
TOWARDS MODULAR COMPONENTS AS BUILDING BLOCKS FOR
APPLICATION-SPECIFIC CONFIGURABLE SPACE ROBOTS

Roland U. Sonsalla1, Wiebke Brinkmann1, Henning Wiedemann2, Malte Langosz1, Priyanka Chowdhury2,
Christopher Schulz1, Marko Jankovic1, Tobias Stark1, Moritz Schilling1, Niklas Mulsow1, Daniel Pizzutilo1

1 German Research Center for Artificial Intelligenz (DFKI) - Robotics Innovation Center, Bremen, Germany
2 University of Bremen - Robotics Research Group, Bremen, Germany

ABSTRACT

Robots are becoming increasingly important in future
space missions. Instead of building separate monolithic
systems, the idea is to develop specialized and standard-
ized modules that can then be (re-) combined to set up a
robot for specific tasks. If necessary, this robot can also
be reconfigured during runtime to adapt to different mis-
sion objectives and widen its area of application. The em-
phasis here is on the overall formulation of such a modu-
lar building block system, which encompasses technolog-
ical, mechatronic and software design. The developments
will enable the realization of a modular robot configura-
tion and implementation, as well as the ability to recon-
figure the system online. To give an outlook of how the
concept can handle a real application a proof-of-concept
evaluation mission is defined.

Key words: Modular Robotics, Building Blocks, EMI,
Reconfiguration.

1. INTRODUCTION

For service operations on satellites or the exploration of
foreign planets, robotic systems will be of particular in-
terest in the future. Until now, the space system solu-
tions developed and deployed have been highly mission-
specific. Modular systems that can be combined to per-
form specific mission tasks should enable a rapid re-
sponse to future exploration and service missions. The
modularity of spacecraft or planetary robots defines the
level of subdivision of a system in standardized and eas-
ily replaceable units, interconnected with each other or
with the main bus via a relatively simple standard inter-
face [1]. These units can contain any number of replace-
able system components such as inertial reference units,
payload, electronics, power distribution units, batteries,
etc. [2].

Over the years, different levels of spacecraft modularity
have been implemented, ranging from highly integrated,
specialized systems, to highly modular ones, comprised

entirely of a large number of small modules. Typical
spacecraft generally consist of many individual compo-
nents, whose integration and interfaces are highly opti-
mized towards mass and cost reduction. Therefore, they
are not easily serviceable on-orbit, if at all. One step
closer towards advanced modularity is represented by the
minimally modular spacecraft, such as those being part of
families of commercial communication spacecraft. They
are generally composed of two to three large modules that
allow parallel integration and testing (I&T) and provide
significant cost savings but not necessarily servicing [1].

The serviceable modularity or modularity at the compo-
nent level represents an even higher level of modular-
ity then the previous one. Examples of spacecrafts with
this level of modularity are the Hubble Space Telecope
(HST) and International Space Station (ISS), equipped
with serviceable components and standard interfaces.
However, these components are not grouped into ser-
viceable modules, meaning that any On-Orbit Servic-
ing (OOS) task would need to be performed at a com-
ponent level with tools and procedures specifically de-
veloped for each component separately. This complica-
tion can be avoided by developing systems with a sub-
system level of modularity, consisting mainly of com-
ponents integrated into modules which can be easily re-
moved/replaced on-ground as well as on-orbit. Examples
of such type of spacecraft are the Multimission Modu-
lar Spacecraft (MMS), the SolarMax spacecraft, and the
Reconfigurable Operational spacecraft for Science and
Exploration (ROSE). They contain components grouped
into serviceable modules, integrated on the main bus via a
standardized interface, thus allowing a great deal of flexi-
bility both on-ground, during I&T activities, and on-orbit,
while keeping the complexity of those tasks at the mini-
mum [1].

