ACCEPTED FOR PUBLICATION AT 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS. (ICMLA-2022) 1

Causal Inference for Personalized Treatment Effect
Estimation for given Machine Learning Models

Johannes Rust German Research Center for Artificial Intelligence GmbH
Enrique-Schmidt-Str. 5
28359 Bremen, Germany
Email: johannes.rust@dfki.de Serge Autexier German Research Center for Artificial Intelligence GmbH
Enrique-Schmidt-Str. 5
28359 Bremen, Germany
Email: serge.autexier@dfki.de

Abstract—We propose a causal machine learning inference
pipeline that combines a given predictive machine learning model
with analytical estimations of average treatment effects. It enables
to utilize any predictive model for causal inference, which makes
it easy to adapt the approach to existing systems. By first
estimating the average treatment effect of an intervention on
predictors instead of the outcome variable, a causal relationship
between an intervention and a wide range of variables is
determined. Next, artificial samples are created that are evaluated
using the given predictive model to link interventions and
outcomes and also allows inferring measurements of uncertainty.
Finally, simulations using again the given predictive model are
performed to compute measurements of confidence and that allow
to compare — according to the given predictive model — the effect
of specific treatments. We furthermore demonstrate how this
inference engine can be adapted to a privacy-preserving fed-
erated learning environment where training data is horizontally
distributed across multiple datasets without compromising on
our approach’s accuracy. The approach has been evaluated on a
use case with a predictive model for the quality of life score of
cancer patients, to determine medical interventions to improve
their individual quality of life score.

I. INTRODUCTION

With machine learning (ML) providing strong prediction
capabilities for a wide variety of tasks, it is a promising tool
to use in many domains, e.g. economics or medicine. Machine
learning models are typically only used to predict a target
variable value or class. However, especially in the medical
domain it is desirable to use machine learning to assess the
outcome of a specific treatment on the target variable value,
which is not an information readily represented in the data.
The estimation of an outcome depending on an intervention
is known as causal inference.

From detecting diseases from blood values, analyzing med-
ical images for cancer or risk estimations, many techniques
have been developed in recent years [[L]. It comes apparent that
introducing machine learning in such safety critical environ-
ments yields multiple challenges. For one, wrong predictions
can result in irreversible damage and harm to patients. This
necessitates the development of trustworthy systems. For a ma-
chine learning model to be trustworthy, it needs transparency
in its decision-making process and clearly communicate a
measurement of confidence for its predictions. Hence, there

is a need that causal inference methods [16] are transparent
and provide a confidence.

Another effort is the distribution of input data that is needed
to train reliable models. Suitable training data is often scattered
over multiple healthcare facilities and cannot be aggregated
directly because of legal reasons like data privacy policies.
Therefore, a flexible system is needed, that can be trained in
a federated learning environment, while still maintaining the
transparency needed to earn the users trust.

We propose an approach that can fit a single machine learn-
ing model to be used for causal inference. After reviewing the
state of the art in section |lI] we first present some background
information on the research project that provides the context
of this work. In section we elaborate how our method can
be used to evaluate multiple treatments or interventions and
also present how it can be adapted to a federated learning and
homomorphic encryption. The approach is evaluated on two
scenarios and the results presented in section [V] In section
we also elaborate how the decision-making process is easy
to interpret by users, leading to better explainable machine
learning and discuss in section how the approach is used
in our project to evaluate medical interventions that improve
the Quality of Life of breast- and prostate cancer patients.
Section |IX] concludes the paper and presents future work.

II. RELATED WORK
A. Causal Inference

Causal Inference [16] was proposed to create interpretable,
robust but also capable machine learning models. Its central
approach is to measure causal relationships. Most Al models
only link common patterns and distributions in the input data
to the output data. The direction of causality is ignored and
providing explanations for prediction does not mitigate this
shortcoming. Measuring the average treatment effect (ATE) is
a common way to measure causality [2], [3]. A commonly
used method are meta learners [[10] which are families of
ML models trained on disjoint subsets of the training data
containing the different treatments and thus estimate the ATE
directly. They have the advantage of being able to detect
complex patterns and also calculate heterogeneous treatment
effects, meaning that the estimated treatment effect is not
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constant, but moderated by other influences (e.g a patient’s
gender) — but require retraining for the different training data
subsets. These causal models also do not solve the problem
of limited explainability. The causality provides a direction of
dependencies, but a meta learner is still as uninterpretable as a
normal ML model. Also, to adapt this approach to a federated
learning environment, the meta learners must be trained in a
federated way as well, yielding numerous challenges.

