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Abstract

Collecting large-scale medical datasets with fully annotated
samples for training of deep networks is prohibitively expen-
sive, especially for 3D volume data. Recent breakthroughs
in self-supervised learning (SSL) offer the ability to over-
come the lack of labeled training samples by learning feature
representations from unlabeled data. However, most current
SSL techniques in the medical field have been designed for
either 2D images or 3D volumes. In practice, this restricts
the capability to fully leverage unlabeled data from numerous
sources, which may include both 2D and 3D data. Addition-
ally, the use of these pre-trained networks is constrained to
downstream tasks with compatible data dimensions. In this
paper, we propose a novel framework for unsupervised joint
learning on 2D and 3D data modalities. Given a set of 2D im-
ages or 2D slices extracted from 3D volumes, we construct
an SSL task based on a 2D contrastive clustering problem
for distinct classes. The 3D volumes are exploited by com-
puting vectored embedding at each slice and then assembling
a holistic feature through deformable self-attention mecha-
nisms in Transformer, allowing incorporating long-range de-
pendencies between slices inside 3D volumes. These holistic
features are further utilized to define a novel 3D clustering
agreement-based SSL task and masking embedding predic-
tion inspired by pre-trained language models. Experiments
on downstream tasks, such as 3D brain segmentation, lung
nodule detection, 3D heart structures segmentation, and ab-
normal chest X-ray detection, demonstrate the effectiveness
of our joint 2D and 3D SSL approach. We improve plain 2D
Deep-ClusterV2 and SwAV by a significant margin and also
surpass various modern 2D and 3D SSL approaches.

Introduction
Creating large-scale medical image datasets for training neu-
ral networks is a major obstacle due to the complexity of
data acquisition, expensive annotations, and privacy con-
cerns (Cheplygina, de Bruijne, and Pluim 2019; Kaissis
et al. 2020). To alleviate these challenges, a conventional ap-
proach is to train deep networks, e.g., ResNet-50 (He et al.
2016), on large-scale natural image datasets such as Ima-
geNet (Deng et al. 2009) and subsequently fine-tune them on
the target medical domain. However, such schemes are sub-
optimal due to the large domain discrepancy between natural
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Figure 1: The main distinctions between our work and prior stud-
ies on 2D and 3D self-supervised learning. We can learn represen-
tations from diverse data and the pre-trained weights can be trans-
ferred for both 2D and 3D downstream tasks.

images and medical data (Raghu et al. 2019; Nguyen et al.
2022b). This has motivated other techniques for collecting
annotated medical datasets across domains and training net-
works using full (Gibson et al. 2018; Chen, Ma, and Zheng
2019) or semi-supervision (Wang et al. 2020). Nevertheless,
the amount of acquired relevant training data in this manner
is still limited, which significantly limits the performance of
deep neural networks.

Self-supervised learning (SSL) has recently emerged as a
new trend in medical imaging due to its ability in obtain-
ing feature representations from unlabeled data by solving
proxy tasks, which can be broadly categorized into genera-
tive (Chen et al. 2019) and discriminative ones (Chen et al.
2020a; He et al. 2020). Discriminative SSL can be further
separated into three directions: instance level-based methods
(Zbontar et al. 2021; Caron et al. 2021), contrastive learning-
based methods (He et al. 2020; Chen, Xie, and He 2021)
and clustering-based methods (Caron et al. 2020; Li et al.
2021). Depending on a specific 2D, e.g., X-ray images or
3D magnetic resonance imaging (MRI) application, varia-
tions of these methods can be modified using 3D convolu-
tional neural networks (CNNs) or Transformer architectures
(Taleb et al. 2020; Haghighi et al. 2021; Tang et al. 2022).

However, all aforementioned SSL methods have been de-
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signed to learn on either 2D or 3D data modalities. As a
result, they suffer from two major limitations. First, the abil-
ity to exploit unlabeled data from multiple source domains,
which commonly occurs in medical data, is restricted. For
instance, 3D CNN-based SSL methods can not use X-rays,
digital retinal, and dermoscopic images taken from lung, eye
retina, and skin lesions, respectively. Although 2D CNN-
based SSL methods can process 3D volumes slice-by-slice
along a specific plane (either sagittal, coronal, or horizontal)
(Nguyen et al. 2022a; Jun et al. 2021), these approaches do
not capture long-range inter-slice correlations and thus may
result in inferior performance in 3D applications. Second,
using a purely 2D or 3D strategy limits the fine-tuning phase
since the pre-trained models are only applicable for down-
stream tasks with the same dimensionality. For instance, pre-
trained 3D-CNN cannot handle object detection (Nguyen
et al. 2021a, 2022c) (Table 4, third column) and similarly
pre-trained 2D-CNN might not be usable for 3D classifica-
tion tasks (Table 3, second column).

In this work, we propose a novel technique to overcome
those barriers by presenting a hybrid SSL architecture har-
nessing both 2D and 3D medical data. The method has the
following properties. First, it is built on top of cutting-edge
2D SSL baselines while reserving designed CNN architec-
ture, benefiting from the latest advancements of SSL in nat-
ural images. Second, when applied to 3D data, we formulate
both intra-dependencies inside slices and long-range inter-
dependencies across slices, resulting in more complex con-
trastive cues that force the network to seek associated local
and global feature representations.

Specifically, we compose a joint image-volume represen-
tation learning comprising a 2D CNN (ResNet-50) to extract
feature embedding at the image level and a deformable at-
tention transformer (Zhu et al. 2020; Liu et al. 2021; Xia
et al. 2022) to express correlations among local slices, aim-
ing to derive a holistic representation at the 3D volume level.
Unlike standard attentions in Transformer (Vaswani et al.
2017; Dosovitskiy et al. 2020) which treat all attention po-
sitions equally, our deformable mechanism pays attention to
only a flexible small set of major slices conditioned on in-
put data. This largely reduces computational complexity and
permits handling the multi-scale feature maps which are de-
sired properties in medical downstream tasks.

