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Abstract: Incorporating unseen data in pre-trained neural networks remains a challenging endeavor, as complete retrain-
ing is often impracticable. Yet, training the networks sequentially on data with different distributions can
lead to performance degradation for previously learned data, known as catastrophic forgetting. The sequential
training paradigm and the mitigation of catastrophic forgetting are subject to Continual Learning (CL). The
phenomenon of forgetting poses a challenge for applications with changing distributions and prediction objec-
tives, including Autonomous Driving (AD).
Our work aims to illustrate the severity of catastrophic forgetting for object detection for class- and domain-
incremental learning. We propose four hypotheses, as we investigate the impact of the ordering of sequential
increments and the underlying data distribution of AD datasets. Further, the influence of different object detec-
tion architectures is examined. The results of our empirical study highlight the major effects of forgetting for
class-incremental learning. Moreover, we show that domain-incremental learning suffers less from forgetting,
but is highly dependent on the design of the experiments and choice of architecture.

1 INTRODUCTION

Training a neural network sequentially on new data
results in a degradation of performance on previously
learned knowledge, which is called catastrophic infer-
ence or catastrophic forgetting (McCloskey and Co-
hen, 1989). As the real world is non-stationary, au-
tonomous systems are exposed to ever-changing data
distributions. For Autonomous Driving (AD), the dis-
tribution change is induced by a variation in the visual
domain, e.g., weather, time, country, or the appear-
ance of new, unknown classes, e.g., drones or electric
scooters. Incorporating knowledge of new domains
and new classes into a Neural Network (NN) is a non-
trivial task. Common practice is to extend the previ-
ous dataset with data samples containing new classes
or from different domains and to retrain the NN from
scratch. As storing previous data is not desired and an
entire retraining results in a high computational over-
head, Continual Learning (CL) aims to alleviate the
effects of catastrophic forgetting for sequential train-
ing. Comparing current CL approaches is difficult due
to various assumptions, different settings, and down-
stream tasks, which highly influence the results.
We investigate the effects of different realistic CL

scenarios with respect to catastrophic forgetting for
object detection, which is an essential element for
AD. Guided by four proposed hypotheses, we eval-
uate how the aspects data distribution, order of se-
quential tasks, and architecture choice have an impact
on the performance for object detection. We compare
domain- and class-incremental learning and conclude
with suggestions for the evaluation of CL methods.

2 CONTINUAL LEARNING
SCENARIOS

Continual Learning, also known as Incremental
Learning, describes an iterative learning procedure
composed of sequential tasks to be learned, which ei-
ther differ in the data distribution or the prediction
objective. As only data for the current task, also
referred to as increment, is available for the current
training step, weights important to previous tasks are
altered. Changing these weights results in the effect
of catastrophic forgetting. We can formally define
the task Tt = (Xt ,Yt) as t-th incremental task in the
learning procedure with the set of input samples Xt =



{xi}1≤i≤Nt and output targets Yt = {yi}1≤i≤Nt (Hsu
et al., 2018). The sequence of tasks {T1,T2, ...,TK}
describes the entire CL scenario. CL scenarios can
be categorized based on the incremental task to be
solved (Hsu et al., 2018; Van de Ven and Tolias,
2019). Let Xs,Xt be the input data for two tasks
Ts,Tt ,∀s, t ∈ K,s ̸= t and Ys,Yt are the sets of anno-
tations.
Class-incremental Learning describes learning an
exclusive subset of classes for each subsequent task.
For classification tasks, this implies Ys ∩Yt = /0 and
the setting is class instance-injective, that means each
input sample corresponds to only one task. However,
the downstream-task object detection demands multi-
ple class label instances per data sample and addition-
ally predicts not only class annotations, but also spa-
tial information of the object. Hence, only the set of
class annotations are disjoint for different tasks. The
differing marginal distributions of target annotations,
i.e., P(Ys) ̸=P(Yt), imply consequently a different dis-
tribution of the input data P(Xs) ̸= P(Xt).
Domain-incremental Learning considers the CL
scenario, in which the output targets do not change,
while the domain shift induces a change in the input
data distribution (Pan and Yang, 2009). The elements
of the target space, i.e., all possible annotations to be
learned, stay the same for consecutive tasks (Ys = Yt ).
For each task in Task-incremental Learning, the set
of output labels is different, i.e., output spaces are
disjoint (Hsu et al., 2018). Task-incremental learn-
ing settings require a task identifier, which is an ad-
ditional ground truth annotation for the current task.
Class- and domain-incremental learning scenarios for
AD are visualized in Figure 1.