B. Explainable Artificial Intelligence

Explainable Artificial Intelligence is an artificial intelligence
system like machine learning that has special attributes to
make its output comprehensible for the user by providing
additional information on how the result was inferred. Methods
for explainability can be categorized in post-hoc methods and
ante-hoc methods. Post-hoc methods describe the methods that
aim to make a machine learning model or, more generally,
a black box model interpretable or describing its outputs
after the model itself has already been created. [12] Common
approaches are surrogate models, which are interpretable by
design and mimic the models input/output behavior. Surrogate
models can also be fitted to explain only few or even a
single prediction. Ribeiro et al. proposed local surrogates
that approximate a linear model around a sample to estimate
feature attribution models [11]]. Lundberg et al. [7] proposed
a way to estimate Shapley-values by adapting local surrogate
models to approximate a model’s response to data points near
the sample in the feature space and also added improvements
for specific model types [8], [9]. Some researchers argued
that post-hoc explainability is not enough to produce sufficient
transparency and that explainability must be considered in the
early development space of an Al system. Using interpretable
model architectures such as linear regression or decision
trees is an easy approach, but their predictive capabilities are
limited.

III. BACKGROUND

The work presented in the paper has been conducted in
the context of research project ASCAPE aiming to provide a
platform that gives predictions for future Quality of Life (QoL)
issues for breast and cancer patients. It shall support medical
staff to find suitable medical interventions that address current
QoL issues and avoid future ones. A set of different machine
learning architectures and approaches are used to predict the
QoL scores and the risk of specific issues that influence the
patients QoL. Local ML models are trained only on the patient
data that is available in the respective healthcare sites. Global
models are federated learned models trained on datasets from
a cluster of healthcare sites. Also, global encrypted models are
trained by collecting homomorphically encrypted data from all
healthcare on the cloud and that can be used for predictions
on the cloud for homomorphically encrypted patient data.

An obvious approach to let machine learning models pro-
pose interventions is to train dedicated models. They predict
the probability that a certain intervention is chosen. They can
be trained on existing patient data using performed treatments
as labels. However, this approach is flawed. Since most ML

models like neural networks are too complex to be interpreted
by humans, the predictions that are being made by these
models are not transparent. To provide more insight to the pre-
dictions, explainability methods like SHAP[/] could be used
to provide feature attributions and provide a limited amount of
explainability. However, even feature attribution values cannot
be easily interpreted in this scenario. A certain value in a
patients medical data having a high feature attribution for the
chance that a certain treatment is proposed is still unintuitive
information for the user. Moreover, using the treatments that
have been proposed by the medical staff as ground truth for the
Al models limits their capabilities. At best, they propose the
same treatments the medical staff would have selected anyway,
since they are optimized on their behavior.

IV. METHOD

In this work we use capital letters such as X,Y, Z,... to
denote variables, calligraphic letters X', ), Z to denote sets
of variables, lower-case letters x,y,z,... to denote values
of feature variables, the range/set of possible values of some
feature variable X as range(X), and range(X) be the carte-
sian product of the possible values of all variables X € X in
lexicographic order.

Let D be dataset that contains a set of variables C' =
{X,Z,Y}, with X being variables that are used as input
variables, Z being a set of interventions or treatments and
Y a variable that shall be predicted. We denote the dataset as
a set of tuples ¥y, Z¢11, Y where & is a vector of all variables
X e X and Z € Z at a time point t. Z;y1 is the state of ¥
at the following time point £ + 1 and % is the vector of all
outcomes Y € ) at time point ¢ + 1. Between time point ¢
and ¢ + 1 interventions take place. These are denoted by 2’
which is a vector of all interventions Z € Z. When splitting
the dataset into cohorts, we denote D3 as a subset of D where
the treatments in & are the same as 2"

Dz = {(Z4,%1+1,9) € D|T lz= Z} (1)

The control cohort Dy consists of pairs in D where no
intervention was performed:

