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Abstract. Semantic 3D maps are highly useful for human-robot col-
laboration and joint task planning. We build upon an existing real-time
3D semantic reconstruction pipeline and extend it with semantic match-
ing across human and robot viewpoints, which is required if class labels
differ or are missing due to different perspectives during collaborative
reconstruction. We use deep recognition networks, which usually per-
form well from higher (human) viewpoints but are inferior from ground
robot viewpoints. Therefore, we propose several approaches for acquir-
ing semantic labels for unusual perspectives. We group the pixels from
the lower viewpoint, project voxel class labels of the upper perspective
to the lower perspective and apply majority voting to obtain labels for
the robot. The quality of the reconstruction is evaluated in the Habitat
simulator and in a real environment using a robot car equipped with an
RGBD camera. The proposed approach can provide high-quality seman-
tic segmentation from the robot perspective with accuracy similar to the
human perspective. Furthermore, as computations are close to real time,
the approach enables interactive applications.

1 Introduction

Human-robot collaboration faces several challenges today. Let us take the ex-
ample of a simple physical rehabilitation scenario with a ground robot that ob-
serves a human performing physical exercises. The exercise supervision requires
detailed body pose recognition in 3D, which often relies on a 3D human body
model. Time constraints for correcting instructions can be high, and verbal com-
munication might be also a necessity. The robot needs to recognize the person
and the objects in the environment, and reconstruct the geometry of the space
for path planning and navigation. It is also essential to understand the relation-
ships between objects, so complete 3D semantic reconstruction is necessary in
such cases.

There can be both advantages and disadvantages if a home robot is small. A
tiny robot can find dropped and forgotten objects, enter hard-to-reach places,
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Fig. 1: Predicted semantic segmentation from different perspectives.
Semantic segmentation algorithms can fail on images taken from unusual per-
spectives, such as those captured by small ground robots or drones. (Best viewed
in color.)

and occupies little space in the home. At the same time, it can encounter objects
that are not in the training database or see them from an unusual viewpoint [1]
(see examples in Figure 1). It is highly likely that a single object detection model
would not work from arbitrary viewpoints without a long training process, and
training images may not be available at all. In such cases, semantic matching
between a robot and a human can be performed instead.

One option is to pass the observation to a human partner and request se-
mantic information, e.g., via verbal communication. Another option can be to
use semantic scene completion [2] to infer the labels of the unknown regions.
However, this would require complex models that cannot run in real time on
typical robots today. A third option can be the usage of a semantic map of a
higher viewpoint to estimate the semantics of the lower viewpoint. This way, we
can also provide the system with low-angle training samples to improve itself.

Building upon the semantic reconstruction works of [3] and [4], we propose
ways to generate semantic segmentations from lower viewpoints given an existing
semantic reconstruction. We study the effects of changing the camera heights
and compare different segmentation models. We evaluate the proposed label
projection approaches on synthetic data coming from the Habitat [5] simulation
framework and on a real-world dataset. Finally, we show that our method can
provide semantic segmentation from the lower viewpoints with similar accuracy
as the semantic reconstruction from the upper viewpoint. Our implementation
is available at https://github.com/szilviaszeier/semantic_matching.

2 Related works

Robotic systems have been assisting us more and more in our daily lives. Initially,
these agents were hard-coded to complete a specified task without any ability
to generalize. However, in recent years more emphasis has been put on their au-
tonomy. Spatial artificial intelligence (SAI) can be divided into four distinct but
interdependent layers with increasing complexity: spatial perception, pose track-
ing, geometry understanding, and semantic understanding. Information about a
given environment can be stored within a 3D semantic reconstruction, and later
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this semantic 3D map can be utilized by the same or even by other agents to
complete various tasks. Reconstruction of an agent’s environment lies at the core
of our work. In this section, we briefly discuss relevant reconstruction methods
and introduce the problem of segmentation failing from unusual perspectives,
such as that of small ground robots.

2.1 3D Semantic Reconstruction

3D semantic reconstruction of indoor environments refers to the task of recreat-
ing the geometry and appearance of our surroundings. The reconstruction can
be produced using different techniques. Some utilize a LiDAR scanner and re-
construct the environment with a structure-from-motion algorithm [6], while
others achieve this by traversing the area with an RGBD or stereo camera while
tracking its location and orientation. In our work, we focus on RGBD cameras.