3 RELATED WORK

3.1 Continual Learning

Previous work on CL primarily focused on different
techniques and algorithms to alleviate the effects of
catastrophic forgetting. Delange et al. (2021) pro-
posed the categorization into replay, regularization-
based, and parameter isolation methods. Replay
methods aim to mitigate the forgetting by revisiting
previous knowledge explicitly (Lopez-Paz and Ran-
zato, 2017; Rebuffi et al., 2017) or inducing self-
generated data during training (Shin et al., 2017).
Constraining or penalizing updates of model param-
eters is the focus of regularization-based methods
(Kirkpatrick et al., 2017; Zenke et al., 2017). Al-
gorithms that employ a dynamic expansion of NNs
(Rusu et al., 2016) or assign different model parame-

ters to each task (Serra et al., 2018) are referred to as
parameter isolation methods. While most approaches
focus on classification, CL for object detection is a
less explored field of research. One type of mitigation
strategy is knowledge distillation (Shmelkov et al.,
2017; Peng et al., 2020, 2021).
Another line of work analyzed the diverse influences
on CL for various settings. Farquhar and Gal (2018)
assessed the experimental setup for CL. They claimed
that the evaluation is biased, so they define fundamen-
tal desiderata for empirical evaluation of CL. Among
them is the cross task resemblance and an evaluation
without test-time task labels, which are commonly
used to indicate the task to be solved. Consequently,
we neglect task-incremental learning in this empirical
study. Recently, Mirzadeh et al. (2022) performed an
in-depth analysis of the significance of the architec-
ture for classification in CL. They show that each ar-
chitecture has an individual trade-off between stabil-
ity and plasticity (Mirzadeh et al., 2022; Pham et al.,
2022). Ramasesh et al. (2021) show in their empirical
study that pre-trained ResNet (He et al., 2016) and
Transformer (Dosovitskiy et al., 2021) architectures
are more robust in terms of forgetting than randomly
initialized models for CL.
To the best of our knowledge, an empirical study con-
cerning the influence of catastrophic forgetting on ob-
ject detection has not been performed, yet.

3.2 Object Detection

Faster-RCNN (Ren et al., 2015) is a widely used two-
stage detection architecture, which employs a Convo-
lutional Neural Network (CNN) for feature extraction
and for region proposal generation. Recently, the first
Vision Transformer (ViT) (Dosovitskiy et al., 2021)
has shown competitive performance with manage-
able computational resources. The ViT was improved
upon by computing attention in shifted windows,
called Swin-Transformer (Liu et al., 2021). Car-
ion et al. (2020) introduced Detection Transformer
(DETR), the first transformer-based end-to-end archi-
tecture for detection. As this approach suffers from
slow convergence and low performance on small ob-
jects due to the limited spatial resolution, it was im-
proved by introducing deformable attention modules.
Deformable DETR (DDETR) (Zhu et al., 2021) mit-
igates these effects by computing attention only on a
small set of sampling points.
Tian et al. (2019) introduced FCOS (Fully Convo-
lutional One-Stage Object Detector), an anchor-free
and proposal-free one-stage detector. We consider all
mentioned architectures in our evaluation study.



Ta
sk

T 1
Ta

sk
T 2

Ta
sk

T 3

(a) Class-incremental learning (b) Domain-incremental learning
Figure 1: Incremental learning for object detection is visualized for the dataset BDD100K (Yu et al., 2020). Each image
corresponds to one task. In the presented class-incremental learning setting (a), the classes Car, Truck, and Pedestrian are
learned sequentially. For the domain-incremental scenario (b), the tasks T1,T2,T3 differ in their domain, as each task contains
only images at Daytime, Dawn/Dusk, or Night, respectively.

