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Abstract In addition to areas of application in people’s everyday lives and the area
of education and services, robots are primarily envisioned in non-immediate living
environments by the society—i.e., in inaccessible or even hostile environments to
humans. The results of this population survey clearly demonstrate that such appli-
cation options come across with a high level of acceptance and application potential
among the population. Nevertheless, it is expected that the underlying AI in such
systems works reliably and that safety for humans is guaranteed.

In this chapter, the results of the study are compared with state-of-the-art systems
from classical application environments for robots, like the deep-sea and space.
Here, systems have to interact with their environment to a large extent on their own
over longer periods of time. Although typically the designs are such that humans are
able to intervene in specific situations and so external decisions are possible, the
requirements for autonomy are also extremely high. From this perspective one can
easily derive what kind of requirements are also necessary, and what challenges are
still in front of us, when robots should be acting largely autonomous in our
everyday life.
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4.1 Results of Delphi Study

Population Survey: Research Questions, Results, and Explanation
The population survey examines the questions of how artificial intelligence (AI) will
find its way into people’s work and private lives and what acceptance such systems
will meet in terms of application options in people’s everyday lives.

The survey reveals that robots and AI are generally seen as thoroughly positive.
Only 20% of respondents had a negative view of these two topics. Furthermore, the
proportion of people who doubt the necessity of robots for society is only less than
10%. Accordingly, a high degree of willingness to accept robots can be assumed
among the population.

Nevertheless, a deeper look into these topics shows that this result must be
considered critically when it comes to “reliability of systems” and their “areas of
application.” On the first point reliability of systems only every third to fourth
person surveyed considers robotic systems and AI to be reliable and error-free
systems at the present time (for humans, safe and trustworthy technologies). How-
ever, when it comes to the need for robotic systems and AI regarding work that is too
difficult or too dangerous for humans, the use is considered very likely. The more
specific question on areas of application confirmed this result of the survey and
showed very clearly that the acceptance of AI is depending on the area of applica-
tion. By contrast, the use of robotic systems in the home environment or in the care
of people is approached much more critically than the use of these technologies in
the areas of space and deep-sea research.

This result is also reflected in the following questions of the representative
survey: “In which areas should robots be used as a priority?” and “In which
areas should robots not be used at all?”

The answers were given to the respondents in the form of a list of areas, so that a
limited but covered answer option was already provided that addressed all areas of
the study. Respondents were given the option of selecting up to five areas from
this list: Industry, commercial, service sector, private life, medicine, human care,
education, search and rescue, space exploration, marine/deep-sea exploration, trans-
portation/logistics, agriculture, military, or in no field.

The evaluation showed that the respondents see the use of robots in the areas of
space and deep-sea research predominantly in second and third place in percentage
terms. Similarly, the area of search and rescue was seen as highly ranked (Fig. 4.1).
In contrast, respondents had difficulty imagining the use of robots in the areas of
human care (Fig. 4.2). In this ranking, areas of space and deep-sea research were not
mentioned by respondents at all. Accordingly, areas that are rather distant and
foreign to humans in general, both thematically and in terms of habitat.

The first question that arises here is how these preferences may occur among the
population. One fundamental point could be the “distance” factor of the operational
area. For many people surveyed, the areas of space and the deep-sea represent a field
of application that seems distant and very abstract. It does not touch everyday life
and is inaccessible to the public. The area of home care, however, represents a very



sensible application area people have personal associations with. In addition, there is
the factor of “empathy” or “emotions,” which is generally not associated with a
robotic system—a machine. In distant places of application, the latter factor is not
considered. Here, the inaccessibility and the safety of the human being are in the
foreground.
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Rank 1 % Rank 2 % Rank 3 % Rank 4 % Rank 5 %industry 28rescue 16 deep-sea 26space 16 space 15 space 22manufact. 10 industry 15 deep-sea 19 space 15deep-sea 10 healthcare 13 industry 16 healthcare 13 transport 16manufact. 10 rescue 13 industry 13 space 14healthcare 9 deep-sea 12 industry 10manufact. 11 agriculture 9military 9
Fig. 4.1 Priority preference ranking of application area of robot

Rank 1 % Rank 2 % Rank 3 % Rank 4 % Rank 5 %care 27military 24 care 23privatelives 19 education 18 education 20No area 9 privatelives 15 leisure 20 privatelives 25leisure 9 service 12 care 14 education 25 leisure 22leisure 9 privatelives 13 service 13 care 21military 10 agriculture 11 education 13care 10 rescue 11service 11
Fig. 4.2 Ranking of non-preferred application area of robots

Based on the current state of general knowledge within the population, the use of
robotic systems in challenging and hostile environments instead of areas in everyday
life is therefore a reasonable conclusion. We will take this favoured application field
here and take a closer look what exactly robots have to be capable of when operating
in deep-sea or space and how this relates to a robot being perceived as an autono-
mous system. The results may give answers why the survey results have shown that
currently respondents do not trust robotic systems well enough to let them operate in
sensitive environments for humans, e.g., in the care domain.