Daz{(ft7ft+lvg)ED|fl2= 6} (2)

Causal inference is usually based on the average treatment
effect on some variable Y, which following [[16]] can be defined
as

VZez;Aﬂaxzyzﬂ%ggl

=EY|Z=1)—-EY|Z=0) (3
assuming the treatments Z are binary, i.e. range(Z) = {0,1}.
If the ATE is dependent on sample values & for the variables
in X, it is defined as conditional average treatment effect
(CATE):
Vi € range(X),Z € Z :

care(y, ) - TEVED)

—E(Y|Z=1,7)-E(Y|Z=0,7) (@
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To train models that can propose treatments that the medical
staff might not have considered and support its predictions
with sound explanations, the Al models must be able to assess
how treatments influence the patient’s health status.

Therefore, for our approach the prediction process is split
into three steps. We assume that all variables X;,; are
dependent on their previous state X, at time point . We also
assume that an outcome Y; (and hence also its prediction) is
dependent on X, but not directly dependent on its previous
state X; ;. An example for such an outcome is the Quality
of Life, which depends mainly on the current situation rather
than on the values of these at previous times.

First, the average treatment effect (ATE) for each medical
intervention is determined for every variable X in the patient’s
health record. Then, the average treatment effect is used to
predict the change of the patient’s health record:

VZe Z: ATE(X,Z) = % (5)

—E(X|Z=1)-E(X|Z=0) (6)

The ATE on X is then used to predict Y;;; by estimating
X411, given the hypothesis that a certain medical intervention
is being performed. Since Y;;; is dependent on state X;
and Xy, is dependent on X; and Z, a causal estimation of
Yi4+1 can be done given X, and Z. Formally, we define our
approach as

VZ € range(X), Z € Z : CATE*(Y, Z, %) =
E(Y|Z =1,7® (ATE(X, Z = 1)|X € X))
~E(Y|Z=0,Z® ATE(X,Z = 0)|X € X)) (7

where @ denotes sum of two vectors and (ATE(X, Z)|X € X)
the vector consisting of the values ATE(X, Z) for X taken
from X in lexicographic order.

Now, let my : range(X) x Z — Y be a machine learning
model predicting/approximating E(Y|Z = z,z) for outcome
Y based on an input vector & € range(X) and a treatment
zeZ.

Replacing appropriately in the definition of CATE* the
occurrence of ATE by f and E(Y'|...) by my we obtain the
definition of our algorithm

VY €),Z € Z:CATE" (Y, Z,D) =
my (Z® (ATE(X,D)z_1|X € X),Z =1)
—my (Z® (ATE(X,D)z_o|X € X),Z=0) (8

Splitting up the inference pipeline into these steps yields
more transparent prediction results and leverages the models
to a causal inference pipeline.

The process to predict the personalized treatment effect for
a sample (e.g. patient data) at hand consists of 3 steps: first,
we estimate the average effect of treatments on the predictor
variables (section and use these in a second step to
estimate the development of the sample (patient) after the
treatment (section [[V-B). Third, we use these to select the
best treatment and assess there average effect as well as some
upper and lower bounds (section [[V-C).

A. Estimation of Average Treatment Effects

The average treatment effect is a common instrument to
evaluate the causal relation between a treatment and an out-
come. For this approach it is helpful to analyze the dataset
like it is collected in a study. To calculate the ATE as reliably
as possible, a randomized controlled study would be needed.
Here, each participant is assigned to a test cohort or control
cohort. The test cohort receives a treatment and the control
cohort receives no treatment or, if applicable, a placebo. The
difference of representative measurements can then be used
to determine the ATE. However, this study design is not
suitable outside trials where participants agree that they might
be assigned to the test cohort and not receive a treatment.
For patients in cancer-treatment, only an observational study
design can be used since it does not interfere with the patient’s
treatment. Here, data can be collected or processed in two
different ways: In longitudinal studies data is collected from a
patient multiple times. Treatment effects can be approximated
by comparing data before and after a treatment. In cross-
sectional studies, data is only collected once. Treatment effects
can therefore not be collected directly by comparing data
points from the same patient. Instead, patients with similar
properties must be matched in order to compare patients that
received a treatment and those who did not. However, this
approach is more prone to biases and therefore less accurate,
especially when matching high dimensional data.