Due to the complexity and high dimensionality of this task, many solutions
only work offline [7, 8]. In robotic applications, real-time approaches like Bundle-
Fusion [9] become much more relevant. For example in a navigation task, the
robot needs to be aware of immediate changes in its environment to be able to
generate a collision-free trajectory [10].

Another aspect is the way in which the semantic labels of the reconstruction
are created. Some methods utilize 2D semantic segmentation algorithms [11],
while others perform the segmentation on the 3D geometry itself [12, 13]. There
are many publicly available 2D semantic segmentation methods making this
approach an attractive choice. On the other hand, 3D segmentation methods
have the advantage of being able to utilize the geometry of a given object, but
as these techniques are more time-consuming, there are much fewer variants.

When it comes to semantic reconstruction, typical methods isolate compo-
nents of and fuse the results later in a pipeline architecture. However, this is not
always the case. The authors of [14] proposed an approach to jointly infer 3D
geometry and 3D semantic labels with the use of a depth fusion network. This
method leverages the 2D semantic prior to enhance 3D reconstruction accuracy,
meaning that out-of-distribution viewpoints would not be supported, which is
the main problem we aim to tackle here.

2.2 Object Detection

In our work, we need to segment object masks in 2D images. Such algorithms
often have to make a trade-off between inference speed (one-stage methods)
and accuracy (two-stage methods). One-stage approaches include the YOLO
series [15–17], while main representatives of the two-stage methods are the R-
CNN series, including faster R-CNN [18] and R-FCN [19]. Most of the available
object detection algorithms are trained on datasets such as [20–22], which mainly
contain images taken from a standard (human) perspective. This means that
when applied to images taken from an unusual viewpoint, such as that of a
small ground robot or even a drone, the detection is unreliable or fails.
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3 Methods

In this section, we individually detail our contributions towards 3D semantic
matching across multiple viewpoints. We first describe the structure of our
pipeline, briefly mentioning previous components adopted from [4].

3.1 General Pipeline

In the previous work [4], the main focus was on real-time semantic reconstruction
of indoor environments. The reconstruction pipeline includes UcoSLAM [23] as
the visual SLAM method used for pose tracking, and Mask R-CNN [24] as the
2D semantic segmentation algorithm trained on the SUNRGBD dataset [25]. A
point cloud filtering procedure was also introduced to filter out erroneous pose
estimates that may result from false re-localization or drifts in the pose. The final
3D model of the environment is constructed using the Voxblox [26] framework by
integrating measurements from each sensor into a global map. The reconstruction
can be colored or semantically labeled, depending on the inputs. As we focus on
semantic reconstructions, we paint the model with semantic labels.

We extended the pipeline of [4] with different components. The proposed
architecture is shown in Figure 2. We aim to obtain a semantic reconstruction
from unusual viewpoints starting from a partial human-perspective reconstruc-
tion. To capture data from an odd perspective, we built a small ground robot
to use within our experimentation. The starting reconstruction is provided by
the reconstruction pipeline using a typical 2D semantic segmentation algorithm.
Originally Mask R-CNN was used for semantic labeling, but we also included
the recent segmentation algorithm called Mask Transfiner [27]. We trained this
model on a mixture between the SUNRGBD [25] and the ADE20K [28] dataset.
For comparability, the Mask R-CNN was also trained and evaluated on the same
dataset.

Fig. 2: Overall pipeline. We build upon the work of [4]. We added a label
projection module (highlighted in red) to infer the missing semantic labels from
a lower viewpoint, given an existing 3D semantic reconstruction.

From the starting reconstruction, our goal is to extend and improve the
model to unusual perspectives. The semantic segmentation algorithms are not
reliable from these odd perspectives, so to obtain a labelling, we proposed sev-
eral different projection methods, which serve as a mapping from the starting
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reconstruction to the perspective of the ground robot. These contribution are
detailed in the following sections.