The intelligent Building blocks for On-orbit Servicing
(iBOSS), Autonomous Assembly of a Reconfigurable
Space Telescope (AAReST), DARPA’s Satlets and Self
Assembling Wireless Autonomous and Reconfigurable
Modules (SWARM), are designed with an even greater
spacecraft modularity in mind. In these concepts the
overall spacecraft system is composed of small intercon-
nected modules, each providing only a fraction of func-

Sonsalla, Roland U. / Brinkman, Wiebke / Wiedemann, Henning / Langosz, Malte / Chowdhury, Priyanka / Schulz, Christopher / Jankovic, Marko / 
Stark, Tobias / Schilling, Moritz / Mulsow, Niklas / Pizzutilo, Daniel 
Towards Modular Components as Building Blocks for Application-Specific Cinfigurable Space Robots 
2022-06 
Proceedings of the 16th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA 2022) 
: ESA-ESTEC, Noordwijk, the Netherlands



tionality of a traditional spacecraft, comparable to cells in
a living organism. Modules are envisioned to be intercon-
nected via intelligent plug-and-play interfaces, allowing
almost total on-orbit reconfiguration and assembly, with
the highest level of flexibility in mind [1]. The type and
number of individual modules will be based on an opti-
mization process that will depend not only on engineer-
ing metrics, such as the cost and mass, but also on other
less quantifiable metrics, such as future market uncertain-
ties/projections and influence of stakeholders [3, 4, 5].

In line with the typical spacecraft design, planetary
rovers are generally composed of many individual,
highly integrated components, not meant for serviceabil-
ity nor repairability, but with ruggedness and redundancy
in mind. In fact, currently deployed Mars rovers Spirit,
Opportunity and Curiosity, are highly specialized, single
mission systems, conceived to be mobile laboratories to
single-handedly carry out all the required exploration
tasks. However, these systems are proving to be in-
appropriate for future large-scale exploration missions
of planetary surfaces, where coordinated, modular,
multi-robot systems will play a pivotal role.
The payload-items (PLIs) developed at DFKI-RIC
Bremen represent one existing solution for such systems
able to support robot-to-robot interactions in multi-robot
scenarios through the usage of an electro-mechanical
interface (EMI) [6, 7, 8]. Over the last years various stan-
dard interconnects for orbital and potentially planetary
applications have been studied and developed including
the design of modular robotic components that can be
(re)configured via a standard interconnect to be used
for space specific applications [9, 10]. Along with the
further advancements of the plans to return to the moon,
concepts of modular robotic system designs come into
realization, such as Astrolab’s Flex rover [11].

Instead of building separate monolithic systems, the idea
is to elaborate specialized and standardized modules that
can be (re-)combined to setup a robot for specific tasks;
if necessary, this robot can also be reconfigured during
runtime to adapt to different objectives. Such a modular
building block system, as outlined in Fig. 1, is being de-
veloped in the project MODKOM (Modular Components
as Building Blocks for Application-specific Configurable
Space Robots), which unifies both, specially developed
components according to a standardized building block
systematics as well as industrial third-party commercial
off-the-shelf (COTS) components.

The building block systematic is described in Sec. 2 and
is used to define the modular building blocks. Besides
developing mechatronic and software modules, designed
for various space and terrestrial missions, a software tool
kit is implemented to support non-expert users compos-
ing those modular functional units to robotic systems, as
discussed in Sec. 3. MODKOM continues the work be-
gun in preceding projects like the X-ROCK 1 projects
which also aimed at long-term autonomy through model-

1D-Rock: https://robotik.dfki-bremen.de/
en/research/projects/d-rock.html and Q-Rock:

Figure 1. Flexible use of the modular building blocks for
the realization of mission-specific systems and require-
ments

based, holistic robot development for use in space, off-
shore and human-shared environments.

The performance of this technology, the methods, and the
modules developed in this project will subsequently be
evaluated by the realization of a complex composite sys-
tem for mobile manipulation. An outline of the functional
realization of the modular toolbox is given in Sec. 4. The
paper concludes with a summary and outlook of future
work in Sec. 5.

