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Abstract— Unlike fully actuated systems, the control of un-
deractuated robots necessitates the use of passive dynamics to
fulfill control objectives. Hence, there is an increased inter-
dependence between their design parameters and the closed
loop performance. This paper proposes a novel approach for
co-optimization of robot design and controller parameters for
increased certifiable stability obtained with means of region of
attraction analysis and gradient free optimization. In particular,
it discusses the co-optimization problem of a gymnastic acrobot
robot where the design and the controller are optimized to have
a large region of attraction (ROA) taking into account the closed
loop dynamics of the non-linear system stabilized by a linear
quadratic regulator (LQR) controller. The results are validated
by extensive simulation of the acrobot’s closed loop dynamics.

I. INTRODUCTION

The human sensorimotor system is a result of various
mechanisms working together on different time scales. More
specifically, behavioral performance emerges from processes
of evolution, development, learning and adaptation [1]. Anal-
ogous to the synergy of body and behavior in living beings,
optimal behavioral performance of robots could be attributed
to a shared optimality between three different domains: (i)
open loop trajectory optimization, (ii) closed loop trajectory
stabilization via feedback control and (iii) design optimiza-
tion. The coupling between these domains (Fig. 1) renders
itself even stronger when dealing with underactuated robots
where the controller necessitates the use of passive dynamics
to fulfill control objectives.

In recent robotics research, the interdependence between
the three domains is being increasingly exploited in both
model-free as well as model-based control domains. Boston
Dynamics’ recent successful advancement of the 34-DOF
humanoid robot, Atlas, in performing highly dynamic tasks,
such as backflips, parkour, and dance, clearly shows the sig-
nificance of kinodynamic whole-body approaches to robotic
motion [2]. An approach for increasing the robustness in
the trajectory optimization step by considering ellipsoidal
disturbances and LQR feedback is discussed in [3]. A co-
optimization that optimizes the design and motion parameter
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Fig. 1. Interplay between trajectory optimization, stabilization and design
optimization for optimal behavioral performance.

adjustment in the form of trajectories or actuator force spec-
ification simultaneously was proposed in [4]. The validation
of the framework is done through hardware implementation
of the manipulator and a legged robot. Furthermore, a co-
design scheme for the hardware optimization and DDP based
energy-efficient optimal hopping trajectory optimization was
introduced in [5]. An open-source framework for co-design
optimization of legged robots through a user-defined metric
was presented in [6]. A three-step approach was used:
(i) trajectory generation for a baseline robot using TOWR
(Trajectory Optimization for Walking Robots [7]), (ii) mo-
tion analysis, and (iii) design optimization using a genetic
algorithm. The pipeline was validated on a quadruped robot
by considering the energy minimization metric. A bi-level
optimization approach for the co-design of a quadruped
was proposed in [8]. It considers motion planning and
design optimization as a lower and upper-level optimization,
respectively. Another bi-level framework was introduced in
[9]. Based on stochastic programming, it was able to produce
mechanical structures and control parameters that performed
well for a broad range of nominal trajectories.

The Region of Attraction (ROA) associated to a fixed
point of a nonlinear dynamical system can be used to certify
stability. For closed loop dynamics, a large ROA around the
desired state is favorable. Closed loop dynamics and ROA are
shaped by both, the design- as well as control parameters.
The concepts of ROA and funnels have gained popularity
in the optimal control community, especially in the study
of underactuated systems. While ROA estimation has been
used for controller verification and policy synthesis [10],
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(a) Acrobot kinematic chain (b) Chaotic free fall

Fig. 2. (a) Acrobot kinematic chain and (b) long exposure shot of chaotic
free-fall.

the link to design optimization is yet to be made. To the
best knowledge of the authors, the co-optimization of the
feedback controller and robot design with the objective of
maximizing the ROA has not been discussed in the literature
(depicted by the dotted blue line in Fig. 1). This work pro-
poses a novel approach for co-optimization of robot design
and controller for maximizing its certifiable stability obtained
via the means of ROA analysis. In order to demonstrate our
approach, we perform a case study for the stabilization of
the acrobot system (Fig. 2) around its unstable fixed point
associated to the upright posture using an infinite horizon
LQR policy. The optimization strategy exploits two popular
gradient free optimization algorithms namely Nelder-Mead
and CMA-ES [11], [12].

