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Abstract—Learning on synthetic data and transferring the
resulting properties to their real counterparts is an important
challenge for reducing costs and increasing safety in machine
learning. In this work, we focus on autoencoder architectures and
aim at learning latent space representations that are invariant to
inductive biases caused by the domain shift between simulated
and real images showing the same scenario. We train on synthetic
images only, present approaches to increase generalizability and
improve the preservation of the semantics to real datasets of
increasing visual complexity. We show that pre-trained feature ex-
tractors (e.g. VGG) can be sufficient for generalization on images
of lower complexity, but additional improvements are required
for visually more complex scenes. To this end, we demonstrate a
new sampling technique, which matches semantically important
parts of the image, while randomizing the other parts, leads to
salient feature extraction and a neglection of unimportant parts.
This helps the generalization to real data and we further show
that our approach outperforms fine-tuned classification models.

I. INTRODUCTION

The generation of synthetic data constitutes a cost efficient
way for acquiring machine learning training data together
with exact and free annotations. Notwithstanding this obvious
advantage, bridging the gap between synthetic and real data
remains an open challenge, in particular for camera based
applications. Learning from synthetic data is an important
tool in robotics: for example, to train a quadrupedal robot on
synthetic data by incorporating proprioceptive feedback [1], to
train a robot hand to solve real Rubik’s cubes by learning the
model in a simulation only [2] or by translating the real world
input data into synthetic data for a reinforcement learning
agent [3] and to make the robot feel at home. In view of safety
critical applications, synthetic data can provide the means to
reduce costs related to acquiring samples for edge cases, or
which are difficult to obtain since they are too dangerous, e.g.
accidents. We focus on learning invariances empirically on
synthetic data, which should transfer to real data, opposed to
constructing invariances as in equivariant neural networks [4].

We investigate the case of single independent images for
which consistency between frames and physical interactions
cannot be taken advantage of. The latter is commonly used by
reinforcement learning methods [1]. We focus on training on
synthetic data only and limit ourselves to autoencoder models
which provide interesting properties due to their bottleneck
design. The low-dimensional latent space of autoencoders can

be subject to metric constraints [5], allows for scene decompo-
sition [6] and it is believed that latent factor disentanglement
can be useful for downstream tasks [7]. We assess to what ex-
tend we can generalize to real images and we highlight which
design choices improve the autoencoder models performance
with respect to accuracy and reconstruction quality. To this
end, we first develop a method using features of pre-trained
classifiers and show that we achieve better results on MPI3D
[8] to generalize from synthetic (toy or realistic) to real images
compared to Autoencoder, Variational Autoencoder (VAE)
[9], β-VAE [10] and FactorVAE [11]. Although successful,
we highlight that insights and design choices on a simple
dataset do not necessarily transfer to real applications of higher
visual complexity. To improve generalization, we propose to
use the partially impossible reconstruction loss (PIRL) [12]
(matching semantically important parts while randomizing the
other parts) and we propose a novel variation thereof. We
extensively show that our variation is the driving force for the
improved generalization capacities. Additionally, we induce
structure in the latent space by a triplet loss regularization.
We evaluate and justify the benefits of the different design
choices on an automotive application focusing on occupancy
classification in the vehicle interior. The challenge of training
in a single vehicle interior and transferring results between
different vehicle interiors has been investigated [13]. The latter
and similar industrial applications suffer from the limited
availability and variability of training data. A successful trans-
fer from synthetic to real data would avoid the necessity of
collecting real data for each vehicle interior: the invariances
could be learned and improved on synthetic data only.