Potential Mission Scenarios of Robotic Systems in Harsh Environments
A potential field of hostile application area for robotic systems is the exploration of
planetary surfaces (see Fig. 4.3). In this possible mission scenario, different robotic
systems work together on a defined task as a team. Systems with a longer range can
explore the environment with the help of sensors and cameras and send more agile
systems into areas to examine the environment in detail (Brinkmann et al., 2019).
Different means of transportation can also be an advantage here due to the different
undergrounds and strengths, so that some tasks can only be completed successfully



in a team. Furthermore, systems with grippers can take ground samples and pass
them to other systems for conservation. Another possible mission is the exploration
of caves. Here, robotic systems can be lowered into these caves by other systems and
the environment can be explored by cameras.
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Fig. 4.3 Cooperative robotic team mission—Exploration of extraterrestrial planetary surfaces
(Source: DFKI GmbH, Finn Lichtenberg)

In addition to extraterrestrial environments, the deep-sea on Earth is also an area
of operation that represents a hostile and hardly accessible environment for humans
(see Fig. 4.4). Here, in addition to the inspection and maintenance of infrastructures
located on the seabed (cables, pipelines, offshore installations), the focus is also on
the exploration of new areas that have not yet been discovered and/or are not
accessible to humans, and thus on the research and answering of wide-ranging
scientific questions. Robotic systems equipped with sensors can take over these
tasks for humans or support them in their tasks.1

Other examples represent the use of robotic systems in disaster areas to assist in
human rescue and recovery, e.g., burial/collapse of buildings (Queralta et al., 2020).
In this case, it is possible to drive camera-equipped robotic systems into areas that
are difficult or impossible for humans to access in order to find potential victims,
gain a general overview of the situation, and rescue them in the further progress. This
avoids that human have to enter dangerous areas without knowing if there are people
to be rescued in this area.

To use robots effectively in these or similar applications in the future, a clarity and
a definition of the level of required and desired autonomy is necessary. This also
shapes the required interaction with a human and our understanding of robots and
humans working together. Mission operations in hostile environments—in space, in

1https://robotik.dfki-bremen.de/de/forschung/robotersysteme/flatfish/ (accessed on 14/01/2022).

https://robotik.dfki-bremen.de/de/forschung/robotersysteme/flatfish/


the deep-sea, or in hard-to-reach or existing catastrophic areas—are challenging and
expose humans to significant hazards and risks. Robotic systems with high auton-
omy capabilities can help humans to reduce potential hazards and risks in a wide
variety of situations. Furthermore, with the help of these systems, it is possible to
explore or gain access to environments that were or still are inaccessible.

4 The Challenge of Autonomy: What We Can Learn from Research on. . . 61

Fig. 4.4 Mission scenario of a pipeline inspection mission (Source: DFKI GmbH, Jan Albiez)

In addition to hostile environments, a growing number of robotic systems are
finding their way into people’s everyday lives. In this case, it must be ensured that
humans are supported in their activities and that any potential risk must be always
ruled out.

In both cases, hostile environments and everyday lives scenarios, the degree of
autonomy of a system can vary greatly depending on its use and task, as can the
degree of human–robot interaction. A good work distribution is thus the essential
requirement for successful cooperation between the system and the human.
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4.2 Definition of Autonomy

First, a clear distinction must be given between the terms of autonomy and automa-
tion. The term “autonomy” is derived from the Greek (autonomia) and means self-
reliance or independence. In various disciplines and subject areas, the term has
different definitions. For example, in psychology and philosophy, autonomy is
described as “the ability of people to possess free will and make self-determining
decisions”.2 In the case of a state, this means that it is able to make its own laws,
govern itself, and make political decisions without interference from other states.
Within a state, if an organization can function itself according to established rules,
then it is autonomous (Dietz, 2013). Thus, “autonomy” refers to the right of an
individual, group, or state to govern its own circumstances.

In robotics, there are a wide variety of approaches and models to define the term
autonomy clearly and according to the underlying task and context in each case—a
unifying definition is however still missing.

To illustrate how the term autonomy is depending on the perspective and the
context of the application, let us take the example of a manufacturing facility in
which robotic systems perform predefined automated tasks. E.g., consider the
placing of an object on a conveyor belt by a gripper arm of a robot or the driving
of platforms along predefined transport routes. The robotic systems used within the
system do not make any decisions themselves. They are precise reproductions of
motion and manufacturing sequences that have been tested and optimized to a high
degree. Consequently, this is a highly automated manufacturing process. Now, if the
process is changed slightly such that interactions with humans are required, the
situation is completely changing, and a certain level of autonomy is required. Then,
the systems used must respond to incoming sensor data and interact together with the
human in an intelligent way to anticipate and react to actions and offer possible
solutions to the human. Autonomous action would thus require decisions in indi-
vidual situations for which these automated processes are not created. Such individ-
ual decision makings based on many factors that cannot be automated unify the
existing definitions of autonomy and the variations and uncertainty that an autono-
mous robot has to deal with, come from the environment that could consist of simply
the operation area, other robots or humans. Clearly, interaction with humans is
among the highest challenges on autonomy of robotic systems, but in any case a
clear distinction must be made between the activity (sequence of defined tasks) and
the behavior (autonomous decision) of the system.

The successful distribution of work within a team of autonomous agents
(AI agents, robots, humans) is also dependent on the respective application context.
Every situation has different influences and depends on many factors, which can also
change during an action, resulting in very diverse requirements regarding the
autonomy of a system.

2https://psychologie.stangl.eu/definition/Autonomie.shtml (accessed on 04/01/2022).

https://psychologie.stangl.eu/definition/Autonomie.shtml
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Robotic systems can be classified according to their underlying level of auton-
omy. In general, a distinction is made between non-autonomous (teleoperated,
controlled) and fully autonomous systems, although there are different degrees of
autonomy within these categories (Kunze et al., 2018). This depends on the already
mentioned requirement and complexity of the task to be fulfilled by the system. A
fully autonomous system must have the competence to adapt its own action to the
environment, the involved further systems, and/or humans, always with respect to
the situation and to plan, replan, and react adequately to occurring change. All these
actions must be highly dynamic and realizable in real time. This poses an enormous
challenge to the system.

