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Abstract. Predictive modelling is one of the most important data min-
ing tasks, where data mining models are trained on data with ground
truth information and then applied to previously unseen data to predict
the ground truth of a target variable. Ensemble models are often used
for predictive modelling, since ensemble models tend to improve accu-
racy compared with standalone classification models. Although ensem-
ble models are very accurate, they are opaque and predictions derived
from these models are difficult to interpret by human analysts. How-
ever, explainability of classification models is needed in many critical
applications such as stock market analysis, credit risk evaluation, intru-
sion detection, etc. A recent development of the authors of this paper
is ReG-Rules, an ensemble learner that aims to extract a classification
(prediction) committee, which comprises the first rule from each base
classifier that fired. The rules are interpretable by humans, thus ReG-
Rules is a step towards explainable ensemble classification. Since there
is a set of matching rules presented to the human analyst for each pre-
diction, there are still numerous rules that need to be considered for
explaining the model to the human analyst. This paper introduces an
extension of ReG-Rules termed Consolidated Rules Construction (CRC).
CRC merges individual base classification models into a single rule set,
that is then applied for each prediction. Only one rule is presented to the
human analyst per prediction. Therefore, CRC is more explainable than
ReG-Rules. Empirical evaluation also shows that CRC is competitive
with ReG-Rules with respect to various performance measures.

Keywords: Ensemble learning - Rule-based classification -
Explainable classifiers - Data mining

1 Introduction

Ensemble classification is the training of individual and diverse base classifiers
and the combination of their predictive models into a unified classification model.
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Ensembles are known to be generally more accurate than their individual models
[7,12,13,15,23]. This is explained by the notion that combining the predictions
of multiple learners can effectively remove high variance or high bias in predic-
tions [9,15]. However, predictive learning models are required to be not only
reliable and accurate, but also comprehensible to avoid the risk of irreversible
misclassification, especially in many critical applications such as medical diag-
noses, financial analysis, terrorism detection, etc. The use of ensemble approaches
decreases the level of comprehensibility of the classification, as the human ana-
lyst is presented with a large number of different classification models [12,23].
This challenges the ability of decision makers to understand how a predictive
ensemble system makes its predictions.

Therefore, this paper’s contribution is a predictive ensemble learner that is
both accurate and expressive at the same time. This is achieved by transforming
the ensemble classification model into a consolidated expressive rule set, while
preserving the predictive accuracy of the ensemble it is derived from. The level of
expressiveness of the individual base learners is an important factor for improving
the ensemble’s explainability. This was one of the main reasons for choosing
predictive rule learning approaches, as they are highly expressive and closer
to ‘white box models’ than most other techniques. Another important reason
is related to their ability to abstain from classifying a new instance when the
algorithm is uncertain about a prediction. This aspect is needed to prevent costly
false classifications. Nevertheless, the lower the abstaining rate, the better for
most applications. Measuring the expressiveness of a rule-based learner often
depends on the complexity of its rule set. A rule set is considered more expressive
when it produces fewer rules with less complex terms per rule.

This paper is organised as follows: Sect. 2 discusses related work and sum-
marises the authors’ previous work on the ReG-Rules ensemble learner. Section 4
describes the proposed Consolidated Rules Construction (CRC) ensemble learner
as a more explainable variation and extension of the ReG-Rules. Section 5 pro-
vides an empirical evaluation of the CRC ensemble learner, and concluding
remarks including ongoing and future work are presented in Sect. 6.

