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Abstract: The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine
learning models. However, the subsequent application of these models often involves scenarios that are inadequately
represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to
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that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This
work provides an overview of existing techniques and methods in the literature that combine data-based models with existing
knowledge. The identified approaches are structured according to the categories integration, extraction and conformity.
Special attention is given to applications in the field of autonomous driving.
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1 INTRODUCTION

Data-driven learning, first and foremost deep learning, has
become a key paradigm in the vast majority of current
Artificial Intelligence (AI) and Machine Learning (ML)
applications. The excellent performance of many models
learned in a supervised manner can be predominantly
attributed to the availability of huge amounts of labeled
data. Prominent examples are image classification and object
detection, sequential data processing as well as decision
making. On the downside, the unprecedented performance
comes at the cost of lacking interpretability and transparency
leading to so called black box models that do not allow for
easy and straightforward human inspection.

Transferring data-driven approaches to safety critical
applications becomes thus a major challenge. Usually, in
these scenarios labeled data is scarce due to high acquisition
costs or, not least, for ethical reasons. Furthermore, both
developers and users postulate the requirement to be able to
understand the decisions made by the deployed model. In
order to tackle both problems, the exploitation of knowledge
sources in form of, e.g., basic laws of physics, logical
databases of facts, common behaviour in certain scenarios,
or simply counterexamples is key to evolve purely data-
driven models towards robustness against perturbations,
better generalization to unseen samples, and conformity to
existing principles of safe and reliable behaviour.

This survey provides a collection of different methods
that are suitable in order to augment data driven models
with knowledge, to extract informative concepts and patterns
out of given models and to compare observed outputs and
representations to existing basic assumptions and common
understanding about safe, reliable and intuitive behaviour.
Eventually, this overview on the integration of knowledge
and data will pave the way to trustworthy ML approaches
that can be used safely in critical applications.

This review of the state of the art is structured as follows.
In the following Chapter 2, we introduce three major tasks
that autonomous agents encounter during interaction with
their environment. Starting from different perspective to rep-
resent knowledge and to make it machine readable discussed
in Chapter 3, subsequently, different general methods eligible
to combine knowledge with data-driven approaches, as well
as more specific methods tailored to the autonomous driving
use case, are reviewed in Chapter 4. Furthermore Chapter 5
introduces learning paradigms in the context of knowledge
transfer.

Besides integration of knowledge, current approaches
focusing on the extraction of concepts and structures are
outlined in the subsequent chapters. While Chapter 6 summa-
rizes methods that provide symbolic, partly natural language
explanations, Chapter 7 puts emphasize on procedures that
allow for visual inspection of the decision process. We
conclude our survey in Chapter 8 with an overview of
techniques that consider conformity to already existing as
well as newly discovered knowledge components, which
eventually completes the pipeline of knowledge empowered
artificial intelligence.

2 OVERVIEW USE CASE DOMAINS

The task of automated driving may be sub categorized
into the following categories: perception, situation inter-
pretation, planning and control [341]. The foremost task
in the autonomous driving is to understand and perceive
the environment around the vehicle. Section 2.1 provides an
introduction to the perception module with a special focus
on image-based pedestrian detection. Once the objects are
detected and segmented, the second task in the autonomous
driving is to understand the environment along with the
road users. In order to perform safe maneuvers, the situation
interpretation is a decisive step. In this module, the goal is
to answer important questions related to object’s states and
actions, like what an object could do next. An overview
is given in section Section 2.2. After figuring out these
situational scenarios, next task in autonomous driving is
to plan the motion of ego vehicle. The planning module
described in Section 2.3 utilizes the output of the previous
two modules and takes high level routing and trajectory
planning decisions.

2.1 Perception
Authors: Syed Tahseen Raza Rizvi, Mohsin Munir, Ludger van
Elst

2.1.1 Perception in the AD Stack
Perception plays a crucial role in attaining the goal of au-
tonomous driving. An ego-vehicle is generally equipped with
a variety of sensors including cameras, lidar and radar. These
sensors serve as the senses of an ego-vehicle and therefore
enable the capability of perceiving the environment around
the ego-vehicle in different spectrums. Object detection, and
in particular pedestrian detection, has significant importance
in the perception spectra as it serves as a critical piece of
information for the downstream tasks associated with the
autonomous driving pipeline.

2.1.2 Task Formulation
Autonomous driving systems highly rely on object detection
models to identify all the traffic participants. Pedestrians
are usually the most common and abundantly found traffic
participant. Therefore, the detection of a pedestrian is more
prominent and crucial for the perception of an autonomous
driving system.

Pedestrian detection deals with the identification of
pedestrians in the environment around an ego-vehicle. There
exist approaches in the literature which perform pedestrian
detection only using lidar sensors [493]. However, such
approaches are usually not popular in the community due
to fact that the features obtained from camera images
are significantly richer as compared to the ones obtained
from lidar or radar. On the other hand, [246] uses lidar
to incorporate depth information into the image data for
the pedestrian detection task. Therefore, the approaches to
perform pedestrian detection mainly using camera images
are generally widely adopted. The images from the mounted
cameras serve as an input from which individual pedestrians
are identified and are enclosed in a bounding box. A variety
of solutions have been proposed to effectively identify
individual pedestrians in the surrounding environment.
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The neural network based object detection solutions can
be divided into two main categories: One-stage and Two-
stage approaches. One-stage approaches are generally based
on a fully convolutional architecture and consider the object
detection problem as a simple regression problem [779]. For
a given input image, the One-stage detectors learn class
probabilities and the coordinates of a bounding box encom-
passing an object. On the other hand, Two-stage approaches
are more sophisticated where each stage specializes in a
sub-task which eventually contributes to the final output of
the system. The first stage is responsible for identifying the
region of interest and the second stage is responsible for the
object classification and bounding box regression. Both types
of approaches have certain pros and cons. Most notably, Two-
stage approaches yield better detection accuracy than One-
stage approaches as they have specialized stages where the
output of the second stage is built on top of the output of the
first stage. However, One-stage approaches are much faster
than Two-stage approaches as they do not have an additional
stage with supplementary computational overhead.

Single Shot MultiBox Detector (SSD) [503], You Only
Look Once (YOLO) [658, 660, 659], RetinaNet [492] and
Fully Convolutional One-Stage object detector [811] are
the most prominent One-stage object detectors. Generally,
these approaches divide the image into a grid followed by
predicting the probability of a class object in each grid box
along with its bounding box coordinates. However, some
of these approaches are slightly different as they employ
a unique focal loss or pixel-wise classification to achieve a
higher detection accuracy in real-time. On the other hand,
Fast Regions with CNN (R-CNN) [277], Faster R-CNN [666],
Mask R-CNN [331], MimicDet [516] are the most common
examples of a Two-stage object detector. Generally the first
stage in these Two-stage object detection model consists of
a Region Proposal Network (RPN), where in the second
stage the candidate region proposals are classified based
on the feature maps. Approaches like Mask R-CNN have
a mask branch which is a small Fully Convolutional Net-
work (FCN) [155] applied to each Region of Interest (ROI),
predicting a pixel-wise segmentation mask. Additionally,
Feature Pyramid Network (FPN) [491] is generally used in
combination with RPN and Faster R-CNN to make bounding
box proposal more robust especially for small objects.

Pedestrian detection is applied in various vision-based
applications ranging from surveillance to autonomous driv-
ing. Despite their good performance, it is still unknown how
the detection performs on unseen data. Hasan et al. [322]
presented a study in quest of generalization capabilities of
pedestrian detectors. In their cross-dataset evaluation, they
have tested several backbones with their baseline detector
(Cascade R-CNN [96] on famous autonomous driving data
sets including Caltech [187], CityPersons [967], ECP [84],
CrowdHuman [744], and Wider Pedestrian [135]). Cross-
dataset evaluation is an effective way of evaluating a method
on unseen data and checking its generalization capability,
otherwise, a method may overfit on a single dataset. The
analysis presented in the paper is very interesting. The
authors have demonstrated that the existing pedestrian
detection methods perform poorly when compared with
general object detection methods given larger and diverse

datasets. A carefully trained state-of-the-art general-purpose
object detector can outperform pedestrian-specific detection
methods. The trick lies in the training pipeline and the
dataset. In this study, the authors used large datasets that
contain more persons per image. These general purpose
datasets, generally collected by crawling the web and
through surveillance cameras, are likely to have more human
poses, appearances, and occlusion cases as compared to
pedestrian-specific datasets. It is also shown in this study
that by progressively fine-tuning the models from largest
(general purpose) to smallest (close to target domain),
performance can be improved. The generalization ability
of pedestrian detectors has been compromised due to the
lack of diversity and density of the pedestrian benchmarks.
However, benchmarks such as WiderPerson [969], Wider
Pedestrian [135], and CrowdHuman [744] provide much
higher diversity and density.

Pedestrian detection has improved a lot in recent years,
however, it is still challenging to detect occluded pedestrians.
The pedestrian appearance varies in different scenarios and
depends on a wide range of occlusion patterns. To address
this issue, Zhang et al. [968] proposed an architecture for
pedestrian detection based on the Faster R-CNN. In contrast
to ensemble models for most frequent occlusion patterns, the
authors leverage different attention mechanisms to guide the
detector in paying more attention to the visible body parts.
The authors proposed to employ channel-wise attention in a
convolution network that allows the network to learn more
representative features for different occluded body parts
in one model. The observation that many Convolutional
Neural Network (CNN) channels in a pedestrian CNN are
localizable, strongly motivates them to perform re-weighting
of channel features to guide the detector to pay more
attention to the visible body parts. In order to generate
the attention vector, different realizations of attention net-
works are examined. The attention vector is trained end-
to-end for all of the attention networks either through self-
attention or guided by some additional external information
like convolution features, visible bounding boxes, or part
detection heatmaps. Eventually, the features are passed to the
classification network for category prediction and bounding
box regression. The experimental results are shown on the
CityPersons [967], Caltech [187], and ETH [207] datasets. The
results show improvements over the baseline Faster R-CNN
detector.

Vulnerable road user detection is another major challenge
in pedestrian detection. The safety of road users is and
should be the utmost priority in the domain of autonomous
driving. In addition to detect occluded pedestrians, another
key challenge is to detect pedestrians at long range. When a
pedestrian is detected at long range, it increases the security
of the pedestrian and driver at the same time, also, it leads to
a comfortable driving experience. Fürst et al. [246] introduced
an approach that targets long range 3D pedestrians detection.
Their approach leverages the density of Red Green Blue
(RGB) images and precision of lidar. The symmetrical fusion
of RGB and lidar helps them outperform current state-of-the-
art for long range 3D pedestrian detection.
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2.1.3 Goals and Requirements

Perception plays a pivotal role in autonomous driving. It
enables the ego vehicle to analyze and understand the
traffic scene and surrounding circumstances. Detection of
traffic participants, i.e., pedestrians, vehicles, cyclists, etc
serves as the core of perception involved in autonomous
driving. Additionally, traffic circumstances like road, weather,
and light conditions are also important factors in a traffic
scenario. For instance, rainy weather results in a wet road
which consequently has a direct impact on the decisions like
breaking distance. This is due to that braking distance is
significantly more in wet weather than that of the normal dry
road. Therefore, traffic participants and their surrounding
circumstances collectively provide a basis for planning and
executing decisions taken by an ego vehicle. The significance
of the perception can be understood by the fact that it di-
rectly contributes towards use cases like collision avoidance,
trajectory planning, etc.