Since for our approach we aim to estimate the influence
of a treatment Z on the variables X in X, some additional
conditions and assumptions must hold. Each feature variable
X:+1 must be stochastically dependent on its predecessor X;.
We identified three cases of properties that X; and X; ; in
relation to Z can have:

e Case 1: X, is dependent on Z. An example could be
physical fitness related to physical activity level.

o Case 2: X, is independent of Z, but changes linearly
to t: X¢y1 = X; + ¢ with ¢ being constant for all . An
example is the age of the patient or the cancer type.

o Case 3: Xy is static for all ¢: X411 = Xy X1 = X4
This is equivalent to Case 2 with ¢ = 0. Examples are
past diseases or gender.

To make our approach as flexible as possible, we imple-
mented solutions for both longitudinal datasets and cross-
sectional datasets (using cohort matching). For the latter,
cohort matching is done for every treatment Z € Z. The
dataset is first split into two cohorts. Patients that received
treatment Z are assigned to the test cohort, those who did
not are assigned to the control cohort. However, simply
comparing these two cohorts does only yield correlations,
but not causalities. It cannot be determined if a patient is
in a certain condition because of the treatment or if he
received the treatment because of his condition. To mitigate
this, patients with similar properties are paired based on their
similarities of X ;. These variables should be static or not be
dependent on the treatment (e.g. age at diagnosis, cancer type
or gender). Before using cohort matching, all input variables
should therefore be assessed using context knowledge and
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assigned to one of the three cases we identified before. Only
variables of case 3 are suitable to be used for cohort matching.

Two approaches were implemented and tested for cohort
matching: Propensity score matching [4] and Mahalanobis
distance matching [S]. While propensity score matching is
widely used and easy to adapt on a wide range of data, it was
criticized for not creating ideal results [6]. Therefore, Maha-
lanobis distance matching was also tested in our methods.

Since this approach is not suitable for high-dimensional
input vectors that we have, we make use of our project’s
longitudinal study design and do not use cohort matching. For
this, the dataset D is filtered into the test cohort Dz and the
control cohort Dj.

The expected change of a variable after a treatment can be
estimated with

VT, Tiy1 € Dzt &y z—1 = Try1 — Ty &)

To attribute for the fact that variables might change even if no
intervention took place, the expected change without treatment
is also calculated.

V&, Ti41 € Dz—o : $4,7=0 = Te41 — T4 (10)

For the estimation of Z on Y the effects of Z =1 on X

and Z = 0 on X must be measured individually. We denote
these values as AT E,;_1 and ATE,_j.

ATE(X,D)z—, = Z

T4, Ti41€D5

1
ATE(X,D)z—0 = m Z

a:t,ft+1€D2:0

(1)

Tt,7-1
(12)

T4, 7=0

The overall average treatment effect can be calculated as the
difference of ATEz_1 and ATE_,.

ATE(X,D,Z) = ATE(X,D)z-1 — ATE(X, D)z=o (13)
1 .
= D7 ﬂz Tez-1 Ix
Zt,Tt+1€Dz
1 .
~ Dol D diz-olx (14)

Ty, Z1+1€D5

The above equation can handle all three cases of dependency
we discussed earlier:

o Forcase 1, &y 71 |x# ¢,z=0 |x and ATE(X, D, Z)
reflects the influence Z has on #; | x

o For case 2, & z—1 |x= Z+,z—0 |x +c since z has no
influence on the difference between Z; |x and Z; + 1.
The change that remains is only the independent term c.

o For case 3, &t 7z-1 |x= &t z-0 |x since z has no
influence on the difference between 7y | x and Ty11 | x

B. Creating Prospective Patient Samples

Since we calculated the average treatment effect for the
input data and not the outcome directly, we can now estimate
how the input data changes when a treatment is performed
and how the input is expected to be at time point ¢ + 1 when

no treatment is performed. This estimated input is created by
directly adding the ATEs to &.