Based on this, most of the missions currently taking place involve a human being
who is supported in his tasks with the help of the systems. This applies to missions in
hostile environments as well as in everyday situations. These are typically
teleoperation systems, which means that the robotic system carries out a task
controlled by the human. By means of different communication channels, the system
receives task and actions, thus enables the human to perform the task from a safe
distance.

Fully autonomous systems, on the other hand, perform their tasks independently
based on stated goals. This means that despite changes within the context, they find
possible solutions and can make decisions—without the involvement of humans
(Yanco & Drury, 2004; Endsley & Kaber, 1999).

Accordingly, autonomous systems are systems that have the ability and properties
to independently achieve a task or goal(s) specified by humans without requiring
human intervention within the selected solution path. The basis for this is that the
system understands itself in its context via sensors and can respond to unpredictable
situations based on given learning algorithms and react if necessary, so that the task
or goal is still achieved.

4.3 Robots in Harsh Environments: Space and Underwater

Robotics and AI in General
Modern robotics can be interpreted as an embodiment of AI. Very high standards
apply here, as systems must often rapidly interact with and behave in the world. This
makes robotics an integrator for AI and certainly a field that integrates additional
disciplines as well: Robots have a body with certain design, mechanics, and elec-
tronics, sensors and actuators, data flows and software programs that link it all
together so that robots can interact with their environment.

Some examples of robots have already arrived in our everyday lives, as there are
already product-ready systems that can be used for everyday applications. There are
various examples, such as the robot as a lawn mower, vacuum cleaner, or mopping
robot. The first systems that came onto the market here still had very little AI on
board, if any at all. Take the lawn mowing robot, for example: there, the first
solutions were such that the robot drove up to a signal wire, then performed a



random rotation and continued driving until it arrived at the signal wire again. With
this the job can be done, but this is pure heuristics and there is no decision, planning,
or similar on the system. The result is also high inefficiency. On today’s systems,
however, market-ready AI processes have already been implemented, because these
robots already create maps, make plans, and then travel along paths that they have
planned beforehand.
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Robots are also very present in research and development—in their own right,
major advances are being made in many sub-disciplines of robotics. Currently, it is
very exciting to deal with AI and this can be seen in many new developments, which
can be found in the technical literature but also throughout the Internet, although in
the latter the borderline between true new advancements and faked information to
yield a higher public attention is blurred. Therefore, it is always strongly
recommended to take a closer look to understand what the advertised progress
really is.

The capabilities and the degree of autonomy that a robot has, depends very much
on two factors: the intelligence of the design of the robot and the intelligence level
that the algorithms provide. Much progress in the capabilities of algorithms has been
made in the last years, mostly driven by the fact that increasingly complex (and deep)
neural network classifiers could be constructed using most recent advances in
computing hard- and software. Whenever these networks had access to huge
amounts of examples, they could find patterns in the data that enabled them to
classify new examples with a very high success rate. The public breakthrough here
was the AlphaGo algorithm, which used deep neural networks and beat professional
human Go players. In a prominent study published in 2017 (Silver et al., 2017), the
authors were able to show that one can find other interesting properties in the
AlphaGo algorithm: the algorithm was studied again and trained in different ways.
Two examples can be mentioned here: In one case, the algorithm has been trained
using data from human players and has learned to play the game based on these
moves. In the other case, the algorithm was trained with a reinforcement learning
algorithm that needed a bit more training time to achieve the same quality. The latter
did not use rules, but the program received feedback on the completed moves in the
form of a reward function. The interesting thing here is that this algorithm never saw
a human player move before and learned to play the game purely based on the
reward function. Looking at how well these algorithms predict the play of a human
player, it was shown that the reinforcement learning algorithm can actually predict
this function only with progressive training time on human player moves, although it
was already able to play with comparable or better performance than a human before.

This means that today’s AI procedures can develop their own strategies without
any expert knowledge having been explicitly programmed in there, and not even the
expert knowledge has been added via training examples. The complexity of the
processes, for example, by building artificial neural networks with many layers,
enables the systems to achieve the same performance as a human through trial and
error, as in the example of the Go game. The advances in these algorithms have
motivated major IT hardware companies, like Intel or NVIDIA, to develop specific
boards as platforms for neural networks. E.g., NVIDIA used the popular domain of
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autonomous driving to demonstrate very catchily in the same year as the study from
Silver et al. that one can already control vehicles with these artificial deep neural
networks in many situations.3
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These are first steps that show that technical solutions exist in rudiments that
allow AI and robotics to move in our environment. They are impressive examples,
but at the same time, there are many issues to be resolved before we can deploy these
technologies. We also need to look at many factors when assessing the maturity of
the technology, such as the extent to which algorithms can be deceived or manip-
ulated. Staying with the example of autonomous driving, as with human drivers,
errors will always occur with technical systems. This is also due to the environment
in which decisions sometimes have to be made despite impaired vision
(or technically ambiguous sensor data). Since the decision-making basis of an
artificial neural network today is in the network itself (i.e., in the connection strength
of individual neurons), the transparency of the AI is naturally lost as a result. Given
the complexity of today’s networks, this information is not easy to extract—but that
is exactly what should happen. It is therefore very important in current research not
only to enable systems to perform very complex actions, but also to develop
mechanisms that make it possible to understand why an algorithm has made certain
decisions and on what basis. The answers to these and other questions are already the
subject of current research and will become even more important for the use of AI
and robotics in the future.