With the rise of deep learning for solving a universe
of different tasks, object detection has also benefited from
deep learning One- and Two-stage models to achieve higher
detection performance. The effectiveness of an object detec-
tion approaches heavily relies on the efficacy of the trained
object detection model. In other words, it can be said as,
provided an effective object detection model, the quality of
perception can be ensured. In order to train an effective object
detection model, it requires a large amount of high-quality
data. For this purpose, several real-life public datasets are
available, i.e., Caltech [187], CityPersons [967], ECP [84], etc.
However, certain scenarios are possibly scarce or outright not
feasible in such pedestrian detection datasets. For example,
it is infeasible to find a dataset that contains a traffic scenario
where the ego vehicle is about to collide with another traffic
participant. Such a scenario can be helpful to evaluate the
performance of an object detection model to detect and evade
collision in such a hazardous environment. For this purpose,
datasets with simulated custom scenarios can be generated
to fill this gap in real-life datasets. Ultimately, a combination
of real and simulated data is the key thus enabling the object
detection model to effectively perform under several unseen
or rarely occurring traffic scenarios.

2.1.4 Necessity of Knowledge Integration

Computer vision methods and in general ML methods have
significantly improved over the last years. Different methods
are able to accurately interpret a situation presented in an
image or video. Even with such advancements, there are
scenarios where ML methods react differently as humans.
The main reason of this gap is the absence of the background
knowledge from the learned model. The ML methods only
account for patterns present in the training data, whereas
humans have implicit knowledge that could help them to
interpret a critical situation more robustly. In the context of
autonomous driving, and in general too, it is not possible to
train a model for every possible scenario that could happen
on road. To provide a safer environment for pedestrians
and autonomous vehicles, it is important to incorporate
knowledge in the module that is responsible for taking
important decisions.

2.2 Situation Interpretation
Authors: Daniel Bogdoll, Abhishek Vivekanandan, Faraz Qureishi,
Gerhard Schunk

2.2.1 Situation Interpretation in the AD Stack
Situation interpretation is typically a follow-up module of the
perception stage as shown in Section 2.1. Accordingly, this
module is aware of objects, their states, and classifications
within the surrounding environment. Its main objective is
to interpret the situation, which includes questions such as
“What is an object doing next?”, “Is there an implicit meaning
of an object’s action?” or “Is a rule exception applicable right
now?”.

2.2.2 Task Formulation
Automated driving relies on accurate perception of the
environment. We follow the concept of Gerwien et al. [272],
who describe situation interpretation as a module which pro-
vides a “situation-aware environment model”, that expands
an environment model, which is typically the results of
the perception stage, by situation recognition and situation
prediction. They classify these three modules as Situation
Awareness (SA) levels 1-3. The output of the perception
layer can be represented in various forms, for instance
with object lists or probabilistic maps. Independent of
the structure, the output is critical for the functioning of
subsequent Autonomous Driving (AD) layers, which are
tasked with situation interpretation, path planning – as
shown in Section 2.3 – and vehicle control.

Nevertheless, sometimes raw data in addition to the
outputs of the perception layer is relevant to detect intentions
or meanings which are typically not addressed by perception
systems. Two examples are direction of view [321] and hand
gestures [881].

Situation interpretation works in tandem with perception,
planning and control. A typical example of situation interpre-
tation may involve cut in scenarios during automated driving
using adaptive cruise control [626]. In a cut in scenario, the
situation interpretation system shall be able to detect if a
collision is imminent (using perception and planning output)
and employ mitigation measures (braking in this case) in due
time, ensuring the safety of the ego vehicle and its occupants.

In the aforementioned example, the collision detection
and avoidance can be designed by using vehicle motion
models and traffic rules. In complex situations, however, the
task of situation interpretation may not be accomplished by
only using a predefined set of rules. Especially for urban
scenarios where the number of interactions between the ego
vehicle and the objects in the scene are significantly higher.
Additionally, there might be situations where a particular
rule needs to be violated in order to ensure safety of human
life.

2.2.3 Goals and Requirements
To be consistent with the previously defined SA levels, level
2 takes in raw data and adds semantic meaning to it in the
form of semantic data models. Many works, especially [272],
have defined the operational context in regard to adding
more semantic structure to identify situations of interest.

As with SA level 3 defined by [272], motion prediction
forms the abstract layer for situation understanding, which
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comprises different actors in the ego space. It plays a
crucial role in determining safety critical applications for
the autonomous driving stack by providing the service of
estimating the future positions of an object. For instance,
when driving in a highway scenario, assuming that a lead
vehicle suddenly merges or cuts-in to the ego lane; the
primary goal of this layer is to mitigate the collision by
anticipating the intention of the lead vehicle(s). The crash
avoidance maneuver should have safety properties such that
the maneuver itself should not cause an additional collision,
e.g., while hard braking could prevent the crash it could lead
to a rear ended collision with other vehicles. This requires not
only a prediction module but also a system that checks for
the validity of the planned decision based on dynamic safety
reasoning methodologies which could influence the Time-To-
Collision (TTC), such as including weather constraints.

Most of the existing behavior prediction approaches
perform simultaneous tracking and forecasting with the use
of Kalman Filters or in the form of rule based approaches,
as can be seen from the previous works [471]. Although
variants of Kalman filters are good for short term predictions,
their performance degrades for long term motion problems
as they fail to make use of the situation or environmental
knowledge [143] which could be obtained via vectored maps.
As a result, prediction modules should make use of domain
knowledge to forecast reliable predictions [83].

In a typical AD stack, motion prediction is a separate
module which does prediction based on the outputs from the
previous perception layer. For example, the object detection
outputs bounding box coordinates of an object along with
the probability score of a class it belongs to such as truck,
car, or construction cone. When this is used as an input to
the motion prediction, a failure to propagate uncertainty
happens due to the softmax outputs [247]. To alleviate those
shortcomings, end-to-end networks, which take raw inputs
such as lidar point clouds and camera fusion to produce
motion predictions directly [900, 186] should be considered.
Additionally, knowledge about one’s own path planning can
be integrated into the prediction component [34].

2.2.4 Necessity of Knowledge Integration
Vehicles equipped with a level 4 or 5 driving automation
system are expected to master a wide variety of situations
within their Operational Design Domain (ODD) [702]. Since
many situations do not occur frequently in real life, ML
based systems are struggling to extrapolate from their trained
domain. Therefore, hybrid approaches that integrate rule-
and knowledge based algorithms and insights into ML
systems have the potential to combine the best of two worlds
– great general performance and improved handling of rare
situations, such as corner cases.

2.3 Planning
Authors: Etienne Bührle, Hendrik Königshof, Abhishek Vivekanan-
dan, Moritz Nekolla

2.3.1 Motion Planning in the AD Stack
The planning module uses the outputs of the perception and
prediction modules to plan a trajectory for the vehicle, which
is subsequently handed down to the vehicle controls to be

executed. This plan considers high-level routing decisions,
and follows the rules of the road as well as basic principles
of safe and comfortable driving.

A wide range of methods has been developed to tackle
the trajectory tracking control problem, and we refer to [599]
for an overview. However, the motion planning problem,
especially in highly complex and dynamic environments like
road traffic, remains largely unsolved and constitutes an area
of ongoing research.

2.3.2 Task Formulation
Formally, the solution to the trajectory planning problem is a
function that assigns every point in time a position in con-
figuration space (typically, planar coordinates and heading).
Classical approaches include variational methods (which
represent the path as a function of continuously adjustable
parameters), graph-search methods (which discretize the
configuration space), and incremental search methods (which
improve upon graph-search methods by using iterative
refinement procedures). An excellent overview is given in
[599].

The mentioned approaches are usually modular and
interpretable. However, as hand-engineered solutions to dif-
ficult problems, they tend to be brittle and require extensive
manual fine-tuning. Additionally, isolated changes to parts
of the system might reduce or break the overall system
performance, requiring careful re-tuning [951].

These drawbacks motivate the use of deep learning
based approaches, which have proven more robust to
variations and can be trained in an end-to-end fashion.
The current applications of deep learning to autonomous
driving can roughly be classified into two groups. Full
end-to-end approaches that map raw sensory input directly
to vehicle commands (steering, acceleration), and methods
that produce or work on intermediate representations. An
overview can be found in [798].

2.3.3 Goals and Requirements
The motion planning system is in charge of ensuring be-
havioral safety of the self-driving vehicle [577, 578]. This
includes taking the correct behavior and driving decisions,
based on the knowledge of traffic rules and the behavior
of other traffic participants, as well as the ability to safely
navigate expected and unexpected scenarios.

The U.S. Department of Transportation (DOT) has rec-
ommended that Level 3, Level 4, and Level 5 self-driving
vehicles should be able to demonstrate at least 28 core com-
petencies adapted from research by California Partners for
Advanced Transportation Technology (PATH) at the Institute
of Transportation Studies at University of California, Berkeley.
These basic behavioral competencies include, amongst others,
keeping the vehicle in lane, obeying traffic laws, following
road etiquette, responding to other vehicles, and responding
to hazards [578].

While the majority of these behavioral competencies cover
normal driving, i.e., regularly encountered situations, a self-
driving vehicle is also responsible for Object and Event
Detection and Response (OEDR), which includes detecting
unusual circumstances (emergency vehicles, work zones, ...)
as well as planning an appropriate reaction, which typically
takes place in the behavior and planning components. Above
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all, the planning system is responsible for crash avoidance,
and should be able to handle control loss, crossing-path
crashes, lane changes/merges, head-on/opposite-direction
travel, rear-end, road departure, and low speed situations
(backing, parking). At any time, the system should be able to
execute a fallback action that brings the vehicle to a minimal
risk condition. According to [577], "a minimal risk condition
will vary according to the type and extent of a given failure,
but may include automatically bringing the vehicle to a safe
stop, preferably outside of an active lane of traffic."

Finally, the motion planner not only interacts with other
traffic participants, but also to a great extent with its
passengers. In particular, it must be able to communicate
proper function, malfunction, as well as an eventual takeover
request to a human driver, who must be able to take over in
time.

2.3.4 Necessity of Knowledge Integration
Level 5 self-driving vehicles are expected to function in a
wide variety of operational design domains (we refer to
[88] for a taxonomy). While the basic principles of safe and
comfortable driving remain unchanged, the concrete imple-
mentations at the level of traffic laws, customary behavior,
and scene structure might be subject to change. We argue that
the inclusion of knowledge into a motion planning system
will make it easier to handle these situations by increasing
traceability (e.g., in the case of crash reconstructions) and
reliability. Furthermore, a transparent decision process based
on a common understanding between humans and machines
will increase interpretability and trust. Finally, we expect
the emergence of alternatives to extensive simulation testing,
which is at the core of present validation concepts [30, 506,
522].

Emphasizing the advantages of Knowledge Integration,
[125] demonstrates many of the aspects mentioned above.
Fan Chen et al. integrate rules, in the form of social norms,
by extending the agents reward function, e.g., passing objects
with a minimum distance. Violating these rules results in a
reward penalty. According to their results, agents with such
restrictions exhibit behavior more similar to a human level.
Therefore, when integrating knowledge into the machine
learning pipeline, models become more interpretable and
confidential not solely for experts but for ordinary people
since these constraints occur in everyday life. Furthermore,
their extension of the agent´s knowledge reduces learning
effort which accelerates training and enables them to out-
perform their benchmark algorithm in most cases. Despite
those promising benefits, integrating knowledge typically
narrows down the broad variety of possible solutions while
consuming human work force for hand engineering. This
shrinks the original, holistic approach of machine learning.
Therefore, the trade-off between knowledge integration and
self-learning needs to be chosen carefully [125].

