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Abstract—Human-in-the-loop approaches are of great im-
portance for robot applications. In the presented study, we
implemented a multimodal human-robot interaction (HRI)
scenario, in which a simulated robot communicates with its
human partner through speech and gestures. The robot an-
nounces its intention verbally and selects the appropriate action
using pointing gestures. The human partner, in turn, evaluates
whether the robot’s verbal announcement (intention) matches
the action (pointing gesture) chosen by the robot. For cases
where the verbal announcement of the robot does not match
the corresponding action choice of the robot, we expect error-
related potentials (ErrPs) in the human electroencephalogram
(EEG). These intrinsic evaluations of robot actions by humans,
evident in the EEG, were recorded in real time, continuously
segmented online and classified asynchronously. For feature
selection, we propose an approach that allows the combina-
tions of forward and backward sliding windows to train a
classifier. We achieved an average classification performance
of 91% across 9 subjects. As expected, we also observed a
relatively high variability between the subjects. In the future,
the proposed feature selection approach will be extended to
allow for customization of feature selection. To this end, the best
combinations of forward and backward sliding windows will be
automatically selected to account for inter-subject variability
in classification performance. In addition, we plan to use the
intrinsic human error evaluation evident in the error case
by the ErrP in interactive reinforcement learning to improve
multimodal human-robot interaction.

Index Terms—Multimodal human-robot interaction, brain-
computer interfaces, EEG, error-related potentials, intrinsic
human error evaluation

I. INTRODUCTION

Electroencephalogram (EEG)-based BCIs have been well
studied in various application and research areas, e.g., re-
habilitation, neural engineering, robotics, etc. In particular,
multimodal interfaces that leverage intrinsic human feedback
play a crucial role in improving human-robot interactions
(HRI) by optimizing HRI to better interpret and thus under-
stand the intentions of communication partners (see for re-
view [1]). In fact, the rate of movement intentions/predictions
was improved by using multimodal interfaces, which use
a combination of different modalities including EEG, com-
pared to unimodal interfaces (e.g. EEG as the only modal-
ity) [2].

In addition, EEG can be used to provide intrinsic feed-
back about the correctness of a behavior or interaction.
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Error-related potentials (ErrPs) are well-known EEG com-
ponents [3]–[11] and research on ErrP-based BCIs has been
established in various application areas (see for review [12]).
In particular, ErrPs are very useful in robotics and are also
well evaluated in the context of human-robot (machine)
interaction (e.g., [13]–[15]). For example, ErrP-based BCIs
were used to detect errors, and these error detections were
used to correct incorrect actions of the robot without learning
(e.g., [16]). The ErrP-based error detection was also used
to learn behavior strategies and optimize control policy
(e.g., [13], [17]). On the one hand ErrPs were used in the
context of rehabilitation, in which the control policy was
optimized based on ErrP classification outputs to learn the
position of a robotic arm [17]. On the other hand, ErrP-based
human feedback has been used for interactive reinforcement
learning in robotics. Here, ErrPs were triggered during intrin-
sic error assessment in humans when different types of errors,
i.e. deviations from expectation or internal models, occur and
are recognized as such. This intrinsic error evaluation (ErrPs)
was used for learning of human gestures in the context of
human-robot interaction. In such an approach, the results of
the online ErrP classification were directly used for online
learning of the control strategy of a real robot [13].

In fact, intrinsic implicit human feedback is very advan-
tageous, since the pre-configuration of evaluation criteria
(e.g., for reward shaping) does otherwise require expert
knowledge. Reward shaping is especially complicated for
complex tasks or in high-dimensional workspaces. Further,
ErrP-based intrinsic human feedback contains not only se-
mantic evaluation (cf. N400 [18]) but also reflects subtle
inconsistency (unusual situations) or subjective preference
(see for review [12]).

However, ErrP-based BCIs or the use of ErrP-based human
feedback for robot learning is challenging because the timing
of the detection of unusual or incorrect actions is generally
unknown. ErrP detection is similarly demanding as P300
detection (synchronous classification), provided the time of a
possible error is narrowly defined or the duration of the stim-
ulus to be evaluated is very short [19]. However, continuous
ErrP detections are necessary when the task duration is long
(e.g. continuous complex behavior of robots). Continuous
detection of event-related potentials (ERP) have been inves-
tigated in movement prediction (e.g., [2], [20], [21]) and also
in ErrP-based BCIs (e.g., [22]), in which sliding windows
were used to continuously detect ERPs, e.g., motor-related
cortical potentials (MRCPs) including lateralized readiness
potential (LRP) or ErrPs.

