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Abstract—With the development of smart connected auto-
mated guided vehicles (AGVs) and robots, many new services
and applications occur, which require flexible wireless end-to-end
communication, high data transmission, and intensive computa-
tion. To achieve such a high demanding communication system,
it is very important to predict the wireless channel parameters,
which can help schedule the system resource management and
optimize the system performance in advance, such as throughput
and transmission efficiency. In this paper, we present our efforts
towards proposing a deep learning-based channel prediction
algorithm, which is then evaluated on the data set measured with
different system state report frequencies from our implemented
software-defined radio platform in different indoor environments.
Results showed that the proposed channel predictor has a
convincing ability on the real-world channel prediction.

Index Terms—LTE, beyond 5G, MIMO, SNR, Channel Pre-
diction, CNN, LSTM, srsLTE, Deep Learning

I. INTRODUCTION

The approaching new wireless communication generation
needs more efficient methods to deal with the tremendous
growth of intelligent devices and applications, and the com-
plexities of the system [1], [2]. Massive MIMO (mMIMO)
has successfully emerged in the 5G communication systems
[3]. Wireless transmission adaptation based on the received
channel state information (CSI) is one of the key solutions,
which enables the communication system to achieve commu-
nication performance near the Shannon limit. Information on
the received signal-to-noise ratio (SNR) is the basis of the
whole span of transmission rate adaptation protocols [4]. The
moving UEs can cause fast time-varying characteristics of the
channel, which seriously lead to the imperfection of CSI. It
has been well recognized that the imperfect CSI has negative
impact on the performance of adaptive transmission systems,
spanning from antenna selection to physical layer security [5].

Considering the future massive networks and the nonlinear
varying channels, deep learning is a promising tool to provide
competitive performance to existing approaches, with afford-
able and reasonable computational costs in complicated multi-
user systems [6]. The observed outdated CSI is processed to
forecast the future CSI. The channel predictor can achieve
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a very high prediction accuracy in a fast fading channel
without any prior knowledge of the channel [6], [7]. The
long short-term memory (LSTM) network is used to pre-
dict the SNR in V2X communication systems [8]. It can
be concluded that LSTM is an efficient improved recurrent
neural network (RNN), which has a better effect on solving
the long-term dependence problems than general RNN. The
authors in [9] have discussed the strengths and bottlenecks
of some new approaches and improved the performance of
channel prediction by increasing the number of input features
on simulated channels. It needs to be pointed out, that data
from the above approaches are mostly from simulated fading
channel, which follows the Rayleigh distribution with an
average power gain of 0 dB, where its channel gain h is zero-
mean circularly-symmetric complex Gaussian random variable
with the variance of 1, i.e., h ∼ CN (0, 1).

The performance evaluation of new communication tech-
nology requires rigorous evaluation and practical verification
before deployment. The author in [10] has taken the advantage
of spectrum analyzer to estimate and extract the CSI in
Vehicle-to-Vehicle driving scenario, which is however very
space and time consuming, because of the huge amount of data
streams. To look deep inside into the performance of channel
predictor on real channel data, in this paper, we develop a deep
learning-based channel prediction algorithm, which focuses on
SNR prediction. The channel data for training and testing the
algorithm is measured on a real over-the-air software-defined
radio (SDR) communication platform. Performance evaluation
is held in different indoor environments. Because the CSI
shows different sensitivities to the environment, the frequency
of channel data collection will have a considerable effect on
the accuracy of channel prediction. The performance of the
proposed channel predictor is also compared with baseline
methods.

The paper is organized as follows. Section II introduces
the overview of the communication system and the process of
SNR measurement. Section III introduces the proposed model
in detail, including the architecture of the learning framework
and the prediction scheme. Further, we present the method of
SNR prediction and the analysis of the prediction results in
Section IV. Finally, conclusions are given in Section V.



II. AN OVERVIEW OF EXPERIMENT PLATFORM AND SNR
MEASUREMENT

Fig. 1. The hardware setup of SDR-based LTE communication platform

The system setup can be seen in Fig. 1, where the srsENB
and srsUE are installed on two separate computers respec-
tively, which are full implementation of software-defined radio
applications of srsRAN [11]. Both operate on Linux systems,
which have low latency kernel and boosted CPU performance.
The Universal Software Radio Peripheral (USRP) receives the
signal from the srsENB through the USB 3.0 interface and
broadcasts the signal to the environment by using VERT2450
antenna. Another USRP, which is connected to the srsUE can
receive the signal from the transmitter through IP assignment
and Identification which is supported by srsEPC.

In a factorial networking scenario, the moving AGVs need
to predict the rapid changes of CSI in real-time, perform
mobile edge computing (MEC), and work with base stations
(BSs) for the adaptive transmission scheme to improve the
transmission efficiency and throughput of wireless systems.
In this paper, the SNR in the communication channel is
selected as a prediction target. Because with the predicted
SNRs, AGVs with communication end devices can then switch
proper modulation modes to improve communication quality.
The BSs can also adapt the transmission rate according to the
predicted SNR.