2. MODULAR BUILDING BLOCK SYSTEM

To formulate standardized module descriptions and
achieving a coherent building block systematic, various
robotic systems and application scenarios have been an-
alyzed and used to derive a reasonable level of module
granularity. The scope of application was evaluated based
on a functional decomposition of various robotic refer-
ence systems, including rover systems and in orbit ser-
vicing space crafts. Different concepts for analyzing and
defining modules within a modular toolbox have been
studied [12, 13]. Here the Metus principle as described
in [12] was used to identify and group reoccurring func-
tions. With the help of Metus, it is easy to find the func-
tional relationships of existing components and visually
represent them so that they can be grouped into functional
modules. The method can be applied very early during
the design phase, which is why it is best suited for the
MODKOM project. This analysis builds the baseline for
the definition of general top-level requirements in order
to define the scope of the modular toolbox as well as the
level of system modularization and granularity - for both
hardware and software - , as described in the following
sections.

https://robotik.dfki-bremen.de/en/research/
projects/q-rock.html

https://robotik.dfki-bremen.de/en/research/projects/d-rock.html
https://robotik.dfki-bremen.de/en/research/projects/d-rock.html
https://robotik.dfki-bremen.de/en/research/projects/q-rock.html
https://robotik.dfki-bremen.de/en/research/projects/q-rock.html


2.1. Top-Level Requirements

For the layout and definition of the modular construc-
tion kit, a set of top-level requirements was identified.
The formulation of these requirements is based on the
functional analysis of existing systems. Furthermore, the
state-of-the art of e.g. modular spacecraft designs is taken
into account as well as the needs of future use case sce-
narios and mission concepts, as described by agencies
and industry.

In the scope of this paper, only the main functional ob-
jectives of the modular toolbox are outlined:

Application area The modular toolbox shall be de-
signed to support future robotic activities in vari-
ous space applications, i.e. ranging from an or-
bital manipulator use case towards mobile plane-
tary exploration and implementation of infrastruc-
ture. Therefore, different relevant use cases shall
be evaluated and analyzed with respect to common
function blocks. A proof of concept of the modular
tool kit shall be demonstrated by means of a repre-
sentative application scenario in terrestrial environ-
ment.

Modularization and interconnectivity The modular-
ization of the different toolbox modules shall be
generally formalized in a way to formulate rather
a users and/or interface guide than a complete set
of modules. The system modularization shall allow
the configuration and integration of a complete
system using modules of the tool kit. Furthermore,
a reconfiguration of specific system parts shall be
possible during the run time of the system. It shall
be possible to extend the tool kit with additional
modules. These can either be newly developed,
following the tool box guide line or already existing
third party components, which may be integrated
either by adapting to the toolbox interfaces or by
introduction of adapter elements. The proof of
concept shall include the realization and application
of various modules from the tool kit on all levels of
granularity to form a robotic system, as well as the
integration of third party robotic components and/or
modules.

Hardware design The hardware realization of modules
shall allow for clearly distinguished module func-
tions. Where necessary cable routing and load
oathes shall be kept as short as possible. The mod-
ules shall allow an easy integratability and be com-
patible to each other. For reconfiguration purposes
an SI (Standard Interconnect) shall be applied, sup-
porting a compatibility to the module definition.

Electromechanics design Standardized power require-
ments and standard communication protocol, in-
cluding the integration of SI shall be applied for all
modules. For reconfiguration purposes, the de- and
re-coupling of modules shall be supported, as well

Figure 2. Overview of granularity spectrum of modular
systems

as the identification and handling of modules in the
communication bus.

Software design It shall be possible to perform a system
check for consistency on software level. The soft-
ware framework has to enable automatic start and
stop actions of tasks and recognize changing system
functions due to reconfiguration. Where applicable
error massages shall be generated to allow system
monitoring and FDIR (fault detection, isolation and
recovery). Furthermore, software modules shall be
set-up to allow compatible module representation,
composition and cataloging. System configuration
and generation shall be supported by software on a
user-friendly level.

