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Abstract

This paper presents the novel idea of generating object proposals by leveraging tem-
poral information for video object detection. The feature aggregation in modern region-
based video object detectors heavily relies on learned proposals generated from a single-
frame RPN. This imminently introduces additional components like NMS and produces
unreliable proposals on low-quality frames. To tackle these restrictions, we present Spar-
seVOD, a novel video object detection pipeline that employs Sparse R-CNN to exploit
temporal information. In particular, we introduce two modules in the dynamic head of
Sparse R-CNN. First, the Temporal Feature Extraction module based on the Temporal
RoI Align operation is added to extract the RoI proposal features. Second, motivated
by sequence-level semantic aggregation, we incorporate the attention-guided Semantic
Proposal Feature Aggregation module to enhance object feature representation before
detection. The proposed SparseVOD effectively alleviates the overhead of complicated
post-processing methods and makes the overall pipeline end-to-end trainable. Extensive
experiments show that our method significantly improves the single-frame Sparse R-
CNN by 8%-9% in mAP. Furthermore, besides achieving state-of-the-art 80.3% mAP on
the ImageNet VID dataset with ResNet-50 backbone, our SparseVOD outperforms ex-
isting proposal-based methods by a significant margin on increasing IoU thresholds (IoU
> 0.5).

1 Introduction
Video Object Detection (VOD) aims to localize and classify objects in a series of subsequent
video frames. Recent efforts in video object detection demonstrate that exploiting feature
aggregation of temporal information [5, 10, 11, 13, 14, 15, 40, 41, 42, 45, 46] produce
superior performance than leveraging temporal information at the post-processing stage [16,
22, 23, 34]. The former approaches mainly enhance the target frame feature representation
through aggregating features from neighbouring frames or an entire video clip by designing
a specific module, thereby boosting detection results. The majority of these works [15, 21,
35, 40, 42] employ two-stage detectors such as Faster R-CNN [31] or R-FCN [6] to design
their VOD pipelines.
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Figure 1: Comparison between previous region-based and the proposed video object detec-
tion methods. Subplot (a): Despite the temporal feature aggregation from support frames
t-s and t+s in existing proposal-based approaches, the detector overlooks Turtle in pink on
a low-quality target frame t due to unreliable region proposals. Subplot (b): To tackle such
limitations, we propose a novel SparseVOD framework that iteratively refines region pro-
posals through leveraging spatio-temporal feature aggregation prior to final detection. The
Temporal Dynamic Head is explained in Fig. 2.

Albeit the enormous success, it is important to highlight that the temporal feature aggre-
gation scheme of all prior region-based VOD methods [5, 14, 15, 21, 40, 42] heavily relies
on object proposals from RPN [31] trained without any temporal information. Consequently,
these methods suffer from several underlying restrictions. First, they require an additional
step of NMS [30] at the beginning to perform dense-to-sparse matching of hand-crafted an-
chors, making the overall VOD pipeline not end-to-end optimizable. Second, on low-quality
frames (appearance deterioration), the generated object proposals are unreliable, leading to
ineffective temporal feature aggregation. Fig. 1(a) illustrates that although the detector lever-
ages spatio-temporal information from support frames t-s and t+s, it fails to detect Turtle at
the target frame t. The main reason for such missed prediction is that generated proposals
from single-frame RPN overlooks Turtle in the target frame t. This corrupts object features
during instance-level feature aggregation. The third restriction is that these methods require
several support frames to calibrate proposal feature representation for the target frame, de-
creasing the run time performance. Fourth, since the RPN in these methods is optimized
on a single IoU level (generally IoU=0.5), they struggle to provide high-quality detections
(IoU > 0.5) despite producing impressive performance on a lower IoU threshold. Moreover,
these methods necessitate complex post-processing methods [3, 24] or additional proposal
classifier networks [13, 14] to accomplish state-of-the-art performance.

