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Abstract. The worldwide energy-crisis, in particular current gas short-
ages, pose a critical risk for the energy-intensive process industry. Rising
costs for gas lead to an intensified usage of power (e.g. for heating) in
industry and private households that network operators are not pre-
pared for. Weather-dependent energy-sources (e.g. windparks, solar pan-
els) lead to additional fluctuations within the power grid, especially in
autumn and winter seasons with potential storms and less sun hours.
In worst case a simultaneous and prolonged loss of gas supply and elec-
tricity will lead to network bottlenecks, or complete network shutdowns
- blackouts. For manufacturers, power outages thereby lead to severe
consequences (i.e. waste, broken machines, additional costs), with only
limited options to prevent them. Within this paper we highlight the im-
plementation of POWOP, a weather-based service for POWer Outage
Prediction that increases the resilience within the German process in-
dustry by an early forecast for the next 7 days including possible action
recommendations. Our publicly available web-application was evaluated
for 15 locations of paper manufacturers in the German region Bavaria
and will be demonstrated within a screencast.

Keywords: Energy-driven crisis, Outage prediction, Weather, Process
industry, Scenario Pattern, Service, Demo

1 Introduction

Hardly any topic is currently discussed as much as the worldwide energy crisis,
in particular the restricted gas supply [I]. Widespread power outages as poten-
tial consequence pose a critical issue, specifically in the energy-intensive process
industry, e.g. glass and paper production or chemical industry. Minimal fluc-
tuations in the power grid below 49.8 and over 50.2 Hertz can already lead to
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serious effects due to uncontrolled shutdowns of frequency sensitive machines [2].
Ultimately this means that within automated processes chemical reactions are
interrupted spontaneously, tons of waste are produced and machine parts can
break resulting in high repair costs and personnel expenses for manufacturers
[2, B, []. In case of gas shortages and a related increase in costs, industry as well
as private households will switch to alternative methods such as power in order to
heat, for their energy supply of machines etc. As distribution network operators
and their networks are not prepared for such a setting, this will lead to network
bottlenecks, voltage drops due to load shortages as well as network shutdowns
[5, 6 [7]. What contributes to this situation and causes additional fluctuations
within the grid, is the increased usage of weather-dependent energy-sources to
generate power [8] in order to balance the occurring gas shortage. Wind tur-
bines and solar panels can thereby increase instability within power grids [9, [10]
as they produce power inconsistently based on current weather conditions (e.g.
storms, sun hours). One example for this can be seen within the German region
Bavaria, as they increasingly depend on installed solar systems that do not pro-
duce enough energy in the winter season [11]. Worst case will be a simultaneous
and prolonged loss of electricity and gas supply - a blackout. Although such
power outages and grid fluctuations pose a well known issue and current threat,
there are not many measures to prevent them. For manufacturers these include
the acquisition of expensive proprietary power plants or speculative measures
like an implicit gut feeling based on expertise [12) [I3]. Network operators on
the other hand focus on dispatch and re-dispatch measures to balance occurring
fluctuations in the grid 2], [I1]. In order to enable early preventive actions to
outages and fluctuations based on weather changes especially in the upcoming
autumn and winter season, a prediction of potential events is needed.

Authors of previous research already address weather-related outage predic-
tion focusing on predictive analytic methods for outages caused by extratropical
storms[I4], logistic regression or decision trees [I5], graph neural networks [16]
and regression trees [I7]. Orsato et al. developed a tool for anticipating energy
disruptions based on climate changes [I8]. In contrast, the authors of [19} [20]
focus on simulated storm data, while calling out for contextual crisis descrip-
tions of outage events. In addition to missing context, these papers do not focus
on presenting their predictions within a demonstration of an intuitive service
that also gives action recommendations for the actual user. Based on this gap,
we formerly developed AISOP [2] — a model for Al-based scenario planning in
the prediction and description of crisis situations. AISOP addresses crisis events
(e.g. outages) within four steps: (1) Learning, (2) anticipating, (3) monitoring
and (4) responding to a crisis. Initially, semantically enhanced Scenario Patterns
are filled based on historical data describing crisis scenarios [2]. The description
includes contextual information of a crisis, reason, impact and location, involved
actors, measures, resources involved within these measures, the data source and
interlinked historical events [2]. By using predictive analytic methods onto his-
torical datasets, a forecasting model is generated and applied on current data to
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make a prediction. The predicted outage events are mapped onto the Scenario
Pattern structure and given as result to the user [2].

By using AISOP [2] as basis, we implemented POWOP as a service for
POWer Outage Prediction that enables decision makers to anticipate outages
early, to receive contextual information about the crisis event and recommenda-
tions to react accordingly. An exemplary application and demonstration of the
service will be explained within a screencast. POWOP was implemented as a
web application and will be provided as publicly available open source code, in
order to increase manufacturer’s resilience within the upcoming seasons.

2 POWOP Service Implementation

By enhancing the presented PoC within [2], we implemented an intuitive user
service for manufacturers within the energy-intensive process industry. Our ser-
vice architecture consists of 3 levels (cf. Fig. : A Data Repository for data
allocation, a logic level for generating Scenario Patterns & state-of-the-art
Machine Learning application and a User Interface for presenting the re-
sults to the user.
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Fig. 1: Technical architecture of POWOP
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2.1 Data Repository

The Data Repository collects three datasets from different sources to train and
test our framework: The Outage dataset contains location-specific information on
power outages (e.g. date, time, duration, city, reason, planned /unplanned occur-
rence) collected from the German Federal Network Agencyﬂ while the Weather
dataset includes weather characteristics (e.g. windspeed, wingust, temperature,
rain, thunder) obtained from the NCEI databaS{P]. Both datasets collect in-
formation for the period 2012-2020. In addition to these datasets User input
on actors that react onto an outage event, measures that should be taken and
resources to be used were collected.