3.2 Label Projections

The label projection module aims to provide 2D semantic segmentation to the
point cloud generation module. However, when the camera is close to the floor,
the accuracy of the pre-trained semantic segmentation degrades. Therefore, we
propose methods to provide high-quality semantic segmentation when the cam-
era position is not optimal, by incorporating labels from an existing 3D semantic
mesh. The following sections present the proposed methods. As a baseline, we
include two 2D semantic segmentation neural networks pre-trained on the upper-
view dataset.

Superpixel-based Projection For semantics-independent clustering of the
RGB image, we use superpixel technology. Superpixel segmentation is a cluster-
ing algorithm that aims to cluster regions of an image based on some similarity
metrics such as color, texture, and proximity. For superpixel segmentation, we
use Fast-SLIC [29], which is an optimized version of SLIC [30] (Simple Linear
Iterative Clustering) for CPU-constrained devices.

This approach consists of the following steps: (i) We project the semantic
reconstruction from the upper viewpoint onto the lower-view image plane. (ii)
We use Fast-SLIC on the RGB frame from the lower viewpoint to find coherent
image regions and aggregate the projected semantic labels. (iii) We use majority
voting to assign semantic labels to each superpixel. This approach will be referred
to as “2D SLIC”. While this method only works with 2D images, the following
methods also use 3D geometry.

Superpixel-based Projection in 3D This method extends the previous 2D
superpixel method. We still run the superpixel segmentation on the RGB frame,
but the label assignment is done in 3D. Algorithm 1 describes the method in
detail. For the rest of the paper, we refer to this method as “3D projected SP”.

Supervoxel-based Projection In addition to the generalization of the label
assignment, one can extend superpixel segmentation to 3D. In this case, we refer
to the resulting 3D regions as supervoxels. Out of the several approaches for
supervoxel segmentation, we use an extension of SLIC called maskSLIC [31].

To implement this approach, we need to convert the point cloud to a voxel
grid. Let P ∈ RN×3 be a point cloud, P̄ = 1

N

∑N
j=1 P

(j) the center of the point
cloud and V ∈ R the voxel size. Then, we can convert point cloud P to a voxel
grid with the following formula:

V =
P − P̄

V
.
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Algorithm 1: Superpixel-based Projection in 3D

Input: Lower-view RGBD image (I ∈ [0, 255]H×W×3 and D ∈ [0, 255]H×W ),
upper-view semantic reconstruction (including point cloud
Pupper ∈ RN×3 and labels Lupper ∈ {0, 1, . . . , L}N , where L ∈ N
denotes the number of semantic labels).

Output: Lower-view semantic segmentation (S ∈ {0, 1, . . . , L}H×W )
1 Run superpixel segmentation (SLIC) on the RGB image (I) to find coherent

image regions (SP ).
2 Using the depth image (D), project the superpixel segmentation (SP ) to 3D

to get a point cloud (Plower).
3 [Optional] Downsample the point cloud (Plower).
4 Match the lower-view point cloud (Plower) with the upper-view semantic

reconstruction (Pupper, Lupper) and determine the corresponding semantic
label of each superpixel (Llower).

5 Project the labels of the lower-view semantic point cloud (Llower) onto the
image plane to get the semantic segmentation (S).

As we increase the number of dimensions, we need to decrease the shape
of the voxel grid to keep the runtime low. To this end, we introduce heavy
subsampling on the point cloud before the voxelization. Furthermore, we use
SLIC with a foreground mask to ignore empty voxels, and we limit the number
of supervoxels. Algorithm 2 describes the method in more detail. This method
is hereafter referred to as “3D SLIC” method.

Algorithm 2: Supervoxel-based Projection

Input: Lower-view RGBD image (I ∈ [0, 255]H×W×3 and D ∈ [0, 255]H×W ),
upper-view semantic reconstruction (including point cloud
Pupper ∈ RN×3 and labels Lupper ∈ {0, 1, . . . , L}N , where L ∈ N
denotes the number of semantic labels).