3 KNOWLEDGE REPRESENTATIONS

The symbolic and the sub-symbolic methods represent two
ends of the AI spectrum. The former is more driven by
the knowledge and the latter by the data. A plethora of
ongoing research can be found in the literature to develop
hybrid-AI systems which exploit the strengths of one another.

However, there still exists a core challenge in representation
of knowledge used in symbolic space to integrate or augment
within the data-driven sub-symbolic/statistical world. An
overview of formalism and languages for representing
symbolic knowledge which exists in the form of facts,
rules and structured information is reviewed in Section 3.1.
Furthermore, in Section 3.2 a survey on knowledge em-
bedding is presented, which focuses on transforming prior
knowledge from the symbolic space to a real-vector space,
i.e., embeddings. These embeddings can be leveraged to
improve the sub-symbolic methods (Neural Network (NN),
Deep Learning (DL)) for effective training, inference and im-
proved reasoning. In addition to it, methods and approaches
dealing with injection of hard and soft rules together with
embeddings are discussed in Section 3.2.3. Each of the
sections in this chapter dealing with different mechanisms in
representing knowledge is concluded with an outlook that is
more tailored to the field of autonomous driving. Mapping
perceived information to semantic concepts and reasoning
using symbolic models provides improved understanding of
driving situation. Furthermore, formalized traffic rules and
legal concepts are used to derive possible driving actions
conditioned on their legal consequences Section 3.1.3.

3.1 Symbolic Representations and Knowledge Crafting
Authors: Denny Mattern, Tobias Scholl
In contrast to numerical representations, e.g., vector embed-
dings, symbolic representations use symbols to represent
things (cars, motorcycles, traffic signs), people (pedestrians,
driver, police), abstract concepts (overtake, brake, slow down)
or non-physical things (website, blog, god) as well as their
relations. Symbolic knowledge representations comprise all
kinds of logical formalism, as well as structural knowledge
representing entities with their attributes, class hierarchies
and relations.

3.1.1 Logic Formalism
Logic formalisms are used to express knowledge (mostly
facts and rules) as formal logical terms. Logic formalisms
or logic systems differ in expressivity, complexity and
decidability. The choice of the right formalism depends on
the concrete problem to model. The most simplistic (and
decidable) logic formalism is propositional logic. It consists
of a set of symbols representing the individual propositions
and a set of junctions that define the relation between
propositions or modify the value of a proposition. The value
of a proposition can either be true or false.

P : The car drives carefully.Q: The car is in good condition.
R: The car does not cause an accident.

Logical connectors (¬,∧,∨,−→,←→) are used to build
compound propositions that again can either be true or false.
E.g., P ∧Q −→ R: The car does not cause an accident if it
drives carefully and is in good condition.

In order to make logic statements that apply to many
objects, predicate logic (also known as first-order-logic (FOL))
extends propositional logic with truth-valued functions, pred-
icates, constants, variables and quantifiers (∀,∃). Predicate
logic is more expressive than propositional logic but not
always decidable, meaning that the truth value of a statement
cannot be inferred in every case.
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Destroyable(X): X is destroyable. Car(X): X is a car.
∀X : Destroyable(Car(X))

We can deduce from the set of axioms that
Car(Model T ) −→ Destroyable(Model T ): If Model T
is a car (which is true), then it is destroyable. Note that the
truth value of the proposition made by a predicate depends
on the actual variable.

Although predicate logic is more expressive than propo-
sitional logic, both share the property of being truth-valued.
I.e., both are binary and both are dealing with statements of
ontological nature (statements of being). In order to model
legal norms – as we are aiming for – we need logic formalisms
that are concerned with the concepts of obligation and
permission and would not be binary anymore.

According to scholars of legal theory, norms can be
expressed with rules of the structure IF A1,A2,...,An THEN
C, where A1,A2,...,An are the pre-conditions of a norm, C
is the normative effect and IF − THEN is the normative
conditional [31]. In contrast to implications in propositional
logic (−→), the normative conditional is generally defeasible,
meaning that even if all pre-conditions hold the normative
effect C is only concluded presumingly but not necessarily,
which allows for reasoning in the face of contradictions.
Defeasibility is the property that a conclusion is open in
principle to revision in case more evidence to the contrary is
provided [31].

Logic formalisms concerning with statements of obliga-
tion, permission, prohibition, right, etc. are a type of modal
logic and known as deontic logic. Propositions are augmented
with deontic modal operators [OBL], [PERM ], [FOR]
meaning obligation, permission and prohibition/forbidden.
The operators qualify the content of the augmented proposi-
tion. E.g., [OBL]p means that the content of p is considered
obligatory. The deontic operators relate to another as follows
(see [31] for more details):

• [OBL]p ≡ ¬[PERM ]¬p: if p is obligatory, then its
opposite, ¬p, is not permitted.

• [FOR]p ≡ [OBL]¬p: if p is forbidden, then its
opposite is obligatory.

• [PERM ]p ≡ ¬[OBL]p ∧ ¬[FOR]p: p is neither
obligatory nor forbidden.

Computer interpretable formalization of legal norms is
topic of active research in the field of legal informatics. There
are multiple logic formalisms for formalizing legal rules and
norms, e.g., Standard Deontic Logic (SDL) ([154, 537]), Reified
Input-Output Logic ([679, 680]) or (non-deontic) Temporal
Logic ([529, 208]). However, there is still no consensus on
the "best" logic formalisms. In order to keep the formalized
legal rules agnostic to possible (deontic) logic systems, an
intermediate formal representation of the legal norms can
be used. LegalRuleML ([601, 32, 31]) aims to provide such
an interchange format for legal rules, supporting deontic
operators and defeasiblity among other features for formal-
izing legal norms. As open as the question of the "best"
logic formalism for norm representation is the question of a
good interface for legal experts who want to represent legal
norms computer understandable. A recent work proposes a
dedicated editor allowing for intuitive formalization of legal
texts and featuring consistency checks as well [488]. Another
approach proposes an agile and repetitive process [48].

3.1.2 Relational Knowledge
Knowledge concerning entities, concepts, their hierarchies
and properties as well as their relations to another is naturally
represented by graph structures. Prominent examples for
graph structured representations of structural knowledge are
Taxonomies, Ontologies and Knowledge Graphs.

Taxonomies categorize entities into a hierarchy of classes
and sub-classes represented as a directed acyclic graph
with nodes representing the entities, classes and sub-classes,
and edges representing the relations. Taxonomies categorize
objects regarding one specific aspect and commonly use only
one type of relation – the "is-a" relation. E.g., a car is a vehicle,
which is a machine.

An Ontology is a formal, explicit specification of a shared
conceptualization [786]. This means an Ontology is an abstract
model of explicitly defined, relevant concepts of the specific
domain of discourse and their relations which is constructed
in a computer understandable manner. The definitions of the
meaning of the relevant concepts and relations reflect the
common sense of domain experts. The given definition of
what an Ontology actually is, implies that the development
of a specific Ontology is a process which involves different
persons (e.g the knowledge engineer, the domain experts,
maybe also the users) and that it takes a certain communica-
tion effort to develop a shared understanding of the concepts,
the formalizations of those concepts as well as the usability of
the Ontology for the user. Hence, Ontology building is ideally
an iterative and repetitive design process for which multiple
process patterns had been developed [588, 168, 265].

Concrete Ontologies consist of classes and sub-classes
which refer to domain concepts as well as the properties and
relations between those, which is referred to as terminological
knowledge. Additionally to the class definitions, relations
and constraints for concrete instances of classes are also de-
fined in an Ontology and referred to as assertional knowledge.
These definitions and constraints are expressed in description
logic which is a decidable fragment of predicate logic, where
the terminology TBox and ABox are often used instead of
terminological knowledge and assertional knowledge. The logic is
commonly represented in the Web Ontology Language (OWL),
which is a computational language based on description logic
that allows for formalizing complex knowledge such that it
can be exploited by computer programs [598]. An Ontology
can be interpreted as a meta-schema for domain-specific data,
that not only specifies the relational structure and semantics
of the data but also allows, e.g., to verify the consistency of
that knowledge or to infer implicit knowledge through its
strong logical foundation. Ontologies have been developed
for a wide range of domains and applications.

In literature Knowledge Graphs and Ontologies had often
been used as synonyms until [202] proposed the following
definition: "A knowledge graph acquires and integrates
information into an Ontology and applies a reasoner to
derive new knowledge." In a Knowledge Graph data from
heterogeneous data sources is integrated, linked, enriched
with contextual information and meta-data (e.g., information
about provenience or versioning) and semantically described
with an Ontology. Through their linked structure Knowledge
Graphs are prominently used in semantic search applications
and recommender systems but also allow for logical rea-
soning when featuring a formal meta-schema in form of an
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Ontology. Surveys on Knowledge Graphs and their general
applications are provided by [393, 997] and Knowledge Graphs
for recommender systems specifically by [301].

3.1.3 Applications
Symbolic representations improve scene understanding by
mapping detected objects to a formal semantic representation
of the current traffic scene (e.g., as a scene graph ([6, 111])).
To integrate knowledge into machine learning algorithms,
a representation of this knowledge is essential. While this
knowledge is in form of embeddings, a symbolic represen-
tation allows traceability and makes it understandable for
humans.

Given a sound formalization of traffic rules and a seman-
tic representation of the entities, actions and legal concepts
in traffic scenes (analogue to the legal ontology modeling
the concepts of privacy proposed by [602]), we can derive
the current legal state of an AD vehicle. An example where
knowledge graphs are used as embeddings is [592]. In this
case a knowledge graph is build upon a road scene ontology
to recognize similar situations that are visually different.
Using this technique to integrate legal knowledge and derive
the legal state of different situations is a possible approach.

Analogue to the application of symbolic representations
for situation understanding we make use of formal represen-
tations of traffic rules and legal concepts as well as symbolic
scene descriptions for planning tasks by ranking possible
alternative trajectories and actions, e.g., according to their
legal consequences.

3.2 Knowledge Representation Learning
Author: Stefan Zwicklbauer
Complementary strength and weaknesses of data-driven
and knowledge-driven AI systems have led to a plethora
of research works that focus on combining both symbolic
(e.g., Knowledge Graphs (KGs)) and statistical (e.g., NNs)
methods [159]. One promising approach is the conversion of
symbolic knowledge into embeddings, i.e., dense, real-vector
representations of prior knowledge, that can be naturally pro-
cessed by NNs. Typical examples of symbolic knowledge are
textual descriptions, graph-based definitions or propositional
logical rules. The research area of Knowledge Representation
Learning (KRL) aims to represent prior knowledge, e.g.,
entities, relations or rules into embeddings that can be used
to improve or solve inference or reasoning tasks ([494],
[479]). Most existing literature narrows down the problem by
defining KRL as converting prior knowledge from KGs only
[494]. Thus, our focus in this survey also lies on knowledge
modeled in graph-based structures.