To tackle the aforementioned challenges, we propose SparseVOD, an end-to-end train-
able framework that exploits temporal information to learn sparse (merely 100) object pro-
posals for VOD. The SparseVOD employs the recently introduced Sparse R-CNN [37] that
has shown impressive performance by eliminating the need for dense priors enumerating
over frames and alleviating the interaction between object queries and dense frame features.
In particular, motivated from [11, 42], we incorporate a Temporal (Region of Interest) RoI
Feature Extraction (TFE) head that replaces a single image RoI extractor in the dynamic
instance interactive head in [37]. Furthermore, inspired by [42], we fuse attention guided
Semantic Proposal Feature Aggregation (SPFA) module that enhances the feature represen-
tation of object proposals in target frames through semantic level sequence aggregation from
support frames.
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Contrary to most prior VOD works, our SparseVOD operates on a sparse-in sparse-out
matching scheme. This not only eliminates components like post-processing and NMS but
also enables faster training network convergence without pre-training the detector as done
in [19]. Furthermore, thanks to the spatio-temporal learning, iterative refinement of object
proposals lead to successful predictions even on a low-quality target frame t as shown in
Fig. 1(b). Moreover, our spatio-temporal proposal learning alleviates the need for several
support frames in a video and brings significant performance gains on increasing IoU thresh-
olds (see Fig. 4).

Herein, our main contributions are as follows. (1) We propose SparseVOD, a novel end-
to-end trainable video object detection method. To our knowledge, this is the first work that
exploits temporal information to learn object proposals for video object detection. (2) We
extend the design of Sparse R-CNN [37] by introducing a Temporal Feature Extraction (TFE)
module that leverages temporal information to extract RoI proposal features. Furthermore,
we fuse Semantic Proposal Feature Aggregation (SPFA) in [37] to enhance object feature
representation before final detection inspired by [11, 42]. (3) By introducing the proposed
TFE and SPFA modules in [37], our SparseVOD improves the baseline by far (5-6% mAP).
Without bells and whistles, our SparseVOD achieves the new best mAP of 80.3% on the
ImageNet VID benchmark using ResNet-50 as the backbone. Moreover, it surpasses prior
state-of-the-art methods by far in terms of high-quality detections (higher IoU thresholds,
see Fig. 4) and achieves optimal speed-accuracy tradeoff (Fig. 5).

2 Related Work
Proposal Learning for Image Object Detection. Ren et al. [31] introduce the Region
Proposal Network (RPN) in Faster R-CNN to predict object proposals. The RPN consists of
a small fully convolutional network [28] that receives an anchor as an input, classifies it as
an object or background, and performs box regression. This design is widely incorporated
in later two-stage approaches [1, 6, 18, 26]. MetaAnchor [44] proposes to exploit meta-
learning to generate anchors dynamically. Cascade RPN [39] improves the object proposal
quality of the conventional RPN through multi-stage refinement and adaptive convolution.
Recently, Sparse R-CNN [37] introduces a sparse-in sparse-out paradigm that simplifies the
sophisticated two-stage object detection pipeline by alleviating complex components such
as Non-Maximum Suppression (NMS) [30] and dense priors. Following a similar line of
work, this paper proposes spatio-temporal learnable proposals to simplify the video object
detection pipeline.

Exploiting Temporal Information in Video Object Detection. Exploiting temporal in-
formation from other frames in a video is a natural choice to tackle the challenges of video
object detection, and our work derives from the same idea. Existing approaches leveraging
temporal information mainly follow one of the two directions. The first line of works [16,
22, 23, 34] mainly employ temporal information to make still-image detection results more
coherent and stable. The performance of such VOD methods is sub-optimal because they are
not end-to-end trainable and heavily rely on the capabilities of the initial still-image detector.
On the contrary, the other direction of methods [5, 10, 11, 13, 14, 15, 20, 40, 41, 42, 45, 46]
utilizes temporal information during the course of training. Earlier works in this category
adopt FlowNet [9] to propagate warp features across frames [24, 41, 45, 46]. However, tem-
poral exploitation of optical flow-based works is limited to neighbouring frames, yielding
inferior performance in occlusions. PSLA [12] proposes to learn the spatial correspondence
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between neighbouring frames by employing the progressive sparser stride. All these meth-
ods can only capitalize temporal information from a small number of nearby frames to refine
the target frame features. Alternatively, global feature aggregation methods [7, 35, 42] have
been proposed to utilize long-term semantic information. Recent VOD methods adopt this
aggregation scheme and propose blending of temporal features [5], class-aware feature ag-
gregation [13, 14], temporal RoIAlign [11], and temporal meta-adaptor [40] to achieve state-
of-the-art results. Although these methods produce superior performance from prior efforts,
their feature aggregation rely on object proposals generated without temporal information.
Refining Object Proposals in Video Object Detection. Recent efforts have shown that en-
hancing object proposal features can alleviate the obstacles of object confusion in videos [15,
21, 35]. Shvets et al. [35] refine the proposal for the target frame by learning similarities
between proposals from different frames. LSTS [21] models the spatio-temporal correspon-
dence to alleviate misalignment before aggregating features from different frames. Han et
al. [15] propose integrating inter-video and intra-video proposals to boost target proposal
features. Despite the promising improvements, the effectiveness of all these methods heavily
relies on the initial quality of object proposals retrieved from single-frame RPN [31]. Al-
ternatively, this paper exploits temporal information to generate object proposals for video
object detection.