The proposed method is trained on SSL tasks utilizing
both current 2D SSL methodologies and our two novel 3D
pre-text tasks. To this end, we employ two state-of-the-art
contrastive clustering-based SSL approaches, Deep-Cluster-
V2 (Caron et al. 2018) and SwAV (Caron et al. 2020).
With each baseline, we first perform the relevant 2D proxy
tasks based on an agreement clustering for 2D slices taken
from 3D volumes. We next compute multi-level features
at each slice within a 3D volume encoded with their posi-
tions and feed them into the deformable transformer. The
global embedded features derived from this transformer are
employed to define an agreement clustering for 3D vol-
umes and a masked encoding feature prediction motivated
by the success of the language model BERT (Devlin et al.
2018). By optimizing these conditions, intuitively we are
able to learn feature extractors at the local- and global-level

in a constraint manner, resulting in consistent cues and im-
proved performance in downstream tasks. Furthermore, the
pre-trained networks are adaptable with data dimensional
compatibility by employing the 2D CNN for 2D tasks or the
hybrid 2D CNN- Transformer architectures for 3D tasks.

In summary, we make the following contributions. First,
we present an SSL framework capable of using various data
dimensions and producing versatile pre-trained weights for
both 2D and 3D downstream applications (Figure 1). Sec-
ond, we introduce the deformable self-attention mechanisms
which utilize multi-level feature maps and capture flexi-
ble correlations between 2D slices, resulting in a powerful
global feature representation. On top of this, we developed
the novel 3D agreement clustering extended from the earlier
2D clustering problem as well as proposed the masking em-
bedding prediction. Finally, extensive experiments on public
benchmarks confirmed that we improve state-of-the-art 2D
baselines and surpass several latest SSL competitors based
on CNN or Transformer.

Related Work
Self-supervised Learning in Medical Image Analysis
Our work is closely related to instance-based constra-
tive learning and unsupervised contrastive clustering. The
instance-based contrastive methods seek an embedding
space where transformed samples, e.g., crops, drawn from
the same instance, e.g., image, are pulled closer, and sam-
ples from distinct instances are pushed far away. The con-
trastive loss is constructed based on positive and nega-
tive feature pairs generated by various approaches, such as
memory bank (Wu et al. 2018), end-to-end (Chen et al.
2020a), or momentum encoder (Chen, Xie, and He 2021).
Despite achieving good performance in various settings, the
instance-based method has crucial limitations in requiring a
large negative batch size and choosing hard enough negative
ones. The unsupervised contrastive clustering (Caron et al.
2018, 2020) in other directions tries to learn representations
based on groups of images with similar features rather than
individual instances. For instance, SwAV (Caron et al. 2020)
simultaneously clusters the data while imposing consistency
between cluster assignments generated for distinct augmen-
tations of the same image. Currently, extensions on this di-
rection have considered latent variables of centre points (Li
et al. 2021), multi-view clustering (Pan and Kang 2021), or
mutual information (Do, Tran, and Venkatesh 2021).

In medical image analysis, several SSL methods have
designed pre-text tasks based on 3D volume’s properties
such as reconstructing spatial context (Zhuang et al. 2019),
random permutation prediction (Chen et al. 2019), self-
discovery and self-restoration (Zhou et al. 2021b; Haghighi
et al. 2021). Some other efforts attempted to develop 3D
CNN architecture while retaining defined SSL tasks on 2D
CNN (Taleb et al. 2020). Another line of research considered
the cross-domain training with two or more datasets, aim-
ing to derive a generic invariant pre-trained model (Zhang
et al. 2020). Besides, existing methods also exploit the
domain- and problem-specific cues such as structural sim-
ilarity across 3D volumes in order to define global and local
contrastive losses (Chaitanya et al. 2020; Xie et al. 2020).



However, most of these techniques have only been applied
to 2D or 3D data, which are different from ours in terms of
data usage and flexible pre-trained weights in downstream
tasks (Figure 1).

SSL Transformer in Medical Imaging Vision transform-
ers, adapted from sequence-to-sequence modeling in natural
language processing, are initially used in image classifica-
tion tasks (Dosovitskiy et al. 2020). In the context of SSL,
2D transformer-based methods such as Moco-v3 (Chen, Xie,
and He 2021) and DINO (Caron et al. 2021) are also in-
troduced and achieved promising performance. To elaborate
3D volumes, Tang et al. (2022) introduced a 3D transformer-
based model comprising a Swin Transformer encoder (Liu
et al. 2021) and skip connections. Likewise, Xie et al. (2021)
adapted a mixed 2D-3D Pyramid Vision Transformer archi-
tecture (Wang et al. 2021) to learn rich representations from
diverse data.

Compared with prior works in SSL (Caron et al. 2021;
Tang et al. 2022), we employ Transformer to define the in-
teraction between 2D slices inside a 3D volume rather than
a fixed 2D or 3D network backbone, allowing us to adapt
to varied data dimension downstream applications. Further-
more, we the first adapt deformable attention mechanism
(Zhu et al. 2020; Liu et al. 2021; Xia et al. 2022) for SSL,
which currently are only validated performance in super-
vised learning. Xie et al. (2021) shares the same ideas with
us in jointly learning diverse unlabeled data; however, this
method designs a specific SSL task while our 3D loss is ex-
tended directly from standard 2D cases. Also, we achieve
similar or better performance compared with this baseline
while using a smaller amount of unlabeled data.

Methodology

Our approach is built on top of 2D contrastive clustering
learning baselines including Deep-ClusterV2 (Caron et al.
2018) and SwAV (Caron et al. 2020). Both approaches
rely on clustering together features produced by neural net-
work backbones. Deep-ClusterV2 forces each cluster to
have roughly the same size. SwAV additionally imposes
losses on assigning augmentations of an image into the same
cluster. Below, we recapitulate the SwAV baseline and then
show how it can be extended through the deformable self-
attention (Zhu et al. 2020; Xia et al. 2022) to 3D volumes.
Additionally, we introduce a new proxy task based on miss-
ing embedding prediction in order to make the designed ar-
chitecture be stable under perturbations. An illustration of
our approach can be seen in Figure 2. A variation of our
method using DeepCluster-V2 can be derived analogously.

Notation: We assume to be given K unlabeled
datasets D = {D1,D2, ...,DK} consisting of instances
Di = {X1, X2, ...,Xmi

}, i ∈ [1, K], which include mi 2D
or 3D volumes Xj, j ∈ [1,mi]. Given a particular dataset
D ∈ D, we assume that each 3D volume contains n slices,
i.e. ∀X ∈ D, X = {xi}ni=1.

Figure 2: Overview of our joint SSL image-volume framework.
Given a 3D volume X and a random transformation s, we com-
pute the embedding feature for each slice using a 2D-CNN ex-
tractor fintra and produce a global feature Zs through the Inter
Deformable Attention finter. Similarly, corresponding features can
be derived from 2D and 3D augmented views of X by another
transformation t. Through cluster agreement losses for 2D slices
(Lintra), e.g. between z1s and z1t, and for 3D volumes between Zs

and Zt (Linter), feature representations can be learned. Addition-
ally, we employ a masked feature embedding prediction given 2D
slices’ embedding outputs as an SSL task to capture data’s long-
term interdependence.