2.2. Modularization and Granularity

A central aspect of a modular tool kit is the granularity
of the modules. This encompasses not only the character
and topology of the modules, but also the connectivity be-
tween them. The goal is to elaborate which functions the
individual modules should cover, as well as which mod-
ules should be compatible with each other. The spectrum
of the granularity of modular systems is shown in figure
2, where one extreme are swarm robots and the other end
of the spectrum is bounded by monolithic rovers. Swarm
robots usually consist of a large number of identical sys-
tems that are all compatible (i.e. can be connected) to
each other. They all have the same functionality and
can only perform higher level tasks by working together
and/or by forming more complex topologies by arrang-
ing themselves in new patterns. They are, in theory, ex-
tremely flexible but are complex to control. Compared
to monolith systems they create a certain mass overhead,
because all robotic systems of the swarm are also part of
the load-bearing structure and every subsystem is redun-
dant.

Monolithic systems on the other hand are specifically
build to fulfil a defined task and therefore, are (ideally)
the optimal solution to a given problem or task. This lim-
its their flexibility and the development of a monolithic
system is usually time consuming and expensive. Due to



(a) Basic functional units for system configuration

(b) Alternative system modules, e.g. for reconfiguration

Figure 3. Schematic representation of two different layers
of granularity, here for offline system configuration and
online system reconfiguration

the complexity and limited functionality of swarm robots
and the high development effort of monolithic systems,
a more balanced approach is proposed: To reduce cost
and time in the development of new systems, a toolbox
with standardized modules will be developed. The sys-
tem can be configured and built using these modules that
are equipped with and connected by standardized electri-
cal and mechanical interfaces. This also allows to extend
the tool kit with new modules. To make the system more
flexible, at least one active electromechanical interface
is included in the tool kit. This interface allows the on-
line reconfiguration of the system to fulfil a wide range
of tasks and to even extend its functionality by provid-
ing new modules or components, once they are equipped
with at least one interface.

For the design of a modular system kit, a clear definition
of the interfaces between the individual modules is essen-
tial. Based on the targeted granularity the building block
systematic distinguishes between two different layers of
modules: a) modules for system configuration (offline)
(cf. Fig. 3(a)) and b) modules for system reconfiguration
(online) (cf. Fig. 3(b)). For interconnecting the modules
of the tool kit, a distinction is made between two primary
types of interfaces: inter-modular interfaces (IMIs) and
standard interconnects (SIs).

The IMIs are intended to enable mechanical and elec-
tronic connections between modules. To facilitate main-
tenance and testing, the connections should be detach-
able. They are used to connect modules during configu-
ration and integration of the overall system. Due to the

Figure 4. Overview of module representation. The type
boxes list their most important properties, while the ar-
rows show possible relations to other type instances and
cardinality constraints.

expected differences in size and performance, especially
of structural modules and actuators, at least three differ-
ent sizes of mechanical IMIs should be defined. Mechan-
ical and electronic connections use separate interfaces to
prevent damage to electronic connectors during mechan-
ical assembly, to facilitate maintenance, and to provide
more flexibility in the design of the system. For flexibily
in communication speed and the use of industrial third-
party COTS components within the robotic system two
different communication interfaces are envisioned to be
supported: Ethernet and CAN.

In contrast to the IMI, the SI is a multifunctional interface
consisting of a mechanical locking mechanism and in-
terfaces for data and electrical power transmission. This
multifunctional interface can be controlled by the system
during operation. The system can be reconfigured on-
line or reconfigure itself via the SI. The SI can be used
as both an end-effector on the robot arm for handling
different tool attachments or payloads, and as an inter-
face for tethering payloads to the robot body. This allows
the system not only to act flexibly according to the situa-
tion, but also to be used for different tasks within the mis-
sion. The electro-mechanical interface (EMI) developed
at DFKI [14] is such an SI and will be further developed
in MODKOM.

3. SOFTWARE ARCHITECTURE

To represent and manage the various types of building
blocks required for the construction of modular robots, a
generic type capable of meeting these requirements has
been introduced. The following paragraphs will provide
an explanation of this type, as well as how components
are defined and used.