2 Related Work

Ensemble methodology consists of a collection of base learners each trained on
a different training subset and produces a single prediction (vote). Combining
these individual predictions (decisions) using a some kind of voting approach is
likely to create an ensemble with a higher level of overall predictive accuracy than
its base learners [9,15]. The base learners are generated sequentially or hierar-
chically. The sequential paradigm leverages the concept of dependence between
the individual classifiers. Boosting, in particular AdaBoost algorithms [11], is a
well-known variant of this paradigm. In addition, numerous sequential ensemble
techniques, such as the Vote-boosting algorithm [20] or the SEL framework [22],
have recently been proposed. The parallel ensemble paradigm, on the other hand,
relies on the independence and diversity of the base learners, because combining
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their separate decisions can effectively reduce the classification error [24]. The
parallel ensemble paradigm is used in this study because it is parallelisable due
to the base classifiers being independent, which can make the ensemble rule-
based model more powerful in practice. Bagging, which stands for Bootstrap
aggregating, is a widely used parallel technique proposed by Breiman in [8].
Bagging aims to increase the stability and predictive performance of a compos-
ite classifier. It entails random sampling of data with replacement. Each classifier
learns from a sample of instances that is statistically estimated to comprise 63.2%
of the training data and gives one vote to the data instance is classifying The
remaining 36.8% serve as test data. The final classification is usually determined
by a vote, such as a majority vote or a weighted majority vote. The capacity to
eliminate bias and variance in data is the main benefit of bagging [8,9].
Random Forest is also a popular independent ensemble method [9] based
on decision trees. It can be considered as an extended version of Bagging. Ran-
dom Forest essentially incorporates the basic Random Decision Forest approach,
which is introduced by Ho in [14], with Bagging method [21,24]. The Random
Forest algorithm builds multiple decision trees. Each tree is constructed using the
whole training dataset in sub-spaces selected randomly from the feature space.
Random Prism [21], is an ensemble learner not based on trees but on rule sets
produced by PrismTCS algorithm [6]. It follows the parallel ensemble learning
approach and takes a bootstrap sample by randomly selecting n instances with
replacement from the training dataset, where n is the total number of training
instances available. Random Prism outperforms its standalone base classifier in
terms of accuracy and noise tolerance, as seen in [21]. However, although Ran-
dom Prism generates highly explainable base learners, the analyst must manually
review each base learner’s rule set to obtain insight into the classifications.
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3 The ReG-Rules Ensemble Learner

ReG-Rules, a previous development of the authors of this paper, stands for
Ranked ensemble G-Rules [3]. ‘G’ stands for Gaussian probability density dis-
tribution, which is used to build expressive base classifiers in G-Rules-IQR [2].
G-Rules-IQR . [2] has been specifically developed for ReG-Rules and has shown in
empirical experimentation to outperform similarly expressive rule based learn-
ers [1,4] in terms of accuracy, F'1 score, tentative accuracy while producing more
compact and easier to interpret rules. All the learners were evaluated against
5 metrics which are (1) the number of rules induced, (2) abstaining rate: the
ratio of instances that remain unclassified, (3) F1 score: the harmonic mean of
precision and recall, (4) accuracy: the ratio of correctly classified instances, (5)
tentative accuracy: the ratio of correctly classified instances excluding abstained
instances. G-Rules-IQR assumes normally distribute attributes and performs
data transformations for non-normally distributed attributes. ReG-Rules pro-
vides an extract of the most relevant rules for each individual prediction, while
preserving the predictive power of ensemble classifiers. ReG-Rules consists of 5
Stages as can be seen in Fig. 1:

Stage 1: Diversity Generation: The set of base classifiers should be diverse
to assure producing uncorrelated errors and then obtain a more accurate
ensemble [18,19,24]. Bagging [8] is applied to the training data to build local
training and validation datasets to induce diverse base classifiers. The test
data is only used to evaluate the final entire ReG-Rules ensemble.

Stage 2: Base Classifiers Inductions: M G-Rules-IQR base classifiers are
induced. A value of 100 for M has performed well in ReG-Rules’ empirical
evaluation [3]. The out-of-bag samples produced by bagging are used to weight
the performance of each individual base classifier. ReG-Rules uses a combi-
nation of metrics to calculate the weights: rule set size, number of correctly
used rules (CUR), abstaining rate, accuracy and tentative accuracy.

Stage 3: Models Selection: Here three of the in Stage 2 mentioned metrics,
namely tentative accuracy, CUR and abstaining rate, are used as ensemble
selection criteria by ranking all the base classifiers accordingly. Only the top
20 base classifier models are retained, since 20 models produced consistently
the best results in the empirical evaluation in [3].

Stage 4: Rules Merging: There is a possibility that for each rule set (of the
20 top ranked classifiers) some rules overlap. However, overlapping rules are
generally unnecessary as they need to be tested at prediction stage and thus
incur unnecessary additional testing cost [10]. ReG-Rules addresses this by
providing a local rule merging method. This method is repeatedly applied to
each base classifier in ReG-Rules.