Clustering Agreement for 2D Images
SwAV uses a proxy task for a “swapped” prediction problem
in which the cluster assignment of a transformed image is to
be found from the feature representation of another transfor-
mation of the same image and vice versa. In our framework,
we refer to this proxy task as an intra-dependence correla-
tion since it learns only from 2D slices inside a 3D volume
without taking into account correlations between different
slices of the same volume. Below we formally specify the
intra-dependence correlation.

Let fintra be a CNN, e.g., ResNet-50 (He et al. 2016), ex-
tracting feature embeddings for each 2D slice xi ∈ X. The
cluster assignment matrix C = [c1, . . . , cH ] has columns
cj , each column corresponding to the feature representation
of the j-th cluster, and H is the number of hidden clusters.
Given a 2D slice xi ∈ X, we choose randomly two trans-
formations s, t ∈ T , where T is a set of pre-defined image
transformations. We apply s and t on xi and obtain two aug-
mented views xis, xit. Using fintra and normalization gives
us the respective features zit and zis (Figure 2), i.e.

zik = fintra(xik)/||fintra(xik)||2, k ∈ {s, t}. (1)
These features are then used to find corresponding cluster
assignments qit, qis, i.e., the probability distribution over
all clusters, called codes in SwAV. To find these codes, we
sample a batch of size B from slices of volumes coming
from all datasets and optimize

maxQ∈Q Tr(QTCTZ) + εH(Q), (2)



where Z = [z1, ..., z2B ] is formed by adding features
zit, zis of each xi in the batch B, the assignment matrix
is Q = [q1, . . . ,q2B ] and Q = {Q ∈ RK×B+ : Q1B =
1
K1K ,Q1K = 1

B1B} is the set of all possible assign-
ment matrices such that slices are assigned on average uni-
formly, H is the entropy function and ε is a hyper-parameter
that controls the smoothness of the mapping. Since views
coming from the same sample xi should have features that
are assigned to the same cluster, we formulate the intra-
dependency code prediction loss

Lintra(zit,qit, zis,qis) = l(zit,qis) + l(zis,qit) (3)

where the function l(z,q) quantifies the fit between feature
z and code assignment q defined as

l(zt,qs) = −
∑
k

qks logpkt , where pkt =
exp( 1

τ z
T
t ck)∑

k′ exp( 1
τ z

T
t ck′)

.

(4)
Here τ is a hyper-parameter.

Intuitively, if two features encode views coming from the
same slice, the loss l(zt,qs) in Eq. (4) encourages their pre-
dicted clusters should be identical. Finally, by optimizing
Eq. (3) over xi ∈ X we can learn feature representations
fintra and centroids C by minimizing

L2D = min
fintra,C

Exi∈X [Lintra(zit,qit, zis,qis)] , s, t ∼ T.
(5)

Clustering Agreement for 3D Volumes with Inter
Deformable Attention
In the presence of both unlabeled 2D and 3D data, we ar-
gue that the clustering agreement constraint in Eq.(4) should
also hold for feature representations of different views of the
3D volume (Figure 2). We call this agreement as an inter-
dependence correlation. It forces the feature representation
to additionally consider long-range interactions among 2D
slices inside a 3D volume (Eq.(10)). To this end, we adapt
the Transformer to aggregate local features computed by
fintra at each slice to form a holistic feature representation
for a 3D volume. However the standard attention mecha-
nisms in vanilla Transformer such as ViT (Dosovitskiy et al.
2020) does not fit well in our setting when it permits ex-
cessive number of keys to contribute per query patch. As
a result, the required memory and computational costs in-
crease significantly as well as features can be influenced by
irrelevant parts.

To mitigate these problems, we use the deformable self-
attention mechanism which is recently introduced in super-
vised learning such as object detection and image classi-
fication (Zhu et al. 2020; Xia et al. 2022). Generally this
strategy seeks important positions of keys and value pairs in
self-attention in a dependent-way rather than a fixed window
size as ViT (Figure 3). Specifically, these important regions
are learnt using an offset network that takes input query fea-
tures and returns corresponding offsets whose regions sub-
sequently are used to sample candidates keys/values (Figure
3). In this work, we use this deformable attention to SSL for
the first time, aiming to learn the association among feature

embedding of 2D slices. We call this as Inter Deformable
Attention and denote by finter. The finter contains N iden-

Figure 3: Comparison of Deformable Attention (DAT) with stan-
dard Vision Transformer (ViT) in our setting using slice’s embed-
ding vector. Given a query q, ViT pays attention to all possible
positions including possibly less relevant feature maps while DAT
learns important regions based on grid points (red points) and their
shifted vectors using offsets ∆p predicted by θ(q).

tical stacked layers. Each layer is composed of multi-head
attention (MHA) layer followed by a simple feed-forward
layer. Given an input tensor Y ∈ RD×Fin added with a po-
sitional encoding to provide order information, the output of
a single head h at each layer using deformable attention can
be computed by the following step.

q(h) = YWh
q , k̃

(h) = Ỹ Wh
k , ṽ

(h) = Ỹ Wh
v (6)

with Ỹ = φ (Y ; p+ ∆p) , ∆p = θoffset

(
q(h)

)
(7)

where Wh
q , W

h
k and Wh

v ∈ RFin×dvh are learned linear
transformation that map the input Y to queries, keys, values
respectively; θoffset be the offset network that takes input as
queries qh and returns the offsets ∆p; p ∈ RDG×2 denotes
for the uniform grid of points with DG = D/r by a factor
r to down-sample the grid size; finally φ(.; .) be a differen-
tiable linear interpolation function used to sample important
key/queries pairs inside predicted offsets.

We now compute the output of a deformable attention
head h as:

O(h) = σ
(
q(h)k̃(h)>/

√
d(h) + φ(B̂;R)

)
ṽ(h) (8)

where σ(.) denotes the softmax function, d(h) is the dimen-
sion of each head h, B̂ ∈ R(2D−1) be a relative position
bias matrix, R be the relative position offsets. More details
on this bias matrix, we refer the readers to (Liu et al. 2021;
Xia et al. 2022). The outputs of all heads (MHA) are ag-
gregated by concatenating and projecting again as MHA =
Concat

[
O(1), ..., O(Nh)

]
WO where WO ∈ Rdv×dv is an-

other learned linear transformation and Nh is the number of
heads.