For an optimal simulation of AGV communication in a
complex indoor environment, we put our platform in different
indoor environments. One is a roomy demo laboratory, where
there are machines, pillars, tables, and walls with different
materials in a relatively open indoor space, that can provide
different types of reflections and create randomness as much
as possible. Another one is in the office scenario, where there
are narrow corridors and walls in a closed space. We assume
that, because of the effect of small-scale fading, the channel
might show different sensitivities in different environments
while the end devices are moving. This means, that the
frequency of the historical CSI observation should be adjusted
with the changes of the environment. The channel prediction
algorithms can then easily learn the collected CSI from a new
environment in a short time and make hyper-parameter updates
for better prediction. Because there are already plenty of
indoor localization methods using sensors or computer vision

with high accuracy, which can be applied to detect the location
of the end device. Under this assumption, we have tested the
channel prediction algorithm on the data set collected with
different frequencies in two above environments.

Fig. 2. Measurement site (top view)

Fig. 3. Measurement setup

As shown in Fig. 2, there are two top views of the mea-
surement environment. We keep the srsENB device static in
fixed positions. The srsUE device is then placed on an AGV,



Fig. 4. An exemplified plot of SNR data with time step of every 1s in demo
lab

Fig. 5. An exemplified plot of SNR data with time step of every 1s in office
corridor

as shown in Fig. 3, which runs along the red dotted routes
with 0.5 m/s moving speed. So we have created a relatively
dynamic communication scenario. In srsRAN, on both sides of
UE and eNB, a tracer for CSI is implemented, we can easily
monitor the channel state data as desired while the system is
running.

As a system default setting, the srsRAN monitors the CSI
data lists every second in Linux Terminal. For getting more
or less information in the time series, we need to collect the
CSI data more or less frequently. On the basis of 3GPP LTE
standards, in the Frequency Division Duplexing (FDD) system,
each radio frame is 10 ms long and consists of 10 subframes.
We have changed the frequency of the uplink CSI lists report
on the side of srsENB to every 10ms, so that we get the CSI
value of each uplink frame. We have used the iperf tool for
the uplink transmission test. We also set the time of the iperf-
UDP test for a long enough time in order to collect more
data, since the srsRAN system stops automatically if there
is no data transmission between the srsENB and srsUE. As
an example, Fig. 4 and Fig. 5 visualize small pieces of the
collected uplink SNR data over the communication channel
in two different scenarios as illustrated above, each of which

consists of 400 consecutive SNR values. The step size is 1s.
During this 400s measurement, we can find a relatively bigger
fluctuation of the SNR value in the time series along with
the movements of AGV in the office scenario, which has
22.1 dB difference value between the min-max values. The
difference in the laboratory is only 3.7 dB instead. So from
the observation of the measured data, it can be concluded that
the sensitivity of the channel versus the environment in the
office corridor is higher than in the demo laboratory.

III. CHANNEL PREDICTOR ARCHITECTURE

In this section, we look deep into the CSI prediction in
dynamic networks with moving devices. Our predictor is based
on one-dimensional (1D) CNN and LSTM. Fig. 6 shows
the architecture of this learning framework. Based on the
knowledge of state-of-the-art results of the papers discussed
in section II, a single LSTM layer is sufficient for simulated
time series data forecasting [7]. we add a CNN layer before
the LSTM other than a pure LSTM channel predictor, since
CNN has excellent capability on feature extraction, it can help
to process the raw data from real-world measurement.

Fig. 6. The learning framework of the predictor

The 1D CNN network works for giving an architecture to
learn smoothing parameters. It contains a 1D convolutional
layer, a 1D max-pooling layer, and a flattening layer. The
main difference between 1D and 2D is that these filters
stride through the one-dimensional vectors along with one
dimension, instead of two dimensions. Because they are part
of the same function that outputs predictions, by optimizing
the neural network loss, one optimizes smoothing parameters
directly to perform well on a prediction task. The later layers
then use the smoothed raw data and handle the main part of
the time series forecasting problem.

The next component is an LSTM network for state vector
prediction. LSTM has a stronger ability to overcome the
vanishing gradient problem than the traditional RNN networks.



The mathematical description of the LSTM structure is as
follows:

it = σg(Wixt +Riht−1 + bi),

ft = σg(Wfxt +Rfht−1 + bf ),

gt = σc(Wgxt +Rght−1 + bg),

ot = σg(Woxt +Roht−1 + bo),

(1)

where i, f , o are input gate, forget gate, output gate. Each
component has the input weights W, the recurrent weights
R, and the bias b. σg denotes the state activation function
which is the hyperbolic tangent function and σc is the gate
activation function which is the sigmoid function. Therefore,
the cell state ct and the hidden state ht at the time t can be
calculated by

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ σc(ct)
(2)

where ⊙ denotes the Hadamard product which takes two same-
dimensional matrices and generates another matrix where each
element i, j is the product of elements i, j of the original
two matrices. The update of each LSTM unit can be briefly
summarized as follows:

ht = LSTM(ht−1,xt, θ) (3)

where θ represents all the parameters in the LSTM network.
In the rest of this paper, we employ this prediction model for
channel prediction and evaluate its performance on different
steps of prediction with a different number of historical data.