This paper is organized as follows: Section II introduces
the mathematical preliminaries for establishing the system
dynamics, derivation of LQR controller for the acrobot
and ROA estimation. The overall methodology where the
objective function maximizing the stability is introduced
along with methods used for co-optimization of controller
and design is covered in Section III. Section IV presents the
results and discussion and finally Section V concludes the
paper and motivates future research.

II. MATHEMATICAL PRELIMINARIES

A. System Dynamics

An acrobot is a planar, two-link chain with a single actua-
tor at the middle joint [13]. Non-actuated double pendulums
are known to be chaotic systems [14]. With only one actuated
joint, the acrobot is an underactuated system for which
simple control techniques such as PD position control are
not sufficient [15].

We model the acrobot with weightless links with point
masses at the end. Thus, our dynamic model of the acrobot
contains five parameters. These are the masses m1 and m2,
the link lengths l1 and l2 as well as gravity g (Fig. 2(a)). The
generalized coordinates describing the system configuration
are the joint angles q = (q1, q2)T . q1 is measured from the
free hanging position whereas q2 is defined relative to q1.
The full state vector of the system contains the coordinates
and the angular velocities: x = (q, q̇), where a dot above
the vector denotes its time derivative. The torque applied

by the actuator is u = (u). The equations of motion for the
dynamics of such a dynamical system can be written as [13]:

ẋ =

[
q̇

M−1(Bselu−C(q, q̇)q̇ + G(q))

]
(1)

The equation in the bottom half of the vector is also known
as manipulator equation. For the acrobot, the entities in
the manipulator equation are the mass matrix (with si =
sin(qi), ci = cos(qi))

M =[
m1l

2
1 +m2l

2
2 + l21m2 + 2m2l1l2c2 m2l

2
2 +m2l1l2c2

m2l
2
2 +m2l1l2c2 m2l

2
2

]
,

the coriolis matrix

C =

[
−2q̇2m2l1l2s2 −q̇2m2l1l2s2
q̇1m2l1l2s2 0

]
, (2)

the gravity vector

G =

[
−gm1l1s1 − gm2 (l1s1 + l2s1+2)

−gm2l2s1+2

]
, (3)

and the actuator selection matrix Bsel =
[
0 1

]T
.

B. LQR Controller

The linear quadratic regulator (LQR) controller is a well
established and widespread controller from optimal control
theory. As the name suggests the controller acts on a linear
system

ẋ = Ax + Bu (4)

and an objective which is specified by a quadratic, instanta-
neous cost function

J = xTQx + uTRu (5)

with the symmetric and positive definite matrices Q = QT �
0 and R = RT � 0. This allows for reducing the Hamilton-
Jacobi-Bellman equation, whose solution is the optimal cost
-to-go, from which the optimal policy can be inferred, to the
algebraic Riccati equation

SA + ATS − SBR−1BTS + Q = 0 (6)

for which there exist performant numerical solvers for finding
the optimal cost-to-go matrix S. The optimal policy obtained
this way is

u(x) = −R−1BTSx = −Kx. (7)

Such an infinite-horizon LQR controller will always apply
torques to drive the system state towards the origin of the
linear system. An LQR controller can be used for stabilizing
the acrobot on the top by linearizing the dynamics around
the top position x0 = (π, 0, 0, 0) and u0 = (0) with a Taylor
expansion so that:

A =
∂f(x,u)

∂x

∣∣∣∣
x=x0,u=u0

, (8)

B =
∂f(x,u)

∂u

∣∣∣∣
x=x0,u=u0

(9)

2637



and expressing the state and actuation in relative error
coordinates x̄ = (x− x0), ū = (u− u0). In the following,
let f cl denote the closed loop dynamics obtained by inserting
(7) into (1).