Recently, MAMBA [36] proposes to extract region proposals from the enhanced fea-
ture maps through a pixel-level memory bank. TransVOD [19] proposes the transformer-
based VOD pipeline by extending Deformable DETR [47] to exploit temporal information in
videos. Despite the simple and end-to-end trainable framework, the temporal transformer in
TransVOD depends on object queries generated by the spatial transformer optimized without
temporal information. Furthermore, owing to the interaction between each object query and
the dense features of an entire frame, [19] is not a pure sparse method [37]. As a result of this
dense interaction, TransVOD requires pre-training the detector on a similar dataset [25]. On
the contrary, our method leverages temporal information to generate object proposals. More-
over, following [37], our proposed SparseVOD operates on a pure sparse paradigm and does
not require pre-training the detector.

3 Method
Overview. This section explains our proposed SparseVOD, which consists of two main com-
ponents: Temporal RoI extraction and Semantic Proposal Feature Aggregation incorporated
in the Temporal Dynamic Head. Finally, we discuss network optimization. Note that due
to space constraints, the detailed explanation of the still-image object detector Sparse R-
CNN [37] is omitted here and can be found in the supplementary material.

3.1 SparseVOD Architecture
The SparseVOD is a simple, end-to-end trainable framework, as shown in Fig. 2. It receives
a target frame and multiple support frames from the same video as input and outputs the class
and location of objects in the target frame. For each target and support frame, the extracted
feature maps from the backbone, proposal boxes and corresponding proposal features are fed
into the iterative Temporal Dynamic head consisting of multiple stages. We create Temporal
Dynamic Head by incorporating two main components into the dynamic head used in [37]
to effectively exploit the temporal information in videos. First, inspired by [11], we lever-
age support frame RoI features to extract temporal RoI features for the target frame. Then,
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Figure 2: Our SparseVOD Framework. The input for the first stage of the temporal dy-
namic head consists of initial proposal boxes, proposal features, and spatial features for the
target and support frames. The TFE extracts RoI proposal features for the target frame by
exploiting RoI features from support frames. Then, SPFA receives object features from each
IIH (identical as in [37]) and aggregates object features with guided attention heads. This
enhanced object feature representation from SPFA and box predictions after FFN serve as
input proposal features and proposal boxes for the next iterative stage.

the corresponding Instance Interactive Head (IIH) produces object feature representation for
each video frame. Subsequently, the Semantic Proposal Feature Aggregation module en-
hances the representation of the target frame by intelligently aggregating object features
from support frames. The optimal object features are fed to the corresponding feed-forward
network for classification and regression. Similar to [37], we follow the iterative architecture
in our SparseVOD. In the next iteration, the newly refined object features and the bounding
box predictions serve as the target frame’s proposal features and proposal boxes.
Temporal RoI Feature Extraction. The Sparse R-CNN [37] applies the conventional
RoIAlign [18] pooling operation to extract proposal features, and it is widely adopted in
existing VOD methods [15, 42, 45]. However, the naive RoIAlign operation only restricts
the proposal feature extraction to exploit intra-frame features. Therefore, motivated by [11],
we incorporate the Temporal Feature Extraction (TFE) module in our Temporal Dynamic
Head, as illustrated in Fig. 2. The TFE leverages temporal information for the same object
instance across support frames in a video. Since the features of the same object instance have
high semantic resemblance across video frames, we calculate cosine similarities between
target proposal features and support frame feature maps. Given target proposal features Pt
and feature map from support frame Ft+s, the cosine similarity Simt+s(m) is computed as
Pt(m)⊗Ft+s, where m represents the spatial location of Pt and ⊗ denotes dot product. Note
that the target frame proposal is mapped on the most similar feature maps from support
frames to extract the most similar RoI features. Following the temporal attentional feature
aggregation in [11], we adopt the self-attention mechanism [38] to aggregate the RoI features
of target and support frames.