II. RELATED WORKS

There have been successful applications of reinforcement
learning systems being trained in a simulated environment and
deployed to a real one, for example by combining real and
synthetic data during training [14], [15], [16], [17]. However,
these approaches can take into account temporal information
and action-reaction causalities while in this work we use
independent frames only. A good overview on reinforcement
learning based simulation to real transferability is provided
in [18]. Another line of research uses generative adversarial
networks (GAN) to make synthetic images look like real
images or vice versa [19], [20]. This requires both synthetic



Recon 
image

Pre-trained 
Network

Avgpool + 
Conv layer

MLP 
Encoder

MLP+TransConv
Decoder

Triplet
Loss

Error

Extract general features. 
Fixed during training

Summarize the 
output into 256x4x4

Project extracted features 
into lower dimensional space

Induce Euclidean structure 
in the latent space

Enforce salient feature 
dedection and invariance

Fig. 1. Impossible Instance Extractor Triplet Autoencoder (II-E-TAE) model architecture.

and real images, whereas we focus on training on synthetic
images only. Part of our methodology is related to domain
randomization [21], where the environment is being random-
ized, but the authors deployed this to object detection and
the resulting model needs to be fine-tuned on real data. A
similar idea of freezing the layers of a pre-trained model
was investigated for object detection [22], but neither with a
dedicated sampling strategy nor in the context of autoencoders.
Another work focuses on localization and training on synthetic
images only [23], though the applicability is only tested on
simple geometries. Although, we start our investigations on
the simple dataset MPI3D, we increase the visual complexity
by incorporating human models and child seats. Others rely
on the use of real images during training for the minimization
of the synthetic to real gap for autoencoders [24], [25]. Recent
advances on synthetic to real image segmentation [26], [27],
[28] on the VisDA [29] dataset show a promising direction
to overcome the gap between synthetic and real images,
however, this cannot straightforwardly be compared against the
investigation in this work, particularly, since we are focusing
on autoencoder models and their generative nature. While our
cost function variation is based on a previous work [12],
we show that our approach improves generalization while
needing less demanding training data such that it can easily be
applied to any commonly recorded classification dataset (i.e.
no variations of the same scene are needed).

III. METHOD

Consider Ns sceneries and Nv variations of the same
scenery, e.g. same scenery under different illuminations, with
different backgrounds or under different data augmentation
transformations. Let X = {Xj

i | 1 ≤ i ≤ Nv, 1 ≤ j ≤ Ns}
denote the training data, where each Xj

i ∈ RC×H×W is the
ith variation of scene j consisting of C channels and being of
height H and width W . Let Xj = {Xj

i | 1 ≤ i ≤ Nv} be the
set of all variations i of scenery j and Y = {Y j | 1 ≤ j ≤ Ns}
be the corresponding target classes of the scenes of X . Notice
that the classes remain constant for the variations i of each
scene j. In the following, we will present the final model
architecture as illustrated in Fig. 1 and we provide evidences
for each design choice in Section IV.

A. Model Architecture: Extractor Autoencoder

By an abuse of terminology, we will refer to our method
as a variation of vanilla autoencoders, although an encoder-
decoder formulation would strictly speaking be more correct,

because the goal will not be to reconstruct the input image
exactly. We propose to apply ideas from transfer learning and
use a pre-trained classification model to extract more general
features from the input images. Instead of using the images
itself, the extracted features are used as input. Our autoencoder
consists of a summarization module which reduces the number
of convolutional filters. This is fed to a simple MLP encoder
which is then decoded by a transposed convolutional network.
We refer to this model as extractor autoencoder (E-AE).
Let eϕ be the encoder, dθ the decoder and extω be a pre-
trained classification model, referred to as extractor. For ease
of notation, we define eϕ(extω(·)) = eeϕ,ω(·). The model,
using the vanilla reconstruction loss, can be formulated as

LR(X
j
i ; θ, ϕ) = r

(
dθ(eϕ(extω(X

j
i ))), X

j
i

)
(1)

= r
(
dθ(eeϕ,ω(X

j
i )), X

j
i

)
, (2)

where r(·, ·) computes the error loss between target and
reconstruction. We use the structural similarity index measure
(SSIM) [30] and binary cross entropy (BCE). Model details
are provided in the appendix Section S2-A.