Continuous ErrP detection requires asynchronous classi-
fications. It is challenging to achieve a high classification
performance. We propose a feature selection approach that
uses forward and backward sliding windows. These were
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combined in our study to find the best combination of
forward and backward sliding windows to achieve optimal
classification performance for continuous ErrP detections. In
this study, we show that continuous ErrP detections in mul-
timodal human-robot interaction, where the simulated robot
communicates with the human partner through speech and
gestures, is possible with good classification performance. It
should be noted that we have continuously detected ErrPs on-
line, but we have not yet shown a concrete use case of online
classification results in this study, such as using ErrPs as a
signal of intrinsic human evaluation of erroneous behaviour
for robot learning or for simply correcting erroneous actions
of the robot without learning. This will be future work.

II. METHODS

A. Experimental setup

In the project TransFIT (for details, see
https://robotik.dfki-bremen.de/en/research/projects/transfit/),
a simulated scenario was developed for the assembly and
installation of infrastructure for space applications in the
context of human-robot collaboration. Based on this scenario
in a lunar environment, we have set up our experimental
scenario consisting of a base camp, a workbench, solar
panels, etc. In addition, we used a simulation of our newly
developed humanoid robot called RH5 Manus [23].

In our scenario shown in Figure 1, the simulated RH5
Manus is able to give verbal information about intended
behaviour. It can also point to objects in the simulation.
In our experiments, RH5 Manus first verbally announces
which object he will point to next, and then performs the
action either correctly or incorrectly by pointing to different
objects. If the mapping between the verbal announcements
and the corresponding pointing gestures is incorrect, we
expect error-related potentials (ErrPs) to be elicited in the
subject’s brain and measured in the EEG. In the simulation,
three different objects were available on the workbench: a
spanner, a screwdriver and a hammer.

Figure 2-A shows our experimental design. In the experi-
ments, we defined episodes, each lasting from the beginning
of the robot’s verbal announcement until the end of the
robot’s action (see Fig. 2-A). Each action of the robot
consists of a movement of the arm in the direction of the
workbench (here called movement) and a subsequent gesture
lasting approximately 1 second (here called gesture) indi-
cated by the change in finger configuration. We have divided
all episodes into two different types: correct and incorrect
episodes. Both labels (correct and incorrect episodes) were
used to train an ErrP decoder (supervised learning) and
later to validate the test data (ground truth). We did not
expect ErrPs to occur in correct episodes, while ErrPs were
expected in wrong episodes. In addition, the beginning of the
robot’s actions (directional movements to point at an object)
and the beginning of the robot’s gestures (change of finger
configuration in the robot hand for a pointing gesture) were
used as temporal reference points (see Fig. 2-B), which were
continuously sent as markers to the EEG recording system.
In addition, the beginning of the episode (i.e. the beginning
of the verbal announcement) was written into the EEG as
another marker.

Fig. 1. Scenario: The simulated robot named RH5 Manus verbally an-
nounces which tool it intends to select and then performs a corresponding
pointing action. The human partner in turn evaluates whether the robot’s
verbal announcement matches the robot’s action. For example, if the robot
verbally announces that the hammer will be selected and then points to the
hammer, the robot’s action is correct. In this case, we do not expect any
error-related potentials. However, if the robot’s verbal announcement does
not match the robot’s expected matching action, ErrPs will be evoked during
the execution of the robot’s pointing gesture.

Figure 2-B shows our approach of feature selec-
tion/extraction using forward and backward sliding windows.
In our scenario, we do not know the exact moment when
the subject realizes that the robot’s actions may or may not
be correct. Therefore, we detect ErrPs asynchronously. Two
points in time are relevant for the detection of ErrPs: the
beginning of the robot’s actions (directional movements) and
the beginning of pointing gestures (indicated by the change
in finger configuration). First, the subject recognizes the
robot’s direction of movement and may tend to guess which
tool the robot might select early after the start of an action
(directional movements). However, the subject cannot be ab-
solutely sure that the robot’s action is correct until the robot
performs a pointing gesture (second time point). Therefore,
we defined two temporal reference points (see Fig. 2): (a)
directional movements towards one of the objects (3s-8s after
verbal announcement) and (b) pointing gestures towards the
selected object (8s-9s after verbal announcement) to frame
the time period during which the subject makes a decision
about the correctness of the robot’s action. For training an
ErrP decoder, we used these two temporal reference points
for feature selection and extraction. As shown in Figure 2-B,
on the one hand, we continuously segmented the EEGs from
the onset of the robot actions (i.e. forward windowing). On
the other hand, we continuously segmented from the onset of
the robot’s gestures in the reverse direction (i.e., backward
windowing). In this way, features are extracted using forward
and backward sliding windows (for details, see section II-C).

B. Dataset

Nine subjects (2 females, 7 males, age: 25.5 ± 3.02
years, right-handed, normal or corrected-to normal vision)
participated in this study. The experimental protocols were
approved by the ethics committee of the University of
Bremen. Written informed consent was obtained from all
participants.