C. Region of Attraction Estimation

The region of attraction of a nonlinear system describes
the set, Ra, of initial states around a fixed point x0 for
which the system evolves towards said fixed point as t →
∞. For sufficiently complex systems, Ra generally can not
be computed directly but only be estimated. The simplest
such estimate considers sublevel sets of a known Lyapunov
function V (x) that is limited by a scalar ρ [16]:

B = {x|V (x) < ρ} . (10)

We seek for the greatest ρ such that the Lyapunov conditions
are satisfied, i.e., where V (x) > 0 and V̇ (x) = ∇V f(x) <
0 for x ∈ B. Here, ∇V denotes the gradient of V . The
linear optimal cost-to-go, J?, that is obtained during LQR
synthesis, locally qualifies as a quadratic Lyapunov function
[17]:

V (x) = J?(x) = x̄TSx̄. (11)

For the infinite horizon LQR, ∂S/∂t = 0 and ∂x0/∂t = 0,
hence, V̇ is:

V̇ (x) = 2x̄TSẋ. (12)

For time invariant dynamics, Ra can be estimated by
evaluating the Lyapunov conditions for randomly chosen
initial states sampled from a successively shrinking estimate
B. We use a slightly modified version of the memory-less
algorithm introduced in [18] listed in Algorithm 1 to obtain
an inner approximation of the ROA. First ρ is initialized
with a reasonable first ρ0, such that the first estimate of the
ROA is guaranteed to be an overestimate. Then a random
state ˜̄x is sampled directly from the current estimate of Ra

and ẋ is evaluated by considering the nonlinear closed loop
dynamics f cl. We calculate V̇ and check for V̇ < 0. In case
this condition is not satisfied, we set ρ = V . Note, that we do
not have to check for V (x) > ρ, since ˜̄x is sampled directly
from within the current estimate of B. This can be achieved
by sampling from the d dimensional unit sphere using the
direct-sphere algorithm in [19] followed by a mapping to the
hyperellipsoid defined by (11) using a linear transformation
introduced in the following.

It is well known, that a linear transform can be used to
map the unit ball in Rn to an ellipsoid in Rm and vice versa.
Consider the n-ball Sn =

{
y|yTy ≤ 1

}
and a transform

T ∈ Rn×m, such that y = Tx. Expressing Sn in terms of
x yields:

Sn =
{
x|xTTTTx ≤ 1

}
. (13)

This describes an ellipse in x, since TTT is symmetric and
by definition positive definite. A diagonalization of TTT
yields:

TTT = WTΛW (14)

Algorithm 1 Sampling Based RoA Estimation for infinite
horizon LQR based on [18]
Require: S,N ,ρ0
ρ← ρ0
for i← 0 to N do

˜̄x ← sample directly from x̄TSx̄ < ρ
ẋ← f cl(x0 + ˜̄x)
V̇ ← 2˜̄xTSẋ
if V̇ > 0 then

ρ← ˜̄xTS ˜̄x
end if

end for
return ρ

where W and Λ are matrices of eigenvectors and eigenval-
ues, respectively. Therefore, the transform T can be written
as:

T =
√
ΛW . (15)

Using TTT = ρ−1S, the following transform allows us to
sample randomly from a sublevel set of a quadratic Lyapunov
function such as e.g. (11):

˜̄x =
(√

ΛW
)−1

y. (16)

where y is the state sampled directly from the unit ball.

III. METHODOLOGY

The problem of finding optimal design and controller
parameters, such that the ROA around a fixed point to be
stabilized is maximized, is formulated as a gradient free
optimization problem. The volume of the estimated ROA is
used as the objective and the design and control parameters
are the decision variables. The approach presented here is
applicable to problems that involve stabilizing a system
around one of its fixed points using LQR.