Output: Lower-view semantic segmentation (S ∈ {0, 1, . . . , L}H×W )
1 Using the lower-view RGB (I) and depth image (D), create a colored 3D point

cloud (Plower).
2 Downsample the point cloud (Plower) and keep track of each point’s original

location.
3 Convert the lower-view point cloud (Plower) to a voxel grid (Vlower).
4 Run SLIC on the voxel grid (Vlower) with masking to get supervoxels (SV ).
5 Match the lower-view point cloud (Plower) with the upper-view semantic

reconstruction (Pupper, Lupper) and determine the corresponding semantic
label of each supervoxel (Llower).

6 Project the labels of the lower-view semantic point cloud (Llower) onto the
image plane to acquire the semantic segmentation (S).
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3D Clustering-based Projection We propose another clustering approach,
which starts by finding planes (e.g., floor, ceiling, and walls) and then cluster
the rest of the scene. For this, we use RANSAC [32] and DBSCAN [33] itera-
tively. Algorithm 3 details the proposed approach. This method can handle point
clouds of hundreds of thousands of points, but subsampling the point cloud is
advantageous in terms of speed. The number of supervoxels cannot be adjusted
directly, it depends on the point density, and therefore it cannot distinguish re-
gions with fine details. Furthermore, this method is sensitive to noise without
fine-tuning the parameters. For the rest of the paper, we refer to this approach
as “DBSCAN”.

Algorithm 3: 3D Clustering-based Projection

Input: Lower-view depth image (D ∈ [0, 255]H×W ), upper-view semantic
reconstruction (including point cloud Pupper ∈ RN×3 and labels
Lupper ∈ {0, 1, . . . , L}N , where L ∈ N denotes the number of semantic
labels).

Output: Lower-view semantic segmentation (S ∈ {0, 1, . . . , L}H×W )
1 Using the lower-view depth image (D), create a 3D point cloud (Plower).
2 Downsample the point cloud (Plower) and keep track of each point’s original

location.
3 while Plower contains planes do
4 Segment plane: Use RANSAC to find planes and select the largest

coherent region by applying DBSCAN (Pcluster).

5 Cluster the rest of the point cloud (Plower, those points that were not part of
any plane) using DBSCAN (Pcluster).

6 Match the lower-view clustered point cloud (Pcluster) with the upper-view
semantic reconstruction (Pupper, Lupper) and determine the corresponding
semantic label of each cluster (Lcluster).

7 Trace back and project the labels of the clustered semantic point cloud
(Lcluster) onto the image plane to get the semantic segmentation (S).

Per-point matching We project the lower-view RGBD frame to 3D, then we
compare the points from the resulting point cloud with the upper-view point
cloud and assign the corresponding upper-view labels.

Let Plower ∈ RM×3 the lower-view and Pupper ∈ RN×3 the upper-view point
cloud, and Lupper ∈ {0, 1, . . . , L}N the corresponding labels, where L ∈ N. We
assign the nearest upper-view label to each lower-view point:

L
(j)
lower := L(i)

upper,

where Llower ∈ {0, 1, . . . , L}M is the labels of the lower-view point cloud, ∥.∥
denotes the L2 norm, and i ∈ [1, N ], j, k ∈ [1,M ], j ̸= k are indices, such that∥∥∥P (i)

lower − P
(j)
lower

∥∥∥
2
<

∥∥∥P (i)
lower − P

(k)
lower

∥∥∥
2
.



8 February 2022

Finally, we project Llower, the lower-view semantic labels onto the image
plane to obtain the semantic segmentation. We refer to this approach as “3D
neighborhood” method.

3.3 Benchmark Measures

When comparing meshes, we transform them into semantic voxel grids and then
compare them with the following specified metrics.

Jaccard We calculate an intersection over union (IoU) where the union is the
total number of voxels within the two voxel grids that are occupied within at
least one of them, and the intersection is the number of voxels for which the
position and the color match in the two voxel grids. We call this the “color
intersection”. The ratio of these two values gives the Jaccard index.

Sorensen The Sorensen similarity index is calculated as

2 · |X ∩ Y |
|X|+ |Y |

,

where the numerator specifies the double of the color intersection and the de-
nominator is the total number of voxels within the compared voxel grids.

Color Acc. The color accuracy is the ratio between the color intersection and
the intersection of occupied voxels.