Autonomy Helps When Uncertainty Is High: Requirements and Applications
from Harsh Environments
When a robot should perform a mission in an unknown environment, e.g., in the
context of space exploration on the moon or even on Mars, it will get into situations
where standard procedures will not work. Then the robot either has to wait for
external input (i.e., a human steering the robot) or, equipped with a certain level of
intelligence, the robot could use the own sensor data and evaluate the available set of
actions in order to choose an appropriate solution to solve the task and not violate
any constraints. If the latter would actually happen, we would speak of an autono-
mous system (within a specified range or set of actions), which would be able to
handle a certain level of complex situations. To achieve this, robots would need to
have the capability too generally be able to sense and interpret their environment,
and thus make plans for how to act and/or move in that environment. On top of this
ability would ideally come capabilities that would qualify robots for a natural
interaction with humans, be it through communication with a human located some-
where else (e.g., robot on the moon, human on the earth) or that humans are working
directly together with robots on-site for a certain task. Robots then need to have
capabilities for speech recognition, understanding, and speech generation. In addi-
tion, the ability to learn is important as well, so that the robots can improve in their
performance—for this they must be able to evaluate their own actions and learn from

3see https://www.youtube.com/watch?v -96BEoXJMs0&t for an illustration.

https://www.youtube.com/watch?v=-96BEoXJMs0&t
https://www.youtube.com/watch?v=-96BEoXJMs0&t


mistakes. Therefore, this is ultimately the idea of the robot in the future: it is no
longer purely about automating processes, but about systems that basically move in
their environment with an ability to make their own decisions and interact flexibly
with it, as well as with other robots or humans.
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The autonomy capabilities discussed above can be very useful for robots explor-
ing the solar system and probably also exploiting extraterrestrial resources. In this
regard, robots can perform tasks that play a major role in extraterrestrial missions
here in the future by developing various new features. These include exploring
surfaces, searching for life, understanding how the solar system was formed, and
also finding new resources. For the robots, this means they must be able to reliably
sample with high robustness, explore, perform analysis, and then also return to
stations where they can upload and share their data. Robots can also be used for
longer human stays on extraterrestrial surfaces, and they will also play a strong role
in the future for work directly with or near humans. In particular, they can be used to
mine and utilize resources directly on site, e.g., not to transport all construction
materials to other planets, as this would drastically increase mission costs. Instead,
resources can be used on site, robots can help or provide the construction of
extraterrestrial structures, as well as assembly and also maintenance work of these
infrastructures. For all these tasks, autonomy is very important—in the following,
we use examples from three potential targets for space missions and their specific
characteristics: the Moon, Mars, and Jupiter’s Moon Europa. These examples will be
used to show what requirements for robotics are important and will play a role in the
future.

On the earth’s satellite, the moon, there are craters in polar regions that can be
explored and used, and there are caves that may also offer possibilities as habitats
and could be of importance for the establishment of a moon base. This idea could be
approached and perhaps realized with autonomous robots. To make the moon usable
by space travel and in turn to use it as a stopover for further space missions has long
been a dream of mankind. For missions on the moon, robots are primarily a way to
clearly keep the costs of realizing this dream under control and to keep the infra-
structures technically functional even without the presence of humans. On the next
destination, Mars, there are many more hurdles for space missions: flights to Mars
take longer than a year, communication has such high hurdles that controlling a
complex operation becomes almost impossible and takes an enormous amount of
time. On Mars, there is also the exploration of the surfaces, the mapping, sampling,
and search for information on the formation up to the search for life as the first use
case, which is already operated by the first systems. These systems have partly
autonomous functions, but they are not autonomous even in their exploration
movements, but completely controlled. There are craters on Mars in whose sediment
layers water or ice is suspected under certain circumstances. In addition, there are
regions on Mars, such as the Valles Marineris valley system, which seem to be
interesting for building infrastructures there as well and possibly then being able to
establish a base or infrastructure on Mars in the distant future. Here, too, autonomous
robots can be used to maintain such infrastructures.
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Fig. 4.5 Docking experiment in the Leng robot maritime exploration hall for exploration of
Jupiter’s moon Europa. Camera image bottom left, rendering of a Europa moon probe bottom
right. (Source: DFKI GmbH)

A very special example of requirements for autonomous systems is provided by
the even more distant moon of Jupiter, Europa. Here, under a thick layer of ice, an
ocean of up to 100 km depth is suspected. To explore its seafloor in search of
extraterrestrial life, autonomous underwater robots are ultimately needed that, after
landing a probe and subsequently penetrating the ice layer, are able to carry out
autonomous exploration missions with little energy consumption and can deliver the
data back to the probe accordingly. As a study for such a mission, the Leng robot4

was developed together with other mission components (Hildebrandt et al., 2013).
The robot is shaped to fit into a possible ice drill, navigates autonomously, and is
capable of diving passively (without energy consumption) to then actively explore
on the seafloor. Upon return, the robot can perform autonomous docking for data
transfer (see Fig. 4.5).

Just like in the space domain, robots operating in the deep-sea need AI desper-
ately for autonomous operations, since communication is very difficult and
unforeseen occurrences (like changes in currents) are likely (for a comprehensive
overview on challenges and technologies, see Kirchner et al. (2020)).