IV. EXPERIMENTAL RESULTS OF CHANNEL PREDICTION

As described in section II, we perform SNR data collection
by operating on the srsRAN for more than 1000s of each time
of measurement. We have collected the SNR data from both
every 1s and every 10ms in the two environments, so we have
enough samples.

Table I lists the main parameters of the predictor, where a
layer of 1D CNN with 32 filters each with 5 Kernels is set
for raw data processing and one layer LSTM with a different
number of units is used for time series prediction. Starting
from an initial state with random values, the weights and
biases are updated by Adam optimizer [12]. The learning rate
is derived from callbacks of the learning rate scheduler during
training. We use the mean absolute error (MAE) to calculate
the error between the predicted value and the observed value,
which is defined as

MAE =

∑n
i=1 |yi − xi|

n
(4)

where n is the total number of SNR samples used for testing,
yi denotes the predicted results at time step i, and xi stands
for its actual value.

We first examine the ability of the proposed predictor to
predict the SNR data, which is measured in the laboratory
with 10ms time step. In Fig. 7 we show the variation of
SNR value obtained in the laboratory scenario. We use the

TABLE I
TRAINING PARAMETERS

Parameter Value
Training environment python 3.9.7 tensorflow-gpu 2.6.0

Learning rate 0.001
CNN filters & kernel 32 & 5

LSTM units 3/10/32/64/128/200
Optimizer adam

Loss mae

Fig. 7. SNR variation with 10ms time step in laboratory scenario. 12000
samples are used for training and 2000 samples are used for testing

first 12000 data as a training data set and the remaining 2000
samples as a test data set for prediction.

Fig. 8 shows the MAE of the channel prediction results built
with adifferent number of hidden units in the LSTM layer. 10
historical SNR observations are used to predict different time
steps in the future. The time steps values in the x-axis denote
the times of 10ms in the future that the predictor is making
a prediction for. Interestingly, the performance doesn’t turn
much better with the increased hidden units, which might be
explained by enough data sets for learning. Therefore choosing
a small number of hidden units is possible and should be used
for the channel prediction to reduce the amount of computation

Fig. 8. MAE calculated between the channel prediction results and the actual
value in lab scenario. Legend describes the number of hidden units for LSTM
layer.



needed for network training. We compare the performance to
the baseline determined by the last observed (non-predicted)
channel state value. We can find a huge performance improve-
ment by using our proposed method. The channel predictor
has shown its effectiveness for predicting dynamic changing
channels. To further verify the performance of the channel
prediction method, we have tested the prediction algorithm
with and without the CNN layer. As shown in Fig. 9, we
have taken the case of using 10 SNR observations to predict a
1-time step ahead SNR. Parameters are still the same as given
in Table I. From this figure, we can conclude, that 1D CNN
helps to improve the prediction accuracy if the LSTM with
a small number of hidden units can’t achieve high accuracy.
The predictor consists of CNN layer and LSTM with 32 units
also outperforms the pure LSTM layer with 64 units.

Fig. 9. Comparison of MAE results between algorithm with and without
CNN layer

We now turn back to our assumption in this paper. We
test our algorithm with the same process as above and take
the fixed number of LSTM units. That is 1D CNN with 32
filters and LSTM with 64 hidden units. We now compare the
prediction results on the data sets that are collected from both
laboratory and office scenarios with a measurement frequency
of 1s and 10ms respectively. For the prediction, we still use the
10 historical SNR data to predict 1-time step ahead SNR. The
results are depicted in Fig. 10. It is obvious that the predictor
can achieve high prediction accuracy in both the laboratory
and office scenario on the data set with a 10ms time step.
However, there is a tremendous performance degradation for
the prediction case on the data set with 1s time step in the
Office scenario. The performance on the data set with 1s time
step in the laboratory has only a slight degradation, which has
verified our assumption. In conclusion, in a relatively open
indoor space, the system can under certain circumstances re-
duce the frequency of the report of channel data to release the
load. However, in a closed indoor environment, channel data
collection should be on frame level or even more frequently.

V. CONCLUSION

In this paper, we have developed an open-source based
communication platform for collecting dynamic changing
channel data. We can get any real communication channel
state information as we want through an open-source RAN
platform to provide data sets for strict evaluations. We have

Fig. 10. MAE results of channel predictor on data set collected from two
environments with different frequency of the measurement

then investigated the performance of the deep learning-based
channel prediction algorithm. The channel predictor is eval-
uated and compared with baseline. We have also verified
the channel prediction algorithm on data set collected from
different indoor environment with different frequency of data
collection. This predictor can be applied to a wide variety of
wireless techniques include outdoor vehicular networks that
need to improve performance on throughput, quality of service,
etc.

Future work includes improving the performance of channel
prediction by adding additional information to the neural
networks. Performance evaluation on more complex channel
structures, such as Multi-User mMIMO and 5G new radio.
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