B. Sampling Strategy: Partial Impossible

An additional improvement to the autoencoder training
approach is a dedicated sampling strategy for which we
provide two variations. The first one is the partially impos-
sible reconstruction loss (PIRL) as introduced for illumination
normalization [12]. As our results will show, this also helps the
transfer between synthetic and real images. For sampling the
individual elements of a batch, we randomly select for each
scene two images, one as input and the other one as target.
This sampling strategy preserves the semantics while varying
the unimportant features such that the model needs to focus on
what remains constant. For random a, b ∈ [0, Nv] and a ̸= b:

LR,I(X
j
a; θ, ϕ) = r

(
dθ(eeϕ,ω(X

j
a)), X

j
b

)
. (3)

We refer to using the PIRL by prepending an I, e.g. I-E-AE.

C. Sampling Strategy: Partial Impossible Class Instance

We propose a novel variation to further improve this strategy
by sampling a target image of a different scene, but of the
same class. This should cause the model to learn invariances
with respect to certain class variations which are not important
for the task at hand, e.g. clothes, human poses, textures. This
sampling variation is reflected in the reconstruction loss by

LR,II(X
j
a; θ, ϕ) = r

(
dθ(eeϕ,ω(X

j
a)), X

k
b

)
, (4)
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Fig. 2. Different input-target pairs for the reconstruction loss.

for random a, b ∈ [0, Nv], j ̸= k and Y j = Y k. We refer to
this method as impossible class instance sampling marked by
prepending II, e.g. II-E-AE. It is important to notice that our
novel variation can easily be applied to any common dataset.
The sampling variations are visualized in Fig. 2.

D. Structure in the Latent Space: Triplet Loss

The final adjustment to our training strategy is the incorpo-
ration of the triplet loss regularization in the latent space [5]
to induce structure. This can be integrated by

LT (X
j
a;ϕ) =max

(
0,
∥∥eeϕ,ω(Xj

a)− eeϕ,ω(X
k
b )
∥∥2

−
∥∥eeϕ,ω(Xj

a)− eeϕ,ω(X
l
c)
∥∥2 + 0.2

)
, (5)

for random a, b, c ∈ [0, Nv], j ̸= k ̸= l and Y j = Y k ̸= Y l.
We refer to this model as triplet autoencoder (TAE) either
with or without using the PIRL. We can sample impossible
target instances for the positive and negative triplet samples
such that the total loss becomes (for some α and β):

L(Xj
a; θ, ϕ) =αLT (X

j
a;ϕ) + β

(
LR,II(X

j
a; θ, ϕ)

+LR,II(X
k
b ; θ, ϕ) + LR,II(X

l
c; θ, ϕ)

)
. (6)

IV. EXPERIMENTS

This section is organized in observations, formulated as
subsections, which are built on one another and contain results
highlighting the improvements. This provides explanations for
the design choices leading to our final model architecture
and cost function formulations presented in Section III. Im-
provements regarding the transfer to real images when only
being trained on synthetic images are assessed qualitatively
based on reconstruction quality and latent space structure and
quantitatively on classification accuracy. All experiments use
the same hyperparameters whenever possible. Training details
are provided in the appendix and in our implementation (link).

We perform a baseline evaluation on MPI3D [8], which
provides simple and realistic renderings and real counterparts.
We reduced the dataset to contain only the large objects.
For a higher visual complexity, we use as synthetic images
the SVIRO [31] dataset. TICaM [32] is used to evaluate the
performance on a real dataset of a similar application. The
latter datasets are grayscale images from the vehicle interior
and consider the task of classification (empty, infant, child
or adult) for each seat position. The design choices made on
MPI3D and the available synthetic images are not sufficient to
obtain a good transferability to real images from the vehicle
interior. Hence, we release an additional dataset, see Section
IV-E and S1-D in the appendix. We introduce step by step

modifications to the autoencoder architecture leading to steady
quantitative and qualitative improvements. MPI3D and the
vehicle interior share interesting properties: they have almost
identical backgrounds and the environment is more tractable
than many computer vision datasets. The transfer from SVIRO
to TICaM is further complicated by new unseen attributes,
e.g. steering wheel. An additional ablation study shows that
our novel variation of PIRL is the driving force for the
improved generalization capacity. Finally, to be in line with
common benchmark datasets, we show that our design choices
also improve the transfer from training on MNIST [33] to
generalizing to real images of digits [34].