Autonomy: Insights from Field Tests
A good illustration of the current state of the art for autonomous robots is to look at
the setup, results, and tasks from field tests, especially in the space domain. Here,
multinational teams of research institutions and companies come together to test,
evaluate, and at best fulfill a given mission scenario. Such field tests also show how

4https://robotik.dfki-bremen.de/de/forschung/robotersysteme/leng/ (accessed on 14/01/2022).

https://robotik.dfki-bremen.de/de/forschung/robotersysteme/leng/


the interaction of all components works, i.e., in most cases how mobility, manipu-
lation, and also navigation capabilities work together to achieve the specific goal.
One example is the exploration of lava caves on the island of Tenerife, as an
analogue environment for corresponding caves on the Moon or Mars (Schwendner
et al., 2015), as illustrated in Fig. 4.6. The robots explored these caves, and multiple
systems also used a common representation of this environment and mapped it
further. The robots themselves generated landmarks to orient themselves. As explo-
ration has progressed, simulation of next steps has taken place directly on the system
to verify them. Thus, the robots have been autonomous in the caves, planning their
action, simulating it, then executing it, and mapping the caves accordingly on their
own. Here, the robot has a high mobility by design and the capability for navigation
in the caves. Still, many capabilities are missing, if troubles would be encountered,
e.g., if the way back would be blocked somehow or sensors would fail or be wrong.
Such kind of self-monitoring and also reasoning about the current status is still not
realized in systems qualified for such field tests.
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Fig. 4.6 Analog mission: Exploration of caves on the island of Tenerife—the robot captures its
environment, plans and simulates the next steps before final execution. (Source: DFKI GmbH)

Another scenario in the field is exploration as a team of robots with different
morphologies and capabilities, e.g., a bigger supply robot in combination with a
small scouting unit. Likewise, the scenario depicted in Fig. 4.7 is showing a field test
performed in the desert of Utah in North America with the Sherpa TT robot, which
carried various mission modules, and the Coyote III robot, which was equipped with
a small arm to take samples and also explore (Sonsalla et al., 2017; Cordes et al.,
2018). The two robots successfully completed their mission in a period of 6 weeks.
Part of the test, in addition to pure cooperation within the robot team, was interaction
with a human, who used an exoskeleton to teleoperate the Sherpa TT in particularly
difficult situations. This type of field test brings the systems closer to the real



conditions that will be used later and also provides the scientists with a whole range
of experience in the appropriate use of the systems. Again, the robots could coop-
erate and solve the task, but also a well-designed interface for teleoperation was
necessary (Planthaber et al., 2017). This illustrated that humans are in most pro-
cesses inevitable giving their inputs and helping the robots out of situations where
these are lost. Therefore, a cooperative task solving in a mixture of robots and
humans (be it distant or on-site) is currently still one of the best approaches for
complex missions with robots. As already mentioned in the beginning, the better the
interaction capabilities of robots become (e.g., for reporting problems or errors), the
more efficient will a task be handled.
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Mission Control in Bremen with Exo-Skeleton SherpaTT – equipped with P/L-Items and BaseCamp Coyote III and SIMA manipulation arm

BaseCamp with 5 electro-mechanical interfaces BaseCamp with 3 P/L-Items connected DGPS module connected to SherpaTT

Fig. 4.7 Elements from the field test in Utah—The robot team consists of the robot Sherpa (top
center) and the small rover Coyote III (top right). In special situations, the systems are addressed via
teleoperation supported by an exoskeleton (top left). (Source: DFKI GmbH)

Task Sharing Between Humans and Robots
In the future, it will not only be a matter of sending autonomous robots alone into
space or to extraterrestrial planets to have them autonomously carry out missions
there, but it will also be a matter of having robots act together with humans. This
topic is not only relevant in space robotics, but also central to the further develop-
ment applications for rehabilitation or production purposes (e.g., in Industry 4.0),
being areas in the Delphi survey where respondents were more skeptical with
integration of robots. One immediate application for robots in space would be to
perform on-orbit servicing, for example, to remove space debris from orbit, or to
perform maintenance and support work on satellites or the International Space
Station (ISS).

Task sharing could occur on very different interaction levels with the extremes of
teleoperation on one side and full autonomy on the other. In the simplest case, a
robot can be controlled directly, which then does nothing independently, but basi-
cally carries out the actions specified by the human. The more immersive the
teleoperation is, the better is the human situated in the situation of the robot and



the better can the human react as if being the robot. In addition to pure teleoperation,
humans can order commands to robots, which are then executed. These commands
can occur on subtask level (“drive straight”) or even include objects in the scenario
(“drive to the door”) and the granularity depends on what the robot is capable of
understanding about its environment and the won capabilities. Typically, such
commands are elicited by explicit forms of interaction, such as through speech and
gestures, but implicit interaction interfaces are also possible, e.g., by directly record-
ing data from humans using eye tracking, or muscle or neurophysiological data and
integrating it into the interaction with a robot. Through this, information can already
be collected in prediction of whether certain movements will be executed by the
person, which can then be more quickly recorded by the system and also translated
or supported. Also, via the evaluation of neurophysiological data it can be deter-
mined in principle whether an overload of the human being is currently present and
thus under certain circumstances information is available which has not yet been
perceived and processed by the human being, or vice versa: perceived but currently
classified as unimportant. When developing robotic systems for direct interaction, it
is most important to build systems that are very compliant and thus largely harmless
and safe to humans.
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Fig. 4.8 Example of a hybrid team with possible roles (left) and recordings of autonomous robot–
robot interaction (right). (Source: DFKI GmbH)