71 = E® (ATE(X,D)z_1|X € X)
70 =Z® (ATE(X,D)z_o|X € X)

15)
(16)

8

8

For each considered treatment in Z, the input vector Zz_
can be evaluated by making a prediction with my (Zz-1,Z =
1) (resp. my (Zz=1,p,Z = 1), my(Zz=1,1—p, Z = 1)) which
give respectively the prediction of the outcome of a treatment
according to the average effect of the treatment Z and the
outcomes with regard to the upper and the lower bounds of
the treatment effect.

C. Personalized Treatment Effect Prediction

We use a machine learning model that can be a regression
model or a classifier. This can be any model architecture and
must not necessarily be trained on the same training samples
that were used for the ATE inference. To identify the most
promising treatment for an output variable Y, the treatment or
treatment combination Z' that produces the highest predicted
score is selected, which can be defined and simplified as
follows since the value of my (Z, Z = 0) is always the same
and can be factored out. Assuming the goal is to increase
the value of some target variable Y (e.g. quality of life), the
proposed treatment is determined by

argmax .z my (fz=1,Z =1) —my (¥, Z = 0)

= argmaxy.z my(¥z-1,2Z = 1) (17)

Based on this, we can predict the individual best treatment
effect as follows:

ITE(Y, #) = CATE* (Y, argmax .z my (£z-1,2 = 1),7)
(18)

If the output value shall be minimized, the lowest value is
selected, i.e.

argming.z my (Zz-1,2Z = 1) (19)

Discussion. The proposed approach has been developed to
assess the average effect of a single treatment and used it
for personalized suggestions of the best treatments. However,
the approach can also be used to assess the effect of combina-
tions of treatments in an analogous way and thus supporting
the selection of the best combinations of treatments. This
is extremely valuable in the medical application domain of
our project and, to our knowledge, extremely difficult if not
infeasible due to low training data samples with classical
methods.

D. Adaptation to Federated Learning

The approach was developed specifically to be used in a
privacy-preserving environment. Here we assume we have a
cluster of federated learning participants which we call edge
nodes. Also, there is one instance that functions as cloud.
The cloud coordinates the federated learning process and
distributes information across the edge nodes. Each edge node
communicates with the cloud, but never directly with other
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edge node. Therefore, the system has a star topology. Any
training data or samples used for predictions is located in
one of the edge nodes and is never sent to the cloud nor is
available for other edge nodes. It is assumed that the training
data is horizontally distributed without duplicates on multiple
edge nodes. Therefore, every edge node has a dataset with the
same variables, but different samples. However, the approach
in the following for horizontally distributed data should also
be easily adaptable to vertically partitioned data.

To make knowledge about the average treatment effect
available to all edge nodes, it is collected and aggregated in
the cloud. Because averaging the individual treatment effects
of the matched cohort pairs is linear, it is easy to combine
them in the cloud with minimal loss compared to having all
training stored in one instance.

We assume that we have the ATE of k edge nodes {1, ..., k}
with ATE(X,Z); being the ATE of variable X after per-
forming treatment Z, determined by the [-th edge node. Let
n; be the number of samples in a dataset of edge node I.
We then define the overall combined ATEs called global ATE
(ATE g0pq:) of all edge nodes be their weighted average:

1
Zl:l...k n 1=1...k

The global variance of the treatment effects is more difficult to
estimate. Given that the mean value of the normal distribution
is roughly the same for every edge node, the variance can be
averaged as well:

ATEgiopat(X, Z) = n; - ATE(X, Z) (20)

1
Zl:l...k L 1=1...k

Every time a dataset on an edge node is updated, the ATEs
for that dataset are calculated again and stored locally as well
as updated in the cloud. Once an ATE is updated, the global
ATE is calculated by the cloud. In parallel to the updating of
the ATEs, any predictive models might be updated as well.
When a prediction is requested in one of the edge nodes, the
global ATE is requested from the cloud and used to create
hypothetical samples like described in section and used
for predictions as described in section [[V-C]

VTIEgopai (X, Z) = n;-VIE(X, Z); (21)

V. EVALUATION AND EXPERIMENTS

We evaluate our approach using three testing scenarios. The
first scenario (ORB) is based on cancer patient dataset of our
project. The second scenario uses simulated data from the
ACIC 2016 challenge [14]. These two scenarios rely on cohort
matching since the predictors are not available at multiple time
points, i.e. the data is not sequential. For the third scenario
we will use a synthetic dataset with sequential data. Here, all
predictors, interventions and target variables are available for
each time point. For the ORB dataset, there is no ground truth
available, since each patient is only either part of the treatment
group or the control group. We therefore only compare the
ATE between estimating the ATE directly with Mahalanobis
distance matching and averaging all CATE of our approach to
get an overall ATE. For each dataset D, a model is trained
based on all available predictors of that dataset. The effect of