Stage 5: Combination and Prediction: Combining classification results in
ReG-Rules is based on weighted majority voting, however, not on a classifier
level like most ensemble learners, but on an individual rule level. For this,
ReG-Rules builds a committee of rules, termed Classification Committee (see
Fig. 1), comprising the first rule that fires from each of the selected top ranked
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base classifiers. This committee derives a score for each possible classification
as a combination of tentative accuracy, CUR, classifier vote frequency for
certain classes.

In an empirical evaluation, ReG-Rules was compared against various rule
based classifiers and exhibited a much better accuracy, tentative accuracy and
low abstaining rate. The results also show that the local rule merging approach
is very effective in lowering the total number of rules. A qualitative analysis
revealed that ReG-Rules requires the human analyst to only examine a small set
of relevant rules for each prediction, the classification committee [3].

4 The CRC Ensemble Learner

Although the committee in Stage 4 of ReG-Rules is much smaller than all the
rules combined in ReG-Rules, the analyst still has to examine about 20 rules
to extract information about the decision. Also, in ReG-Rules there is still the
possibility that there are overlapping rules in the committee since rule merging
is limited to local base learners. This section proposes an extension of ReG-
Rules termed ‘CRC’, which is stand for Consolidated Rules Construction. The
general structure of CRC as shown in Fig. 2 consists of five stages: (1) Diversity
Generation, (2) Base Classifier Inductions, (3) Models Selections, (4) Stacking
and Consolidation, (5) Prediction. The stages 1-3 are identical to the predecessor
ReG-Rules and are summarised in Sect. 3. For a detailed description of Stages
1-3 the reader is referred to [3]. The new replaced Stages 4-5 are presented in
the following sections by referring to the general framework (Fig.2) and to the
lines of code in Algorithm 1, which describe the CRC framework.
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Algorithm 1: Consolidated Rules Construction: CRC

Notations: M: Number of models, S: Training dataset, V: Validation dataset,
R: rule set, BC: base classifier, FE,,0;: Ensemble Pool
1 Randomly sample dataset without replacement into train and test datasets (train, test) for
i=1— M do

2 s; <« a random sample of train dataset generated by Bagging method (sample with
repalcement)
3 v; < out-of-bag set

IS

Generate a base classifier BC; by applying Algorithm (G-Rules-IQR)[2] on s; dataset
and learn a rule set — R;

Evaluate BC; performance by applying R; on v; dataset

Calculate a weight for each rule induced in previous line

Send BC); including its rule set weights to the ensemble pool E, 0,

end

Rank all the base classifiers BC' collected in Ey,,; according to the criteria described in

Section 3 (stage 3)

10 Eliminate weak BC by selecting the n top models (topBC) ranked in the previous step
according to the following if statement:

11 if models selection type = defualt then

© o N o w

12 | n .« 20% M models
13 else
14 | n <« selected models size defined by user

15 Select the top n BC models in line 9

16 SR < stack all the rule sets induced by the n top models (topBC) in one large set

17 Apply Algorithm 2 to the rule sets in SR and produce a single consolidated rule set
18 Sort the individual rules in the consolidated set according to their quality

19 return CRC Classifier

4.1 Stacking and Consolidation Stage

In Stage 4, Rules ‘Stacking and Consolidation’, the issue of overlapping rules
between all top ranked base classifiers is addressed in order to eliminate the
problem of the analyst being confronted with potentially unnecessarily overlap-
ping and redundant rules. In this new method, CRC learner compresses the top
base classifiers into a single global rule-based model instead of locally merging
each rule set independently. This is expected to enhance the expressiveness of
the ensemble CRC learner to the point where it is similar to a common predictive
rule-based classifier. The approach consists of the following two steps:

1. Stacking: The CRC learner collects all the top base classifiers’ rule sets
together into one large set. This is depicted in Fig.2 as’stacked rules,” and
is referred to as’SR’ in Algorithm 1 (line 16). The essential concept behind
stacking is to simply collect rule sets in the same order as their original ranked
base classifiers, with no optimisation or filtering applied to the rules. As a
result, there is no longer a requirement to preserve the base classifiers, and
they are simply deleted at this level.