Mean Acc. The main benchmark measure is the mean accuracy, which we define
as the mean of the other three measures, the Jaccard, the Sorensen, and the
Color Acc.

4 Experimental Results

To prove the validity of our work, tested our methods both with synthetic data
and in real scenarios. We first present the results on synthetic input created with
the Habitat simulator, and show the real-world tests afterwards.

4.1 Experimental setup

We trained the semantic segmentation models (Mask R-CNN [24] and Trans-
finer [27]) on a mixture between the SUNRGBD [25] and ADE20K [28] datasets.

We used the label projection methods with the following parameters: For the
2D SLIC and the 3D projected SP method, we set the number of superpixels to
512, and in the case of the 3D projected SP we only kept every 4th point of the
point cloud. In the case of the 3D SLIC method, we subsampled the point cloud
by setting the voxel size V to 0.1, and we limited the number of supervoxels
to 128. Finally, in the case of the DBSCAN label projection method, a voxel
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size V of 0.04 was used for the downsampling, and we set the ϵ parameter of
DBSCAN to 0.1, which determines the maximum distance between points within
a neighborhood. The rest of the parameters can be found in the codebase4.

We measured the runtime of each label projection method on a server
equipped with an AMD EPYC 7401P CPU and 3 NVIDIA GeForce RTX 2080
Ti GPUs. Despite the optimizations, 3D SLIC and DBSCAN could only run at
around 1 frame per second (FPS). However, the 3D projected SP and the 3D
neighborhood could perform at around 20 and 10 FPS, respectively (see Table 1).

2D SLIC 3D SLIC 3D projected SP DBSCAN 3D neighborhood

2.29 1.04 9.57 0.84 20.06

Table 1: Speed of the label projection methods. The measurements are in
frame per second (FPS). For more detail, see Section 4.1.

Ground Robot For our experiments, we built a small ground robot. We 3D-
printed the frame of OpenBot [34], collected and assembled the electrical compo-
nents from scratch, and adapted the Arduino code to fit our needs. The brain of
our agent is the NVIDIA Jetson Nano [35] embedded computer, and we equipped
the robot with an Azure Kinect RGBD camera.

Test data We conducted the experiments in both a simulated and a real-world
environment.

To generate the simulated dataset, we used the Habitat [5] simulation frame-
work. While this simulator supports multiple datasets, we only used it with
the Replica [36] dataset, which contains several photo-realistic models of in-
door scenes. We used the following environments: frl apartment 4, room 2,
and office 3. Depending on the task, we generated different trajectories. We
ran the experiments with every scene and reported the average results. We opted
for a simulator as it has the added benefit that the ground truth camera poses
can be queried as opposed to an online visual SLAM method.

To test the proposed methods, we also recorded a custom real-world dataset.
The dataset consists of upper- and lower-view video feeds recorded with an Azure
Kinect camera in 2 different rooms. Given the video feeds, we reconstructed the
3D scene and annotated the resulting mesh by hand.

4.2 Influence of the viewpoint

The Habitat simulation framework was used to investigate the effects of uncon-
ventional perspectives. For each scene, a trajectory was generated by periodically
tilting the camera up and down by 20 degrees. The same trajectory was used

4 https://github.com/szilviaszeier/semantic_matching
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for each experiment, but the camera height was varied. Figure 3 shows how the
segmentation accuracy is affected by changing the camera height.

Two segmentation models were used, a Mask R-CNN and a Transfiner pre-
trained on the SUNRGBD and the ADE20K [25, 28]. The models performed the
worst at 0.2 m height, with mean accuracies of 0.737 and 0.767, while the best
results were obtained at 0.8 m height, with mean accuracies of 0.770 and 0.802.
Further increment of the height resulted in a slight decay in accuracy.

0.2 0.8 1.2 1.8
0.6

0.7

0.8

0.9

1
Mask R-CNN

Transfiner

(a) Mean Acc.

0.2 0.8 1.2 1.8

(b) Jaccard

0.2 0.8 1.2 1.8

(c) Sorensen

0.2 0.8 1.2 1.8

(d) Color Acc.