A. Autoencoders struggle on real images when trained on
synthetic images

In the first, albeit naı̈ve experiment we assumed that due to
the bottleneck of autoencoders, the latter should generalize
to some extent to real images when trained on synthetic
ones. We trained convolutional autoencoders (AE) on the toy
and realistic MPI3D images, respectively, and evaluated the
resulting models on the real recordings. The first row of Fig.
3b shows the reconstruction of real images when trained on
the realistic synthetic images: the model preserves some of the
semantics. The model fails to perform senseful reconstructions
when trained on toy images, see Fig. 3c.

B. Autoencoders overfit to the synthetic distribution

A consequence of the results of the previous section is
the assumption that the autoencoder overfits to the synthetic
distribution and takes into consideration some artefacts (e.g.
rendering noise). We followed the idea of the MPI3D authors
[8] and trained Variational Autoencoder (VAE) [9], β-VAE
[10] and FactorVAE [11] on the same data as before using the
BCE reconstruction loss. The results in the second (β-VAE
with β = 8) and third (FactorVAE with γ = 50) row of Fig. 3b
show that the models reconstruct real images better and more
of the semantics are preserved. If trained on toy renderings,
the representation gap is too large, causing the reconstruction
of the real images to be bad: see Fig. 3c.

C. More general input features improve reconstructions

A small gap between the synthetic and real distribution can
potentially be closed by a dedicated data augmentation ap-
proach to avoid overfitting to synthetic artefacts. Nevertheless,
an abstraction from toy to real images cannot be achieved
by means of simple data transformations or model constraints
(e.g. denoising autoencoder). To this end we propose to use a
pre-trained feature extractor as presented in Section III and as
defined by Eq. (2). We used the VGG-11 model pre-trained
on Imagenet as the extractor if not stated otherwise.

The results from the fourth row of Fig. 3b and Fig. 3c,
respectively, show that the proposed modifications enable
the model to generalize to real images when trained on
synthetic ones. Much more of the semantics are preserved
even when the model was only trained on toy images. Our
method produces semantically more correct and less noisy
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Fig. 3. Reconstruction of unseen real data for different autoencoders:
Autoencoder (AE), β Variational Autoencoder (β-VAE), FactorVAE (F-VAE),
Extractor Autoencoder (E-AE). Our methods preserves the semantics best.

(a) AE (b) β-VAE (c) FactorVAE (d) E-AE

Fig. 4. t-SNE projection of the 10 dimensional latent space representation
of the realistic training (blue circle) together with the real (orange cross)
images. Autoencoder (AE), β Variational Autoencoder (β-VAE), FactorVAE
and Extractor Autoencoder (E-AE). The extractor approach is the only method
clustering both synthetic and real images together.

reconstructions compared to the VAE and FactorVAE baseline
results. Additional qualitative improvements are highlighted by
visualizing the latent space: both the 10-dimensional training
(synthetic) and test (real) data latent spaces are projected
together into a 2-dimensional representation using t-SNE. In
Fig. 4 we can observe that VAE and FactorVAE improve
the representation of real and synthetic images in the same
region in the latent space, however, only partially, indicating
a different representation for real and synthetic images. When
using E-AE, real and synthetic images are represented more
similarly in the latent space and the clusters are completely
overlapping. Even when trained on the toy dataset, the latent

TABLE I
WE REPORT THE SSIM AND LPIPS [35] NORM BETWEEN THE

RECONSTRUCTIONS OF THE REAL IMAGES (UNKNOWN) AND THE
CORRESPONDING SYNTHETIC (SYNTH.) TRAINING IMAGES (REALISTIC
(R) OR TOY (T)) OR INPUT IMAGES (REAL). WE REPORT THE MEAN OF

THE NORMS ACROSS THE DATASET: FOR SSIM LARGER ↑ AND FOR
LIPIPS SMALLER ↓ IS BETTER. E-AE PERFORMS BEST.