Semantic Proposal Feature Aggregation. The Semantic Proposal Feature Aggregation
(SPFA) head aims to learn the enhanced feature representation from target RoI features
(containing temporal information of the same instance) and support frame RoI features to
perform final classification and regression. Since we already have temporal RoI features, we
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follow the spirits of [42] and adopt semantic similarity as the metric to aggregate features
from support frame proposals. We compute semantic similarity between target and support
proposal features in the same way as in TFE. For effective feature aggregation, the SPFA ap-
plies multi-head attention [38] on temporal proposal features of a target frame Pt and support
proposal features Ps as follows:

Wt = so f tmax(
φ(Ps) · (θ(Pt))

T√
d

θ(Pt )

) ·σ(Ps) (1)

where φ(.), θ(.), and σ(.) are some linear transformations. The symbol T represents trans-
position, d denotes the size of transformed Pt , and Wt is the enhanced proposal representa-
tion of a target frame. This rich instance representation improves robustness against inherent
challenges of VOD, such as appearance deterioration.
Loss Function. Since our SparseVOD operates on a one-to-one label matching, our method’s
loss function and training process are similar to the original Sparse R-CNN. We adopt
set predictions loss [2, 19, 47], which aims to optimize the bipartite matching among the
ground truth and predictions. Following [2, 19, 37], the cost function is defined as L =
λcls · Lcls +λL1 · LL1 +λgiou · Lgiou, where Lcls is the focal loss [27] for classification. LL1
and Lgiou are L1 loss and generalized IoU loss [32] for regression, respectively. λcls, λL1,
and λgiou are coefficients to balance the loss. We employ an identical setting to balance these
losses as in [37].

4 Experiments and Results
4.1 Experimental Settings
We perform experiments on the ImageNet VID dataset [33], which comprises 3862 training
videos and 555 validation videos. Following prior works [5, 42, 45], we train our model on
a combination of ImageNet VID and DET datasets and evaluate the results on the validation
set. We adopt ImageNet pre-trained [8] ResNet-50 [17], ResNet-101, and ResNeXt-101 [43]
backbones to compare performance with recent state-of-the-art methods. We train our net-
work for 12 epochs with a batch size of 8 on 8 GPUs. Analogous to [37], we use AdamW [29]
optimizer with a weight decay of 10−4. Initially, the learning rate is set to 2.5× 10−5 and
divided by 10 at the 8-th and 11-th epochs. Following [2, 37, 47], we set λ cls=2, λ L1=5, and
λ giou=2. We follow the basic settings of [37] and set the number of iterative stages, proposal
boxes, and the corresponding proposal features to 6, 100, and 100, respectively. We refer
readers to supplementary materials for more details.

4.2 Main Results
We compare the performance of the proposed SparseVOD with prior state-of-the-art VOD
methods on ImageNet VID dataset in Table 1. Besides the conventional mAPs @IoU=0.5,
we compute mAPs @IoU=0.75 and @IOU=0.5:95 as in [25] to analyze the precision of
detections. Owing to the unavailability of code at the time of experiments, apart from [19,
36], we reproduce the results of existing methods from the code provided by the original
papers for direct comparison. It is important to mention that all the results shown in Table 1
are without any post-processing. By looking at results under the backbone of ResNet-50, it
is evident that our SparseVOD outperforms recent methods [4, 11, 42, 45], mainly relying on
feature aggregation of region proposals. Furthermore, it surpasses the previous best score of
79.9% by [19] and achieves a new best score of 80.3% on ResNet-50. Note that alongside the
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Methods Venue Backbone Detector mAP50:95(%) mAP50(%) mAP75(%)

FGFA* [45] ICCV’17 ResNet-50 Faster R-CNN 47.1 74.7 52.0
SELSA* [42] ICCV’19 ResNet-50 Faster R-CNN 48.6 78.4 52.5
MEGA* [4] CVPR’20 ResNet-50 Faster R-CNN 48.1 77.3 52.2
TROI* [11] AAAI’21 ResNet-50 Faster R-CNN 48.8 78.9 52.8