A. Objective Function

Recall, that in ROA estimation, one seeks to find the
greatest sublevel set of a Lyapunov function V limited by
a scalar ρ. Because a given ρ only has expressive power
for a specific V , the state space volume of the estimated
ROA, VROA(B), is used as an objective function. VROA(B)
can be calculated by multiplying the volume of the n ball
with the determinant of the mapping given in (15), which
is the transform that maps n ball to the hyperellipsoid that
describes the estimated ROA.

VROA = |det(
√
ΛW )|−1 π

n
2

Γ(n
2 + 1)

(17)

where Γ denotes Euler’s Gamma function. Note, that the
fraction in the end of (17) is a constant and could be omitted
during optimization.
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B. Optimization Methods
1) Nelder-Mead: The Nelder-Mead method [11] is a com-

monly used numerical gradient free optimization method.
For the optimization of an n-dimensional objective function,
an n + 1 simplex is maintained during the optimization
process. The objective function is evaluated at the simplex’s
corner points and the behavior of the objective function is
extrapolated to find a new, better performing point in the
decision variable space to replace an existing simplex corner
point. For low dimensional problems, it outperformed the
other optimization problems in a survey of black box opti-
mizations [20]. This method has been exploited in robotics
research for example in kinematic optimization of parallel
mechanisms [21]. For our analysis we used the Nelder-Mead
implementation included in the scipy python library [22].

2) CMA-ES: The Covariance Matrix Adaption Evolution
Strategy (CMA-ES) is a numerical optimization method
belonging to the class of evolutionary algorithms [12]. It is a
stochastic and gradient-free method and is particularly useful
for non-convex or ill-conditioned objective functions [20].
The algorithm is motivated by the rules of biological evolu-
tion. For the optimization, a population of candidate solutions
(individuals) is maintained. In each optimization iteration,
new candidate solutions are sampled by variation of the
current population, where better performing individuals are
preferred for producing new solutions. Variants of the CMA-
ES optimizer outperformed 31 other optimization algorithms
for difficult functions in the aforementioned survey of black
box optimizations [20]. For our analysis we used the imple-
mentation of the CMA-ES algorithm from [23].

C. Co-optimization of Controller and Design
For controller and design optimization, we assume an

acrobot model as described in Section II-A. An infinite
horizon LQR policy is obtained by considering the linearized
dynamics at the unstable fixed point at x0 = (π, 0, 0, 0)

T.
The overarching goal of our co-optimization is to find a
physical design and controller parameters, such that the
volume VROA of the ROA of x0 is maximized. The decision
variables include m2, the point mass at the tip of the second
link, the link lengths l1 and l2. Furthermore, we consider the
diagonal elements of Q and R, which are denoted by qii and
r, respectively. The mass of the first link m1 = 0.608 kg is
kept constant because in the considered hardware design a
motor is mounted at the tip of the first link. Gravity is set to
g = 9.81 m s−2 in all simulations. The complete optimization
problem can be formulated as:

max
m2,l1,l2,qii,r

VROA (18a)

subject to m2,min ≤ m2 ≤ m2,max, (18b)
l1,min ≤ l1 ≤ l1,max, (18c)
l2,min ≤ l2 ≤ l2,max, (18d)
qii,min ≤ qii ≤ qii,max, i ∈ {1 . . . 4} , (18e)
rmin ≤ r ≤ rmax. (18f)

Where, in practice, the bounds for m2 are [0.1, 1.0] kg, for l1
and l2 are [0.2, 0.4] m, for q11, q22 are [0.1, 10.0], and q33, q44

as well as r are [0.1, 1.0]. Note, that off-diagonal elements
were not considered in our work for the sake of keeping the
dimensionality of the search space low. We do not expect
qualitatively different outcomes when including them. We
employ different optimization strategies in order to solve
(18) either in an alternating or a combined fashion. In the
combined approach, (18) is solved at once. For the alternating
approach, we try to find the optimal design first (design first),
and then seek for the optimal control parameters, or vice
versa (controller first), which requires splitting (18) into two
sub-problems. For the design optimization sub-problem, we
only consider m2, l1 and l2 as decision variables and (18b)
to (18d) as constraints. Similarly, only qii and r as well
as (18e) and (18f) are considered in the control parameter
optimization sub-problem. For each evaluation of either one
of the optimization problems, first an LQR feedback policy is
synthesized for a given set of design and control parameters.
Subsequently, by using the optimal cost-to-go as a Lyapunov
function (11), a ROA estimation is conducted according to
Algorithm 1. In practice, we found N = 105 for a good
compromise of accuracy of the estimate on the one hand
and computational feasibility on the other.