Given defined finter, we construct a 3D feature represen-
tation Zs for an augmented view Xs = {x1s,x2s, ...,xns}
of X as follows. We denote by

Y =
[
{fintra(x1s)}Ll=1, . . . , {fintra(xns)}Ll=1

]
(9)



be the stacked input vectors with {fintra(xis)}Ll=1, i ∈ [1, n]
indicates the multi-level features of image xis taken from the
L last layers in fintra. We then normalize the ouput of finter

and obtain

Zs = finter(Y)/||finter(Y)||2 (10)

which is the holistic feature of Xs. The embedding Zt for
transformation t ∈ T is computed analoguously. The clus-
tering agreement for 3D volumes generalized from Eq.(3)
can be defined as

Linter(Zt,q
3D
t ,Zs,q

3D
s ) = l(Zt,q

3D
s ) + l(Zs,q

3D
t ) (11)

where q3D
s ,q3D

t are codes of Zs,Zt obtained by solving the
matching problem in Eq.(2) where inputs are 3D augmented
views’ feature represents across 3D volumes Xi in a batch
sizeB ∈ D. Intuitively, two 3D features Zs and Zt should be
identical in their cluster assignments. Finally, by minimizing
over samples in D, we jointly learn both fintra, finter and C
through
L3D = min

fintra,C,finter
EX∈D

[
Linter(Zt,q

3D
t ,Zs,q

3D
s )
]

with s, t ∼ T. (12)

Masked Feature Embedding Prediction
To enhance long-term dependence learning of finter, we ad-
ditionally introduce a new SSL proxy task inspired by the
BERT language model (Devlin et al. 2018). Given a set
of 2D slice embedding vectors Y in Eq.(9) obtained from
Xs (X ∈ D, s ∼ T ), we dynamically mask some inputs
{fintra(xis)}Ll=1, i ∈ [1, n] and ask the Inter Deformable
Attention to predict missing encoding vectors given the un-
masked embedding vectors. To do this, we define a binary
vector m = (m1, . . . ,mn) of length n where mi = 1 indi-
cate the input i-th of Y will be masked and 0 otherwise. The
input for SSL task then is defined as:

m�Y =

{
[MASK], mi = 1

{fintra(xis)}Ll=1, mi = 0
(13)

where MASK is a learnable parameter during the training
step. We denote by fdecode, a fully connected layer, that
takes the outputs of finter and predicts masked vectors. For
each m, we randomly assign mi = 1 for 10% of m. The
output of fdecode at each masked yi is:

yi = Wdh
N
i + bi, where mi = 1. (14)

with Wd ∈ RFin×FD and bi ∈ RFin are fully-connected
layers and biases respectively. The masked feature embed-
ding prediction is defined as:

Lmask = min
finter

fdecode

EX∈D
s∼T

[ ∑
i:mi=1

||fintra(xis)

− fdecode(finter(m�Y))||2
]

(15)

Experiment Results
Data and Baseline Setup
Pre-training and Downstream Tasks We describe the
details of datasets used for pre-training and downstream

tasks in Table 1 and Table 2, respectively. In summary, there
are thirteen datasets comprising LUNA2016 (Setio et al.
2015), LiTS2017 (Bilic et al. 2019), BraTS2018 (Bakas
et al. 2018), MSD (Heart) (Simpson et al. 2019), MOTS
(Zhang et al. 2021), LIDC-IDRI (Clark et al. 2013; Ar-
mato III et al. 2011), RibFrac (Jin et al. 2020), TCIA-CT
(Clark et al. 2013; Harmon et al. 2020), NIH ChestX-ray8
(Wang et al. 2017), MMWHS-CT/MMWHS-MRI (Zhuang
and Shen 2016), VinDR-CXR (Nguyen et al. 2022c), and
JSRT (Shiraishi et al. 2000; Van Ginneken, Stegmann, and
Loog 2006). In pre-training settings, we mainly evaluate
in two scenarios, namely Universal and Unified following
prior works of Zhang et al. (2020) and Xie et al. (2021),
respectively. However, we cannot access the dataset called
“Tianchi dataset” in Unified setting thus we only train with
five remaining datasets. The downstream tasks are con-
ducted in three contexts with diverse applications as de-
scribed Table 2. For objective assessment, we use Intersec-
tion over Union (IoU) computed on 3D data for segmen-
tation, Area Under the Curve (AUC) for 3D classification,
Dice coefficient scores for 2D segmentation, and Average
Precision with IoU=0.5 for multi-object detection.
Table 1: Overview pre-training settings in our experiment. The
Universal setting uses four unlabeled 3D datasets while Unified
uses six unlabeled datasets including mixed 2D and 3D modalities.

Setting Pre-Training Data Modality Num Access

Universal

LUNA2016 3D CT 623 X
LiTS2017 3D CT 111 X

BraTS2018 3D MRI 760 X
MSD (Heart) 3D MRI 30 X

Unified

MOTS 3D CT 936 X
LIDC-IDRI 3D CT 1008 X

Tianchi 3D CT N/A ×
RibFrac 3D CT 420 X

TCIA-CT 3D CT 1300 X
NIH ChestX-ray8 2D Xrays 108948 X

Table 2: Overview downstream tasks used in our experiment. Seen
Domain indicates for downstream tasks where the training data
was used in the pre-training step without labels, Unseen Domain
means that datasets in pre-training and downstream are different.

Setting Testing Data Modality Num Pre-training Task
Seen domain
in Universal

BraTS2018 3D MRI 285 Universal Tumor Segmentation
LUNA 2016 3D CT 888 Universal Lung Nodes Classification

Unseen Domain
in Universal

MMWHS-CT 3D CT 20 Universal Heart Structures Segmentation
MMWHS-MRI 3D MRI 20 Universal Heart Structures Segmentation

VinDR-CXR 2D X-ray 4394 Universal Abnormal Chest Detetction

Unseen Domain
in Unified JSRT 2D X-ray 247 Unified Multi-Organ Segmentation

Competing Algorithms We implement variations of
Deepcluster and SwAV based the proposed method and
compare with the following approaches:
• 2D SSL methods: SimCLR (Chen et al. 2020a), PGL

(Xie et al. 2020), Moco-v2 (Chen et al. 2020b), Deep-
Cluster-v2 (Caron et al. 2020), SwAV (Caron et al. 2020),
Barlow-Twins (Zbontar et al. 2021), Moco-V3 (Chen,
Xie, and He 2021), PCRL (Zhou et al. 2021a), and DINO
(Caron et al. 2021). Both Moco-v3 and DINO use Pyra-
mid Transformer Unet (Xie et al. 2021) as backbone.