2. Consolidation: CRC learner combines a consolidation mechanism to perform
the global merging process and provides a consolidated rule set as highlighted
in Algorithm 1 (line 17). The method is termed CRC Consolidator.

CRC Consolidator - after removing the base classifiers and stacking their rules
into one large set, the quality of each rule determines whether it will be pre-
served, improved, or even eliminated (individual weight). The process as shown
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Algorithm 2: Consolidation Approach: CRC Consolidator

Initialise new Global Rules set
for i=1— SR ) do

1
2
3 OverlappedRules «— SR; ;
a for (j =1 — SR [— OverlappedRules] ) do
5 if (SR; and SRj; are identical rules) then
6 | Skip current SR;
7 else
8 OverlapExist +— Apply Algorithm 3 (Overlaps Checking) on SR; and
SR;
9 if (OverlapExist = True ) then
10 | OwerlappedRules — ADD (SR;)
11 end
12 end
13 end
14 if (OwveralppedRules list contains rules other than SR;) then
15 ConsoR «— empty // a new consolidated rule intialisation
16 foreach (a in OveralppedRules list) do
17 if (attribute o is categorical) then
18 | Create a rule-term «; in the form (a = v) ;
19 else if (attribute a is continuous) then
20 x «+— smallest lower bound of « ;
21 y «— largest upper bound of « ;
22 Create a rule-term in a fom of (z < a < y)
23 end
24 Append a rule-term built in lines 18 or 22 to the new consolidated rule
ConsoR
25 end
26 GlobalRules set «— ADD (ConsoR)
27 end
28 end

29 return new GlobalRules set

in Algorithm 2 (CRC Consolidator) begins by initialising a new global rule set
(line 1). Then each rule in SR is checked against the replications and the over-
laps. If two rules (e.g. SRy, SRs) are identical, one of them will be removed
(line 6). Otherwise, SRy and SRy will be to considered as candidate overlapped
rules. This is conditioned by the decision returned from Algorithm 3 (Overlap
Checking), which is invoked by the CRC Consolidator in line 8 to carry out
the examination. A decision (true/false) about the current rules examination is
returned to the CRC Consolidator.

The CRC Consolidator then proceeds to line 10, where the current overlapped
rules are examined for the final consolidation process, and a new iteration is
initiated to examine two more additional rules until all of the rules in the stacked
rule sets (SR) have been examined. Then, in line 14, a process of creating a new
consolidated rule from a number of overlapped rules begins. The overlapping
rules are first categorised by terms. The procedure will then continue, depending
on the type of attribute in each term. First, the overlapped rules are grouped by
terms. Then, depending on the type of attribute in each term, the process will
continue. In case of categorical attributes, a new term is generated in the form
(o = v) where « is the attribute name and v is a discrete value that occurs in all
the current overlapped terms. If the attribute type is continuous, a new term is
generated in the form (x < o < y) where x is the smallest lower bound presented
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in all the current overlapped terms and y is the largest upper bound presented
in the same overlapped terms. After the term is created, it will be appended
to the new consolidated rule (line 24). Then, a new iteration of the next term
will be started. Finally, in line 26, all the consolidated rules are added to the
global rule set. The weight of each consolidated rule is estimated by averaging
the weights associated to all the overlapped rules used in its generation.

Algorithm 3: Overlap Checking

1 Input: Rulel (current rule), Rule2 (another rule)

2 if ( class label in Rulel = class label in Rule2) and

3 ( all attributes o in Rulel = all attributes o in Rule2) then

4 foreach atiribute o € Rulel and Rule2 do

5 switch the type of o do

6 case Continuous

7 if (lower bound of one rule includes the lower bound of the other and
8 upper bound of one rule includes the upper bound of the other) then
9 | OverlapExist «— True

10 else

11 | OverlapExist < False

12

13 case Categorical

14 if ( discrete value in Rulel = discrete value in Rule2) then
15 | OverlapExist < True