3.2.1 Textual Embeddings
With the development and advances in DL, Natural Lan-
guage Representation Learning has become a hot topic
over the last couple of years. Natural Language Models,
such as proposed in [176], [630], [85] are capable of directly
converting natural language text, e.g., common sense text like
Wikipedia articles or textual rules like road traffic regulations
into embeddings that implicitly represent the syntactic or
semantic features of the language [645]. Those embeddings
are mostly used for specific downstream tasks like Question

Answering (QA) [988], Neural Machine Translation (NMT)
[927] or Common Sense Reasoning [784], but probably lack
power of expressiveness when it comes to representing
specific rules and logic. As a consequence, most research
works extract entities, relations and rules from sentences
first and model them in a more expressive representation
format, e.g., KGs, afterwards. In the following, we do not
further elaborate literature regarding Natural Language
Representation Learning but refer to the respective surveys
([645], [142]) and assume that knowledge has already been
converted to an expressive format like KGs or another logical
system.

3.2.2 Knowledge Graph Embeddings
Many research works described how to create dense-vector
representation for either homogeneous (i.e., graphs with a
single type of edge) and heterogeneous (i.e., graph with
multiple types of edges) graphs [156]. Graphs with auxiliary
information ([582], [304]) and graphs constructed from non-
relational data [956] are out of scope in this survey. For
homogeneous graphs, the authors of [629] made a significant
progress in KRL. They created a node corpus by randomly
walking over the graph and applied Word2Vec [545] to gener-
ate node embeddings. The authors of [998] further improved
and used this approach for heterogeneous graphs. Tang et
al. [802] and especially Grover at al. [293] proposed state-
of-the-art works which intelligently explore the specific and
varying neighborhoods of nodes and consider the respective
node order to create their embeddings. Most research works
however, focus on heterogeneous graphs since they are best
suited for rule and relation modeling. We first focus on pure
node (entity) and edge (relation) representation learning, also
called Triplet Fact-based Representation Learning Models.
Hereby, we further distinguish between Translation-Based
Models, Tensor Factorization-Based Models and NN-Based
Models.

Starting with Translation-Based Models, the first influ-
ential work proposed TransE [80], a framework to create
embeddings for heterogeneous graphs. Given a triple (h, r, t),
with h and t denoting the head and tail entity and r denoting
the respective relation, the idea is to embed each component
h, r and t into a low-dimensional space h, r, t in a way that
h and r translate to t: h + r ≈ t. The authenticity of the
respective triplet is defined via a specific scoring function,
which is the distance under either `1 or `2 norm:

fr(h, t) = ‖h + r− t‖p (1)

with p = 1 or p = 2. This objective function is minimized
with a margin-based hinge ranking loss function over the
training process. Since TransE came up with several limita-
tions, such as not being able to model one-to-many, many-to-
one and many-to-many relations, various authors addressed
these shortcomings by using TransE as foundation for their
works. For instance, the authors of TransH [873] introduced
relation-related projection vectors where the entities are
projected onto relation-related hyperplanes. TransH enables
different embeddings based on the underlying relation. All
entities and relations are still represented in the same feature
space. In TransR [495], the entities h and t are projected from
their initial entity vector space in to the relation space of the
connecting relation r. This allows us to render entities that



10

are similar to the head or tail entity in the entity space as
distinct in the relation space. Further improvements can be
found in the TransD [392] model, which has fewer parameters
and replaces matrix-vector multiplication by vector-vector
multiplication for an entity-relation pair, which is more
scalable and can be applied to large-scale graphs. Another
problem of existing approaches is the non-consideration of
crossover-interactions, bi-directional effects between entities
and relations including interactions from relations to entities
and interactions from entities to relations [971]. To provide an
example, predicting a specific relation between two entities
typically relies on the entities’ relevant topic in form of their
connecting entities/relations. Not all connected entities and
relations belong to the topic of the relation to be found.
This is modeled in CrossE [971], which simulates crossover
interactions between entities and relations by learning an
interaction matrix to generate multiple specific interaction
embeddings. Another state-of-the-art approach Hake [975] is
capable of modeling a) entities at a different level in the
semantic hierarchy, and b) entities on the same level of
the semantic hierarchy. This is achieved by mapping the
entities in the polar coordinate system. Entities on a different
hierarchy level are modeled with a modulus approach,
whereas the phase part aims to model the entities at the
same level of the semantic hierarchy.

Regarding Tensor Factorization-Based Models, RESCAL
[579] represents the foundational work for most follow-up
works. RESCAL uses a tensor representation to model the
structure of KGs. More specifically, a rank-d factorization is
used to obtain the latent semantics: Xk ≈ ARkAT , for k =
1, 2, ...,m, with A ∈ Rnxd being a matrix that captures the
latent semantic representation of entities and Rk ∈ Rdxd
being a matrix that models the pairwise interactions in the
k-th relation. Based on this principle, the scoring function
is defined as fr(h, t) = hTMrt, where h, t ∈ Rd denote the
entity embeddings and the matrix Mr ∈ Rdxd represents the
pairwise interactions in the k-relation ([579], [156]). The work
DistMult [923] improves RESCAL in terms of algorithmic
complexity and embedding accuracy by restricting Mr to
be diagonal matrices. To overcome the problem of DistMult
that head and tail entities are symmetric for each relation
symmetry, the works Complex [822] and QuatRE [575] satisfy
the key desiderata of relational representation learning, i.e.,
modeling symmetry, anti-symmetry and inversion. Both
approaches leverage complex-value embeddings to support
asymmetric relations. More recently proposed state-of-the-art
models use special tensor factorization methods. For instance,
SimplE [422] leverages an adapted and simpler version of
Canonical Polyadic Decomposition to allow head and tail
entities to have embeddings that are dependent on each
other, which would be impossible with the original model.
Similar, TuckER [42] is based on the Tucker-Decomposition
on a binary entity-relation-entity matrix.

Due to their success in the last decade, NN-Based Models
became also a hot topic for KRL. The first shallow NN
approaches comprise standard feed-forward networks [80]
(with linear layers) and neural tensor networks [776] (with
bi-linear tensor layers). Over time deeper variants such as
NAM [502] have established to provide more flexibility
when it comes to train a network towards the underly-
ing training goal. More recently, graph neural networks

[985] were introduced which strive to explicitly model the
peculiarities of (knowledge) graphs. In particular, graph
convolutional networks for multi-relational graphs [434]
generalize nonvolutional neural networks to non-euclidean
data and gather information from the entity’s neighborhood
and all neighbors contribute equally in the information
passing. Graph convolutional networks are mostly built on
top of the message passing neural networks framework [276]
for node aggregation. Many works are limited to create
embeddings for knowledge entities only ([714], [742]), but
recent approaches tried to overcome this limitation ([175],
[835], [936], [836]). A neighborhood attention operation in
graph attention networks [839] can enhance the represen-
tation power of graph neural networks [917]. Similar to
natural language models, these approaches apply a multi-
head self attention mechanism [837] to focus on specific
neighbor interactions when aggregating messages ([917], [4],
[525]). Many authors incorporated mechanisms to improve
the overall quality of entity and relation embeddings. For
instance, the idea of negative sampling is to intelligently
sample specific wrong samples that are needed for margin-
based loss functions. Recent methods employed Generative
Adversarial Networks (GANs) [283] in which the generator
is trained to generate negative samples ([858], [94]). Another
work ATransN suggested to improve existing embeddings
by leveraging GANs to correctly align the embeddings with
those from teacher KGs [853].

In this section, we mostly concentrated on methods that
exclusively generated their embeddings on relational data.
However, some approaches consider additional information,
such es textual (entity) descriptions (e.g., [243], [874], [307]),
path-based information (e.g., [584], [300]) and even hierar-
chies (e.g., [975], [976]) as available in ontologies.

3.2.3 Knowledge Graph Embeddings with Rule Injection
So far, we have discussed approaches to embed knowl-
edge that is formalized within KGs. These methods create
representations that purely reflect the items’ graph-based
modeling (e.g., triples). In addition to this, specific rules
(soft or hard rules) can be derived from KGs, which is
also known as rule learning (e.g., [347], [972], [593]), or
be leveraged in the embeddings learning process, also
known as rule injection. In the following, we focus on the
former works, how to additionally integrate pre-defined or
mined rules into embeddings. The authors of RUGE [303]
presented a novel paradigm to leverage horn soft rules mined
from the underlying KG in addition to the existing triples.
Their iterative training procedure improves the transfer of
the knowledge contained in logic rules into the learned
embeddings. The framework SLRE [302] also presents an
option to leverage horn-based soft rules with confidence
scores to improve the accuracy of down-stream tasks. These
rules are directly integrated as regularization terms in the
training mechanism for relation embeddings. The authors
of [584] additionally enriched the horn-based rules with
path information to improve the state of the art. A related
work [859] mines inference, transitivity and anti-symmetry
rules from the given KG first and converts them into first-
order logic rules in the second step. Finally, the proposed
rule-enhanced embedding method can be integrated in any
translation-based KG embedding model.
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Apart from rules directly mined from the underlying
knowledge graph, other approaches exist that try to apply
more extrinsic rules. For instance, the authors of [183] try to
improve the embeddings’ capability of modeling rules by
using non-negativity and approximate entailment constraints
to learn compact entity representations. The former naturally
induce sparsity and embedding interpretability, and the
latter can encode regularities of logical entailment between
relations in their distributed representations. Other works
propose to encode knowledge items into geometric regions.
For instance, [308] encodes relations into convex regions,
which is a natural way to take into account prior knowledge
about dependencies between different relations. Query2box
[664] encodes entities (and queries) into hyper-rectangles,
also called box embeddings to overcome the problem of
point queries, i.e., a complex query represents a potentially
large set of its answer entities, but it is unclear how such a set
can be represented as a single point. Box Embeddings have
also been used to model the hierarchical nature of ontology
concepts with uncertainty [484].

Most approaches described above rely on common-sense
knowledge bases like DBPedia [33] or Freebase [77] and
leverage their developed embedding approaches for knowl-
edge base link prediction or inference / reasoning tasks.
However, we believe that existing models and algorithms
can be similarly applied to special domain knowledge bases,
e.g., knowledge bases with data for AD [888].

3.2.4 Applications
The application of KGs in the AD domain has not received
too much attention at the current point of time, albeit it can
be an effective way to help situation or scene understanding
[827]. For instance, the authors of [317] built a specific
ontology to represent all core concepts that are essential
to model the driving concept. The built KG CoSi models
information about driver, vehicle, road infrastructure, driving
situation and interacting traffic participants [317]. To classify
the underlying traffic situation with a NN, a relational
graph convolutional network [714] is used to convert the
underlying KG into embeddings first. Similar, the work
by Buechel et al. [89] presented a framework for driving
scene representation and incorporated traffic regulations.
Wickramarachchi et al. [888] focused on embedding AD data
and investigated the quality of the trained embeddings given
various degrees of AD scene details in the KG. Moreover, the
authors evaluated the created embeddings on two relevant
use cases, namely Scene Distinction and Scene Similarity.

4 KNOWLEDGE INTEGRATION

A plethora of methods and approaches have been proposed
in literature that focus on augmenting data driven models
and algorithms with additional prior knowledge. Among
the most prominent approaches are the modification of the
training objective via customized cost functions, especially
knowledge affected constraints and penalties. An overview
of auxiliary losses and constraints that take into account physi-
cal and domain knowledge in various peculiarity is presented
in Section 4.1. Often these approaches are accompanied
by problem-specific designs of the architecture, leading to
hybrid models that leverage symbolic knowledge in form

of logical expressions or knowledge graphs. The merging
of symbolic and sub-symbolic methods, also referred to as
neural-symbolic integration is focus in Section 4.2.