SSIM ↑ LPIPS ↓
Model Variant Synth. Real Synth. Real

T AE SSIM 0.56 0.42 0.35 0.40
T VAE BCE 0.50 0.33 0.34 0.42
T β-VAE BCE, β = 4 0.53 0.38 0.31 0.44
T β-VAE BCE, β = 8 0.71 0.48 0.26 0.37
T FactorVAE BCE, γ = 10 0.66 0.45 0.26 0.39
T FactorVAE BCE, γ = 50 0.71 0.51 0.22 0.35
T E-AE (ours) SSIM 0.90 0.58 0.10 0.2

R AE SSIM 0.83 0.62 0.20 0.24
R VAE BCE 0.74 0.61 0.20 0.23
R β-VAE BCE, β = 4 0.81 0.64 0.18 0.20
R β-VAE BCE, β = 8 0.79 0.64 0.19 0.21
R FactorVAE BCE, γ = 10 0.88 0.68 0.15 0.19
R FactorVAE BCE, γ = 50 0.78 0.64 0.16 0.18
R E-AE (ours) SSIM 0.92 0.70 0.08 0.14

space representation for synthetic and real images produced
by E-AE overlaps partially as visualized in the appendix Fig.
S2. Finally, we report in Table I a quantitative evaluation
between the reconstructions of the real images against their
synthetic training counterparts across all dataset images for
different norms. We compute the same metrics between the
real input images and their reconstruction to measure whether
the semantics are being preserved : in all cases E-AE performs
best. Additional results can be found in the appendix in Table
S5 and reconstructions of synthetic input images in Fig S3.
The latter shows that all models perform similarly well on
the training data, hence the training was successful, but our
proposed design choices generalize best to the real images.

D. It works for visually simple images - More is needed on
more complex data

Since the method introduced in the previous section
achieved good results, even when being trained on toy images,
we wanted to apply it to images of higher visual complexity,
e.g. a vehicle interior. We trained the same model architecture,
but with a 64-dimensional latent space, on images from the
Tesla vehicle from SVIRO and the Kodiaq vehicle from
SVIRO-Illumination, respectively, and evaluated the model on
the real TICaM images. Examples of the resulting model’s re-
constructions are plotted in Fig. 5 (b) and in the appendix Fig.
S4. In both cases only blurry human models are reconstructed,
which is similar to the mode collapse in the first row of Fig.
3c. We concluded that more robust features are needed.

E. PIRL helps generalization

As defined in Eq. (3), a partially impossible reconstruction
loss (PIRL) for autoencoders has proven to work well for
image normalization [12]. We hypothesized that the same
approach could lead to a better generalization to real vehicle
interiors. We applied this strategy to variations of the same
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Fig. 5. Reconstructions of unseen real data (a) from TICaM: (b) E-AE and
(c) I-E-AE trained on Kodiaq SVIRO-Illumination, (d) E-AE, (e) I-E-AE, (f)
II-E-AE and (g) II-E-TAE trained on our new dataset. A red (wrong) or green
(correct) box highlights whether the classes are preserved.

scene under different illumination conditions, but realized that
the learned invariances are not suitable for the transfer between
synthetic and real. An example is provided in Fig. 5 (c) where
we trained on the Kodiaq images from SVIRO-Illumination.

We concluded that, for learning more general features by
applying the PIRL, we needed input-target pairs where both
images are of the same scene, but differ in the properties we
want to become invariant to: the dominant background. To
this end we created 5919 synthetic scenes where we placed
humans, child and infant seats as if they would be sitting in
a vehicle interior, but instead of a vehicle, the background
was replaced by selecting randomly from a pool of available
HDRI images. Each scene was rendered using 10 different
backgrounds. Examples from the dataset are shown in Fig.
S1 in the appendix. During training, we randomly select two
images per scene and use one as input and the other as target,
i.e. as defined in Eq. (3). When applied to real images, see
Fig. 5 (e), the model better preserves the semantics of the real
images: the model starts to reconstruct child seats and not
people only, anymore. We also trained a model without the
PIRL to show that the success is not due to the design choice
of the dataset: in Fig. 5 (d) the model performs worse.