TransVOD [19] ACM MM’21 ResNet-50 Deformable DETR - 79.9 -
Frame Baseline [37] CVPR’21 ResNet-50 Sparse R-CNN 48.7 71.1 52.4

SparseVOD BMVC’22 ResNet-50 Sparse R-CNN 54.7 80.3 60.1
FGFA* [45] ICCV’17 ResNet-101 Faster R-CNN 50.4 78.1 56.7

SELSA* [42] ICCV’19 ResNet-101 Faster R-CNN 52.4 81.5 57.9
MEGA* [4] CVPR’20 ResNet-101 Faster R-CNN 53.1 82.9 59.1
TROI* [11] AAAI’21 ResNet-101 Faster R-CNN 51.6 82.6 56.3

MAMBA [36] AAAI’21 ResNet-101 Faster R-CNN - 84.6 -
TransVOD [19] ACM MM’21 ResNet-101 Deformable DETR - 81.9 -

Frame Baseline [37] CVPR’21 ResNet-101 Sparse R-CNN 51.7 74.6 53.9
SparseVOD BMVC’22 ResNet-101 Sparse R-CNN 56.9 81.9 63.1
FGFA* [45] ICCV’17 ResNeXt-101 Faster R-CNN 52.5 79.6 59.8

SELSA* [42] ICCV’19 ResNeXt-101 Faster R-CNN 54.2 83.1 61.3
MEGA [4] CVPR’20 ResNeXt-101 Faster R-CNN - 84.1 -
TROI* [11] AAAI’21 ResNeXt-101 Faster R-CNN 54.4 84.3 60.9

Frame Baseline [37] CVPR’21 ResNeXt-101 Sparse R-CNN 53.3 76.6 57.9
SparseVOD BMVC’22 ResNeXt-101 Sparse R-CNN 58.0 83.1 64.3

Table 1: Comparison with other state-of-the-art methods on the ImageNet VID dataset. Re-
sults with * are reproduced. The two best results are highlighted in red and blue.
improvement on mAP @IoU=0.5, our SparseVOD demonstrates a significant increase (7.3
and 6 points) in the precise localization on mAPs @IoU=0.75 and @IOU=0.5:95 from the
previous best method [11], reflecting the superiority of spatio-temporal learnable proposals.

When stronger backbones of ResNet-101 and ResNeXt-101 are incorporated into Spar-
seVOD, the performance (mAP50) further increases to 81.9% and 83.1%, respectively. Note
that although MAMBA [36], MEGA [4], and TROI [11] demonstrate better results at mAP50,
our SparseVOD supersedes them by far (4∼5 points in mAP) on higher IoU thresholds.
These results correspond to our argument that while prior VOD methods operating on dense
to sparse detection pipelines show impressive results on mAP50, they fail to produce confi-
dent and precise predictions. Furthermore, our SparseVOD boosts the single-frame baseline
(Sparse R-CNN [37]) by a strong margin (8%∼9% mAP50) with all backbone networks. This
noticeable increase in mAP highlights the importance of leveraging temporal information to
generate object proposals in VOD.

4.3 Iterative proposal Visualization Analysis
We visualize the behaviour of learned proposals boxes of a trained model on a video clip from
the validation set in Fig. 3. Note that these proposals cover almost all potential regions in the
target frames. This ensures high recall performance even with sparse proposals. Moreover,
each stage in the cascaded architecture refines the bounding box offset and removes dupli-
cation. This makes our pipeline independent of any post-processing techniques to produce
precise predictions. Fig. 3(d) further exhibits the robustness of our SparseVOD by producing
high-quality predictions in challenging scenarios with camera defocus and part-occlusions.
Please see supplementary materials for more qualitative analysis.