For each subject we recorded 9 data sets. For one of
the subjects, only 8 datasets were recorded. Each dataset



Fig. 2. Experiment design. (A) Episode: An episode begins with the
start of the robot’s verbal announcement and ends with the return to the
initial position. (B) Concept of forward and backward sliding windows
used for training a classifier: Features are extracted from the time period
between the onset of movement and the onset of gesture using forward
and backward sliding windows. Note that we divided the robot’s action
into different phases (directional movements and gesture movements), but
the robot performs a continuous action to point to one of three objects.
(C) Feature selection during training for correct and incorrect episodes and
during continuous testing. Evaluation is based on the marked time period.

contained 36 correct and 18 wrong episodes. In total, we
recorded 324 correct episodes and 162 wrong episodes for
each subject except for one subject. Since we only had 8
complete data sets for all 9 subjects, 7 data sets were used
to train an ErrP decoder and one dataset was used for testing
to allow a fair comparison between subjects.

C. EEG recording, preprocessing and classification

EEGs were continuously recorded using a 64-channel eego
mylab system (ANT Neuro GmbH), in which 64 electrodes
were arranged in accordance to an extended 10-20 system
with reference at electrode CPz. Impedance was kept below
10 kΩ. EEG signals were sampled at 2 kHz amplified by one
64 channel amplifiers (ANT Neuro GmbH).

Figure 3 shows the data flow for EEG analysis. The
EEG data were analyzed using a Python-based framework
for signal processing and classification [26]. The continuous
EEG signal was segmented into epochs from 0 s to 0.9 s
after the start of the robot’s action with the overlap of 0.05 s

Fig. 3. EEG preprocessing and classification: EEGs were segmented,
normalized, decimated, and bandpass filtered. A spatial filter called
xDAWN [24] was applied to enhance the signal-to-noise ratio and to
reduce the dimensionality. Features were extracted from seven pseudo
channels. Details of feature selection and extraction are shown in Fig. 2.
The online passive-aggressive algorithms variant 1 (PA1) [25] was used for
classification.

(sliding windows). All epochs were normalized to zero mean
for each channel, decimated to 50 Hz, and band pass filtered
(0.5 to 10 Hz). The xDAWN spatial filter [24] was used to
enhance the signal to signal-plus-noise ratio and 7 pseudo
channels were retained after spatial filtering.

For feature selection and extraction, we divided the robot’s
action into different phases (directional movements and ges-
ture movements). However, we would like to point out that
the robot performs a continuous action to point at one of
the three objects. As mentioned earlier, the human observer
can recognize the direction of movement and guess the
robot’s choice at the beginning of the robot’s action (di-
rectional movements). However, the human observer cannot
be absolutely sure that the robot’s actions are correct until
the robot performs a pointing gesture (gesture movements).
Two temporal reference points were relevant for feature
selection and extraction: The onset of the robot’s action
(i.e., the onset of directional movements) and the onset of
gesture movements (see Fig. 2-B). Accordingly, we extracted
features using forward and backward windowing based on
the two temporal reference points (see Fig. 2-B).

Different strategies of feature selection and extraction were
used depending on the episode type after a systematic inves-
tigation of different combinations of sliding windows across
both types of episodes for each subject. We found different
optimal time periods and different optimal combinations of
forward and backward sliding windows for feature selection
and extraction depending on the individual subject. However,
to allow a fair comparison between subjects, we decided to
choose the same time period for all subjects. Therefore, we
used the same sliding windows and the same combinations
of forward and backward sliding windows for all subjects to
train a classifier.

The final selected time period for correct and incorrect
episodes as follows. For incorrect episodes, four windows
of 0.9s in length were used, ending at 0s, −0.05s, −0.1s



and −0.15s with respect to the beginning of the gesture
movement (the second temporal reference point). That is,
four windows were segmented from the beginning of the
gesture movements in the reverse direction. In addition, two
windows were used with a length of 0.9s from 2s and 2.5s
with respect to the beginning of the directional movement
(the first temporal reference point). For correct episodes,
four windows of 0.9s length were likewise used, ending
at 0s, −0.05s, −0.1s and −0.15s with respect to the onset
of gesture movement (the second temporal reference point).
However, we did not use the windows that can be segmented
from the first temporal reference point (the beginning of the
directional movement).

For testing, ErrPs are continuously detected every 0.05s
with a window length of 0.9s from the start of the robot
action. This means that ErrPs were continuously detected in
the time period between the start of the robot’s action and
the end of the robot’s pointing gesture. For evaluation, we
used the time period between 6s and 8s after the start of
the episode (i.e., from 3s to 5s after the movement onset) as
the ground truth (see Fig. 2-C). This means that the sliding
windows that end in this time period were used to evaluate
the trained classifier. During this time period, we can ensure
that the robot’s arm position is unambiguous for the subjects’
evaluation.