Finally, we extended this idea further with our novel PIRL
loss variation: instead of taking the same scene with a different
background as target image, we randomly selected a different
scene of the same class, e.g. if a person is sitting at the left
seat position, we take another image with a person on the left
seat, potentially a different person with a different pose. This
approach is formulated in Eq. (4). While this leads to a blurrier
reconstruction, which is expected because the autoencoder
needs to learn an average class representation, the classes are
preserved more robustly and the reconstructions look better
than before, see Fig. 5 (f). This additional randomization
improves classification accuracy as discussed in Sections IV-G
and V. A visualization of the different input-target pairs can
be found in Fig. 2 and the dataset can been downloaded (link).

F. Structure in the latent space helps generalization

The final improvement is based on the assumption that
structure in the latent space should help the model perfor-
mance. Class labels are included by formulating a triplet loss
regularization to the latent space representation as defined by
Eq. (5): images of the same class should be mapped closely
together and images of different classes pushed away. The
triplet loss induces a more meaningful L2-norm in the latent
space [12] such that a k-nearest neighbour (KNN) classifier
can be used in the next section. As the results of Fig. 5 (g)
and in the appendix show, these final improvements, together
with the previous changes, yield the semantically most correct
reconstructions. In the appendix we show that due to the triplet
loss the nearest neighbour of (g) makes sense and yields a
clearer reconstruction. The triplet loss without the PIRL is not
sufficient and in Section V we show that the II-PIRL loss is
the driving force for the improved performance.

G. KNN with triplet loss out-performs classification models

We investigated whether the qualitative improvements also
transfer to a quantitative improvement. We took the most basic
approach: we combined the E-TAE with a k-nearest neighbour
classifier in the latent space and used our new dataset for
training. We retrieve the latent space vectors for all flipped
training images as well and used only a single image per scene
(i.e. not all 10 variations). We choose k =

√
N = 115, where

N is the size of the training data together with its flipped
version [36]. The model should classify occupancy (empty,
infant, child or adult) for each seat position and we used the
same hyperparameters for all methods and variations thereof.
We froze the same layers of the pre-trained models for fine-
tuning the later layers in case of classification models or to
train our autoencoder using it as an extractor. We evaluated the
model performance after each epoch on the real TICaM images
(normal and flipped images of the training and test splits)
for both the autoencoder and the corresponding classification
model. This provides a measure on the best possible result for
each method, but is of course not a valid approach for model
selection. We report in Fig. 6 the training results for seeds
1 to 10 and summarize the training performance by plotting
the mean and standard deviation per epoch per method. Our
approach converges more robustly and consistently to a better
mean accuracy. For each experiment, we retrieve the best
accuracy across all epochs and compute the mean, standard
deviation and maximum of these values across all runs: these
statistics are reported in Table II. See the appendix for training
from scratch and Densenet-121 results. The model weights
corresponding to the epochs selected by the previous heuristics
were applied on the SVIRO dataset to verify whether the
learned representations are universally applicable to other
vehicle interiors. For SVIRO, we used the training images
and excluded all images containing empty child seats or
empty infant seats, treated everyday objects as background.
The results show that our E-AE significantly outperforms the
classification models across three different pre-trained models
and across all datasets. A consistent improvement for the
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Fig. 6. Training performance distribution for each epoch over 250 epochs. II-
E-TAE is compared against training the corresponding extractor from scratch
or fine-tuning the layers after the features used by the extractor.

TABLE II
FOR EACH EXPERIMENT, THE BEST ACCURACY ON REAL TICAM IMAGES

ACROSS ALL EPOCHS IS TAKEN AND THE MEAN, STANDARD DEVIATION
AND MAXIMUM OF THOSE VALUES ACROSS ALL 10 RUNS IS REPORTED.