An important, overriding topic in the interaction of humans and robots, which is,
however, still far away from real use in space missions, is the formation of the
so-called hybrid teams of humans and robots (see Fig. 4.8). This involves close
cooperation between humans, robots, and also virtual agents or other AI systems in a
team structure (Schwartz et al., 2016). The robot continues to be an assistant for the
human, but it should behave so independently that it is also perceived by the human
as a team partner. This means that a robot can independently take over and complete
work without having to be given complete instructions. Work in hybrid teams is
supported by planning algorithms in the background. Technologies must also be
developed and integrated that are robustly capable of recognizing human intuitions
and making them available digitally. Digital agents, in turn, which are available to
humans via voice input, help to provide humans with direct information from the
digital representation.
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For a team of humans and robots, a functioning interaction with each other
applies in all cases, e.g. autonomous handovers of workpieces must be successfully
carried out with each other and also negotiated. For example, when all members of a
team are acting in a highly autonomous manner, such handoffs cannot simply be
programmed in, but the systems need heuristics and protocols according to which
they can negotiate and perform such handoffs autonomously. Then such teams could
perform joint assembly or joint infrastructure construction on an extraterrestrial
surface.

4.4 Robots Supporting in Everyday Life

Today, robots are no longer exclusively found in factories. Robotic systems, or at
least robot components, can already be found in everyday technical systems such as
cars, tools, or home products. One growing target area of application are robots for
everyday support and services: Robots should help to improve the quality of life and
increasingly operate in contexts in which only humans previously acted. This applies
to both the professional (e.g., in manufacturing companies) and the private sector
(e.g., household). The motivation for this is to reduce physically strenuous activities,
monotonous stresses, and strains. Even in view of demographic change—people
want to live independently in their familiar surroundings as long as possible—
robotic systems become increasingly relevant. However, it is also obvious that as
soon as a complex robotic system is leaving a controlled environment—such as a
production hall—challenges arise in terms of safe, economically, and efficient use,
that can only be mastered in an interdisciplinary approach and must consider ethical,
legal, and social implications beyond technical issues.

An ideal autonomous system for everyday life scenarios must be able to act
independently, learn, solve complex tasks, and react to unpredictable events. Thus,
to provide safe and meaningful support in everyday life, it is expected that human
abilities and characteristics in various areas are transferable to the technical system.
But safe movement over obstacles is only one part of the challenge. The reason for
this is that people on the street, at home, in the supermarket or comparable everyday
situations often move unpredictably. According to that, a domestic robot that takes
over a variety of household tasks, such as tidying up, cleaning, and setting the table,
must work very reliably and must have reliable sensors in order to damage some-
thing or—in the worst case, to hurt people. However, the safe everyday use of such
multifunctional and complex systems is still a future scenario. The effort and costs
for a step into everyday life use is currently a too strong barrier in relation to the
benefits. The previously presented results from the population survey show that this
is also part of the public perspective. Only every third to fourth person surveyed
considers robotic systems and AI to be reliable and error-free systems at the present
time. On the other hand, market figures from the HEMIX (Home Electronics Market



Index), a joint project of gfu and GfK,5 show that consumers in Germany are
increasingly counting on robots to help with household tasks. Around 620.000
household robots were sold in Germany in the first half of 2021, an increase of
6%. This relates to vacuum cleaning robots, lawn mowing robots, and window
cleaning robots. Therefore, at least for special applications, the everyday use of
robots is already practicable today. As the exploration of lava caves on the island of
Tenerife shows, the complex navigation capabilities of robot systems are one of the
basic skills for autonomous robots in harsh environments. This also applies to
domestic robots. Today, for example, vacuum cleaner robots map their surroundings
instead of driving randomly through an apartment. They are equipped with cameras
and object recognition and thus perform their tasks much better and more reliably
than just a few years ago. Furthermore, such systems are becoming more and more
affordable.
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Moreover, in other areas of application, such as care, it is not to be expected soon
that humanoid robots with a wide range of capabilities will be used, but rather
learning assistance systems specialized for a specific task. The systems used in
rehabilitation medicine can be divided into different application areas. On the one
hand, systems are designed that are used for the motor recovery of patients and, on
the other hand, robotic assistance systems are designed to support the everyday
actions of affected patients and to assist nursing care tasks. These include, for
example, intelligent wheelchairs with robotic gripping aids or service robots.
Another group is social robotics, which is used for entertainment or to simulate
closeness to living beings.

The use of intelligent assistance systems is intended to relieve the burden on
nursing staff and at the same time helping care recipients to become more indepen-
dent. Systems are designed, e.g., to support caregivers and patients in everyday,
physically demanding care activities on the nursing bed (Hawes et al., 2017).

For this purpose, for example, an adaptive and multifunctional motorized bed
with a robotic arm system for use in care is being developed.6 Sensor components are
used to be able to adjust the bed position depending on the situation. Various holding
and support functions of the robot arm are indented, for example, for bed-wheelchair
transfer. The system is also intended to continuously monitor the posture of the
nurses during the mobilization or transfer of care recipients and to provide guidance
on optimization in the event of unfavorable loads. A partially automated bed-robot
arm system can improve the autonomy and quality of life of care recipients. For
carers, robotic support for lifting and moving a patient can represent a significant
reduction in physical stress. This prevents damage or diseases of the lower back area.

Efforts to integrate robotic systems into care are also based on expanding
therapeutic options, enabling patients to do more of their own training and relieving
the burden on therapists. For example, intelligent exoskeletons are being designed
and used for robotic rehabilitation of neurological disorders.