Fig. 3: Segmentation accuracy as the height of the camera changes. The
same trajectories were used during the evaluations, only the height of the camera
was changed. The trajectories were generated by tilting the camera up and down
by 20°. Both models were trained on the same dataset. Mean Acc. represents
the mean of the other three (Jaccard, Sorensen and Color Acc.) metrics.

4.3 Semantic reconstruction of synthetic scenes

To generate synthetic input data, we used the Habitat simulation environment
and the following scenes from the Replica dataset: frl apartment 4, room 2,
office 3. We manually controlled the virtual camera along two distinct trajec-
tories within each room, an upper and a lower one, and saved the generated
images. In both cases, the aim was to explore the whole room. We ran the se-
mantic reconstruction method from the upper trajectory using different models.
Then, we executed the proposed label projection methods given the upper-view
reconstruction to generate the lower-view semantic reconstruction. The results
are shown in Table 2.

As a baseline, we present the accuracy of the semantic reconstruction us-
ing only the semantic segmentation models. We also indicate the accuracy of
the label projection methods with the ground truth upper-view reconstruction
to demonstrate the upper limit (in terms of the benchmark measures) of the
proposed methods.

In all cases, the proposed label projection methods outperformed the baseline
methods, i.e., semantic reconstruction using deep learning models applied to the
odd viewpoints. The 3D neighborhood method achieved the highest accuracy
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Model View Method Jaccard Sorensen Color Acc. Mean Acc.

G
ro
un
d
T
ru
th

Upper - - - - -

L
ow

er

- - - - -
2D SLIC 0.813 0.868 0.955 0.879
3D SLIC 0.892 0.922 0.975 0.930

3D projected SP 0.894 0.921 0.969 0.928
DBSCAN 0.859 0.865 0.953 0.892

3D neighborhood 0.917 0.944 0.985 0.949

M
as
k
R
-C
N
N

Upper - 0.778 0.754 0.867 0.800
L
ow

er
- 0.737 0.720 0.841 0.766

2D SLIC 0.728 0.717 0.852 0.766
3D SLIC 0.781 0.746 0.861 0.796

3D projected SP 0.794 0.752 0.860 0.802
DBSCAN 0.793 0.757 0.871 0.807

3D neighborhood 0.800 0.757 0.865 0.808

T
ra
ns
fin
er

Upper - 0.794 0.758 0.867 0.806

L
ow

er

- 0.734 0.708 0.832 0.758
2D SLIC 0.718 0.707 0.851 0.759
3D SLIC 0.790 0.746 0.862 0.799

3D projected SP 0.798 0.749 0.860 0.802
DBSCAN 0.796 0.753 0.871 0.807

3D neighborhood 0.804 0.754 0.866 0.808

Table 2: Results on the synthetic dataset. The “View” denotes the camera
position. The trajectories differ between the Upper and the Lower view. From the
Upper viewpoint, we create a semantic map using per-frame semantic segmen-
tation from different models. (The Ground Truth model indicates results when
the upper-view semantic reconstruction is provided by the simulator.) From the
Lower viewpoint, we either use a pre-trained model or the Upper-view semantic
reconstruction with our proposed label projection methods to provide per-frame
semantic segmentation to create a Lower-view semantic reconstruction.

regardless of which model was used for the upper-view semantic reconstruction.
The DBSCAN approach achieved similar color accuracy when used in conjunc-
tion with deep learning models but fell short when using the ground truth mesh
due to its inability to detect fine details without thorough fine-tuning. The 3D
SLIC and 3D projected SP methods performed similarly. They outperformed
DBSCAN with the ground truth and provided comparable results when used
with deep learning models.

Figure 4 shows the semantic reconstructions using each approach. The label
projection methods were guided by the ground truth upper-view semantic mesh.

4.4 Semantic reconstruction of real scenes

Experiments done on the synthetic dataset do not provide a clear picture of the
real-world performance of our methods as the data lacks noise and measurement
errors. Therefore, we tested the proposed methods on real-world data as well.
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Fig. 4: Qualitative results. Each column shows a different environment from
the Replica dataset. The label projection methods were guided by the ground
truth upper-view semantic reconstructions. We use the same color scheme to
represent the labels as in Figure 1. (Best viewed in color.)
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Similarly to Section 4.3, we also had recordings from two different points of
view: a lower and an upper. The recording from the upper viewpoint represents
the human perspective, which was used to create semantic reconstruction to
guide the label projection methods. We used the same deep learning models
without changing the weights. In Table 3, we compare the scores of the semantic
reconstruction using our different label projection strategies.