• 3D SSL methods: 3D Rotation, 3D JigSaw (Taleb et al.
2020), Universal Model (Zhang et al. 2020), Models



Genesis (Zhou et al. 2021b), TransVW (Haghighi et al.
2021), SwinViT3D (Tang et al. 2022), and our two imple-
mentations for the 3D case of Deepcluster-v2 and SwAV,
namely 3D-Deepcluster and 3D-SwAV.

• 2D/3D supervised pre-trained methods: 2D pre-trained
ImageNet (He et al. 2016), I3D (Carreira and Zisserman
2017), NiftyNet (Gibson et al. 2018), and Med3D (Chen,
Ma, and Zheng 2019).

• Other methods: training from scratch for 2D or 3D
using ResNet-50, V-Net architecture (Milletari, Navab,
and Ahmadi 2016), 3D-Transformer (Hatamizadeh et al.
2022), Pyramid Transformer Unet (PTU) (Xie et al.
2021) and finally USST (Xie et al. 2021), a joint 2D and
3D approach similar to ours.

Most baseline results are taken from (Zhang et al. 2020)
and (Xie et al. 2021). With LUNA2016 dataset, we use the
latest ground-truth, denoted as LUNA2016-v2, and provide
results obtained when training with batch sizes of 8, 16, 32,
each with two trial times. For new competitors, we describe
experiment setups in the appendix. In short, for 2D self-
supervised methods (ResNet-50 backbone) such as Moco-v2
or Barlow-Twins, we extract all 2D slices from 3D volumes
in pre-training data and train SSL tasks with 100 epochs.
With state-of-the-art 3D SSL methods TransVW and Swin-
ViT3D, we download pre-trained weights and use published
implementation to fine-tune as author’s suggestions. For two
our implementations of 3D-Deepcluster and 3D-SwAV, we
train with all 3D data of Universal in pre-training step.
Table 3: Comparing SSL approaches on Seen Domains trained
on the Universal setting. Two top results in 2D or combined 2D-
3D SSL data are red, blue. The best values in 3D-based methods
and overall are in bold and underlined respectively. N/A indicates
pre-trained models that are unable to transfer (Universal Model’s
results are not available in LUNA2016-v2).

Pre-training Method BraTS2018
(MRI - Segmentation)

LUNA2016-v2
(CT - Classification)

Scratch (3D) 58.51 ± 2.61 94.15 ± 3.97
N/A V-Net 59.01 ± 2.59 95.85 ± 1.09

3D-Transformer 66.54 ± 0.40 85.15 ± 2.62
I3D 67.83 ± 0.75 92.43 ±2.63

3D Supervised NiftyNet 60.78 ± 1.60 94.16 ±1.52
Med3D 66.09 ± 1.35 91.32 ± 1.47

3D Self-supervised

3D-Rotation 56.48 ± 1.78 95.91 ± 1.26
3D-JigSaw 59.65 ± 0.81 89.12 ± 1.71

Models Genesis 67.96 ± 1.29 92.46 ± 5.54
Universal Model 72.10 ± 0.67 N/A
3D-DeepCluster 59.20 ± 1.69 89.03 ± 2.56

3D-SwAV 62.81 ± 1.03 88.79 ± 5.48
TransVW 68.82 ± 0.38 93.84 ± 6.73

SwinViT3D 70.58 ± 1.27 88.68 ± 2.63
N/A Scratch (2D) 66.82 ± 1.32 N/A

2D Supervised Pre-trained ImageNet 71.24 ± 2.30 N/A
SimCLR 70.37 ± 1.11 N/A
Moco-v2 70.82 ± 0.22 N/A

2D Self-supervised Barlow-Twins 67.35 ± 0.55 N/A
Deep-Cluster-v2 69.21 ± 2.10 N/A

SwAV 69.83 ± 2.44 N/A

2D & 3D Self-supervised Our (Deep-Cluster-v2) 72.81 ± 0.15 93.91 ± 0.67
Our (SwAV) 73.03 ± 0.42 94.22 ± 1.11

Implementation Details
Pre-training Our method is trained in three stages. Stage 1
learns fintra using Eq. (5) with 100 epochs using batch size
of 1024 images, Stage 2 learns finter using Eq. (15) with 100
epochs using batch size of 12 volumes, and Stage 3 learns
for both fintra, finter using Eq. (12) also with 100 epochs
and batch size of 12 volumes.

Table 4: Comparing SSL approaches on Unseen Domains trained
on the Universal setting. Two top results in 2D or combined 2D-3D
SSL data are red, blue. The best values in 3D-based methods and
overall are in bold and underlined respectively. N/A indicates for
pre-trained models that are unable to transfer.

Pre-training Method MMWHS
(CT - Segm.)

MMWHS
(MRI - Segm.)

VinDr-CXR
(X-ray - Detect.)

Scratch (3D) 68.29 ± 1.68 67.04 ± 2.18 N/A
N/A V-Net 69.66 ± 3.65 67.50 ± 3.76 N/A

3D-Transformer 67.30 ± 2.29 67.64 ± 2.21 N/A
I3D 76.63 ± 2.32 66.71 ± 1.27 N/A

3D Supervised Nifty Net 74.91 ± 2.78 64.60 ± 1.96 N/A
Med3D 75.01 ± 0.74 63.43 ± 0.61 N/A

3D Self-supervised

3D Rotation 67.54 ± 2.80 71.36 ± 1.70 N/A
3D Jigsaw 68.40 ± 2.92 72.99 ± 2.54 N/A

Model Geneis 76.48 ± 2.89 74.53 ± 1.69 N/A
Universal Model 78.14 ± 0.77 77.52 ± 0.50 N/A
3D-DeepCluster 69.47 ± 1.44 75.83 ± 2.29 N/A

3D-SwAV 69.90 ± 1.31 69.41 ± 1.93 N/A
TransVW 79.74 ± 2.78 75.08 ± 2.04 N/A

SwinViT3D 70.19 ± 1.23 78.25 ± 1.66 N/A
N/A Scratch (2D) 74.25 ± 2.05 52.34 ± 4.31 24.35 ± 0.04

2D Supervised Pre-trained ImageNet 73.49 ± 3.15 72.66 ± 2.46 27.82 ± 0.29
SimCLR 78.56 ± 2.12 72.72 ± 1.29 26.87 ± 0.32
Moco-v2 80.25± 0.93 71.85 ± 1.25 27.20 ± 0.66

2D Self-supervised Barlow-Twins 80.95 ± 2.47 70.90 ± 1.89 26.83 ± 0.13
Deep-Cluster-v2 81.03 ± 1.17 74.51 ± 1.92 28.03 ± 0.41

SwAV 82.15 ± 1.19 74.50 ±1.20 27.70 ± 0.22

2D & 3D Self-supervised Our (Deep-Cluster-v2) 83.58 ± 1.54 78.14 ± 1.32 28.47 ± 0.40
Our (SwAV) 84.89 ± 0.68 78.73 ± 1.21 27.47 ± 0.18

Table 5: Performance comparison on the 2D JSRT segmentation
tasks using different SSL approaches trained on the Unified setting.
Two top results are illustrated in red and blue respectively.