3.1. Component Models, Components and Modules

The representing type set called XTypes specializes into
several subtypes, from which Component and Compo-
nentModel are the most important ones for the subjects in
scope of this project. The presented concepts are based
on and extend [15].

Components represent the hard- and software building
blocks of robotic systems, which can be combined to
generate more complex components. Hence, a hierar-
chy of components of different complexity is created. At
the lowest level of this hierarchy are atomic components,
which can not be further divided into other components
in our model.

To properly construct a component-based system, it is
necessary to distinguish between the following:

Component models (type name ComponentModel)
which form the type system of components,

Components (type name Component) which always are
instances of some component model and can be used
to construct new component models, and

Modules are components that exist in the physical world
(e.g. have been built by someone). Modules - even
if they are identical - have a unique id; so each phys-
ically existing module can be identified.

Interfaces (type name Interface) define how compo-
nents can be interconnected (for software this means
porting of data, for hardware this means the way
they are assembled)

Interface models (type name InterfaceModel) are - like
component models - the type system of interfaces

A component cannot exist without a component model
but a component model can exist without a component.
The handling of modules contributes to the expansion of
the existing database as well as the development of a soft-
ware solution by modeling and storing the hardware mod-
ule life cycle. This allows the tracking of real hardware
instances of the modeled components.

3.2. Database

A database has been implemented in the project Q-ROCK
(see [15]) that is a combination of hand-curated ontolo-
gies and a graph database. The database contains infor-
mation about known hard- and software components and
component models, as well as their relationships, such
as component-interface compatibility and the structure of
available robotic systems. The database serves as a cen-
tral repository for each stage’s results, allowing data to be
used immediately across all workflow steps, resulting in
a fully integrated development workflow. The next para-
graphs shall give an overview about the usage of the soft-
ware tooling.

3.3. Building Block Creation

This is the initial step in assembling a modular kit. For
the hardware side, the Blender add-on phobos [16] will
be used to generate new atomic component models from
CAD data and add them to the database of compo-
nent models. Larger artifacts that cannot be stored in
a database will be moved to an external repository and
referenced in the component model (e.g. kinematic rep-
resentation). For the software side, default ROCK-tasks
are deployed automatically into the database via a contin-
uous integration job that extracts the task interfaces and
creates its component model.

3.4. Building Block Representation & Description

The hardware representations will be stored using the
SMURF file structure, which includes the following:
The kinematic structure as URDF including the interface
frames, the geometries as meshes, geometry annotations
(such as the closest primitive description and the smallest
number of points required to adequately describe the ge-
ometry using a convex hull of those) definitions of loop
closures and the definitions of motor and sensor.

Depending on whether the component is public, either the
blueprints or information on how to order this component
will be included in the database.

Customizable components are specified via the configu-
ration when instantiating a component model. When as-
sembling the module to the system, this adaptation will
be done in accordance to the transformation information
provided during the system configuration. GUIs devel-
oped in the D/Q-ROCK-projects make this more user-
friendly as described in the following paragraphs.

3.5. Composing an Assembly

Out of existing (atomic) components in the database, new
component models are created with the hereinafter de-
scribed tools. This is the case for both hard- and software
component models.

DEIMOS is a 3D visualization of the hardware compo-
nents and their interfaces. By selecting two interfaces and
performing necessary transformations, hardware com-
ponents can be assembled and the resulting component
model can be stored in the database.

X-ROCK-GUI (see Fig. 5) accomplishes the same task,
but it does so by displaying components as nodes and
allowing you to establish connections between them by
drawing edges in a graph view. It is a more in-depth tool
which also enables configuration of components.



Figure 5. Graphical interface to visualize, assemble, and
configure component models.

3.6. Software, Data & Hardware Integration

Finally, creation of buildconf and bundles (as a package
to be installed in the system) is required to setup the soft-
ware on the system. Like Components and Component-
Models, the buildconf for the system is versioned too. In
this buildconf all versions (both, OS-dependencies and
source packages) shall be fixed. This way, versions can
be switched easily and safely.