16 else

17 | OverlapExist < False

18

19 endsw
20 endsw
21 if (OwverlapExist = False ) then
22 | Exit the loop in line 4
23 end
24 end
25 else
26 | OverlapExist < False
27 end

28 return OvwerlapExist

4.2 Prediction Stage

As discussed in Sect.2 combining multiple individual models’ predictions
promises a considerable increase in predictive accuracy compared with a single
classifier. However, as mentioned in Sect. 4, ReG-Rules has a number of potential
issues in training and testing phases. These are the number of base classifiers
that need to be employed at prediction, and this consumes more processing
overhead time prior to voting than applying a single model. Also the resulting
vote on the prediction is harder to explain and justify by a human since there
are several rules that need to be considered, i.e. in ReG-Rules the classification
committee. In other words, the expressive power of ReG-Rules depends on the
size of the classification committees and the complexity of the datasets. Both
issues are removed or simplified in CRC, since CRC’s learned model replaces the
classification committees derived for each prediction by a single and global rule
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set re-used for each prediction. The first rule that matches the data instance to
be classified is used to label the data instance, and at the same time this single
rule serves as an explanation for the human analyst.

5 Empirical Evaluation of CRC Learning Model

The goal of the empirical evaluation is to evaluate the performance of the pro-
posed CRC learner compared with ReG-Rules and G-Rules-IQR, which the
stand-alone classifier used as base learner for both, ReG-Rules and CRC.

5.1 Experimental Setup

All the experiments were performed on a 2.9 GHz Quad-Core Intel Core i7
machine with memory 16 GB 2133 MHz LPDDRS3, running macOS Big Sur ver-
sion 11.4. All the 24 datasets used in the experiments were chosen randomly from
the UCI repository [16], the only conditions being that they contain continuous
attributes and involve classification tasks. The specifications of the datasets are
highlighted in Table 1. Datasets 15, 16 and 24 included few missing values in con-
tinuous attributes. Missing values were replaced with the average value of the
for the concerning attribute. Both ReG-Rules and CRC, and their base learning
algorithm (G-Rule-IQR) have been implemented in the statistical programming
language R [17]. The source code used to implement CRC algorithm is similar
to that for ReG-Rules differing only in the methodological aspects described in
Stages 4 and 5 described in Sect. 4.

The source code is available in a public online repository at https://github.
com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0 and is also archived at
https://doi.org/10.5281 /zenodo.5557590 [5].

All the algorithms are evaluated against 6 metrics for classifiers, which are:
Number of Rules, abstaining rate, F1 score, accuracy, tentative accuracy and
execution time. Execution comprises the time needed to complete all the train-
ing stages and to produce the final decisions. The remaining metrics were already
described in Sect.3. Please note that there is a relationship between accu-
racy, tentative accuracy and abstaining rate. Tentative accuracy simply ignores
abstained instances, and accuracy treats abstained instances as potential mis-
classifications. Hence, the more a algorithm abstains, the higher the tentative
accuracy and the lower the accuracy. The methodology used for experimentation
with the 24 datasets is hold-out procedure; each dataset was randomly sampled
without replacement into train and test datasets. While the 70% of the data
instances were used to train and build the ensemble classifier, the remaining
30% were used as a testing dataset. In case of the ensemble models (ReG-Rules
and CRC), the training dataset is used to generate multiple base classifiers using
bagging, whereas the test set is used only once to assess the general performance
of the classification models.
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Table 1. Characteristics of the datasets used in the experiments

No. | Dataset No. attributes No. classes | No. instances
1 | Iris 5 (4 cont) 3 150
2 | Seeds 8 (7 cont) 3 210
3 | Wine 14 (13 cont) 3 178
4 | Blood transfusion |6 (5 cont) 2 748
5 | Banknote 6 (5 cont) 2 1,372
6 Ecoli 9 (7 cont, 1 name) 8 336
7 | Yeast 10 (8 cont, 1 name) |10 1,484
8 Page blocks 11 (10 cont) 5 5,473
9 | User modelling 6 (5 cont) 4 403
10 | Breast tissue 11 (10 cont) 6 106
11 | Glass 11 (10 cont, 1 id) 7 214
12 | HTRU2 10 (9 cont) 2 17,898
13 | Magic gamma 12 (11 cont) 2 19,020
14 | Wine quality-white | 13 (12 cont) 11 4,898
15 | Breast cancer 12 (10 cont, 1 id) 2 699
16 | Post operative 10 (1 cont, 9 categ) 3 90
17 | Wifi localization 8 (7 cont) 4 2,000
18 | Indian liver patient | 12 (10 cont, 1 categ) | 2 583
19 | Sonar 62 (61 cont) 2 208
20 | Leaf 17 (15 cont, 1 name) | 40 340
21 | Internet firewall 12 (cont) 4 65,532
22 | Bank marketing 17 (6 cont, 10 categ) | 2 45,211
23 | Avila 11 (10 cont) 12 20,867
24 | Shuttle 10 (9 cont) 7 58,000