4.4 Ablation Studies
This section discusses the effect of key components and validates the design choices in our
proposed method. Following [19], we perform all experiments on ImageNet VID dataset
with ResNet-50 as the backbone. The run time (FPS) is tested on a single DGX A100 GPU.
More ablation studies can be found in supplementary materials.
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Effectiveness of each component in SparseVOD. Table 2 summarizes the impact of adding
each component to build our proposed method. Beginning with the single-frame baseline,
we incorporate the TFE module (explained in Section 3.1) and boost the AP50 from 71.1%
to 76.9%. This demonstrates the benefit of exploiting inter-frame information to extract RoI
proposal features. On the other hand, by separately plugging the SPFA module (explained in
Section 3.1) into a single-frame baseline, we achieve substantial gains in AP50 from 71.1%
to 79.1%. Finally, by combining both TFE and SPFA to build the proposed SparseVOD,
we gain a further boost of 1.2% in AP50, accomplishing 80.3%. These results establish the
superiority of introducing spatio-temporal feature aggregation for learnable proposals.

Time

(a) Proposal Boxes (d) Stage 6(b) Stage 1 (c) Stage 3 

car|0.33

car|0.31

car|0.45
car|0.30

car|0.30
car|0.46

bus|0.8

motorcycle|0.38
car|0.61

car|0.37
car|0.31 bus|0.82

motorcycle|0.78
car|0.86

car|0.77
car|0.51

car|0.36

car|0.34

car|0.31

car|0.47
car|0.30

car|0.30
car|0.46

bus|0.83

car|0.64
car|0.46

bus|0.93

car|0.84
car|0.87

car|0.38

car|0.30 
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car|0.31 bus|0.40 
car|0.74car|0.39 bus|0.82

car|0.38 

car|0.91car|0.73
bus|0.91

car|0.44

Figure 3: Illustration of the learned proposals and bounding box predictions at different
iterative stages from a converged model. For brevity, we only visualize predictions with
a confidence score greater than 0.3. Note that learned proposal boxes in (a) cover possible
regions in all three video frames while the cascading heads in each stage enhance detections.

Single Frame Baseline TFE SPFA AP50(%) AP75(%) AP50:95(%) FPS

3 7 7 71.1 52.4 48.7 24.3
3 3 7 76.9↑5.8 57.5↑5.1 52.1↑3.4 14.9
3 7 3 79.1↑8.0 59.0↑6.6 54.1↑5.4 17.7
3 3 3 80.3↑9.2 60.1↑7.7 54.7↑6.0 14.4

Table 2: Ablation on effectiveness of each module in SparseVOD.

Stages AP50(%) AP75(%) FPS
1 60.0 27.2 42.2
2 74.5 52.8 29.4
3 78.0 58.3 23.7
4 78.5 58.6 19.8
5 79.1 59.8 16.1
6 80.3 60.1 14.4
12 77.1 55.2 5.7

Table 3: Ablation on the number
of stages. Figure 4: The detection performance of re-

cent VOD methods and our SparseVOD on in-
creasing IoU threshold.
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TFE (Avg.) TFE (MSA) SPFA (Avg.) SPFA (MSA) AP50(%) AP75(%) AP50:95(%) FPS

7 7 7 7 71.1 52.4 48.7 24.3
3 7 3 7 75.8 52.9 49.1 18.5
3 7 7 3 79.4 58.9 54.1 16.3
7 3 3 7 78.5 58.1 52.1 14.9
7 3 7 3 80.3 60.1 54.7 14.4

Table 4: Ablation on the effectiveness of multi-head attention in TFE (Temporal Feature
Extraction) and SPFA (Semantic Proposal Feature Aggregation) modules. The first row rep-
resents results from a single-frame baseline. The terms Avg. and MSA denote simple aver-
aging and multi-head self-attention.

Nref AP50(%) AP75(%) FPS
1 71.1 52.4 24.3
2 79.0 58.2 17.7
4 79.9 59.5 15.9
6 80.3 60.1 14.4

10 80.2 60.2 11.7
14 80.3 60.2 9.5

Table 5: Ablation on number of
support frames.

Figure 5: Speed-accuracy tradeoff between
SparseVOD and previous best competitor
(TROI+SELSA [11]).

Number of Stages. The impact of increasing stages in an iterative architecture is sum-
marized in Table 3. Note that without iterative architecture, even though the performance
AP50(%) reaches 60.0, the AP75 is merely 27.2%. Since the input proposal boxes at the
first stage are just random distribution of possible object locations, this result (AP50=60.0%)
indicates that computing AP on a single IoU threshold of 0.5 is not a reliable evaluation
metric. By increasing iterative stages to 3, the performance already reaches a comparable
AP50 of 78% and surpasses prior methods on AP75 with 58.3%. Finally, similar to [37], the
performance saturates at 6 stages. Hence, we adopt 6 stages in our experiments.