Pre-training Methods Backbone JSRT (X-ray, seg.)
20% 40% 100%

N/A Scratch CNN ResNet-50 84.05 87.63 90.96
Scratch PTU Transformer 85.55 88.83 91.22

2D Supervised Pre-trained ImNet ResNet-50 87.90 90.01 91.73
Moco-v2 ResNet-50 88.65 91.03 92.32

PGL ResNet-50 89.01 91.39 92.76
2D Self-Supervised PCRL ResNet-50 89.55 91.53 93.07

Moco-v3 Transformer 90.07 91.75 92.68
DINO Transformer 90.40 92.16 93.03
USST Transformer 91.88 93.15 94.08

2D & 3D Self-supervised Our (DeepCluster-V2) ResNet-50 90.60 92.87 94.31
Our (SwAV) ResNet-50 89.98 93.03 94.45

We use ResNet-50 as the backbone for 2D feature extrac-
tor fintra. The features for each image are concatenated from
five blocks of ResNet-50. The architecture of finter has four
pyramid structure blocks composed from deformable atten-
tion (Eq. (8)). Details for these configurations can be found
in Appendix. In the Universal or Unified setting, we uti-
lize all 3D data as benchmarks and further extract 2D slices
from them to train fintra in Stage 1. All experiments are con-
ducted on a A100-GPU system with 4 GPUs, 40GB of mem-
ory each with Pytorch. It takes in average 30 hours to finish
the pre-training step.

Downstream Task we use the SGD with a learning rate
selected in a set {0.1, 0.01} and select a specific num-
ber of epoch depended on downstream task properties
(Appendix). The results are reported by running training-
testing five times and computing the average values (except
LUNA2016-v2 dataset). For the 2D/3D segmentation task,
we use the pre-trained 2D-CNN feature extractor in each 2D
baseline (fintra in our method) as the network backbone of a
2D U-net (Ronneberger, Fischer, and Brox 2015). This net-
work is trained with cross-entropy and dice loss. We predict
segmentation at each 2D slice and merge results for 3D vol-
umes. The 3D classification is solved by building on top of
the deformable transformer two fully-connected layers and



fine-tuning for both finter and fintra with the cross-entropy
loss. For the 2D object detection task (VinDr-CXR), we use
the 2D-CNN feature extractor (fintra) as the backbone of
Faster R-CNN model (Ren et al. 2015).

Performance Evaluation

Dimension-specific vs. Cross-dimension Pre-training
Tables 3 and 4 indicate that 2D CNN based-models can-
not transfer to the 3D lung node classification task in
LUNA2016-v2 (denoted N/A) given input 3D volumes.
Likewise, due to data compatibility issues, 3D CNN-based
methods cannot apply for abnormal chest detection in X-
rays. In contrast, our models pre-trained on several medical
datasets can be transferred successfully in both cases due
to the hybrid CNN-Transformer architecture. We argue that
such property is one of the most valuable points of this study.

As compared with plain 2D-SwAV, Deepcluster-V2, and
their extended versions with 3D CNN, namely 3D-SwAV
and 3D-Deepcluster, we show a significant improvement in
several settings, especially for segmentation tasks (Tables
3,4). For instance, a gain performance of 2-3% on average on
BraTS, MMWHS-CT/MRI datasets. Furthermore, we also
achieve better accuracy on 3D classification and 2D object
detection, although with smaller margins. In conclusion, this
analysis shows that exploiting deformable self-attention in
conjunction with 2D CNN to model 3D volume features in
our framework is a promising approach.

Comparison to SOTA Methods and Visualizations In
the Universal setting, except the LUNA2016-v2 case where
we are third, our methods based on Deepcluster-V2 or
SwAV hold the best records on BraTS, MMWHS-CT/MRI
segmentation tasks compared with remaining baselines, es-
pecially with cutting edges 3D-SSL methods as Universal
Model, TransVW or SwinViT3D (using Swin Transformer).
With the VinDr-CXR detection task, we continue to reach
the best rank, followed by the plane 2D Deepcluster-v2
though with smaller margins. In the Unified setting, we also
surpass competitors (100% data), especially with USST, a
method using Pyramid Vision Transformer trained on mixed
2D and 3D data. However, USST works better than us when
decreasing training data to 40% and 20%. We consider this
as a potential limitation that needs to improve. Though it’s
worth noting that we could not access all data as USST in
the pre-training step, as shown in Table 1.

For visualization results, we provide a typical example of
multi-modal heart segmentation for MMWHS-CT in Figure
4 and abnormal Chest X-ray detection in Figure 5. More ex-
amples can be found in the Appendix.

Computational Complexity and Ablation Study We
compare the total parameters with top baselines and methods
using Transformer in Table 7. In short, our total parameter is
half of the SwinViT3D but we attain better performance in
overall. The contributions of proposed SSL tasks and multi-
level features are presented in Table 6, where all components
contribute to overall accurate growth.

Figure 4: Heart structure segmentation on MMWHS-CT. The fig-
ures show that baselines tend to over-segment in the first row while
generating noise regions in the second row. On the contrary, our
methods produce more precise results.

Figure 5: Visualization of our results based on DeepCluster-V2
(top row) and pre-trained ImageNet (second row) in abnormal
Chest X-ray. Green and red indicates for ground-truths and pre-
dictions.