Besides external input, recent methods rely on preferably
internal representations in order to focus attention on distinct
features and concepts within a network itself. Key weighting
and guidance approaches are discussed in Section 4.3. Last
but not least, data augmentation techniques form the backbone
to integrate additional domain knowledge into the data and
thus indirectly into the model. Approaches starting from
data transformations to augmentations in feature space up
to simulations are discussed in Section 4.4.

In addition to these prevalent general approaches, this
chapter concludes with methods and paradigms that are
more tailored to the field of autonomous driving, considering
multiple agents that interact with specific environments
typical for the application under investigation. Especially
inferring and predicting the state of an agent plays an
essential role in the considered state space models in Section 4.5
and reinforcement learning in Section 4.6. The involvement of
positional as well as semantic information is essential part of
the information fusion approach outlined in Section 4.7.

4.1 Auxiliary Losses and Constraints

Authors: Tino Werner, Maximilian Alexander Pintz, Laura von
Rueden, Vera Stehr
The usual Empirical Risk Minimization (ERM) principle in
machine learning amounts to replacing the minimization of
an intractable risk, i.e., an expected loss over a ground-truth
data distribution, by the minimization of the empirical risk.
A mismatch between the expected loss and its empirical
approximation causes ERM to result in models that do not
generalize well to unseen data. This manifests either in
overfitting, where the model represents the training data
too closely and fails to capture the overall data distribu-
tion, or underfitting, where the model fails to capture the
underlying structure of the data. Regularization schemes
have been proposed to mitigate the problem of overfitting.
The Structural Risk Minimization (SRM) principle [309, 833]
extends the ERM principle for regularization. SRM seeks to
find models with the best tradeoff between the empirical
risk and model complexity as measured by the Vapnik-
Chervonenkis dimension or Rademacher complexity. In
practice, this encompasses minimizing an empirical risk with
an added regularization term. This technique has successfully
entered variable selection as done in the path-breaking
work of [812] who introduced the Lasso. Regularization
in general proved to be indispensable in high-dimensional
regression [200, 995, 97, 946, 766], classification [608, 832],
clustering [893], ranking [462] and sparse covariance or
precision matrix estimation [44, 242, 95].

As for knowledge-infusion into AI, a natural strategy
is to similarly use regularization terms (so-called auxiliary
losses) that correspond to formalized knowledge. However,
constraints may also appear in terms of hard constraints,
for example, if some logic rule must not be violated so that
integrating it in a soft manner via auxiliary losses would
not be appropriate, as dependencies or as regularization
priors. This section is structured as follows: After describ-
ing techniques that integrate physical knowledge or other
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domain knowledge via auxiliary losses, we review ideas
to incorporate constraints into the AI training and the AI
architecture, followed by works that propose uncertainty
quantification for knowledge-infused networks. At the end,
we review applications of knowledge-infused networks for
perception and planning in the automotive context.

Let us first point out the advantages of such techniques,
besides the stronger adaptation of the model to the knowl-
edge. For example, the authors in [416] highlighted that
the knowledge-based regularization term does generally not
require labeled inputs, which enables data augmentation
with unlabeled instances, saving a large amount of time and
money that would be required to generate a large labeled
data set. The approach in [253] does not even require any
labeled instance. Moreover, a common result is better gener-
alizability of the model, paralleling the improved generaliza-
tion ability of models trained with complexity regularization.
Each improvement in explainability and interpretability of
deep models is especially relevant for autonomous driving
in order to increase the public acceptance of self-driving
vehicles.

4.1.1 Knowledge Integration via Auxiliary Losses

One has to distinguish between common penalty terms
that regularize the complexity of the model as outlined
in the previous paragraph and knowledge-based penalty
terms that integrate formalized knowledge into the model.
Surveys on knowledge integration, including auxiliary loss
functions, are given by [783, 171, 649, 889, 696, 81]. An
important side effect from knowledge integration, apart
from a better generalization performance, is that it increases
explainability and interpretability of the model by at least
partially explaining the predictions by the knowledge. This
is especially true for deep models which are usually black
boxes.

Regarding the success of regularization in machine
learning, knowledge-based regularization terms have the
potential to significantly improve machine learning models
by encouraging them to respect existent knowledge without
wasting computational effort for learning this knowledge
again from scratch during training but more efficiently. It is
important to note that knowledge integration via losses and
penalties is also possible if the knowledge is not present in the
data (for example, if it is related to rare cases) or if it cannot
easily be derived from the data. Work in this direction has
been done by [783], but note that [443] already had the idea of
physics-based regularization when solving inverse problems.
The authors in [783] consider the applications of predicting
a height curve when throwing an object (constraint: it is a
parabola), the location of a walking person (constraint: the
velocity should remain constant) and casual relationships
(video game) by adding a suitable regularization term to the
loss function.

Physical Knowledge: Real-world environments are
constrained by physical laws, which need to be considered
for realistic modeling. Several approaches have been pro-
posed for infusing such physical knowledge into neural
networks. In [652, 651, 650] physics-informed NNs are
introduced to reliably solve partial differential equations
(i.e., enforcing the solution to respect physical laws) like the

Schrödinger equation or discrete time models like Runge-
Kutta models. The authors in [515] describe how to impose
soft boundary conditions for Partial Differential Equations
(PDEs) via auxiliary loss functions. The authors in [747] use
physics-informed CNNs in order to predict physical fields.
The authors in [342] propose physics-guided NNs that solve
PDEs while satisfying thermodynamical constraints. Further
applications in differential equation and dynamics modeling
are given for example in [52, 158, 655, 656, 534, 938, 966, 865,
866, 253, 390, 389, 916].

Several works on physics-informed NNs consider the
problem of temperature modeling (e.g., of lakes or sea
surfaces), such as [416, 66] or [565], who try to encourage
a monotonicity constraint by an auxiliary loss term (e.g.,
the water density increases monotonically with depth). The
authors in [395] use physics-guided recurrent graph networks
to model the flow and the temperature in rivers and enforce
the model to respect local patterns via physics-guided
regularization. In [396], an energy conservation constraint is
integrated while [831] apply physical regularization in fuel
consumption modeling.

Domain Knowledge: The authors in [844] in-
corporate domain knowledge (here: sentiment dictio-
nary/ontology, linguistic patterns) into DL in the context
of sentiment analysis. Medical domain knowledge in terms
of priors on abdominal organ sizes is integrated into Deep
Neural Network (DNN) models in [987] for the task of
segmenting organs on Computerised Tomography (CT) scans.
The authors in [110] propose knowledge-guided GANs
that are trained using image data and additional textual
descriptions of (potentially unseen) input images (types
of flowers). They train two generators, one for generating
images of seen categories and one for unseen categories,
and use an auxiliary loss to transfer knowledge between the
generators. In [925] the contribution of domain knowledge
is quantified by approximating the Shapley value (see also
Section 7.2.2) of a particular knowledge constraint.

Imposing general logical rules (equations, inequalities,
orderings) on network outputs is also considered for incor-
porating domain knowledge in the literature. The authors in
[913] construct a loss function, such that the output of neural
network satisfies certain first-order logic sentences upon
minimization of the loss. In [232] are more general framework
is proposed that turns general first-order sentences into
differentiable loss functions using max or logit operators.
The training of the constrained NN is simply done using
standard optimization techniques like Stochastic Gradient
Descent (SGD).

4.1.2 Integration of other Constraints

Adding a knowledge-based regularization term to a loss
function typically enforces constraints in a soft manner. How-
ever, in many cases we would like to ensure that constraints
are perfectly satisfied, i.e., enforce hard constraints that
correspond to the limit case of auxiliary regularization terms
with infinite regularization parameters. In the following,
several approaches are introduced that aim at incorporating
hard constraints. Besides using auxiliary losses, these often
employ other approaches for constraint incorporation such
as a change in architecture or use different optimization
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schemes such as projected gradient descent or conditional
gradients [657].

Hard constraints: Methods to train NNs with hard
constraints on the output layer are explored in [535], but due
to the large dimensionality it is infeasible to apply standard
Lagrangian techniques and even worse, if the constraints are
incompatible, one will face numerical instabilities. In order to
solve the linear system imposed by the Karush Kuhn Tucker
(KKT) conditions, they use the Krylov subspace method
which iteratively solves linear equations. The required
products of Jacobians and vectors are computed using the
Pearlmutter trick. It is further discussed how the Krylov
method can be improved to cope with ill-posed constraints,
how a constrained Adam looks like and how to reduce the
number of constraints during learning. The latter is achieved
by randomly selecting active constraints on the unlabeled
data as SGD selects instances for labeled data. They suggest
that randomly choosing them may be replaced by using the
ones for which the constraint violation is largest, i.e., it is
some kind of active learning approach for the constraints.
The authors in [567] show how to perform deep learning
with hard constraints by converting hard label constraints to
soft logic constraints over distributions. They point out that
the work of [182] is similar to theirs but does not use a full
Lagrangian for respecting the constraints (logical formulas)
but modify the loss functions so that hard constraints cannot
be handled. Equality constraints are formulated using the
two corresponding inequality constraints. Using the Hinge
loss, the constraints can be equivalently written as equality
constraints ([426] call it ReLU Lagrangian) which reduces
the number of constraints and allows any constraints as long
as they are differentiable. Training is done via subgradient
descent. The authors in [231] consider inequality constraints
on DNNs and formulate it very similarly to [567] using the
Hinge loss, but they consider a primal-dual formalization
as [119] for solving the problem. The authors in [426] pro-
pose log-barrier extensions to approximate the Lagrangian
optimization of constrained CNNs with a sequence of
unconstrained losses with an initial feasible set of parameters.
The main idea is to first compute any feasible point of the
constrained problem with an inequality constraint and to
approximate the original problem with the unconstrained
problem but where the inequalities enter as penalty terms
with a log-barrier function which approximates the Hinge
loss. They provide a continuous and twice differentiable log-
barrier extension which is no longer restricted to feasible
points and therefore does not require to find a feasible
initial point. The authors in [613] consider the training of
matrix inequality constrained (semidefinitely constrained)
NNs that are used for enforcing Lipschitz continuity or
stability. Training robust, i.e., Lipschitz NNs has already
been considered in [614] who solve the Lipschitz-regularized
optimization problem using an Alternating Direction Method
of Multipliers (ADMM) scheme. In order to capture even
nonlinear matrix inequality constraints, [613] propose to
transform the constrained problem into an unconstrained
problem using log-det barrier functions. The framework
of [232] enforces besides the logic-based soft constraints,
also convex hard constraints via projected gradient descent
(projecting gradients back into the convex constraint region).
Besides enforcing soft boundary conditions of physics-based

models, the authors in [515] also propose a NN architecture
for encoding hard constraints.