4 EXPERIMENTAL SETUP

As clear guidance for the experiments, first, we de-
fine four hypotheses to be investigated to analyze the
effects of catastrophic forgetting. Then, we introduce
three datasets and the relevant CL scenarios. Lastly,
we examine relevant metrics and provide implemen-
tation details for our experiments.

4.1 Hypotheses

To analyze the effects and influence of catastrophic
forgetting for 2D bounding box detection, we de-
signed and performed various experiments to inves-
tigate the following hypotheses:

H1 The order of tasks influences the forgetting.

H2 The data distribution of the input influences the
severity of forgetting.

H3 The architecture of the detector has an influence
on the forgetting.

H4 Class-incremental learning leads to more se-
vere forgetting compared to domain-incremental
learning.

4.2 Datasets

This investigation considers object detection for AD
datasets. To obtain a high degree in diversity, we
consider the datasets BDD100K (Yu et al., 2020) and
SODA10M (Han et al., 2021).
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Figure 2: Distribution of the image occurrences for the do-
main Scene for BDD100K.

BDD100K was released in 2020 to embrace the real-
world complexity by incorporating a high diversity
geographically and environmentally. It was recorded
in the USA and it includes scene type information for
each image, such as citystreets, highways, or residen-
tial areas, as well as time of day annotation. Further,
weather condition information, e.g., sunny, overcast,
rainy, etc., are provided.
SODA10M is a large-scale autonomous driving
dataset with 10 million unlabeled and 20,000 labeled
images. It provides annotations for the domains
weather, scene, and time of day. The training dataset
contains images from one domain, while the valida-
tion and testing datasets include data from all do-
mains. In order to investigate hypothesis H2, i.e., that
the distribution of domains influences the incremental
training, the scene domain distribution is visualized
for BDD100K in Figure 2. We must acknowledge,
that the class and domain distributions are vastly un-
balanced.



4.3 Continual Learning Scenarios

As described in Section 2, there are three different
CL settings. Since task-incremental learning repre-
sents an artificial scenario due to the required task-
identifier, the focus of this study lies on class- and
domain-incremental learning.
We investigate the influence of several class-
incremental learning scenarios for object detection
and we perform all experiments with the assumption
that instances of previous or future classes may also
appear at any step and that their labels are only avail-
able at their respective task increment. This means
that only annotations for classes in the current task
increment, e.g., vehicles, are provided. Previous or
future class instances that appear also in the current
increment, e.g., pedestrians co-occurring with vehi-
cles, are not annotated.
As commonly done in class-incremental learning
(Shmelkov et al., 2017), we investigate setups with
various classes in the first increment and different
numbers of classes added per increment. These se-
tups can be denoted by a tuple, e.g., 5-5 or 9-1, where
the first integer of the tuple represents the number of
initial classes trained in the first increment T1 and the
second integer represents the number of classes added
per increment.
To evaluate domain-incremental learning, we use
the available domain information of the datasets
BDD100K and SODA10M. For each CL scenario,
we perform a sequential training on the incremental
datasets, also referred to as naı̈ve fine-tuning. After
training on a specific increment, the performance of
the network is evaluated with respect to the current
task. The evaluation takes into account only the pre-
vious and current tasks for class-incremental learning
and all tasks for domain-incremental learning.

4.4 Metrics

The mean Average Precision (mAP) is a common per-
formance metric for object detection. It is computed
with respect to all known classes for a fixed validation
set. The performance itself does not yield informa-
tion about the forgetting in CL. To obtain a notion for
the influence one increment has on the previous or the
following increment, the metrics Backward Transfer
(BWT) and Forward Transfer (FWT) were introduced
(Lopez-Paz and Ranzato, 2017).
With K tasks to be learned, the model is evaluated on
all K tasks after the training of each task Ti. Then,
a matrix P ∈ R K×K is obtained with pi, j as mAP for
task Tj after being trained on task Ti and all previous
tasks T1, ...,Ti−1. A baseline vector b̄ is computed pre-

vious to the training by evaluating the performance of
the initial model on all tasks. The above mentioned
metrics are then computed as follows:

