24: Performance of BKT, EMA and N -CCR when
combined with ALS on Hill-climbing Q-matrix - RMSE on
Advanced-2018 dataset
n con BKT EMA (λ, RMSE) N -CCR (N , RMSE)
1 0.3793 0.7, 0.2511 2, 0.2551
2 0.3500 0.5, 0.2192 2, 0.2428
3 0.3516 0.3, 0.2556 1, 0.2655
4 0.3496 0.3, 0.1899 1, 0.1988
5 0.3480 0.5, 0.2162 2, 0.2266
6 0.3544 0.5, 0.2234 3, 0.2341
7 0.3570 0.4, 0.2135 2, 0.2290
8 0.3677 0.4, 0.2250 1, 0.2331
9 0.3641 0.2, 0.2367 1, 0.2433
10 0.3682 0.5, 0.2552 3, 0.2625
(sec) 5.69 6.09 5.88

Table 25: Hyperparameter values of EMA (λ) and N -CCR
(N) for n con = 4 when combined with ALS on Hill-climbing
Q-matrix on Advanced-2018 dataset

λ
(EMA) RMSE N

(N -CCR) RMSE

0.3 0.1899 1 0.1988
0.2 0.1900 2 0.2051
0.4 0.1927 3 0.2074
0.1 0.1930 4 0.2279
0.5 0.1985 6 0.2287
0.6 0.2074 7 0.2287
0.7 0.2200 5 0.2302
0.8 0.2380 8 0.2372
0.9 0.2647 9 0.2372

CCR. While both methods don’t show much of a difference
between their best and worst parameter values (within 0.03
difference for both methods), it is worth noting that the
worst EMA model still outperforms the best N -CCR model.

From Table 23, we see much more variance in per-concept
RMSE as compared to the previous method, though we do
have to consider that this method simply also has more con-
cepts. An extreme example of this can be seen in the table
for N -CCR, in which skills 0 to 6 all have the same low
RMSE of 0.1843, while skill 7 and skill 8 have RMSE val-
ues of 0.7709 and 0.8846 respectively. It could simply be
that 9 concepts is too many for this dataset, even though
the expert deems 9 to be the correct number, with ALS not
zeroing-out any concepts.

From Table 24, we see that applying ALS on the Hill-climbing

Table 26: Per-concept RMSE for BKT, EMA and N -CCR
(best models) on Advanced-2018 dataset

Skill RMSE
(BKT) Skill RMSE

(EMA) Skill RMSE
(N -CCR)

0 0.3346 0 0.2235 0 0.2248
1 0.3091 1 0.1723 1 0.1843
2 0.3565 2 0.1723 2 0.1843
3 0.3801 3 0.1723 3 0.1843
4 0.3352

Q-matrices (see Table 20) reduced the number of concepts
that was optimal, from 6 to 4, and in fact also improved the
RMSE, for EMA and N -CCR. For BKT this increased the
number of optimal concepts from 2 to 5.

It is also interesting to see that for the Q-matrix with 1
concept, the best λ for EMA is 0.7, which is the largest
we have observed so far. Across the other Q-matrices the
optimal λ also varies.

In addition, Table 24 shows thatN -CCR has a large variance
in the optimal values for N across the different numbers of
concepts as compared to previous results.

From Table 25, we do see that RMSE worsens as N increases
for N -CCR. Meanwhile, for EMA, RMSE stays relatively
similar for the first 6 values of λ, then worsens quicker be-
yond 0.6.

Table 26 shows us that RMSE stays very stable across the
different concepts across all 3 algorithms - very different
from when we had 9 concepts (see table 25). This shows
us that the optimal number of concepts is in fact small for
this dataset, much smaller than the number of concepts de-
signed by an expert.

6.4 2018 Summary
For all three datasets, the best models are EMA together
with the novel Q-matrix method of applying ALS to the
Hill-climbing Q-matrices (refer to Table 27). This combi-
nation does not need any expert opinion or human input,
and can be fully automated, provided that example student
responses are given. Also note that the runtime is relatively
quick.