:Edge

prediction request

request global ATE, VTE ‘L

A 4

return global ATE, VTE

encrypted synthetic sample

\4

return encrypted prediction

return encrypted prediction

=
'
'
'
'
'
'
'

Figure 1. Sequence chart of prediction process with homomorphically
encrypted models

Table T
OVERVIEW DATASETS CREATED FROM THE ORB DATASET

Model name Predictors until month QoL at month Number of samples

ORB-30-36 30 36 1138
ORB-30-60 30 60 1042
ORB-30-120 30 120 610
ORB-54-60 54 60 1042
ORB-54-120 54 120 610
ORB-108-120 108 120 610

a treatment Z on a feature variable X (ie. f(X,Z = 1)) is
determined by Mahalanobis distance matching:

1
VZ e Z: ATEuuic(Y. Z) = D, Yz=1—Yz=0

|P| Yz=1,Y2=0€P
(22)
1
VZ € Z: ATEne (Y, Z) = Dl DI CATEY(Y,Z,%) (23)
zeD

a) ORB dataset: For this patient dataset Quality of Life
of prostate cancer patients of the patient was collected using
the LISAT-11 questionnaire [[13] 36 months, 60 months and
120 months after the diagnosis. At baseline, 55 variables were
collected. After that, every 6 months the lower urinary tract
symptoms (LUTS), and the presence of bowel dysfunctions
and erectile functions were reported by the patient. We cre-
ated six datasets with the predictors and targets and trained
respective models as show in Table[[} Each model contains five
treatments at baseline: Brachytherapy, Postoperative radiother-
apy, External radiotherapy, Anti-androgen, GnRH-analogue
and Hormonal therapy.

The results in Table [[I] show that our approach computes
results in the same order of magnitude as an established
method and that it can handle multiple datasets at once.

VI. SYNTHETIC SEQUENTIAL DATASET

The synthetic sequential dataset mimics the structure of the
original dataset of the ASCAPE project but is not privacy-
sensitive. We create a dataset that contains n samples with
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Table II
COMPARISON OF THE DETERMINED ATE BETWEEN OUR APPROACH
("NEW”) AND USING COHORT MATCHING DIRECTLY (”CLASSIC”)

D Ext. radi Anti-and GnRH-anal Hormonal therapy
new classic  new classic  new classic  new classic  new classic
QoL 30-60m  1.59 2037 342 337 238 341 097 201 287 330
QoL 30-36m  -0.15  -135  -2.68 352 -192 292  -L19  -167 220  -3.13
QoL 30-120m  0.79 033 254 669 0.00 079 -054 428 052 294
QoL 54-60m  -0.03  -012 318 378  -187 314  -080  -137 192 295
QoL 54-120m 1.6 181 -462 676 0.3 2130 -057 419 027 262

QoL 108-120m  1.42 2.90 -5.28 -7.92 -0.17 -1.39 -1.37 -5.56 -0.99 2,77

0.0 -

-0.5-

-1.0-

-1.5-
w
'& 2.0 ATE_method
' HE new
B classic

-25-

-3.0-

-3.5-

brach\l‘her‘?\t{a\ radiot er‘;a?'c\il\"dm%ar‘\‘?\\‘\—a"‘a\ﬁg\?‘rre\ona\ theray
ex

Figure 2. ATE for the ORB QoL 30-36m dataset determined by our approach
("new”) compared to Mahalanobis distance matching (’classic”)

p = 196 predictors, ¢ = 18 interventions, and [ = 22
target variables before and after an intervention took place.
Let 2y ~ N(0,1) be a sample before an intervention took
effect. Also, a matrix ATEs € RP*" with random values from
a uniform distribution ATEs ~ Ufgoff] is generated that assigns
an ATE for every intervention to every predictor. A random
intervention Z = z is drawn from the set of interventions and
the predictors @y, 1 are calculated as the sum of the predictors
Zy and ATE(X, Z). Ground truth target values are inferred
with a randomly initialized linear kernel K ~ N(0,1)?,
simulating the stochastic relation between the predictors and
the target.