Table 6: Ablation studies for the SwAV on heart segmentation.
Setting MMWHS - CT MMWHS - MRI

W/o mask prediction 82.53 77.35
W/o 3D clustering 81.97 76.18

Full model 84.89 78.73
Full model w/o multi-feature 83.56 78.12

Table 7: Computational complexity of top baselines and
transformer-based methods. For USST, we follow general descrip-
tions in paper to re-configure architecture

. SwinViT3D TransVW Universal Model USST Our

#Param 62.19 M 19.7 M 19.7 M 47.8 M 31.16 M

Conclusion
We contribute to the self-supervised learning medical imag-
ing literature a new approach that is efficient in using numer-
ous unlabeled data types and be flexible with data dimension
barriers in downstream tasks. To that end, we developed a
deformable self-attention mechanism on top of a 2D CNN
architecture, which leads to both intra- and inter-correlations
formed in our framework. Furthermore, our two novel SSL
tasks including 3D agreement clustering and masked embed-
ding predictions impose a tighter constraint in learning fea-
ture space, advancing pre-trained network performance in a
variety of medical tasks. In the future, we will investigate
this method for various SSL approaches, aiming to validate
its universality and robustness in real-life medical usage.
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Appendix – Joint Self-Supervised Image-Volume Representation Learning
with Intra-Inter Contrastive Clustering

In this supplement material, we present more information
on our deformable self-attention architecture, pre-training,
downstream setup, an ablation study when changing the rate
of training samples in fine-tuning phases, additional visual-
ization illustrations, and finally, discuss current limitations
and future directions for further improvements.

Deformable Self-attention Architecture
To construct a hierarchical feature representation, we build
the deformable self-attention with four consecutive blocks
as Figure 6. Each block involves 6 number of heads and 6
offset groups (Zhu et al. 2020; Xia et al. 2022). Intuitively,
this design permits employing a multi-scale information of
consecutive 2D slices in 3D volumes, thereby enhancing
representation capability while saving computational costs,
especially for 3D classification task when attention is esti-
mated for selected local regions.

Pre-Training Setting
2D Self-Supervised Baselines: We employ VISSL1 to
perform pre-training for all 2D self-supervised methods
based on ResNet-50 backbone, including SimCLR, Moco-
v2, Barlow-Twins, Deepcluster-v2, and SwAV. All of them
are trained with 100 epochs, batch size of 1024 images dis-
tributed on 4 GPUs of the A100 system. Other parameters
are set as default by VISSL. Training data for these 2D-
SSL approaches is taken by extracting 2D slices from all
3D volumes in distinct datasets in the Universal setting. The
optimizes and learning rates are followed as standard 2D
Deepcluster-v2 and SwAV.

3D Self-Supervised Baselines: For two 3D SSL meth-
ods, 3D-Deepcluster and 3D-SwAV, we implemented the
3D variant of Deepcluster-v2 and SwAV by using 3D-CNN,
then we trained them with all 3D data in the Universal set-
ting using a batch size of 12 volumes distributed on 4 GPUs
of A100 system with 100 epochs. The optimizer, learning
rate, and other configurations are the same as in the 2D case.

Our Method: We optimize the proposed method in three
stages. Stage 1 learns fintra with ResNet-50 using Eq. (5)
with 100 epochs, i.e., training default Deepcluster-v2 or
SwAV. Stage 2 learns finter and fdecode using Eq.(15) with
100 epochs given a batch size of 12 volumes. Finally, we
jointly optimize fintra and finter using the novel 3D agree-
ment clustering problem defined in Eq. (12) with 100/200
epochs in Universal/Unified settings. Due to the expensive
computational costs inside the Deepcluster-v2 compared to
SwAV, we specified a batch size of 8 for this method to avoid
out-of-memory issues. With SwAV, we used a batch size of
24 and selected the number of hidden clusters H = 3000.

1https://github.com/facebookresearch/vissl

We leverage both 2D images and 3D data. In the Univer-
sal setting, since the data is only available in 3D formats, we
get all 2D slices from them to train fintra in Stage 1 as other
2D SSL baselines. Afterward, Stages 2 and 3 use 3D data
as usual. Similarly, in the Unified setting, we also get 2D
images from 3D CT and merge them with 2D X-rays in the
NIH ChestX-ray8 dataset to train Stage 1. Similarly, stages
2 and 3 only use all available 3D CT as 3D SSL methods.

Dataset Description and Other Settings in
Downstream Tasks

Downstream Dataset
We briefly provide information on datasets used in down-
stream task in Table 8. This includes training, validation,
testing sizes, and the employed loss functions in correspond-
ing tasks. Below we describe more details each dataset’s
properties:
• BraTS2018 (Bakas et al. 2018): This dataset comprises

magnetic resonance imaging (MRI) volumes of 285 brain
tumor patients. Each participant was scanned using four
distinct modalities: T1-weighted, T1-weighted with con-
trast enhancement, T2-weighted, and T2 fluid-attenuated
inversion recovery (FLAIR). The voxel-level labels of the
”whole tumor”, ”tumor core”, and ”enhancing tumor” are
annotated for each patient. Following settings of base-
lines in (Zhang et al. 2020), we choose FLAIR images
and build model for the ”whole tumor”. The training and
testing rates are indicated in Table 8.

• LUNA2016 (Setio et al. 2015): This dataset consists of
888 computed tomography (CT) scans, aiming for nodule
detection and false positive reduction task. We employed
the extended set including 754975 candidates extracted
from 888 CT scans, which is 203910 candidates more
than the original set (denoted as LUNA2016-v2). The
training set has 817 positive lung nodules out of 377138
detection candidates. There are 225475 candidates in the
test set, including 459 positive lung nodules. The average
shape for each candidate is 64× 64× 32.

• MMWHS-CT/MRI (Zhuang and Shen 2016): This dataset
is made up of unpaired 20 MRI and 20 CT volumes that
span the whole heart substructures and includes seven la-
beled structures. Following baseline settings (Zhang et al.
2020), we segment the left atrial blood cavity regions on
the CT and MR formats.

• VinDr-CXR (Nguyen et al. 2022c): This dataset aims to
localize organs and nodules from 2D X-ray lung im-
ages. The classes include aortic enlargement, atelectasis,
calcification, cardiomegaly, consolidation, ILD, infiltra-
tion, lung opacity, nodule/mass, pleural effusion, pleural
thickening, pneumothorax, pulmonary fibrosis, and other
lesions. The total of X-ray images has abnormal tissues is
4394 images. For images where labels of the same class



Figure 6: The illustration of the Deformable Attention Transformer. F refers to the number of frames of our 3D input and D represents the
embedding dimension for each frame. In our setting, we choose F = 64, D = 640.

obtained from different experts are overlapped, we pre-
process by averaging overlapping bounding boxes with
an intersection-over-union of 20%. The training, valida-
tion, and testing rate are presented in Table 8. In this task,
we build a model to detect all nodules available in testing
images.