The features were normalized and used to train a classifier.
The online passive aggressive algorithm variant 1 (PA1) [25]
was used as classifier. The cost parameter of the PA1 was
optimized using a grid search, in which an internal stratified
5 fold cross validation was performed on the training data
(7 training datasets) and the best value of [100, 10−1, ...
, 10−6] was selected. The performance metric used was
balanced accuracy (bACC), which is an arithmetic mean of
true positive rate (TPR) and true negative rate (TNR).

III. RESULTS AND DISCUSSION

Table I shows the classification performance for each
subject. We achieved an average classification performance
of 91% across all subjects. However, we found a high
variability between subjects.

TABLE I
CLASSIFICATION PERFORMANCE

subjects balanced accuracy (bACC)a

subject 1 0.89
subject 2 0.94
subject 3 0.97
subject 4 0.83
subject 5 0.94
subject 6 0.92
subject 7 0.97
subject 8 0.90
subject 9 0.80

mean and standard deviation 0.91±0.06
a bACC = (TPR+TNR)/2

The inter-subject variability is not surprising, as subjects
have different strategies to evaluate the continuous actions
of the robot. The duration of the task was not short (5s from
the beginning of the robot action to the start of the robot

pointing gestures). Therefore, we assume that each subject
evaluates the correctness of the robot’s choice of action at
different points in time. One can estimate the direction of the
robot’s movement immediately after the robot starts moving
and focus less on the robot’s pointing gestures. In this case,
the pointing gestures can even be overlooked unintentionally.
Another person may focus only on the robot’s pointing
gestures. Of course, some subjects also focus on the overall
action of the robot. In particular, jerky movements of the
robot can affect the accuracy of the correct estimation of
the robot’s direction of movement. In fact, some subjects
reported that jerky movements affect the estimation of the
robot’s direction of movement. Furthermore, the evaluation
by the subject can be changed during the execution of the
action by the robot. For example, the robot’s action may
initially be evaluated as a correct action after the direction
of the arm movement has been detected, but this evaluation
may be changed with the execution of the pointing gesture.

For this reason, we proposed an approach using forward
and backward sliding windows and their combinations. Nev-
ertheless, we did not achieve high classification performance
for some subjects. The reason for this could be that we used
the same combination of forward and backward sliding win-
dows for all subjects. As mentioned earlier, we investigated
different combinations of sliding windows across both types
of episodes for each subject. We found different optimal time
periods and the different optimal combinations of forward
and backward sliding windows across both episode types for
each subject. On the one hand, this means that the optimal
time periods relevant for recognizing the correct actions
differ from subject to subject. On the other hand, the optimal
time periods that are relevant for detecting the wrong actions
also vary from subject to subject. Furthermore, the combi-
nation of the optimal time periods for correct and incorrect
actions also varies between subjects. We nevertheless chose
to apply the same combination of forward and backward
sliding windows to all subjects to allow a fair comparison
between subjects.

Therefore, in the future, it makes sense to extend the
proposed approach of forward and backward sliding windows
and their combinations with an individual adjustment of
feature selection so that high inter-subject variability in clas-
sification performance is avoided. With such an individual
adjustment of feature selection, classification performance
can be improved if we identify the best feature combinations
for each subject. However, such investigations are time-
consuming. Therefore, developing an automatic selection of
best combinations to customize the feature selection is useful.
In the future, it is useful to extend the proposed approach
of feature selection using forward and backward sliding
windows and their combinations for individual adaptions of
feature selection, in which the best individual combinations
are automatically computed depending on different context,
e.g., different scenarios and different situations.

Furthermore, although we continuously detected ErrPs
online, we did not use the results of online classification for
intrinsic online corrections of the robot’s erroneous actions or
for robot learning (e.g., optimizing learning strategies based
on ErrP-based human feedback) in this scenario, such as in
our previous studies [13]–[15]. In this previous work, we



have used ErrP-based human feedback online for intrinsic
interactive reinforcement learning in real human-robot inter-
action to optimize the robot’s learning strategy in real time,
but ErrPs did not need to be classified asynchronously due
to the short task duration of the robot. Therefore, in a next
step, we plan to use ErrP-based human error evaluation for
intrinsic interactive reinforcement learning, where continuous
ErrP detections are necessary during continuous and long-
lasting task execution of a robot (e.g. continuous complex
robot behavior) and we therefore expect e.g., more than one
type of error during the execution of a task.
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Metzen, E. A. Kirchner, and F. Kirchner, “pySPACE - a signal
processing and classification environment in Python,” Frontiers in
Neuroinformatics, vol. 7, p. 40, 2013.


	I Introduction
	II Methods
	II-A Experimental setup
	II-B Dataset
	II-C EEG recording, preprocessing and classification

	III Results and Discussion
	References