6.5 2019 Summary
For the 2019 datasets, 2 out of 3 datasets have ALS+Hill-
climb as the best Q-matrix method, and 2 out of 3 datasets
have EMA as the best Mastery Score method. All 3 com-
binations of Q-matrix and Mastery Score methods can be
automated and require no human input.

In fact, the only Q-matrix method which requires human
input is the ALS+Expert method which, of course, has the
first step of initialising a Q-matrix by getting an expert to
manually create one from inspecting the data/questions.

7. OVERALL RESULTS DISCUSSION
7.1 Automation
Recall that we have 3 Q-matrix generation methods - Hill-
climbing, ALS on an expert-initialized Q-matrix, and ALS
on a hill-climbing-initialized Q-matrix (novel combination
of the first two methods). The first and third methods do
not need human input and need only response data, while
the second method does need human input as the initial
Q-matrix is initialised by an expert.

One of the goals of this study was to investigate methods of
automating the whole pipeline from data to domain mod-
elling to student modelling to prediction (which can then
be used for task sequencing), which means that it would be



Table 27: Summary of 2018 results - best models and baselines

Best Baseline
RMSE

Best Method
Q-matrix : Mastery Score : RMSE

: n concepts : runtime (sec)
Beginners-2018 0.4899 ALS+Hill-climb : EMA : 0.1319 : 1 : 55.8

Intermediate-2018 0.4880 ALS+Hill-climb : EMA : 0.1782 : 1 : 31.8
Advanced-2018 0.4280 ALS+Hill-climb : EMA : 0.1899 : 4 : 6.09

Table 28: Summary of 2019 results - best models and baselines

Best Baseline
RMSE

Best Method
Q-matrix : Mastery Score : RMSE

: n concepts : runtime (sec)
Beginners-2019 0.4629 ALS+Hill-climb : EMA : 0.1243 : 1 : 59.8

Intermediate-2019 0.4832 Hill-climb : EMA : 0.1130 : 1 : 37.1
Advanced-2019 0.4427 ALS+Hill-climb : N -CCR : 0.0790 : 1 : 6.4

best to require as little human input as possible at any point
in the pipeline.

With this in mind, it is encouraging that, out of the 6
datasets, the best performing combinations of Q-matrix and
Mastery Score algorithms all use either ALS on Hill- climb-
ing Q-matrix or just a Hill-climbing Q-matrix, both of which
do not need human input. All 3 Mastery Score algorithms
do not need human input.

In fact, 5 out of 6 combinations use ALS on Hill-climbing
Q-matrix which is our proposed novel method. As we have
seen in the previous results, in most datasets, applying ALS
on the Hill-climbing Q-matrices will bring about an improve-
ment in RMSE on most Mastery Score algorithms, as com-
pared to using Hill-climbing Q-matrices without ALS.

7.2 Runtime
One drawback of ALS on Hill-climbing Q-matrix is that it
first requires calculating the Hill-climbing Q-matrices, which,
based on our setup with multiprocessing on 10 cores, would
take a few hours on the largest of our datasets (see Table 2).
However, we must consider that this can be run offline and
only needs to be run once.

In a real life scenario, we start with some historical data
to generate the Q-matrices. Hill-climbing would take a few
hours, and then applying ALS on the resulting Q-matrices
would only take a few seconds.

Once this is done, then this Q-matrix can be used in con-
junction with EMA or N -CCR (which perform better than
BKT in our experiments) on any new student responses to
predict their mastery of each concept. This only takes a few
seconds. Predictions on mastery of concepts can then be
used for things such as task sequencing - for example, if we
identify that a student is weak at certain concepts, then we
can recommend other questions which test that same con-
cept as remedial questions.