An installable buildconf consists of 3 components: All
package sets, software layout (manifest) and the bundle
with ROCK-config files. The command line interface of
Phobos can be used to construct and derive all necessary
representations for all hardware compositions.

A mapper tool maps the individual software components
to available execution hardware and generates the CND
(component network description). System deployment
tools use the resulting mapping to bundle and compile
the ROCK deployments. Those include solutions for:
The mapping process from software components to ex-
ecutional hardware, CND generation out of this map, au-
tomatic generation of all needed deployments, calls to
ROCK-runtime as well as starting software from CND
(start, configure, wire).

Eventually, everything will be collected in order to pro-
vide a simple method of installing the software to the
robot: The software for the system will be provided
as directory, which can be saved to a bootable storage
medium. It will contain both the corresponding Ubuntu
distribution as well as a script to checkout and install the
software.

4. FUNCTIONAL REALIZATION

For proof-of-concept purposes an application scenario is
designed, allowing to evaluate all levels of the defined
modular tool kit in a real robotic application. Two scenar-
ios are therefore envisioned; one to evaluate the system
configuration layer and one for the operation and recon-
figuration of a composite system.

(a) Initial setup. Only base station
active.

(b) Base station assembles mobile
system.

(c) The arm mounts it-self and
then the RGB-camera.

(d) Mobile system is put to opera-
tion.

Figure 6. Envisioned demo scenario for modular system
operation at project end.

The first scenario will show the functionality of the
MODKOM tooling workflow by composing and integrat-
ing a (mobile) manipulator based on modules from the
tool kit. This includes both utilizing existing hardware
and software components from the database as well as
adding new components of both domains to the database.
Then the components are connected using the GUIs de-
scribed in section 3.5. For the software side, this is ac-
complished by connecting of data interfaces and for the
hardware side, by specifying which component will be
assembled where in relation to the other components. In
both domains, it is possible to specify which modules
may be exchanged during operation. Following that, both
domains’ components will be configured. The task struc-
ture can then be created using the CND tools by refer-
encing the component structure created in the preceding
steps. Finally, it will be demonstrated how the created
setup can be saved to the database and then installed and
integrated into the system via a bootable USB drive.

The general outline of the second scenario, the evaluation
mission is depicted in Fig. 6. A modular base station will
be used to assemble a previously defined mobile, modular
system. The demonstration will begin with both systems
operational and their respective software stacks installed
(see Fig. 6(a)). Then (see Fig. 6(b)) the base station uses
its arm module to assemble the second mobile system by
installing a computational unit (that has its prepared soft-
ware stack also set-up). When the system is assembled
onto the mobile platform, it is detected and the computa-
tional unit initiates the necessary tasks to control the plat-
form, eventually restarting it. (The remaining modules
are installed in the subsequent steps, while the computa-
tional unit accepts and restarts necessary tasks to incorpo-
rate the added hardware’s software into the running task
structure.) When those modules are installed, the arm
module of the base station must also connect to the mo-
bile platform via the interface at its end-effector (see Fig.
6(c)). As soon as it is connected (in hardware), the base
station will switch of the arm, and the mobile platform
will connect to it in the software domain. The arm can
now be used to pick up and install a camera module onto
the now free interface at the end of the arm, completing



the mobile system’s preparation for exploration and map
generation (see Fig. 6(d)).

5. SUMMARY AND OUTLOOK

With the goal to facilitate a paradigm shift in the devel-
opment and creation of robotic systems for robotic space
applications, the design and set-up of a modular construc-
tion kit was outlined. Based on the current state of the
art and future application scenarios, a definition approach
has been described for the modular building block sys-
tem. In this study, an analysis of existing robotic sys-
tems was carried out in order to identify common func-
tional groups and modules. Along with a set of general
top-level requirements for the modular tool box, the def-
inition of system modularization and level of granular-
ity is presented. A multi-dimensional modular building
block approach is proposed in this paper, which relies on
the definition of inter-module interfaces (IMI) and stan-
dard interconnects (SI). This allows on the one hand, to
define modules, applying the IMI, for configuring vari-
ous robotic systems based on a set of predefined mod-
ules. On the other hand, a system reconfiguration can
be introduced by adding SI to the system, allowing re-
configuration on payload level as well as on system level.
The presented modular toolbox allows to setup a robot for
specific tasks by using specialized and standardized mod-
ules. These modules can be (re-)combined and if neces-
sary, reconfigured during run-time to adapt to a variety of
objectives.