5.2 Results and Interpretation

In each table, the # symbol refers to the index of the dataset in Table 1. The best
result(s) in the tables for each dataset and metric are highlighted in bold letters.
Table 2 shows the number of rules induced by each algorithm. Table 3 shows the
comparison between CRC and ReG-Rules while Table4 presents the compari-
son between CRC and G-Rules-IQR in these metrics, which will be discussed.
Regarding the ‘number of induced rules’ and the ‘abstaining rates’ metrics listed
in Table 2, it is not fair to compare the ensemble learners against the base clas-
sifier G-Rules-IQR. Therefore, CRC learner is only compared with ReG-Rules
ensemble. As shown in the table, the number of consolidated rules produced by
CRC is considerably smaller than the total number of rules produced by ReG-
Rules in all datasets. In most cases, the size of the rules generated by CRC
is reduced by 90%. Abstaining from classification, a typical problem of rule-
based classifiers, was almost non-existent in both ensembles (ReG-Rules and
CRC) compared with the stand-alone G-Rules-IQR’s abstaining rates, which
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were higher by more than 10% on several datasets compared with ReG-Rules
and CRC. In four datasets (9, 10, 18 and 20) the abstaining rate in G-Rules-IQR
reaches 30%, 19%, 18% and 40% respectively.

Comparing with ReG-Rules Ensemble Learner: Table 3 shows the com-
parison of the performance of CRC and ReG-Rules. The results of F1 score
reveals that CRC performs equal or better than ReG-Rules in 13 out of 24
datasets. Also, CRC was very competitive on 4 out of the remaining datasets,
on which it only underperformed by a maximum difference of 3%. Please note
that the comparison between CRC and ReG-Rules in terms of overall accuracy
and tentative accuracy are very similar. The results show that with respect to
both metrics, CRC performs at the same level as ReG-Rules in 14 out of 24
cases. On 5 out of the remaining 10 datasets (2, 6, 11, 18 and 19) where CRC

Table 2. Number of rules and abstaining rates for CRC compared with ReG-Rules
and G-Rules-IQR

7# Number of rules Abstaining rate

G-Rules-IQR | ReG-Rules | CRC | G-Rules-IQR | ReG-Rules | CRC
1 18 342 44 | 0.07 0.00 0.00
2 22 386 64 | 0.03 0.00 0.00
3 18 250 28 0.06 0.00 0.00
4 20 321 38 0.00 0.00 0.00
5 89 1630 128 [0.02 0.00 0.00
6 37 649 107 |0.02 0.00 0.00
7 99 1648 289 |0.04 0.00 0.00
8 131 2348 570 |0.02 0.00 0.00
9 57 901 162 |0.30 0.00 0.01
10 28 485 87 0.19 0.00 0.00
11 30 505 T2 0.11 0.02 0.02
12 35 521 57 |0.00 0.00 0.00
13 79 1388 251 | 0.00 0.00 0.00
14 126 2289 243 | 0.02 0.00 0.00
15 11 186 28 0.00 0.00 0.00
16 29 451 105 |0.11 0.00 0.00
17 59 955 159 |0.01 0.00 0.00
18 47 996 368 |0.17 0.00 0.00
19 16 270 30 0.13 0.00 0.00
20 124 2015 393 |0.40 0.01 0.03
21 21 402 49 0.00 0.00 0.00
22 115 1977 428 |0.01 0.00 0.00
23 158 3272 699 | 0.09 0.01 0.01
24 27 428 38 0.00 0.00 0.00
Average | 58 1026 185 |0.07 0.00 0.00
SD 45 846 186 | 0.102 0.004 0.01
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did not achieve the highest accuracy and tentative accuracy, it was still very close
within 3% of the best results compared with ReG-Rules learner. On one dataset
(#5), the accuracy and tentative accuracy of CRC were lower than ReG-Rules
by about 15%. However, this is also the dataset where the highest compression
in the size of the rules is taking place. Regarding the learning time, Table 3
demonstrates that CRC learner is faster than ReG-Rules on all datasets. The
decrease in learning times was up to 45% in some cases.