The Q-matrix can then be updated once sufficient new data
has been accumulated by running the algorithm from scratch
with the new data. Again, the long runtime doesn’t really
matter since this can be run offline, and until it is done

running, the old Q-matrix can be used.

7.3 BKT Performance
It is interesting that, for all the datasets, BKT performed
worse than EMA and N -CCR. One explanation for this
could be the variance in student skill. One limitation of
BKT is that, when the parameters are fit on the data, what
is really being captured are patterns in the average difficulty
of the questions in the dataset. As such, it is best used when
students are of a similar skill, whereas student skill in our
data set varies wildly, even within one difficulty level (Begin-
ner, Intermediate, Advanced). EMA and N -CCR are much
simpler algorithms, and perhaps the issues that affect BKT
do not affect these two algorithms quite as much.

8. LIMITATIONS AND FUTURE WORK
8.1 Q-matrix Interpretability
One limitation of the best Q-matrix generation algorithm
(ALS on Hill-climbing Q-matrix) is interpretability. With a
Q-matrix that is designed by an expert, obviously it would
be clear what each concept actually represents - e.g. the
labels can be ”for-loops”, ”while-loops” etc.

However, when the Q-matrix is learned from data without
human intervention (as in the case of ALS on Hill-climbing
Q-matrix), each concept only has an index as a label. In-
terpreting what each concept represents would require an
expert to inspect the Q-matrix together with the questions
and responses.

Nevertheless, it can be argued that this is beyond the scope
of this study, since we are concerned only with whether the
process can be automated, and if the pure-automation ap-
proach performs better than the expert-initialised approach
(any combination with ALS on expert Q-matrix) with re-
spect to predicting future task performance.

8.2 Alternative Preprocessing Methods
Our algorithms require the student response data to be in
the form of one response per question, with the response
being either correct or wrong. This is not really the case
for our data, where a programming question allows multi-
ple attempts not a single one, and correctness is measured



based on how many test cases are passed. To deal with this,
we aggregated the student’s attempts into a single score as
explained in the preprocessing section. Other methods for
preprocessing and aggregation of the student’s score can be
explored in future work and may result in better perfor-
mance.

8.3 User Testing
An interesting direction for future work would be user test-
ing. In this study, we measured the performance of a model
by its ability to predict future task performance for a ques-
tion on the same concept using the mastery score, with the
hope that this could then be used for task-sequencing. It
would interesting to test this method in a real intelligent
tutoring system for sequencing remedial tasks and see the
proportion of students who agreed that the questions that
were recommended for remedial were targeting concepts that
they felt weak at. Or in other words, to test if the students
agreed that the system recommended the right questions,
which was one of the evaluation methods used in [2].

9. CONCLUSION
This study investigated if it is possible to combine methods
from domain modelling and student modelling in a single
automated pipeline that could go from raw response data
on a set of questions, to learning the mapping from con-
cepts to questions, and predicting future task performance
for a student, given the student’s responses to questions for
a given concept.

We experimented with combinations of three Q-matrix gen-
eration methods (domain modelling) and three Mastery Score
methods (student modelling), and performed experiments
on 6 large datasets containing data from students learning
to program in Python for 2 years (2018 and 2019) at three
different levels (beginner, intermediate and advanced).

We found that for 5 out of the 6 datasets, the best combi-
nation of domain modelling and student modelling used our
proposed method, ALS on Hill-climbing Q-matrix, as the do-
main modelling algorithm. For the last dataset (Intermedi-
ate-2019), the best method was Hill-climbing Q-matrix. For
5 out of the 6 datasets, the student modelling algorithm in
the best combination was EMA, while for the last dataset
(Advanced-2019) N -CCR was the best method.

Since none of the best combinations used ALS on Expert Q-
matrix as the best domain modelling technique, we conclude
that it is possible to fully automate the pipeline from raw
data to task sequencing with no human input, relying only
on learning from data. The results are promising, in terms
of both prediction accuracy and runtime, and are consistent
across the datasets from the two different years and three
levels.
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