Constraint incorporation via layers: Other tech-
niques address the problem which knowledge constraints
to integrate when and to which extent (e.g., how the
regularization parameters have to be chosen). The authors
in [454] criticize that many existing approaches incorporate
the knowledge before or after the learning process by feature
extraction or validation and therefore propose a method how
to incorporate it within the hidden layers themselves, i.e.,
by infusing the knowledge between the layers. In order to
decide whether knowledge should be incorporated between
particular hidden layers and how the latent representation
and the knowledge representation merge, they propose two
loss functions. As for the knowledge representation, they
build knowledge graphs. The knowledge infusion is realized
by a knowledge-infusion layer which minimizes the gap
between the learned representation and the knowledge repre-
sentation (called differential knowledge) using a knowledge-
aware loss function, i.e., a relative entropy loss quantifying
the information gain from the knowledge representation.
Finally, a weight matrix based on the differential knowledge
is learned and the AI is trained using Backpropagation (BP).

The authors in [20] propose OptNet that uses special
DNN layers for solving optimization problems which encode
constraints as well as complex dependencies among the
hidden nodes. They concentrate on quadratic problems and
the solution becomes the output of the respective layer.
To enable BP through these layers, the derivatives of the
solutions (i.e., of the argmin operator) have to be com-
puted, which is done by differentiating the KKT conditions.
They prove that the OptNet layers are subdifferentiable
everywhere and that they can approximate any piecewise
linear function but, however, point out that OptNet layers
are costly. In [35], a linear complementarity problem for
equality- and inequality-constrained reinforcement learning
(see Section 4.6) is formulated which, using the results
from [20], allows for gradient computation while keeping
the BP solution scheme. Their approach can be interpreted
as adding a physics-based layer to the network.

There are also efforts to incorporate logic constraints
directly into the network architecture. The authors in [482]
consider logic rules on the activations of DNNs. To enforce
such rules, the pre-activations of the network are augmented
with terms that increase when given logical statements are
satisfied. A differentiable logic layer for trajectory prediction
that can incorporate symbolic priors and temporal logic
formulae is proposed in [485]. Since this requires much less
labeled data, trajectory predictors can serve as trajectory
generators. The parameter adjustment to the rules is done
in the BP step. Furthermore, the layer can check whether
rules are satisfied/violated. The idea is to define a robustness
function based on signal temporal logic formulae so that
they are satisfied if and only if the robustness function is
greater than zero. Minimum and maximum operators are
smoothly approximated. Training is done by BP where the
gradients of this robustness function are used. In [365], DNNs
are combined with declarative first-order logic rules. This
is done by enforcing the NN to predict the outputs of a
logic-rule-based teacher and updating both NNs iteratively.
For a classification task, the softmax output that the student
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network assigns to an instance is projected onto the rule
subspace where the constraints are satisfied, leading to the
softmax output of the teacher network. The parameters of
the student network are iteratively updated while the teacher
network is trained so that it satisfies the first-order constraints
by minimizing the Kullback-Leibler (KL)-divergence.

Posterior regularization: The authors in [538] pro-
pose robust RegBayes which does not incorporate knowledge
via the priors but by posterior regularization w.r.t. first-
order logic rules (see ??). The idea builds upon regularized
Bayesian inference (RegBayes) from [990]. Robust RegBayes
takes the uncertainty about the domain knowledge into
account and outputs parameters that reflect the importance
of each logic constraint which will be low in cases of large
uncertainties about the knowledge. In [364], the method of
[365] is generalized by jointly learning both the regularized
DNN models as well as the structured knowledge. More
precisely, the task is to learn the regularization parameters
in the penalized objective function as well as dependency
structures of the knowledge constraints. Their technique
can be interpreted as regularized Bayes with generalized
posterior [990]. The authors in [963] also propose posterior
regularization (see [252]) for prior knowledge integration
in order to handle multiple overlapping prior knowledge
sources in the context of neural machine translation. They
penalize the likelihood by the KL-divergence of the resulting
model and a distribution that encodes prior knowledge. In
[625], discrete constraints and regularization priors for CNNs
are proposed, leading to discrete-valued regularization terms.
The optimization problem is re-formulated as Augmented
Lagrangian Method (ALM) and solved using an ADMM
scheme.

4.1.3 Uncertainty Quantification of Knowledge-based DNNs
The authors in [165] combine the physics-guided architec-
tures with Monte Carlo (MC) dropout (c.f. Section 8.1) for
uncertainty quantification and show that the physics-guided
NN approach still yield black-box models and that the
random dropping of weights again leads to physically incon-
sistent predictions. They remedy this issue by introducing
physically-informed connections and physical intermediate
variables which grant certain neurons a physical interpreta-
tion. They consider a monotonicity-preserving Long Short-
Term Memory (LSTM) which extracts temporal features and
predicts an intermediate physical quantity (water density)
such that the monotonicity is satisfied for this quantity
by hard-coding it into the architecture. Then, an Multi-
Layer Perceptron (MLP) combines these predictions with
the inputs to get the predicted responses. The perturbations
injected by MC Dropout do not destroy the consistency
with the physical knowledge. In [959], a dropout variant for
uncertainty estimation (both approximation and parameter
uncertainty) in physics-guided NNs is suggested for the
context of forward and inverse stochastic problems by
invoking polynomial chaos and MC dropout. The authors in
[931] propose a latent-variable-based adversarial inference
procedure for uncertainty quantification of physics-based
NNs. In [408, 409], uncertainty quantification for physics-
guided NNs in dynamical systems is done by a coarse-
graining process which again results in a Bayesian-type
approach where an evidence lower bound is maximized.

4.1.4 Applications

Knowledge integration has touched upon several perception
tasks. As for object detection, [520] integrate prior knowledge
about the size of the bounding boxes of vehicles into the
model by imposing size constraints for the boxes. The
authors in [610] consider equivariance constraints in weakly
supervised segmentation in order to cope with affine image
transformations. As CNNs are not equivariant in general,
they impose an equivariance-preserving loss and extend
this technique for shared information between multiple
networks. The authors in [937] propose a knowledge-based
attentive Recurrent Neural Network (RNN) (see also Sec-
tion 4.3) for traffic sign detection, motivated by the fact
that small objects are not yet detected reliably by DNNs.
The idea is to impose a prior distribution on the location
of the traffic signs that represents the domain knowledge
that the driver’s attention is the bias of the center and
the intuitive knowledge that human’s attention follows a
Gaussian distribution. The former emerged from [141] who
automatically learn priors that respect that issue, i.e., it learns
the bias from eye fixations. As for semantic segmentation,
[425] impose constraints such that each bounding box at
least has to contain a foreground pixel (to prevent excessive
shrinking) and no background pixel (background emptiness
constraint). To solve the resulting problem, they employ
log-barrier extensions and optimize the corresponding La-
grangian function directly via SGD as proposed in [426].
The authors in [854] propose a bounding box tightness prior
for weakly supervised image segmentation by applying a
smooth maximum approximation instead of posing it directly
as constraints as in [425]. In [611], constrained CNNs are
proposed to incorporate weak supervision into the learning
procedure. The idea is to define linear constraints on the
output layer that enforce the output being near the latent
distribution from weak supervision. Their formulation covers
for example bounds for the expected number of foreground
and background pixel labels in a scene, suppression of
a label in a scene (object is not allowed to appear) or
size constraints. They concretize the problem using a KL-
divergence-based loss function which can be solved using
SGD on the dual. A related approach is presented by [591]
who impose anatomical constraints on a CNN. The authors
in [860] propose virtual adversarial training for anatomically-
plausible image segmentation, i.e., they generate adversarial
samples that violate the topological constraints and let the
network learn to avoid such predictions. They point out that
additional losses that correspond to some constraint violation
may not exist or may not be differentiable. Even worse,
if the constraints are complex relationships, the NN may
never violate them during training so that the constraint will
always lead to a gradient of zero. They optimize a regularized
cross-entropy loss where the context-aware regularizer is the
maximum of a KL-divergence, penalized by a constraint
loss which encourages adversarial samples. The authors in
[625] impose discrete constraints which may be lower and
upper bounds for the foreground size and the regularization
prior can be a measure of the similarity of the intensity or
color of neighboring pixels. [624] experimentally derive that
existing Active Learning (AL) methods work poorly for lane
detection due to label noise (maybe due to occlusion or
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unclear lane markings) and due to the fact that the entropy
criterion leads to selecting images with no or only few lanes.
They propose to train a student model using the same loss
as for the teacher model, regularized with a distillation loss.
As for mitigating the label noise that may be the reason for
large discrepancies of the teacher and the student, they train
another student without knowledge distillation. They select
samples where the discrepancy of the student’s predictions
are large but where the discrepancy of the teacher and the
distilled student are low (teacher may be erroneous here) or
where the latter discrepancy is large and those between the
students is low (knowledge is difficult to learn). Experiments
are conducted on the LLAMAS and the CULane data set.

In [535], human pose estimation with hard symmetry
constraints is considered while [363] impose a consistency
constraint that encourages the body parts of the generated
images match the respective parts in the real images. As for
image classification, [539] include hierarchical domain knowl-
edge into classification tasks, i.e., that all parts belonging to
a certain vehicle or all vehicles that contain a given part
are considered. The authors in [925] incorporate symbolic
knowledge in classification, i.e., they consider super-classes
that provide information about the potential actual sub-
classes. Knowledge can also be integrated into tracking and
trajectory prediction. In [292], the Yaw loss, an auxiliary
differentiable heading loss that penalized angle differences
between the optimal and the predicted headings, is proposed,
where the case of road intersections is also respected. The
authors in [580] propose an off-road loss for improving the
movement prediction of traffic participants. This loss is the
mean Euclidean distance between each predicted waypoint
and the corresponding nearest feasible (drivable) point. In
[83], this approach is extended by using a pre-trained model
(according to off-road loss) and by combining it with models
like CoverNet from [633] that respect dynamic constraints
and that make multimodal probabilistic trajectory predictions
or by the method from [151] who predict kinematically
feasible trajectories using a kinematic layer. The authors
in [783] enhance pedestrian tracking models by the world
knowledge that the walking speed is constant. The idea in
[39] is to add residuals to knowledge-driven trajectories in
order to better reflect the stochastic behavior, to make it more
realistic and to let the prediction effectively account for other
agent’s behaviors. They also consider social rules (world
knowledge) concerning the movements of pedestrians. They
show that their approach can also be used for multimodal
prediction and combined with the kinematic layer from [151].
The authors in [977] propose STINet for joint pedestrian
detection and trajectory prediction. The idea is to model
temporal information for each pedestrian so that current and
past states are predicted. They also model the interaction
of the pedestrians with an interaction graph. A temporal-
region proposal network is applied in order to make object
proposals in terms of past and current boxes, supervised
by the ground truth boxes. In [401], the interaction-aware
Kalman NN for predicting interaction-aware trajectories is
proposed.

As for planning, knowledge-infused models for semantic
segmentation, object recognition and trajectory prediction
outlined in the perception subsection can potentially be
used for planning the ego-trajectory since they improve

the quality of the observed and predicted states respectively.
Especially approaches like STINet [971] that incorporate
social interactions are candidates since the interactions
with the ego-vehicle can be included. The authors in [700]
add different regularization terms corresponding to speed
limits, dynamics or lane changes. In [152], the ellipse loss
is proposed which penalizes the bounding box regression
and orientation loss with an off-road loss computed by a
non-drivable region mask which is added to the computed
Gaussian raster. Position and heading of the agent enter
as regularization terms in the ChauffeurNet of [46]. The
authors in [103] consider penalties, for example for trajectory
curvature, lateral acceleration and off-road driving.