Yir1 = Teg1 - K (24)

The predictors, interventions and target values are saved into
a dataset with n = 200 samples. The ATEs and the kernel
parameters remain unknown in the training process.

Models are then trained to predict the target variables based
on the predictors of the same time point using the training
pipeline and automatic model selection developed by Savié et
al.[13]. Also, the ATFE(X, Z) is estimated for all z € Z. For
all interventions and all target variables (396 total results),
the mean squared error of the individual treatment effects
becomes 0, as well as a mean squared error of 0.0 for the
targets after the interventions itself. This result is of course
only achievable for a dataset where all variance in the labels
is only dependent on the predictors. When adding a noise
parameter e to the dataset the mean average error for the ATE

increases linearly to e. However, it proves the capability of our
approach that splitting causal inference is still solvable with
machine learning. Both the ATEs and the kernel K were fully
reconstructed in the training process.

VII. IMPROVE EXPLANATION OF TREATMENT
PREDICTION EFFECTS

A key advantage of our approach is that it can also serve to
improve explainability. In many cases of causal inference, the
predictors are measurements of real, factual data, while the
output is often more abstract, like risk estimations, customer
satisfaction etc. The outcome is not directly dependent on the
treatment, but rather on the predictors and only the predictors
are stochastically dependent on the treatment. Predicting the
outcome depending on a treatment is therefore legitimate,
but by not assessing what the treatment directly changes, the
inference is less intuitive for a user.

As an example, consider an elderly patient who fills out a
QoL questionnaire and states that he has problems living a
normal life due to limited physical abilities. Instead of using
a model that proposes a nutritional consultation directly with
a confidence score of 95%, the average treatment effect on
the patient’s health status is determined. It states that the
patient’s weight is expected to decrease by 8 kg when receiving
nutritional consultation. A ML model predicting the score
for a patient’s mobility score predicts a significantly better
score when the patient’s weight is reduced by 8 kg. After
consultation, the patient might state that he will try to lose
at least 5 kg of weight. The doctor can examine using the
ML model that even losing 5 kg is enough to expect a better
QoL. This approach is more interactive and gives the users
more information about why a certain treatment is proposed,
increasing its interpretability and the user’s trust in the system.

VIII. INTEGRATION IN A HEALTHCARE ENVIRONMENT

To use our approach in our cancer-patient related project,
a preparation of the dataset D is required. First, the dataset
needs to be partitioned into the subsets X', Z, and ). X’ can
consist of any type of variables, i.e. nominal data, or numeric.
Dates are made numeric by transforming them to days relative
to a fixed date, e.g. date of birth. Z solely consists of binary
variables. 1 indicates that a treatment was done and 0O that it
was not. While most ML models support multiple outputs, we
train a dedicated model for every Y e ). This way, ) can
be a mix of binary, nominal and numeric variables. Not all
variables that resemble a treatment must be in Z. Treatments
that shall not be proposed can simply be assigned to X and
be used as predictors.

IX. CONCLUSION

We presented a new approach to using average treatment
effects to predict their effect on input variables and using a
given predictive model like neural networks. We combined
three desirable characteristics: We induce a causal relationship
between a treatment and predictor variables, we provide an
intermediate result that can easily be examined by users,
and we can still make use of strong predictive capabilities
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of the machine learning model. It was also shown that this
approach can be adapted with little effort to other increasingly
relevant applications in Al such as federated learning. The
approach has been evaluated by applying it on available on
data, where no ground truth on the treatment effect was
available, but where it exhibits plausible results compared to
the classical average treatment effect measurement method. A
clear advantage of the presented approach is that it can be
used with any available predictive model, needs no training
of specific models and especially not only allows to consider
the effect of a single treatment, but also the effect of the
combination of several treatments.

We see further research potential in the development of
a better approximation of the average treatment effects. The
concept of meta learners providing heterogeneous treatment
effect estimations potentially increases the accuracy and allows
processing more complex data such as time-series. However,
for usage in a federated environment, the meta learners would
need to be trained in a federated manner as well, which might
introduce further challenges.
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