5https://gfu.de/markt-zahlen/hemix-2021/ (accessed on 10/01/2022).
6https://adamekor.de (accessed on 10/01/2022).

https://gfu.de/markt-zahlen/hemix-2021/
https://adamekor.de
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As a robotic system, the exoskeleton represents, in simple terms, an external
support structure which is directly connected to the human body and is as an active
system equipped with actuators and sensors. This results in a wide range of interac-
tion possibilities in the context of rehabilitation between the exoskeleton and
the human users of the system. An exoskeleton usually has several contact points
to the human body. This specific structure makes it possible to guide and stabilize the
patient’s arm at each joint and to implement a high number of active degrees of
freedom to realize finely coordinated movement patterns. The active stabilization of
the limb by the exoskeleton enables the compensation of the inherent weight of the
system and the weight of the limb and allows training under the exclusion of
“gravity,” as well as the passive movement guidance of the limb even without the
patient’s own effort, if necessary (Kumar et al., 2019). The aim is to create in an
intelligent way synergies between man and machine to optimize processes and the
workflow of rehabilitation, as well as to provide patients and therapists with
advanced and innovative therapy options on the basis of this new technology.

In summary, in contrast to classical industrial robots, where the operating condi-
tions can be controlled very well, robots in everyday human life must be able to
adapt to the constantly changing environment. This implies high demands on the
hardware and the software and results in a high complexity of intelligent robot
systems. The high complexity results among others from the dependencies between
the individual components. One example of this is the number of degrees of freedom
and sensors, as well as their arrangement and the number of incoming data/infor-
mation in interaction with the software and control components. Therefore, it is
expected that we see in near future more semi-autonomous systems in everyday use,
which can carry out low-threshold functions independently such as independently
driving around obstacles or avoiding collisions when handing over objects. For the
time being, complex decisions and activities will still be left to humans. It is also to
be expected that initially specialized systems will find their way into everyday life,
rather than generalized assistance robotics.

4.5 Competence for Autonomy

The applications described in the previous sections made already clear that full
autonomy including informed decisions in an unknown and typically dynamic
environment is currently hard to achieve—if not impossible—for a robot. Key
components for autonomy are the knowledge of the own capabilities and the
validation of taken actions with respect to the task, the environment, and the current
situation. A fully autonomous system would have to know these parameters dynam-
ically, while having the ability to respond to new and unforeseen events at any time.
Instead of concentrating only on the final stage of full autonomy, certain levels of
autonomy have been defined, e.g., in the car industry, to classify existing systems
with respect to the required input from a human. A closer look at this approach
reveals two problems: First, the step between the last but one level and the final level



of full autonomy is in reality a big step including a mandatory self-awareness of the
systems which is currently not achieved. Second, a system behaving in a natural
environment may perform different tasks in different situations and may therefore
request assistance in situation A while running fully autonomous in situation B. Due
to this, it is more appropriate to not classify systems as fully autonomous or not, but
to rather look at the functionality of the system with respect to the task to judge
whether the system can fulfill the task autonomously or not. In their framework
paper on robot autonomy levels in human–robot interaction (HRI), Beer et al. ( )
render this general conception of autonomy asking five central questions (they
denote as guidelines):

2014
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1. What task is the robot going to perform? Here a classification of the relevant
variables is made.

2. What aspects of the task should the robot perform? Here, subtasks are defined.
3. To what extent can the robot perform those aspects? Here, the amount of required

human intervention is classified.
4. What level can the robot’s autonomy be categorized? This typically responds to

most autonomy classifications elsewhere ranging from full teleoperation over
shared-control to full autonomy.

5. How might autonomy influence the HRI variables? Here, it is questioned to what
extent the robot might be influenced (e.g., in learning), how the human might be
influenced (e.g., in trust) and how the social relation between the two might
change.

These questions illustrate that determining the right level of autonomy is
depending on many factors which can also change over time (for an extensive
discussion, see Beyerer et al. (2021)). The needed level of autonomy is depending
on environment and type of task—this contrasts with capabilities of the system in
combination with legal and ethical guidelines. A possible workflow how a task could
be treated by an autonomous system is illustrated in Fig. 4.9, showing how compli-
cated this process can get when problems occur. Repeatedly the system has to
analyze its own state with respect to the task and the environment and compare
this with execution criteria. In other words, the someone or the system itself has to
evaluate its competence to handle the situation appropriately.

Therefore, a central issue for an autonomous system is the issue of competence
and the limitations of the system. In each situation, one could ask the question: Does
a given system have the competence to perform the task or not? Nowadays in nearly
all situation we—the humans—judge about the competence of a robot or a machine,
or—in case of other humans—we look at qualifications to estimate a competence. E.
g., in a space mission, it is clearly ruled what the robot is allowed to perform on its
own and where teleoperation is applied.

Now, if people think of robots (in particular in harsh environments), they often
think of highly autonomous systems, i.e. of systems that can perform most of the
tasks on their own. As has been outlined above, this means the occurrence of
uncertainties in a complex environment that the robot has to deal with. A successful
accomplishment of tasks or missions in such situations requires that the robot can