The authors in [76] propose to use physics-guided NNs
for inversion-based feed-forward control applied to linear
motors. Two physics-guided NNs are considered, one in
which the inputs are transformed according to the feed-
forward controller (i.e., physics-guided input transformation)
and one in which a physics-guided layer is used where
the output is transformed according to the physical model
(maybe enhanced with a physics-guided input transforma-
tion). Their model is applied to tracking tasks.

4.2 Neural-symbolic Integration
Authors: Tobias Scholl, Philip Gottschall, Christian Hesels, Gu-
rucharan Srinivas
Machine learning and deep learning techniques (so-called
sub-symbolic AI techniques) have proven to be able to
achieve great performance in pattern recognition tasks of
numerous kinds: image recognition, language translation,
medical diagnosis, speech recognition, recommender systems
and many more. While the accuracy in performing those
tasks which require dealing with large and noisy input is
often on par with human abilities or even beyond that,
they come with certain drawbacks: They usually offer
no justification for their output, require (too) much data
and computational power to be trained, are susceptible to
adversarial attacks and are often criticized to generalize
weakly beyond their training distribution. On the other hand,
"classic" so-called symbolic AI systems such as reasoning
engines can provide output that is explainable but performs
badly when it comes to handling large or noisy input.

Merging methods from the fields of symbolic and sub-
symbolic AI is the purpose of neural-symbolic integration.
Its goal is to remedy the drawbacks of both approaches and
combine their advantages by integrating methods of both
fields. A first taxonomy for the types of those integrated
systems was proposed by Henry Kautz at AAAI 2020 [420]
and provides a quick survey on the kinds of systems in
neural-symbolic integration:

• Neural networks that create symbolic output from
symbolic input, e.g., machine translation.

• Neural pattern recognition subroutines within a sym-
bolic problem solver, e.g., the Monte-Carlo search in
the core neural network of AlphaGo [763].

• Systems in which the neural and symbolic are
plugged together and utilize the output of the other
system(s), e.g., the neuro-symbolic concept learner
[533] or a reinforcement agent working together with
symbolic planners [379].
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• Neural networks that have knowledge compiled into
the network, e.g., if-then rules [262].

• Symbolic logic rules embedded into a neural network
that acts as a regularizer.

• Neural networks that are capable of symbolic reason-
ing such as theorem proving.

4.2.1 Methodological Overview
Neural-symbolic methods for reasoning. In [459] multiple
approaches were presented to integrate symbolic systems
in Graph Neural Networks (GNNs). GNNs allow for two
major advantages in solving reasoning tasks. They apply
an inductive bias directly through their architecture and
offer permutation invariance because of their update and
aggregation functions. Permutation invariance simplifies the
representation of literals and clauses. Therefore the order
of logical symbols does not impact the learning and under-
standing of such clauses. For example the GNN handles the
logical expression (x1 ∨ ¬x2 ∨ x3) semantically the same as
the expression (x1 ∨ x3 ∨ ¬x2). GNNs enable visual scene
understanding and reasoning superior to Convolutional
Neural Networks as shown in [707].

Tensorization of first-order logic is another approach
for solving reasoning tasks utilizing Deep Learning in
combination with neural-symbolic integration. Logic Tensor
Networks (LTNs) as presented in [735] are able to use full
first-order logic with function symbols by embedding these
logic symbols into real-valued tensors. They propose a neural-
symbolic formalism called Real Logic in addition to the
computational model that is designed for defining logical
expressions suited for tensorization in LTNs.

Real Logic is a many-valued, end-to-end differentiable
first-order logic. It consists of sets of constant, functional, rela-
tional and variable symbols. Formulas build from these sym-
bols can be partially true and therefore Real Logic includes
fuzzy semantics. Constants, functions and predicates can also
be of different types represented by domain symbols. The
logic also includes connectives � ∈ {¬}, ◦ ∈ {∧,∨,→,↔}
and quantifiers Q ∈ {∀,∃}. Semantically Real Logic inter-
prets every constant, variable and term as a tensor of real
values and every function and predicate as a real function
or tensor operation. Therefore Logic Tensor Networks are
able to efficiently compute an approximate satisfiability by
mapping logical expressions to real-valued tensors.

Moreover, [38] presents multiple related approaches that
integrate logical reasoning and deep learning while being
end-to-end differentiable:

• Logical Neural Networks [673] use a logical language
to define their architecture. By applying a weighted
Real Logic a tree-structured neural network is built
with different logical operators represented by differ-
ent activation functions.

• DeepProbLog [532] is a probabilistic logic program-
ming language that implements a Neural Network
capable of solving reasoning tasks by applying logical
inference.

Neural-symbolic architectures for context understanding.
In [592] two applications for neural-symbolism are demon-
strated and evaluated. The first application focuses on
autonomous driving and uses Knowledge Graph Embedding

Algorithms to translate Knowledge Graphs into a vector
space. The Knowledge Graph is generated from the NuScenes
dataset and consists of the given Scene Ontology with a
formal definition of a scene and a subset of Features-of-
Interests and events defined within a taxonomy. By creating
the Knowledge Graph and the use of Knowledge Graph
Embeddings it is possible to calculate the distances of scenes
and to find similar situations that are visually different.
Presented methods to create Knowledge Graph Embeddings
are TransE, RESCAL and HoIE, where TransE shows the
most consistent performance on the quantitative Knowledge
Graph Embeddings-quality metrics.

The second application is "Neural Question-Answering"
with knowledge integration using attention-based injection.
The presented method uses knowledge from ConceptNet
and ATOMIC and injects it into an Option Comparison
Network by fusing the commonsense knowledge into
BERT’s output. It is evaluated with the CommonsenseQA
dataset and the analysis suggests, that attention-based
injection is preferable for knowledge injection.

Neural-Symbolic Program Search for Autonomous
Driving Decision Module Design. In [787] Neural
Architecture Search (NAS) framework is proposed, which
automatically synthesizes the Neuro-Symbolic Decision
Program (NSDP) to improve the autonomous driving system
design. Neuro-Symbolic Program Search (NSPS) synthesizes
end-to-end differentiable Neuro-Symbolic Programs
(NSPs) by amalgamating neural-symbolic reasoning with
representation learning. Symbolic representations of driving
decisions are described with Domain-Specific Language
(DSL) for autonomous driving. DSL contains both basic
primitives for parts with driving, along with conditional
statements to enforce higher-level priors. The design of
DSL is allowed to specify all the behaviors for autonomous
driving in a differentiable neural-symbolic behavior
paradigm. Further NSPS is formulated as a stochastic
optimization problem allowing to efficiently search for
program architecture that integrates the neural-symbolic
operations ensuring end-to-end learning possibilities. The
NSPS in Figure 1 is combined with Generative Adversarial
Imitation Learning (GAIL) to learn in an end-to-end fashion
to generate neural-symbolic decision programs to output
specific instructions (e.g., target waypoint index, target
velocity) to the motion planner and controller.

Integrating Prior Knowledge into Deep Learning. In [182]
a Semantic Based Regularization (SBR) [181] framework
is used to express prior knowledge as set of First order
Logic (FOL) clauses. SBR is a statistical relational learning
framework, holding the ability to learn from examples and
logic rules. Partial definition of the mapping from input to
output is provided through expressed FOL clauses. Statistical
relational learning is employed to inject logical knowledge
into learning. It transforms logic knowledge into continuous
constraints which are integrated with cost functions as a
regularizer. Experimental analysis of the proposed work
is focused on image classification problems. A subset of
ImageNet dataset [697] is used for the classification task.
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Fig. 1: The NSPS searches The NSDP, through back-
propagation g to update α and β. The decision policy
generated by NSDP is further used for planning and control.
Semi-transparent operators shows the candidates for parent
operations used in the search from NSPS [787].

4.2.2 Applications in Perception
Reasoning. A neural-symbolic reasoning engine could
employ world knowledge or common sense knowledge
to make sense of the scenery of a perception module or a
combination of such modules. It could work as a regularizer
(semantic loss function) during the training of a perception
neural network which describes the scenery and penalizes
implausible combinations of the recognized entities and
their attributes or relations. Secondly, the same principle
could be applicable during inference in which the perception
module(s) outputs multiple possible scenery descriptions
and the reasoning engine checks for contradictory elements
in the scenery thus assessing the plausibility of the output.

Scene Consistency. As in [592], concepts in labeled
driving data-sets along with domain experts can be
utilized to model SceneOnotology representing spatial
relational knowledge among the scene concepts. However,
the ontology in [592] is used to generate triplets or facts
exhibited in the scene. Vector representation of these
facts is performed with Knowledge Graph Embeddings
(KGEs). The KGE framework allows translating the triplets
to latent vector space for vertical integration of spatial
knowledge with deep learning methods for downstream
scene understanding task. Qualitative intrinsic evaluation
of KGEs for complete encoding of all knowledge facts is
challenging and is subject to the different score functions
utilized in KGEs [592]. Therefore, one could use SBR [182] a
statistical relational learning framework that can represent
these facts as FOL clauses and transforms these clauses into
continuous constraints. These constraints could be integrated
into the cost functions as a regularizer term, allowing to find
optimal parameters for the learning algorithm by restricting
the solution space. The downstream deep learning task
such as object detection could use this relational knowledge
expressed with SBR framework to improve the precision
and accuracy by integrating the knowledge of the object’s
spatial-relational existence.

4.2.3 Applications in Situation Interpretation
Neural-symbolic architectures for context understanding.
Because the application of Knowledge Graph Embeddings

in [592] is already used in the autonomous driving context,
it is applicable as it is. Discovering similar situations that are
visually different helps to understand certain scenarios and
could be useful as an input to help classifying dangerous
situations.

The attention-based injection approach can be useful
for reasoning in certain situations, for example by injecting
the Straßenverkehrsordnung (StVO) into a QA network to
encode new sentences in BERT.

Behavior prediction of target vehicle. As presented
in [787], one could make use of DSL for describing driving
maneuvers in symbolic space. DSL could be designed to
contain StVO logical rules along with primitive attributes
(e.g, velocities, accelerations, pose, associate lane type, lane
attributes, road typologies) to enforce higher-level priors for
maneuvers.

The NSPS framework proposed in [787] is a stochastic
optimization problem. Joined with the mechanism of NAS
it can be employed to generate decision policy for down-
stream motion control and planning tasks. Similarly, Neural-
Symbolic Behavior Programs (NSBPs) are generated using
the NSPS framework to reason about the target vehicles’
behaviors to support cooperative planning in the scene.
The synthesized NSBP shall be an operation involving
Neural-Symbolic operations (numerical operation and logical
operations), rather than plain neural networks. The NSPS
framework together with GAIL could be used to learn NSBPs
in an end-to-end fashion.

4.2.4 Applications in Planning
Reasoning. The creation of formalized knowledge requires
a methodology capable of validating the resulting formal-
ization. One such method is querying the formalization
against test cases, e.g., check if the current formalization
of the StVO entails undesired properties such as it is possible
to infer that endangering pedestrians in order to make way
for an ambulance is ok. Those queries are also formalized
statements and answered by a neural-symbolic reasoning
engine that employs the formalized knowledge.

The formalization of legal knowledge is a prerequisite
for checking compliance of an already taken or planned
action for a certain traffic situation with regulations such
as the StVO. Neural-symbolic reasoners could perform
such compliance checks enhancing two applications in
the autonomous driving domain: Firstly, a planner could
use the compliance check to assess several courses of
action. Secondly, a compliance check could be employed
as a regularizer during the training phase of a planner,
forcing the model to prefer legally compliant solutions over
non-compliant solutions.