• JSRT (Shiraishi et al. 2000; Van Ginneken, Stegmann,
and Loog 2006): This dataset includes 2D X-ray images
taken from lung organs. The annotations consist of the
heart, left clavicle, right clavicle, left lung, and right lung.
We construct models to segment all organs in testing im-
ages followed by baselines in (Xie et al. 2021).

Other Settings
2D & 3D Segmentation Tasks: We formulate 3D seg-
mentation tasks in BraTS2018, MMWHS-CT/MRI as the
2D segmentation problem (JSRT data). To this end, we cre-
ate two subsets to avoid imbalance issues. The first one in-
cludes 2D images whose labels contain a target object re-
quired to segment, and the other comprises background and
remaining structures. We then sample data from these two
sets and train with a U-Net model. The backbone for this
U-Net is the pre-trained ResNet-50 (fintra in our model).
We employ the SGD as the optimizer and learning rate
0.1 for segmentation-related tasks. All 2D SSL baselines
are trained with 50 epochs. Our method usually converges
faster so we picked 15, 25, 50, 50 epochs for MMWHS-
MRI, MMWHS-CT, BraTS2018, and JSST (100% case) re-
spectively. The results are reported in average performance
over five trial times using 3D Intersection over Union (IoU)
for 3D settings and 2D Dice for 2D cases.

3D Object classification (LUNA2016-v2) Given the out-
put feature maps of deformable attention, we build on top of
the fintra and finter two fully connected layers in the size of
640 and 252. The last layer returns two probability outputs
for the binary classification problem. We use the binary cross
entropy as the loss function and train with SGD using learn-
ing rate of 0.1 for 100 epochs. The Area Under the Curve
(AUC) metric is used to evaluate performance. We report av-
erage performance for different batch sizes of 8, 16, 32 each
case with two trials.

2D Object Detection (VinDr-CXR) We choose the Faster
R-CNN from MMDetection2 framework as a base model for
the 2D object detection. This model is loaded pre-trained
ResNet-50 derived from different 2D SSL methods. With 2D
SSL baselines, the detector is trained with SGD as the op-
timizer with a learning rate lr = 0.001 and converges after
25 epochs. However, our pre-trained weights could not train
with this learning rate (NAN loss), we thus selected lr = 0.1
for the first 30 epochs and rescheduled lr = 0.01 for the last
10 epochs to get stable checkpoints (normally converge after
35 epochs). Other parameters are set as default by MMDe-
tection. We use the mean average precision (mAP) of all
classes with an IoU threshold fixed at 0.5 (mAP@0.5) for
the evaluation as (Benčević et al. 2022). The results are com-
puted in average of three trial times.

2https://github.com/open-mmlab/mmdetection



Table 8: Details of datasets for downstream tasks. For loss functions, Dice indicates dice loss, CE indicates cross-entropy loss,
and L1 indicates L1-loss.

Dataset MMWHS-CT MMWHS-MRI BraTS2018 LUNA2016-v2 VinDr-CXR JSRT

Task 3D Segmentation 3D Segmentation 3D Segmentation 3D Classification 2D object detection 2D Segmentation
Modality 3D CT 3D MRI 3D MRI 3D CT 2D X-ray 2D X-ray
Training samples 13 13 133 377138 3075 114
Validation samples 3 3 57 152362 440 10
Test samples 4 4 95 225475 879 123
Mean Data Size 224× 224× 265 224× 224× 145 224× 224× 155 64× 64× 32 512× 512 224× 224
Loss Dice + CE Dice + CE Dice + CE CE L1 + CE Dice + CE

Performance of Pre-trained Models when
Varying Training Data

In this experiment, we investigate behaviors of our pre-
trained model (extended from Deepcluster-v2) on down-
stream tasks when varying training data size. We conduct
testings on the VinDr-CXR dataset by increasing training
samples from 10% to 100% during the fine-tuning phase.
Figure 7 indicates class-wise average precision and the over-
all performance across classes (dashed black curve). As can
be seen, there exists a trend of improving performance when
more data is available; however, at the rate of 80%, we al-
ready achieved a comparable accuracy of 90% or 100%.
This evidence suggests that the proposed SSL method can
use fewer labeled data but still can achieve similar perfor-
mance. We argue that this property is valuable, especially
in medical applications where obtaining labeled instances is
extremely expensive.

Figure 7: The mean average precision across different percentages
of labeled data in abnormal Chest X-rays detection.

More Visualization Results
Figure 8 provides qualitative results on detecting abnormal
nodules 2D X-rays in the VinDr-CXR. We compare our ex-
tended version using Deepcluster-v2 with the pre-trained
Imagenet. Across different testing images, it seems that the
proposed method might help reduce false positive predic-
tions. For instance, the baseline incorrectly signifies the
pleural thickening structure in the first and second columns.
In the third case, though our method also wrongly predicts
pleural thickening, the errors are less than the baseline when

there are wrong bounding boxes for either the lung opacity
or aortic enlargement.

Figure 8: Qualitative results on detecting abnormal nodules in the
VinDr-CXR dataset. Our method uses Deepcluster-v2, and the pre-
trained Imagenet backbone is the first and second row. Green and
red indicate ground truths and predictions, respectively.

Current Limitations and Future Directions
While the proposed method achieves state-of-the-art perfor-
mance in several settings, the results on 2D object detection
(VinDr-CXR) and 3D classification tasks (LUNA2016-v2)
have not improved with large margins or still be smaller
compared to other 3D SSL competitors. We argue that
our learned features probably do not aid significantly these
downstream tasks. We believe that further improvements
might be gained by integrating downstream tasks’ proper-
ties in the pre-training algorithms as current insights in (Er-
icsson, Gouk, and Hospedales 2021; Cole et al. 2022).

We also recommend conducting additional experiments
on color images, such as skin attribute segmentation/clas-
sification (Nguyen et al. 2020; Sun et al. 2021), diabetic
retinopathy grading (Nguyen et al. 2021b; Sun et al. 2021),
or low-resolution images (Nguyen et al. 2017; de Leeuw den
Bouter et al. 2022), to further validate the method’s gener-
alizations. Furthermore, it is critical to extending the frame-
work with a similar mechanism for other SSL methods or
learning under scenarios such as data imbalance or domain
shift.