Comparing with Stand-Alone G-Rules-IQR Learner: The performance of
CRC learning model is also compared with its stand-alone inducer (G-Rules-IQR
algorithm). Table 4 shows the results of this comparison using F1 score, accuracy
and tentative accuracy. CRC achieves the best F'1 scores in 14 out of 24 datasets.

Table 3. Comparison of the performance of CRC and ReG-Rules using F1 score,
Overall Accuracy, Tentative Accuracy and Learning Time

# F1 score Accuracy Tentative accuracy | Learning time (sec.)
ReG-Rules | CRC | ReG-Rules | CRC | ReG-Rules | CRC | ReG-Rules | CRC
1 0.93 0.93 (0.93 0.93 (0.93 0.93 |[112.8 94.8
2 1.00 0.97 |1.00 0.97 |1.00 0.97 232.2 192.6
3 1.00 1.00 [ 1.00 1.00 | 1.00 1.00 |166.2 148.8
4 1.00 1.00 | 1.00 1.00 | 1.00 1.00 |358.8 322.2
5 0.99 0.87 1 0.99 0.84 |0.99 0.84 |32514 2939.4
6 0.91 0.91 | 0.95 0.92 |0.95 0.92 384 360
7 0.91 0.83 |0.97 0.97 | 0.97 0.97 |3262.8 3096
8 0.87 0.82 |0.98 0.98 | 0.98 0.98 |10512 9612
9 0.95 0.87 [0.94 0.86 |1 0.94 0.87 733.2 631.2
10 0.97 0.91 |0.97 0.91 |0.97 0.91 245.4 228.6
11 0.93 0.90 | 0.95 0.94 |0.97 0.95 264 247.2
12 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 12600 12168
13 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 18288 17100
14 0.87 0.99 | 1.00 1.00 | 1.00 1.00 | 12240 11880
15 1.00 1.00 | 1.00 1.00 |1.00 1.00 |174.6 156
16 0.77 0.77 | 0.63 0.63 | 0.63 0.63 |[193.2 189
17 1.00 1.00 | 1.00 1.00 | 1.00 1.00 |2833.2 2635.8
18 0.84 0.82 | 0.73 0.71 |0.73 0.71 2095.8 1951.8
19 0.97 0.96 |0.97 0.95 |0.97 0.95 897.6 864.6
20 0.67 0.61 |0.56 0.46 | 0.57 0.47 2388 2125.8
21 0.90 0.90 | 1.00 1.00 |1.00 1.00 | 71316 39276
22 0.99 0.99 | 0.98 0.98 | 0.98 0.98 41400 32940
23 0.93 0.86 |0.92 0.86 | 0.92 0.86 119232 68292
24 1.00 1.00 | 1.00 1.00 | 1.00 1.00 | 20808 17964
Average | 0.93 0.91 [0.94 0.91 [0.94 0.91 13499.55 | 9392
SD 0.083 0.096 | 0.119 0.135|0.118 0.13 27874 16426




150 M. Almutairi et al.

In the cases where CRC did not outperform G-Rules-IQR, its scores were only
marginally lower. For example, the differences in 5 cases (1, 2, 7, 18 and 23)
were less than 4%. In terms of overall accuracy, as can be seen in Table 4, CRC
achieves the highest results in most cases (21 out of the 24 datasets). Moreover,
CRC achieves the highest tentative accuracies in 14 out of 24 datasets compared
with G-Rules-IQR classifier. CRC was also very competitive with G-Rules-IQR,
in 7 out of the remaining 8 datasets their results are very close. On only one
dataset (# 20), CRC’s tentative accuracy was much lower than the stand-alone
G-Rules-IOR. However, this dataset also causes the highest abstaining rate for
G-Rules-IQR in the current experiments, and therefore it had been classified
using the majority class label method. As mentioned in Sect.5.1 the abstained
instances are not considered in the tentative accuracy.