BWT =
1

K −1

K−1

∑
i=1

pK,i − pi,i (1)

FWT =
1

K −1

K

∑
i=2

pi−1,i − b̄i (2)

The BWT denotes a measure for the average differ-
ence between the initial performance after training
on Ti and the final performance after training on all
tasks, i.e., after TK . For positive values of BWT, the
model is gaining performance compared to the ini-
tial task, while negative BWT values imply that the
network has forgotten previous knowledge. The im-
pact that the learning of task Ti has on the subse-
quent task Ti+1 is described by FWT. Positive values
of FWT indicate that the acquired knowledge on task
Ti transfers well to the subsequent task. If the FWT
is negative, the training of task Ti worsens the per-
formance of the model for task Ti+1 compared to the
initial baseline b̄i. As the initial performance is eval-
uated after the initialization of the network for ob-
ject detection, significant values for b̄ are not to be
expected. Even for pre-trained backbone networks,
we employ models with randomly initialized heads
for object detection. Consequently, negative values
seldom occur. We introduce BWT(%) as the BWT
normalized by 1

K−1 ∑
K−1
i=1 PK,i to obtain a relative no-

tion of the forgetting. Similar to the average accu-
racy (Lopez-Paz and Ranzato, 2017), we introduce
the performance metric avg. mAP, which denotes an
average over the mAPs after training on all K tasks,
i.e., avg. mAP = 1

K ∑
K
i=1 PK,i. The gap between avg.

mAP for incremental learning and mAP for joint, i.e.,
non-incremental, training describes the performance
difference due to sequential training. We refer to this
difference as overall forgetting.

4.5 Implementation Details

To quantify the influence of the architecture, the intro-
duced state-of-the-art detection networks from Sec-
tion 3.2 are evaluated. Faster-RCNN (Ren et al.,
2015) with a ResNet50 (He et al., 2016) backbone
is used as default architecture for all experiments,
if not otherwise stated. For our CL scenarios, the
dataset of each task is constructed by filtering the
original dataset according to the domain or class in-
formation. For class-incremental training, the origi-
nal validation dataset is preserved, if available. The
domain-incremental datasets are each split randomly



Table 1: Influence of the order of tasks for domain-incremental learning on BDD100K and for the detector architecture Faster-
RCNN. For the available domains, the obtained performance (avg. mAP), the relative forgetting (BWT(%)) and the ability to
generalize to the next domain (FWT) are presented. Each row corresponds to a different sequence of tasks.

Order avg. mAP BWT(%) FWT mAP (joint)

Time of Day (Day, Night, Dawn/Dusk)

Day → Dawn → Night 0.263 -10.5% 0.253

0.304

Day → Night → Dawn † 0.228 -15.0% 0.209
Dawn → Day → Night 0.241 -5.7% 0.21
Dawn → Night → Day ‡ 0.264 11.5% 0.189
Night → Day → Dawn 0.263 -10.2% 0.263
Night → Dawn → Day 0.268 7.2% 0.223

Scene (Citystreet, Highway, Residential, ...)

Descending by occurrences 0.244 -18.3% 0.267 0.304Ascending by occurrences 0.286 176% 0.085

Weather (Clear, Overcast, Snowy, Rainy, ...)

Descending by occurrences 0.229 -7.9% 0.238 0.304Ascending by occurrences 0.250 35.8% 0.166

†: Descending by occurrences ‡: Ascending by occurrences

into training and validation by the ratio of 80:20. For
SODA10M, both training and validation datasets are
merged into one and then split randomly into training
and validation datasets. We employ the CL frame-
work Avalanche (Lomonaco et al., 2021) and utilize
MMDetection (Chen et al., 2019) for the object de-
tection architectures. For all experiments, we only
use random flipping as augmentation and train on the
number of epochs with learning rate scheduling as
proposed by the framework for each network.

5 RESULTS & DISCUSSION

For both datasets, experiments are conducted with
different orderings of domains (H1). The data dis-
tributions are taken into account for the evaluation
and possible sources of diverse effects are outlined
(H2). The network architectures are subject to the
analysis by comparing their performance for identi-
cal scenarios (H3). The first three hypotheses are
analyzed with respect to domain-incremental learn-
ing. Lastly, we examine the severity of forgetting for
class-incremental learning and compare the results to
domain-incremental learning (H4).