Note, that for the closed loop dynamics f cl, the ROA
always exists even for poorly chosen parameters. Hence, any
initial design can be considered feasible, albeit often times
suboptimal. However, due to nonlinear effects such as e.g.
coulomb-friction, that have not been considered in this work,
this does not translate to the real world acrobot plant.

IV. RESULTS AND DISCUSSION

We conducted five different kinds of optimizations for
the design and controller parameters (source code available
online1). We performed design first and controller first with
both, Nelder-Mead and CMA-ES, optimizers. Additionally,
we performed simultaneous optimization of all parameters
with CMA-ES. Nelder-Mead optimizations were executed
with a maximum number of Nmax = 200 function evalu-
ations and the CMA-ES optimizations with Nmax = 1000
function evaluations. All optimizations were initialized with
the initial parameters: m2 = 0.63 kg, l1 = 0.3 m, l2 = 0.2 m
and identity matrices for Q and R. These parameters are
identical to those of the real-world acrobot depicted in Fig.
2(b). The CMA-ES optimizations used a population size
of 29 (design optimization), 35 (controller optimization)
or 40 (simultaneous) with an initial standard deviation of
σ0 = 0.4 in the normalized parameter space. Nelder-Mead
optimizations were executed on a single i9 core, whereas
the CMA-ES optimizations were run on an Intel Xeon Gold
6140 CPU in parallel with one core for every individual in
every generation. The runtimes Topt are noted in Table I.

In early experiments with the Nelder-Mead optimizer no
convergence could be observed for the controller optimiza-
tion. For this reason we assumed q11 = q22 and q33 = q44
to reduce the dimensionality of the optimization problem.
The progression of the optimizations in terms of the largest

1https://github.com/dfki-ric-underactuated-lab/
design_controller_cooptimization_acrobot
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Fig. 3. Progression of ROA volume during optimization for the different
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dotted lines and the controller parameter optimization phases by dashed
lines. The simultaneous CMA-ES optimization is the solid line.

ROA volume versus number of ROA estimations used for
the optimization can be found in Fig. 3.

The design first strategy performs considerably better than
the controller first strategy for both Nelder-Mead and CMA-
ES. The increase in the objective function is steeper for
Nelder-Mead in the design optimization phase, i.e. Nelder-
Mead needs fewer function calls to find a decent region of at-
traction. However, Nelder-Mead seems to be over-challenged
by the controller optimization with its five decision variables
and the dimensionality reduction from setting q11 = q22
and q33 = q44 also prevents a good convergence. There
are only minor improvements during these phases. CMA-ES
controller first does perform the worst of all tested strategies.
On the other hand, CMA-ES design first has found the
largest ROA after 1000 evaluations. CMA-ES simultaneous
performs reasonably well, even though in the optimization
window Nmax ≤ 1000 it has not yet converged and is
less sample efficient than CMA-ES design first. This can
be explained with the higher dimensional search space. With
more evaluations, we expect CMA-ES simultaneous to reach
at least the level of CMA-ES design first, if it does not
get stuck in a local minimum. In our optimizations, CMA-
ES takes more evaluations than Nelder-Mead. The CMA-ES
hyper parameters could be tuned for a faster convergence,
however, as we did not want to lose the global optimality by
converging too fast to a local optimum, we sticked with the
default hyper parameters for a parameter space of our size.
The optimized parameters for design and controller, the ROA
volumes and the computation times are listed in Table I.