2.2 Scenario Patterns

Furthermore, we implemented Scenario Patterns within a semantic descrip-
tion using JSON-LD as format. Semantic web standards such as the vocabular-
ies schema.orgEl7 DCM]El, DCA’[E and PROV Ontologyﬂ were applied (cf. Fig.
. Respectively historical information from the collected datasets were filled
into the Scenario Pattern’s structure as historical crisis scenarios via a simple
mapping of the included data features. By using the JSON-LD format and by
registering related events within the history entity [2], the resulting descriptions
form a network that can further be transferred into a knowledge graph by using
a knowledge graph database such as Neo4jE| and Cypher scripﬂ

Shttps:/ /www.bundesnetzagentur.de/DE /Fachthemen /ElektrizitaetundGas/
Versorgungssicherheit / Versorgungsunterbrechungen/Auswertung _Strom/start.html

Thttps://www.noaa.gov,/

8https: //schema.org/

http://purl.org/dc/terms/

Ohttps: //www.w3.org/ns/dcat

Yhttps:/ /www.w3.org/TR/2013/REC-prov-o0-20130430,/

2https: //neodj.com/

3https://neodj.com/labs/apoc/4.3/cypher-execution


https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Versorgungssicherheit/Versorgungsunterbrechungen/Auswertung_Strom/start.html
https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Versorgungssicherheit/Versorgungsunterbrechungen/Auswertung_Strom/start.html
https://www.noaa.gov/
https://schema.org/
http://purl.org/dc/terms/
https://www.w3.org/ns/dcat
https://www.w3.org/TR/2013/REC-prov-o-20130430/
https://neo4j.com/
https://neo4j.com/labs/apoc/4.3/cypher-execution/
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Fig.2: JSON-LD Instance of a filled Scenario Pattern

2.3 Machine Learning

Within the Machine Learning component, we first prepared our datasets for
further use and merged weather and outage data respectively by their date. In
doing so, we found a scarcity of occurring outages per city which led to an imbal-
anced situation [2]. In particular, only 2% of the data could be used effectively.
This percentage was further reduced to 1.5 % as more than one outage could
occur per city on each day. To cater this issue, we used a K-means clustering
approach to group nearby cities with similar weather behaviour into one cluster
and aggregated their outages, which increased the data quality to work with
[2]. In particular, given the set of n cities’ coordinates D = {x1,...,x,}, with
K = 19, K-means groups the cities into 19 clusters according to the distance
using latitude and longitude. Once the algorithm converges, the data records
for each cluster are aggregated and normalized to mitigate bias of high range
features. The final dataset contains features such as cluster-id, weather-station-
id, date and weather-related features while an outage is used as a binary label [2].

In order to train our forecasting model, the pre-processed dataset is split into
70% for training, 10% for validation and 20% for testing purposes. The training
set is used as input to our classification model, for which we use the state-of-
the-art gradient boosting algorithm XGBoost [21]. However, XGBoost has many
hyperparameters that need to be tuned which makes it infeasible to perform
a Grid-Search given the large hyperparameter space [2I]. Instead, OPTUNAE
was used as framework to perform automatic hyperparameter optimization.

“https://optuna.org/
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Furthermore, the forecasting model has been applied on real-time weather
information in order to predict outages for the next 7 days. A location selected
by a user within the User Interface is therefore used as input to the weather
API OpenMete that collects real-time weather information. These features
are then passed to the Machine Learning component, normalized and used as
input to XGBoost to get the prediction.

Our model was tested on 15 chosen locations of paper manufacturers within
Bavaria, Germany. Experimental results showed the effectiveness of our model in
capturing both outage and non-outage events, achieving a 81.2% overall accuracy
and 70% sensitivity, stating the correct identification of outages specifically [2].
The implementation of the Machine Learning component was realized in Python.

2.4 Graphical User Interface

After the user has selected a location for generating prediction results, a re-
gional forecast of power outages for the next 7 days is shown within a prediction
graph (cf. Fig. [3)). The position of each bubble on the graph depends on the pre-
dicted day and the probability of the actual occurrence of the predicted event
(confidence level). Potential outages are represented by red bubbles, while green
bubbles illustrate that there will be no outage on that day. Fig. [3| thereby shows
a potential outage for the city Raubling with a probability of 74%. The orange
line represents a threshold for the confidence level, meaning that events above
are more likely to occur. In case of a predicted outage, a filled Scenario Pat-
tern Instance is generated and integrated using Highchartﬂ in order to provide
potential decision makers with relevant information about the predicted event
(cf. Fig. . We used JavaScript for the implementation of the User Interface
component. A demonstration of the developed servic@ is presented within a
screencas

3 Conclusion

In this paper we described the development of the intuitive service POWOP for
weather-based outage prediction within the energy-intensive process industry
in Germany. The service allows potential decision makers to predict regional
power outages for the next 7 days. As databasis weather information and outage
data were collected in order to train a predictive analytics forecasting model.
Additionally, contextual insights and action recommendations were derived from
these datasets enriched by additional user input and mapped onto semantically

Shttps: //open-meteo.com /en

https://www.highcharts.com/

17The open source code of the service will be provided in case of acceptance of this
paper after the blind review

Bhttps://youtu.be/aRw6INgAqad
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Fig. 3: Outage prediction Fig.4: Scenario Pattern

enhanced Scenario Patterns. Our service was evaluated with values of 81.2% for
accuracy and 70% sensitivity for 15 locations of paper manufacturers in Bavaria
and demonstrated within a screencast.
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