5.1 Hypothesis H1 – The Order of Tasks
Influences the Forgetting

Table 1 depicts the results for domain-incremental
learning. The overall forgetting is evident for all do-
mains, as the mAP is evidently below the performance

of non-incremental training. Major performance dif-
ferences are apparent for the same domain if the or-
der of increments is altered. For the Time of Day do-
main, setups with presumably different strengths of
domain gaps were analyzed, e.g., the difference in
data distribution of subsequent tasks is assumed to
be lower for the sequence Day → Dawn than it is
for Day → Night. The results show that the ordering
with respect to the number of occurrences has a higher
impact on the backward transfer than the strength of
the domain gap as the descending/ascending case has
the lowest/highest forgetting. However, consecutive
tasks with low domain gap strength, e.g., Day →
Dawn, and simultaneously descending occurrences
have high FWT values, thus, generalize well to new
data. Due to the intractability of all permutations of
domains, we determined the order of the increments
for the domains Scene and Weather only by the im-
age occurrences in descending and ascending order.
For both datasets, the relative BWT and, thus, the for-
getting is lowest in the ascending case, while the de-
scending order achieves the highest FWT.

5.2 Hypothesis H2 – The Data
Distribution of the Input Influences
the Severity of Forgetting

As previously shown, the order of tasks has an influ-
ence on the final performance of the NN on the val-
idation data. To obtain a fair comparison, the data
from underrepresented domains was not artificially
up-sampled. An intuition for the higher performance



Table 2: Performance overview of different architectures for SODA10M for domain-incremental training. The obtained
performance (avg. mAP), the forgetting (BWT(%)) and the ability to generalize to the next domain (FWT) are presented. The
joint training serves as upper baseline as all data is available at once without sequential training.

Architecture avg. mAP BWT(%) FWT mAP (joint)

Time of Day (Day → Night)

Faster-RCNN (ResNet) 0.434 -19.6% 0.255 0.446
Faster-RCNN (Swin) 0.452 -14.8% 0.304 0.475
FCOS (ResNet) 0.376 -27.1% 0.205 0.397
DDETR (ResNet) 0.416 -25.4% 0.286 0.479

Scene (Citystreet → Highway → Countryroad)

Faster-RCNN (ResNet) 0.428 -10.9% 0.366 0.446
Faster-RCNN (Swin) 0.426 -9.8% 0.331 0.475
FCOS (ResNet) 0.333 -20.2% 0.283 0.397
DDETR (ResNet) 0.331 -20.9% 0.271 0.479

Weather (Clear → Overcast → Rainy)

Faster-RCNN (ResNet) 0.431 -15.2% 0.417 0.446
Faster-RCNN (Swin) 0.448 -8.5% 0.415 0.475
FCOS (ResNet) 0.365 -20.9% 0.353 0.397
DDETR (ResNet) 0.384 -27.0% 0.411 0.479

for the ascending order is that more data becomes
available in subsequent increments. More data in-
creases the performance of the network also on the
previous domains, as the domain gap becomes neg-
ligible compared to the performance gain due to the
higher amount of data. It can be observed that net-
works almost exclusively obtain the highest mAPs
for the current increment and, that the final incre-
ment can have a high impact on the overall perfor-
mance. For the ascending case, the most common do-
main is trained last, therefore, the NN is fine-tuned
on this data and we obtain better overall performance
for ascending ordering. Vice versa, for scenarios in
descending order of occurrences, the last increments
contain fewer samples. Consequently, it results in in-
ferior overall performance and increased forgetting.
One further influence is that the domain splits
in SODA10M are not as granular as they are in
BDD100K. Therefore, the domain gap within each
increment for SODA10M is assumed to be more ex-
treme. Another aspect is the different sizes of the
datasets. BDD100K consists of 100,000 annotated
images, while SODA10M provides 10,000 data sam-
ples. Hence, we assume that overfitting to one domain
is less likely and the vulnerability to forgetting is de-
creased.