On software side, a generic solution has been found
to adequately represent hard- and software components
that form the foundation of all software tools. More-
over, based on this digital twin of the real hardware,
the MODKOM pipeline can automatically build and de-
ploy the robot control software to the systems com-
pleting the work flow for non expert users. Regarding
the software toolbox, this project’s ongoing development
will advance previous projects’ software tools to pro-
vide user-friendly tools for adding, editing, creating, and
maintaining components. It could be COTS or custom-
developed hardware and software components. Thus, in
addition to introducing the first modules for a plug-and-
play building-block kit, MODKOM introduces a com-
pletely new method for developing such systems.

As development progresses, the database for the newly
created building-block-system will be populated with ad-
ditional modules that expand the range of possible ap-
plication fields. Along with the module definition and
design, further steps are being taken to consider the spe-
cial requirements for space applications at an early stage.
Using the modular building block system as an exam-
ple, a modular robotics joint module (DFKI-X2D) will
be further developed and evaluated in terms of space con-
straints.

This project not only provides operating hardware and
software modules, but also a toolbox that enables non-

expert users to assemble application-oriented, reconfig-
urable robots, thereby simplifying and speeding up their
development. By defining modules and standards, the
results from MODKOM will help in the future to pro-
vide flexibly configurable solutions that can be adapted
to new or changing requirements with minimal effort.
Rather than having to carry out a completely new devel-
opment every time, the provided technology benefits not
only the development cycle but also the sustainability in
space robotics and thus, can counter space debris from
two sides.

ACKNOWLEDGMENT

The authors would like to thank the MODKOM team
and all supporting staff at DFKI Robotics Innovation
Center as well as University of Bremen Robotics Re-
search Group. The work presented is part of the project
MODKOM, which is funded by the german space agency
(DLR) with federal funds of the Federal Ministry for Eco-
nomic Affairs and Climate Action in accordance with the
parliamentary resolution of the German Parliament under
grant no. 50RA2107 and 50RA2108.

REFERENCES

[1] D. Rossetti, B. Keer, J. Panek, B. Ritter, B.B. Reed,
and F. Cepollina. Spacecraft Modularity for Ser-
viceable Satellites. In AIAA SPACE 2015 Con-
ference and Exposition, Reston, Virginia, 8 2015.
American Institute of Aeronautics and Astronautics.

[2] C.M. Reynerson. Spacecraft modular architec-
ture design for on-orbit servicing. In 2000 IEEE
Aerospace Conference. Proceedings, volume 4,
pages 227–238. IEEE.

[3] A.A. Kerzhner, M.D. Ingham, M.O. Khan,
J. Ramirez, J. De Luis, J. Hollman, S. Arestie,
and D. Sternberg. Architecting Cellularized Space
Systems using Model-Based Design Exploration.
In AIAA SPACE 2013 Conference and Exposition,
pages 1–24, Reston, Virginia, 9 2013. American In-
stitute of Aeronautics and Astronautics.

[4] D. Sternberg, S. Arestie, R. Harris, N. Ricci, M. A.
Schaffner, C. Whitlock, and D. Miller. A Bottom-
up Modeling Approach for the Profit Analysis of
Cellularized Spacecraft Architectures. In 64th In-
ternational Astronautical Congress (IAC), pages 1–
11, Beijing, China, 2013. International Astronauti-
cal Federation.

[5] B. Karlow, C. Jewison, D. Sternberg, S. Hall, and
A. Golkar. Tradespace investigation of strategic de-
sign factors for large space telescopes. Journal of
Astronomical Telescopes, Instruments, and Systems,
1(2):027003, 4 2015.