Comparing High-Quality Detection. Fig. 4 shows the AP curves of recent state-of-the-art
VOD methods and our SparseVOD under increasing IoU thresholds. It is evident that the
proposed method consistently outperforms prior works with a significant margin on all the
evaluation metrics. Note that although the difference is mild with the previous best competi-
tor TROI [11], on low IoU threshold (0.5), it rises on higher IoU thresholds. These results
reflect the superiority of sparse spatio-temporal learnable proposals over hand-crafted dense
priors optimized on a single IoU level in existing VOD methods.

Effectiveness of Multi-head Attention in TFE and SPFA. We demonstrate the effective-
ness of multi-head attentional blocks [38] in Temporal Feature Extraction (TFE) and Se-
mantic Proposal Feature Aggregation (SPFA) modules in Table 4. For direct comparison,
we conduct baseline experiments where attentional weights in TFE and SPFA are replaced
by simple averaging to aggregate features from target and support frames. As shown in Ta-
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ble 4, with averaging in both modules, the AP50 reaches 75.8%, reflecting the benefit of
leveraging temporal information to refine object proposals. Furthermore, we conduct exper-
iments by switching attention to averaging in one of the two modules. With TFE (Avg) and
SPFA (MSA), we observe an impressive speed-accuracy tradeoff of 79.4% AP50 and 16.3
FPS. Since the averaging in TFE is performed on the most similar RoI features computed
with cosine similarities, when combined with SPFA (MSA), it already provides an acceptable
object feature representation. However, these results are still inferior (-0.9 points in AP50)
to the performance achieved when multi-head attention is plugged in both TFE and SPFA.
These results (80.3% AP50) indicate the superiority of multi-head attentional aggregation in
our method.
Number of Support Frames. Table 5 presents the ablations on the number of support
frames. We follow the identical frame sampling strategy as in [11, 42], where support frames
are uniformly sampled from the entire video. We can see that the AP50 already reaches 79.0%
with 2 support frames. Upon increasing support frames, the performance keeps increasing
and tends to stabilize after reaching the AP50 of 80.3% with 6 support frames.
Speed-accuracy Tradeoff. Table 2 shows that the computational load in our SparseVOD
stems from Temporal Feature Extraction (TFE) and Semantic Proposal Feature Aggrega-
tion (SPFA). Since the results of [19] are not reproducible, for direct comparison, we anal-
yse the speed-accuracy tradeoff of the second best method TROI [11] and our SparseVOD
in Fig. 5. Note that TROI [11] is built upon SELSA [42] to enhance performance. With
only 6 support frames sampled from the entire video, our SparseVOD achieves a new best
AP50 of 80.3% with a run time of 14.4 FPS. In contrast, TROI manages to reach its best
performance (AP50 of 78.8%) with a run time of 7.5 FPS after utilizing 14 support frames.
The results in Fig. 5 demonstrate that the temporal feature aggregation from several support
frames in prior works [11, 42] lead to a major increase in run time, producing a sub-optimal
speed-accuracy tradeoff. Contrarily, thanks to the spatio-temporal learnable proposals, our
SparseVOD yields an optimal speed-accuracy tradeoff (79.0% AP50 and 17.7 FPS) with
merely 2 support frames.

5 Conclusion
This paper proposes SparseVOD, a novel video object detection pipeline which introduces
spatio-temporal feature aggregation to refine object proposals. The SparseVOD effectively
eliminates hand-crafted dense priors and provides reliable proposal features even with de-
teriorated input frames. Particularly, the SparseVOD incorporates attention-guided Tempo-
ral Feature Extraction and Semantic Proposal Feature Aggregation modules in Sparse R-
CNN [37]. Extensive experiments validate that SparseVOD significantly improves the base-
line performance by 8%-9% in mAP and achieves the state-of-the-art 80.3% mAP50 on the
ImageNet VID dataset with ResNet-50 backbone. Besides, our SparseVOD beats existing
methods in terms of high-quality predictions and optimal speed-accuracy tradeoff. To our
knowledge, our work is the first one that exploits temporal information in directly generat-
ing a sparse set of object proposals for video object detection. We hope similar work can be
applied to other video analysis tasks like object tracking and video instance segmentation.
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