5.3 Hypothesis H3 – The Architecture
of the Detector has an Influence on
the Forgetting

To evaluate the influence of the NN architecture
on incremental learning, all introduced architectures
were trained and evaluated on the presented datasets.
For domain-incremental learning, the performance of
each architecture is shown in Table 2 for SODA10M.
The architecture choice has an influence on the sever-
ity of forgetting and the magnitude of the FWT.
Faster-RCNN shows consistently the best perfor-
mance after the incremental training with the least
amount of forgetting. Further, the usage of the Swin-
Transformer as backbone shows higher avg. mAPs
and lessens forgetting compared to the ResNet back-
bone. The improved performance can be due to pre-
sumably better representations. Also, it can be ex-
plained by the higher number of network parameters.
FCOS shows low overall performance with high for-
getting, as depicted in Table 2. Moreover, it has the
low FWT values for all domains and datasets, which
can indicate a poor generalization to other domains.
With some exceptions, DDETR is most affected by
incremental learning with respect to the introduced
metrics as the forgetting appears to be most severe for
this architecture.



Table 3: Class-incremental learning with 5-5 and 9-1 increments for BDD100K and Faster-RCNN. Each row corresponds to
one task-increment, while each column represents the performance for the given class.

Inc.
AP

Car Truck Bus Mot.-
cycle

Train Rider Bi-
cycle

Tr.
Sign

Tr.
Light

Pedes-
trian

mAP

5-5

#1 0.499 0.422 0.44 0.173 0.00 0.307
#2 0.00 0.00 0.00 0.00 0.00 0.331 0.234 0.224 0.372 0.233 0.14

9-1

#1 0.497 0.436 0.445 0.195 0.00 0.196 0.22 0.368 0.223 0.287
#2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.333 0.033

5.4 Hypothesis H4 – Class-incremental
Learning Leads to More Severe
Forgetting Compared to
Domain-incremental Learning

The catastrophic forgetting is evident for class-
incremental learning, as depicted in Table 3. The per-
formance is provided as the Average Precision (AP)
per class. For all analyzed settings, knowledge of
previous classes is directly forgotten once the NN is
trained on the subsequent task, as the network fails to
detect instances of previous classes.
For class-incremental learning, in each increment
only annotations for the current classes are present,
and hence no labels for other classes. The NN is
trained to detect previous classes, thus, it will out-
put predictions of the previous classes while training
on the new data. Due to the missing label informa-
tion of previous classes, predictions for those classes
are treated as false positives in the loss computation.
This might lead to the intuition that the network is
forced to actively forget previous classes. We as-
sessed this assumption by utilizing the ground-truth
bounding box information of the unknown instances
(of classes from a previous/future increment) of the
training data to disregard the corresponding losses for
the false positives during training. Catastrophic for-
getting is neither mitigated nor alleviated by incor-
porating previous predictions during training. Thus,
punishing false positive predictions of the network ap-
pears to have only a subordinate influence on the for-
getting.

6 CONCLUSION

Analyzing the four hypotheses demonstrates that the
evaluation of CL highly depends on the chosen sce-

nario. Firstly, domain-incremental scenarios show
signs of forgetting, yet the effect of catastrophic for-
getting is severe for class-incremental learning. We
hypothesize that the active forgetting due to false pos-
itives has a subsidiary role. As the AD data is consid-
erably unbalanced, the order must be accounted for
when performing CL due to different extents of do-
main gaps and due to rare domains with limited data.
The detection network Faster-RCNN with its task-
agnostic RPN is least affected by catastrophic forget-
ting. Using a transformer as a backbone further in-
creases the robustness.
With the findings of this work, we expect the results
for the evaluation of future CL methods to become
more trustworthy, reliable, and interpretable. We en-
courage that future work on CL should acknowledge
these results by incorporating random orderings and
more realistic scenarios to achieve better comparabil-
ity between methods. Reducing the effects of forget-
ting is subject to another line of work (Delange et al.,
2021). Our study emphasizes the importance of miti-
gation strategies for CL for object detection and mo-
tivates future research in this direction.
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