[6] W. Brinkmann, F. Cordes, T. M. Roehr, L. Chris-
tensen, T. Stark, R. U. Sonsalla, R. Szczuka, N. A.
Mulsow, and D. Kuehn. Modular Payload-Items



for Payload-assembly and System Enhancement
for Future Planetary Missions. In 2018 IEEE
Aerospace Conference, pages 1–10, Big Sky, Mon-
tana, USA, 2018. IEEE Comput. Soc. Press.

[7] R.U. Sonsalla, F. Cordes, L. Christensen, T.M.
Roehr, T. Stark, S. Planthaber, M. Maurus, M. Mall-
witz, and E.A. Kirchner. Field testing of a coop-
erative multi-robot sample return mission in Mars
analogue environment. In Proceedings of the 14th
Symposium on Advanced Space Technologies in
Robotics and Automation (ASTRA 2017), Leiden,
the Netherlands, June 2017. ESA/ ESTEC.

[8] R.U. Sonsalla, F. Cordes, L. Christensen, S. Plan-
thaber, J. Albiez, I. Scholz, and F. Kirchner. To-
wards a heterogeneous modular robotic team in a lo-
gistic chain for extraterrestrial exploration. In Pro-
ceedings of the 12th International Symposium on
Artificial Intelligence, Robotics and Automation in
Space – i-SAIRAS 2014, Montréal, Canada, June
2014.

[9] M. Jankovic, W. Brinkmann, S. Bartsch,
R. Palazzetti, and X. Yan. Concepts of active
payload modules and end-effectors suitable for
standard interface for robotic manipulation of
payloads in future soace missions (SIROM) inter-
face. In Proceedings of the 2018 IEEE Aerospace
Conference, Big Sky, Montana, March 2018. IEEE.

[10] S. Estable, A. Ampe, A. Chamos, G. Aridon, D. Sil-
veira, F. J. Colmenero Lechuga, I. Soto, J. Gancet,
M. Shilton, M. Jankovic, and T. Vogel. PERIOD
– PERASPERA in-orbit demonstration toward the
transition into the in-space services, assembly and
manufacturing paradigm. IOP Conference Series:
Materials Science and Engineering, IOP Publish-
ing, 1226:1–8, February 2022.

[11] Astrolab. FLEX Payload Interface Guide. Astrolab
Vebturi, v 1.0 edition, January 2022.

[12] I. Renner. Methodische Unterstützung funktionsori-
entierter Baukastenentwicklung am Beispiel Au-
tomobil. Dissertation, Technische Universität
München, München, 2007.

[13] MB Collaborations - part of Modular Manage-
ment. Developing modular systems in collabora-
tion - successfully reducing complexity. Technical
report, https://mb-collaborations.com/en/modular-
system, 2022.

[14] W. Wenzel, F. Cordes, and F. Kirchner. A robust
electro-mechanical interface for cooperating het-
erogeneous multi-robot teams. In Proceedings of
the 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2015), pages
1732–1737, Hamburg, Germany, October 2015.
IEEE/RSJ. ISBN: 978-1-4799-9994-1.

[15] T.M. Roehr, D. Harnack, H. Wöhrle, F. Wiebe,
M. Schilling, O. Lima, M. Langosz, S. Kumar,
S. Straube, and F. Kirchner. A development cycle
for automated self-exploration of robot behaviors.
AI Perspectives, 3(1):1–29, 2021.

[16] K. von Szadkowski and S. Reichel. Phobos: A tool
for creating complex robot models. Journal of Open
Source Software, 5(45):1326, 2020.


	Introduction
	Modular Building Block System
	Top-Level Requirements
	Modularization and Granularity

	Software Architecture
	Component Models, Components and Modules
	Database
	Building Block Creation
	Building Block Representation & Description
	Composing an Assembly
	Software, Data & Hardware Integration

	Functional Realization
	Summary and Outlook