THE MODEL WEIGHTS ACHIEVING MAXIMUM PERFORMANCE PER RUN ON
TICAM ARE EVALUATED ON SVIRO.

TICaM SVIRO

Model Variant Mean Max Mean Max

VGG Pretrained 75.5± 1.5 78.0 78.7± 2.9 84.0
Resnet Pretrained 78.1± 1.7 80.4 83.5± 2.7 88.1

VGG E-TAE 76.7± 2.3 81.5 78.6± 2.6 82.3
Resnet E-TAE 83.8± 1.3 86.0 85.8± 2.4 89.1

VGG I-E-TAE 79.7± 2.1 82.2 80.9± 4.0 85.6
Resnet I-E-TAE 83.5± 1.3 85.6 89.2± 1.0 90.3

VGG II-E-TAE 81.0± 0.6 82.0 79.1± 3.9 84.8
Resnet II-E-TAE 83.7± 0.5 84.5 93.0± 0.8 94.1

different modifications is achieved: I-E-TAE outperforms E-
TAE and II-E-TAE outperforms I-E-TAE.

V. DISCUSSION AND LIMITATIONS

We want to highlight that most of the contribution to the
success of our introduced model variations stems from the
novel II variation of the PIRL loss. To this end we trained
several types of classifiers in the latent space of different
autoencoder model variations and report the results in Table
III. The II variation of the PIRL loss largely improves the
classification accuracy compared to the I variation. Moreover,

TABLE III
FOR EACH OF THE 10 RUNS PER METHOD AFTER 250 EPOCHS USING THE

VGG-11 EXTRACTOR WE TRAINED DIFFERENT CLASSIFIERS IN THE
LATENT SPACE: K-NEAREST NEIGHBOUR (KNN), RANDOM FOREST

(RFOREST) AND SUPPORT VECTOR MACHINE WITH A LINEAR KERNEL
(SVM). MOST OF THE CONTRIBUTION TO THE SYNTHETIC TO REAL

GENERALIZATION IS DUE TO THE NOVEL II VARIATION OF THE PIRL.

Variant KNN RForest SVM

E-AE 17.1± 6.7 24.2± 4.1 40.6± 8.5
I-E-AE 18.2± 7.3 42.4± 6.5 50.1± 3.7

II-E-AE 73.2± 3.9 68.8± 5.7 66.9± 6.7
E-TAE 69.2± 3.4 66.4± 4.0 68.7± 2.2

the performance is better compared to the triplet loss variation
which uses the label information explicitly as a latent space
constraints, compared to the implicit use by the II-PIRL.

The II variation of the PIRL loss implicitly assumes that the
classes are uni-modal, i.e. objects of the same class should be
mapped onto a similar point in the latent space. This charac-
teristic can either improve generalization or have a detrimental
effect on the performance depending on the task to be solved.
Under its current form there is no guarantee that, for example,
facial landmarks or poses would be preserved. Nevertheless,
we believe that extensions of our proposed loss, for example
based on constraints (e.g. preservation of poses) could be an
interesting direction for future work. It can be observed that
our model is not perfect and sometimes struggles: e.g. for more
complex human poses (e.g. people turning over). However, we
believe that these problems are related to the training data: a
more versatile synthetic dataset would probably improve the
model performance on more challenging real images.

Finally, we show that improvements reported in this work
are not limited to the application in the vehicle interior. To
this end, we trained models using the same design choices
on MNIST [33] and evaluate the generalization onto real
digits [34] in Fig. S6 and Table S7 in the appendix: similar
improvements by the different design choices can be observed.

VI. CONCLUSION

We introduced an autoencoder model which uses a pre-
trained classification model as a feature extractor. Our results
showed that the resulting model produces superior recon-
structions for synthetic to real generalization. However, we
highlighted that design choices made on simple datasets do
not necessarily transfer to visually more complex tasks. We
performed a step-by-step investigation of additional model
changes and showcased the improvements of each change.
Although a k-nearest neighbour classifier is used in the latent
space, our proposed autoencoder model outperforms consis-
tently and more robustly all classification model counterparts.
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