Fig. 4 depicts the ROA volume values in slices of the
decision variable space. The slices are in the l1-l2 plane as
well as the q11-q22 plane. For the slice in the l1-l2 plane,
the other parameters are fixed at the initial parameters. The
heatmap therefore shows the sliced objective function for
the design first optimization strategies. In the q11-q22 plane,
the design parameters are set to the optimal parameters
which were found in the CMA-ES design first optimization.
The other controller parameters are kept constant at the
final optimal parameters found by the same strategy. The
l1-l2 slice plot shows a clear objective function gradient
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Fig. 4. Estimated ROA in the (a) l1 vs. l2 dimensions for the initial
controller parameters, and (b) q11 vs. q22 dimensions for the optimal design
parameters. The green dots mark the optimal solution found by the CMA-ES
design first optimization strategy.

towards shorter first links and longer second links. The
gradient in l2 direction is steeper than in l2 direction. The
objective function in the q11-q22 plane shows a more complex
structure. Clearly, smaller q22 values are preferable over
larger ones. For small q22 the influence of q11 is small. The
global maximum in this plane is at approximately (2.0, 0.1)
which is found by CMA-ES design first.

Fig. 5 shows the approximated ROAs for the initial pa-
rameters as well as for the optimized parameters that were
found using the CMA-ES design first optimization strategy.
The initial ROA volume is VROA,0 = 0.0013 and the
optimized volume is VROA,opt = 16.18, which represents an
increase of roughly four orders of magnitude. The increase in
volume leads to a larger certifiable set of stabilizable initial
states, hence, the optimized design is more robust than the
initial design. Final ROA estimates have been verified by
performing extensive simulations (n = 1000) of the forward
dynamics for initial conditions sampled randomly from the
estimated ROA. For each of the designs listed in Table I,
no initial conditions were found, for which the top position

Fig. 5. ROA estimates projected into joint space for the initial design
(blue) and for the improved design (red), assuming that q̇1 = q̇2 = 0. The
optimized design was found using the CMA-ES design first optimization
strategy and exhibits a significantly larger ROA, which in practice means,
that larger deviations wrt. x0 can still be stabilized by the controller (as
shown by the pictograms).
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TABLE I
RESULTS OF VARIOUS OPTIMIZATION STRATEGIES.

Design Controller

Method Strategy m2 in kg l1 in m l2 in m q11 q22 q33 q44 r11 VROA Topt in min

Nelder Mead Design First 0.20 0.20 0.40 1.00 1.00 1.00 1.00 0.95 12.49 67
Controller First 0.17 0.20 0.40 10.00 10.00 0.10 0.10 0.66 9.83 61

CMA-ES Design First 0.22 0.20 0.40 2.08 0.15 0.99 0.99 0.62 16.18 116
Controller First 0.10 0.20 0.39 0.11 8.00 0.19 0.15 0.74 2.18 112
Simultaneous 0.25 0.20 0.39 9.11 2.16 0.61 0.88 0.83 15.50 59

could not be stabilized, which probabilistically verifies the
ROA estimate.

V. CONCLUSIONS

A design and controller co-optimization was conducted
with the goal of maximizing the ROA of the closed loop
dynamics of an acrobot using LQR control. Mechanism
design greatly contributes to achieving robust dynamical
control. This work demonstrated that ROA estimation can in
fact be employed to find design and control parameters that
lead to a larger closed loop ROA. In the presented case study
of the acrobot, finding optimal design parameters first and
control weights thereafter using a CMA-ES optimizer yielded
the best overall results. On the other hand, Nelder-Mead
required fewer calls of the objective function and showed
faster convergence, albeit to a local minimum. The proposed
method is applicable only to a limited range of scenarios, in
which a single fixed point is being stabilized by an infinite
horizon LQR controller. Furthermore, it might not scale well
for higher dimensional problems. Building upon this work,
further research is needed in order to be able to solve prob-
lems that involve optimization of parameters for trajectory
stabilization scenarios. Because the nonlinear dynamics of a
robot are shaped not only by control parameters and policies,
but also heavily by its mechanical structure, we believe that
more holistic design methods can greatly improve the design
of future robots.
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