Model View Method Jaccard Sorensen Color Acc. Mean Acc.

M
as
k
R
-C
N
N

L
ow

er

- 0.379 0.522 0.868 0.590
2D SLIC 0.460 0.604 0.898 0.654
3D SLIC 0.513 0.644 0.892 0.683

3D projected SP 0.635 0.727 0.878 0.747
DBSCAN 0.547 0.680 0.919 0.715

3D neighborhood 0.665 0.749 0.891 0.768

T
ra
ns
fin
er

L
ow

er

- 0.384 0.527 0.864 0.592
2D SLIC 0.509 0.648 0.912 0.690
3D SLIC 0.565 0.682 0.891 0.713

3D projected SP 0.697 0.767 0.882 0.782
DBSCAN 0.540 0.677 0.927 0.715

3D neighborhood 0.718 0.777 0.881 0.792

Table 3: Results on the real-world dataset. We used the same methods as
described in Table 2.

As in the simulated experiments, the 3D neighborhood method achieved the
highest mean accuracy, while DBSCAN achieved the highest color accuracy. In
contrast to the previous results, DBSCAN performed worse compared to the
other methods. This is due to the lack of robustness to noise, which could be
mitigated by fine-tuning the parameters. However, this would require ground
truth samples, thereby rendering further evaluation unfair as other methods
do not require supervision. The 3D SLIC approach also achieves significantly
lower average accuracy than 3D projected SP due to the measurement noise
and the steps taken to reduce the execution time for real-time runs, i.e., the
strong subsampling of the point cloud and the significantly lower number of
supervoxels. However, the 3D projected SP approach achieved a significantly
higher mean accuracy as it could be executed at a higher resolution.

5 Conclusions

Several solutions have been proposed for the semantic reconstruction of indoor
environments. However, for semantic segmentation algorithms, the ability to
recognize objects in the case of drastic perspective changes has not yet been
fully addressed. In this work, we proposed a modular pipeline for semantically
reconstructing indoor environments from unusual perspectives, such as one from
a small ground robot. To achieve our goal, we utilize a superpixel technique
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and its variations, and the geometry of the surroundings. Our pipeline starts
with a partial semantic reconstruction from the human perspective, which gets
extended to the new, unusual perspective.

We experimented in both simulated and real-world scenarios with two differ-
ent 2D semantic segmentation networks. The proposed label projection methods
can provide semantic segmentation from lower viewpoints with accuracy similar
to the human perspective. Thereby, label transfer and the fine-tuning of semantic
segmentation networks to these perspectives becomes possible.

The resulting reconstruction is a class-level semantic segmentation of the
3D geometry, which means that we can differentiate between categories but not
between the instances themselves. In the future, we plan to incorporate instance-
level segmentation and enable panoptic 3D reconstructions of the environments.
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23. R. Muñoz-Salinas and R. Medina-Carnicer, “UcoSLAM: Simultaneous localization
and mapping by fusion of keypoints and squared planar markers,” Pattern Recog-
nition, vol. 101, 2020.

24. K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” IEEE Inter-
national Conference on Computer Vision, 2017.

25. S. Song, S. P. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D scene under-
standing benchmark suite,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2015.

26. H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremen-
tal 3D euclidean signed distance fields for on-board MAV planning,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, 2017.

27. L. Ke, M. Danelljan, X. Li, Y.-W. Tai, C.-K. Tang, and F. Yu, “Mask transfiner for
high-quality instance segmentation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4412–4421, 2022.

28. B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba,
“Semantic understanding of scenes through the ade20k dataset,” International
Journal of Computer Vision, vol. 127, no. 3, pp. 302–321, 2019.

29. A. Kim, “Fast-slic.” https://github.com/Algy/fast-slic. Last accessed: 2021-
11-01.

30. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic su-
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