judge whether it can handle the situation on its own or if assistance is needed (from a
human or another system). This judgement is a judgement of competence—and the
systematic analysis of its own competence is hard to achieve for a robot, since no
general formula is known and several areas of knowledge are required to be taken
into account, where each area alone is a field of currently ongoing research: required
and available capabilities, possible options for actions, and constraints to act (e.g., of
legal or ethical nature). It is shown in Fig. 4.10 that while the mode of execution with
respect to autonomy can be illustrated in a direct relationship, the judgement of
competence for autonomy is a function which is depending on the values and the
weights of the above-mentioned factors. It is therefore not straightforward to derive
competence from one of these factors alone: A system can have few capabilities, but
since it may have many options to act and nearly no further constraints, it might have
enough competence to perform the task autonomously (green line in Fig. 4.10).
Since such models are not existing in a complete form, today, this analysis is still
typically done by qualified humans if robots should perform autonomous tasks in an
unknown and/or dynamic environment. Alternatively, the complexity and power of
the robot is reduced, so that more simplified systems (like a vacuum cleaning robot)
perform only few well-defined tasks automatically without the danger of causing any
harm to humans and the environment due to power and safety procedures. However,
these robots do not establish trust by humans due to their sophisticated autonomy,
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Fig. 4.9 Possible workflow for task execution of an autonomous system (after Beyerer et al.
(2021), with permission of Plattform Lernende Systeme)



but rather through their simplicity. This might be a reason, why people find it hard to
imagine, how a more flexible and general autonomous robot would look like, and
how communication would take place with such a system.
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Fig. 4.10 A model for autonomy based on the dependency on competence (after Beyerer et al.
(2021), with permission from Plattform Lernende Systeme)

4.6 Conclusions: Establishing Trust Between Humans
and Robots

Autonomy of machines is an old vision of humans, and the imagination how this
might look like has been visualized and devised in drawings, animations, books, and
films. Currently, we are crossing a border to really see robots and cars move and
operate in our environment without direct human intervention, but what we see
today still has many drawbacks and large discrepancies exist between today’s reality
and the stories and pictures in our minds. Many tasks that seem without effort for
human beings are still impossible for robots, and still not understood by humans.
Therefore, the underlying complexity is extremely high and research on AI and
robotics often involves hardware/software co-design and not separated develop-
ments. Hardware is developed that must be controlled and thus co-defines the
behavior of the systems, i.e., new hardware also means new possibilities in behavior.
Often challenges also arise from multimodal sensor streams, which often have to be
processed adaptively. Values in these sensors need to be identified and classified,
because not everything the sensors pick up is important, but the important features
relevant to the intended behavior need to be found. Robotics is also about planning,
re-planning, executing, and adapting motion and action. Now, the more complex the
system should behave, the more complex hardware and software will get, with, e.g.,
more and more actuators that ultimately all have to be controlled to trigger a



behavior, as well as very high, partly parallel data streams, which have to be
processed, possibly stored, and integrated. This must be aligned with various
software levels working together up to a certain point that humans would classify
as goal-directed behavior. It is because of this complexity level that no one really
oversees how long it will take to really cross the border to have autonomous systems
around and how human societies might change with such new technological
advances.
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The results of the study have indicated that the public view on robotics is
generally positive, while at the same time people tend to favor robotic systems
much stronger in application fields where no humans are nearby (e.g., in harsh
environments) and not in fields where robots will directly act together with humans
or also on humans (e.g., in the care domain). This shows that the greatest challenge is
the still widespread lack of trust and the acceptance of people toward robotic
systems—especially systems that occur in everyday life. It directly relates to our
everyday experience that technical systems may fail in a systematic way without any
visible explanation with—in terms of powerful systems—possibly severe conse-
quences. Today’s robots do not have sufficient capability to understand the context
and relate this to the own set of available actions in the particular situation, and to
give appropriate feedback and possibly also explanations to the human, e.g. if failure
is occurring (which is always possible).

It is therefore worthwhile to take a look at the current research in domains where
the autonomy of the robot is a crucial question for its successful application.
Typically, these are harsh environments where humans cannot go or only under
high efforts and taking large risks. The most prominent example in this chapter here
is the important role of autonomous robots for future space missions in several
scenarios. These scenarios require capabilities for the autonomous exploration of the
extraterrestrial surfaces, also in a team of several robots, the construction of infra-
structure, and the direct interaction of humans and robots, for example, via
telemanipulation or also via concepts in which robots and humans interact with
each other in a kind of team and carry out missions together.

For robots in terrestrial scenarios, similar questions regarding capabilities and
autonomy have to be addressed. Examples exist from underwater robotics, where
humans are still far away, up to industrial robotics where humans can in principle
even share the workspace with the robot. And if the workspace is shared, many other
fields of application exist as well, which can benefit from the development of the
technologies and in turn also provide new impetus for space travel. Examples for
applications with direct contact to humans would be the use of robots in rescue
missions or robotic technology for rehabilitation, e.g., after stroke. For the latter, for
example, parts of the exoskeleton technology can be used as intelligent robots built
around humans to support the rehabilitation process. Even other domains that
receive much attention at the moment, like the question of autonomous driving
and new mobility concepts are also emerging as a result of the technologies
discussed here.

It remains a major challenge to develop autonomous robots that are capable of
relating task and context to the competence of own actions and ideally directly learn



from the choices taken. This would be one technological basis to realize the vision of
robots autonomously working together with humans. On top, it requires advances in
safety and the transparency on decisions in order to establish trust with the
humans—probably declared by elaborated certification mechanisms. Everywhere,
where this is not (yet) possible, robotic systems will be limited in function and
flexibility.
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Robotics is thus a very interdisciplinary field. The combination of engineering
sciences and computer science alone is not sufficient; other sciences must also be
involved. The more you use mechanisms with high internal complexity, such as deep
neural learning, the more you also need methods from other sciences, such as
neuroscience, to develop methods for making systems transparent. Overall, it is in
many cases a matter of dealing with increasing complexity, and that for systems that
are supposed to be endowed with long-term autonomy. To enable them to operate on
the moon or Mars, for example, the robots must function robustly and safely over a
long period of time.
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