Table 4. Comparison of the performance of CRC and G-Rules-IQR using F1 score,
overall accuracy and tentative accuracy

# F1 score Accuracy Tentative accuracy

G-Rules-IQR | CRC | G-Rules-IQR | CRC | G-Rules-IQR | CRC
1 0.96 0.93 |0.91 0.93 | 0.95 0.93
2 1.00 0.97 |0.97 0.97 | 1.00 0.97
3 0.98 1.00 [ 0.94 1.00 | 0.98 1.00
4 0.98 1.00 | 0.97 1.00 | 0.97 1.00
5 0.98 0.87 |0.98 0.84 | 0.99 0.84
6 0.99 0.91 |0.96 0.92 | 0.97 0.92
7 0.87 0.83 |0.93 0.97 | 0.96 0.97
8 0.93 0.82 | 0.98 0.98 | 0.99 0.98
9 0.95 0.87 |0.72 0.86 | 0.95 0.87
10 0.77 0.91 | 0.66 0.91 | 0.81 0.91
11 0.86 0.90 | 0.86 0.94 | 0.97 0.95
12 0.99 1.00 | 1.00 1.00 | 1.00 1.00
13 1.00 1.00 | 1.00 1.00 | 1.00 1.00
14 0.96 0.99 | 0.97 1.00 | 0.99 1.00
15 1.00 1.00 | 1.00 1.00 | 1.00 1.00
16 0.49 0.77 | 0.67 0.63 | 0.67 0.63
17 1.00 1.00 | 0.99 1.00 | 1.00 1.00
18 0.83 0.82 | 0.71 0.71 | 0.71 0.71
19 0.95 0.96 | 0.87 0.95 | 0.94 0.95
20 0.75 0.61 |0.39 0.46 | 0.65 0.47
21 0.90 0.90 | 1.00 1.00 | 1.00 1.00
22 0.99 0.99 | 0.98 0.98 | 0.98 0.98
23 0.89 0.86 |0.85 0.86 | 0.88 0.86
24 0.99 1.00 | 1.00 1.00 | 1.00 1.00
Average | 0.92 0.91 |0.89 0.91 |0.93 0.91
SD 0.12 0.10 |0.15 0.14 |0.11 0.13
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6 Conclusion

The current work aims to increase the expressive power of rule-based ensemble
learning models while maintaining the key advantage of the ensemble learners,
which is the high predictive accuracy compared with the stand-alone classi-
fiers. A new approach was presented in this paper to compress the ensemble
ReG-Rules [3] learner into a single global classifier, which can be used directly
in predictions without the need to combine multiple classifiers’ votes on every
classification attempt. The best ranked classifiers are consolidated in a single
global rule set. The proposed ensemble learner is therefore called Consolidated
Rules Construction (CRC). CRC was empirically evaluated and compared with
the ensemble ReG-Rules classifier and the stand-alone G-Rules-IQR classifier.
Compared with ReG-Rules, CRC achieved its overall aim and outperformed
ReG-Rules in all cases and in terms of number of rules that have been con-
structed and used for predictions. In most cases the reduction of rules reached
90%. Abstaining of classification was almost non existent in both ensemble clas-
sifiers. CRC exhibited a similar F'1 score, overall accuracy and tentative accuracy
compared with ReG-Rules. CRC outperformed ReG-Rules in terms of learning
time in all cases, which reaches up to 45% learning time reduction in some
cases. CRC also achieved the highest results in most cases in terms of F1 score,
overall accuracy and tentative accuracy. Ongoing work comprises incorporat-
ing further diversification techniques by initialising base classifiers with different
learning parameters. CRC is also highly parallelisable, since its base classifiers
are induced independently. Therefore, future work comprises the development
of a parallel CRC ensemble classification framework to scale up CRC to large
datasets.
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