4.3 Attention Mechanism
Author: Tianming Qiu
Human beings can focus on a specific area in fields of view or
recent memories to avoid over-consuming energies. Inspired
from the visual attention of human beings, an algorithmic
attention mechanism becomes a popular concept in deep



18

learning. NMT [40], a classical Natural Language Processing
(NLP) task, is one of the earliest successful attempts which
apply attention mechanism. Traditional NMT approaches are
based on a sequential encoder-decoder architecture which
uses RNN. The encoder maps source sentences word by word
to hidden states and the decoder predicts target sentences.
One of the drawbacks is that the longer the input sentence is,
the more severe forgetting of previous words. The attention
mechanism gives specific words (or tokens) more emphasis
to avoid long distance forgettings. Similar to NLP’s attention
concept, many machine learning tasks also require efficient
focus on specific data or information. Such specific focus
comes from prior knowledge or experience which is very
helpful for the objective task. Furthermore, this attentive
information is usually intuitive for human understanding
and it provides useful interpretability. For example, image
captioning tasks look for heatmaps on input images which
indicates where caption words refer to [914]. If the attention
mechanism is considered as a form of human knowledge,
learning such semantic knowledge is expected to benefit
networks performance.

In Computer Vision (CV) tasks, the attention mechanisms
are categorized into three different modeling approaches:
spatial attention, channel-wise attention, and self-attention.

4.3.1 Spatial attention
Spatial attention attempts to imitate how human beings
are attracted by significant objects or features visually.
Technically, it emphasizes spatial areas in input images with
highlighted heatmaps. The common spatial mechanism is
written as

αi = fatt(vi),

v′i = αi � vi,
(2)

where vi represents a certain feature map of an input image,
fatt is a nonlinear mapping and � represents Hadamard
product, namely an element-wise product. A tiny two- or
three-layer neural network is used to describe a nonlinear
mapping of fatt, whose parameters are updated during
training. The mask assigns different weights on the original
feature map vi by using Hadamard product so that it
emphasizes information beneficial for following classification
tasks and weaken less important features. These weighted
masks on feature maps are scaled up to the original input
image size and visualized by heatmaps to illustrate semantic
image pixel-level attention.

The key point is to learn a nice attention function fatt
which generates a semantic attention heatmap. Such an
attention heatmap is integrated again into the neural network
for improving final performances and provides semantic
meaningful visualizations. Similar to machine translation
tasks, the attention on input original sentence words now
switch to input image areas. Similar works are seen in
HydraPlus-Net [504], which develops a complicated and
huge neural network by duplicating Inception networks
several times. HydraPlus-Net is designed for pedestrian
re-identification so it should be capable to detect detailed
features on pedestrians. All the above papers learn attention
functions only by standard loss functions which only contain
predicting losses for bounding box class and localization,
but no predicting loss for attention heatmaps. They design

special structures but do not provide extra information for
attention function training. The only ‘guide’ for attention
learning comes from the loss functions. Another approach
to learn attention is to add an extra auxiliary loss function
specifically for fatt training [605, 968]. In object detection
tasks, datasets provide segmentation ground truth which
is used to evaluate attention as well. The loss function
that measures overlaps between attention heatmap and
ground-truth segmentation is used as a very strong guide
to learn attention function [605]. Another approach that
leverages additional information to train attention networks
is to use pre-trained attention layers from other tasks. In
a pedestrian detection task, such an additional dataset like
MPII Pose Dataset [23] which provides precise predictions
of 14 human body key points demonstrates a good attention
result on the primitive task [968]. Spatial attention is seen as a
special feature representation. It learns the spatial knowledge
from input images that different spatial areas have different
impacts on the final outputs of neural networks.

4.3.2 Channel-wise attention

In computer vision tasks, channel-wise attention weighs
channels of convolutional layers’ outputs differently. Sim-
ilar to the aforementioned spatial attention, channel-wise
attention is still a probability mask. It assigns various weight
values for each channel of output separately with the supervi-
sion of classification or detection outputs. Convolution layers
are considered to be able to show the hierarchical nature
of features [949]. Each convolutional kernel is assumed
to represent a different feature extraction ability. Hence,
channels of the output feature map behave differently to
various image patterns. Each channel may contain different
features which might affect the final output. Channel-wise
attention was first used to aggregate information from the
entire receptive field for involving more global information
than local spatial information [361]. In pedestrian detection
tasks, [968] interprets CNN channel features of a pedes-
trian detector visually and indicates that different channels
activate response for different body parts respectively. An at-
tention mechanism across channels is employed to represent
various body parts. By emphasizing detected human body
parts, occluded pedestrian detection results are improved.

4.3.3 Self-attention

Self-attention is widely used in NLP because it is good at
extracting the correlations between words. The relationship
between each word plays a significant role of text understand-
ing. Self-attention in CV analyses the correlations between
pixels and are formulated as a formal function of query q,
value k and key v:

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,
q,k,v 7→ Attention(q,k,v).

(3)

Query q, value v and key k concepts come from retrieval
systems, where the best matched ‘value’ should be returned
according to a certain ‘query’. Usually, query is first con-
verted to keys that are connected to values. Here query
and key refer to the projected outputs of the decoder and
encoder. Sometimes key and value are the same. Attention
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computes for each query q an attention vector ai by returning
a weighted sum of all values, i.e.,

ai =
nk∑
j=0

αi,jvj. (4)

The weights are determined from some measurements
of similarity between the queries and keys. Transformer
architecture uses word relevance to improve translation
performance [837]. Self-attention represents the image block
or pixel relevance in computer vision tasks. Apart from
local features within each block, self-attention provides more
global features [868, 654]. Alternatively, each pixel in an
image is seen as the query q. Self-attention of each query
pixel is calculated on the other pixels in an image. Compared
with convolution layers, self-attention is also able to extract
different levels of features at different layers. Furthermore,
due to its ability to extract global features, self-attention is
able to achieve better performance than convolution in many
tasks [140].

4.3.4 Applications
Attention mechanism in CV is widely used in autonomous
driving perception tasks such as pedestrian detection. In
Zhang’s work [968], attention is integrated into the network
to enhance the potential ability to find more occluded
pedestrians. Similarly, integrating attention heatmap to the
existing detector backbone improves the detection results as
well [605]. Attention mechanism isn’t used for planning
directly, but it is used for interpretabilities of planning
or decision making. Works [430, 429] from Berkeley Deep
Drive use attention heatmap to explain why vehicle takes a
certain controller behavior and textual explanations would be
generated. Attention is updated during training, meanwhile,
it also affects the training results in the end. For scene
understanding, it is not considered as a feasible method.

4.4 Data Augmentation
Authors: Stefan Matthes, Tobias Latka
Data augmentation comprises a number of techniques that
increase the amount of data for little additional cost. It
provides a way to integrate knowledge about how concrete
changes in the input signal affect the model’s target output,
such as invariance to small perturbations. Training with the
additional data usually improves the generalization of the
model and can be especially helpful when data is scarce or
imbalanced.

Which technique can be used depends on the format
of the input data (e.g., image, audio, point clouds) and
the machine learning task. It is essential that the applied
algorithm preserves task-relevant information. For example,
color space distortions can be helpful in image-based license
plate recognition (by making the model more robust to
color changes), but can reduce performance in bird species
classification, since color is an important distinguishing
feature for many species. For some tasks, such as density
estimation, it is inherently difficult to define appropriate
data augmentations. On the other hand, data augmentation
is even an integral part of some unsupervised models, for
example in contrastive learning [122].

In the following, we discuss different approaches to
data augmentation. Data transformation (or manipulation)
techniques modify single instances, whereas in data synthesis
parts of two or more instances are recombined. Furthermore,
we distinguish between augmentations in data space and
feature space and whether a trained model, such as a GAN
or Auto Encoder (AE), is used to generate additional samples.
Some authors do not consider simulation as data augmen-
tation, but since simulation is a useful tool for knowledge
integration and plays a crucial role in autonomous driving,
we will discuss it here as well.

4.4.1 Data Transformation
Many classical approaches using DNNs add random noise to
the training data [661][68]. Bishop [68] showed that applying
small perturbations to the inputs during training leads to
a smoothed target function and is equivalent to optimizing
with an additional regularization term or constraining the
weight updates (see also [661] and [586]). However, it is
unknown what the optimal noise distribution is.

A related technique is random erasing, for example, gray-
ing out pixels [179] and dropping words in text [883]. This is
similar to dropout [781] where instead network weights are
masked with some probability in each optimization step.

Furthermore, the effect of many input-specific transfor-
mations is well studied. Typical image manipulations include
geometric transformations, such as cropping, translations,
rotations, reflections, and projections; kernel filters, e.g.,
sharpening and blurring; and color space transformations,
such as random grayscale and color jitter [752][586]. While for
image classification these transformations generally have no
effect on the output, for object detection bounding boxes have
to be modified equivariant to the geometric transformations
used.

Audio datasets are often enhanced by using scale changes
(pitch shifting and time stretching), compression, quanti-
zation, equalizing, filtering, reverberation and background
noise injection [543]. Moreover, several of these elementary
transformations can be combined in arbitrary order.

Adversarial examples are a special type of perturbation.
These are slightly distorted inputs that lead to incorrect
and usually overconfident predictions, but can often not be
distinguished from the original by humans [284]. Adversarial
training, i.e., feeding these examples back into the model,
leads to more robust predictions [284]. Miyato et al. [552]
extend this procedure to the semi-supervised setting by
computing the adversarial examples using the model’s
predictions instead of ground truth labels.

4.4.2 Data Synthesis
There are many ways to synthesize new instances from
existing data. One of the early approaches is SMOTE [115]. It
was developed for imbalanced datasets and can be used to
oversample underpopulated classes by interpolating between
nearest neighbors from the same class. Mixup [961] and
SamplePairing [382] explore the same technique for image
data. The former also interpolates the labels accordingly
and uses soft labels, which however cannot be used in the
semi-supervised setting.

Another common technique for image datasets
is to cut and paste patches from different images
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[197][196][217][271][947]. To avoid that the model cheats
by detecting artifacts at the boundary of the inserted patches,
various blending techniques and distractors (patches that do
not contain any of the relevant objects) can be used [197].
Instead of inserting objects randomly, several techniques
were proposed for more realistic object placements, such
as using a visual context model [196], depth and semantic
information [271], and a heat map for appearance consistency
[217]. YOLOv4 [72], a 2D object detector, additionally uses
mosaic data augmentation that concatenates multiple images
before cropping. This improves the detection of smaller
objects.

4.4.3 Data Augmentation in Feature Space
The methods described so far directly modify the raw data,
but it is also possible to augment data in the feature space.
In the latter, the input data is fed through the first layers
of the DNN and then the intermediate representations are
manipulated before being passed through the remaining
layers.

New instances can be synthesized either by interpolation,
extrapolation or simply by adding noise [178]. Similar to
Mixup [961], Manifold Mixup [840] additionally interpolates
between points from different classes by also interpolating
the labels accordingly, which can therefore be considered
its natural extension. Alternatively, an AE can be used to
transform the modified features back into the input space
[178], but unlike the other approaches, this already requires
a trained decoder. These methods have the advantage of
being domain agnostic. However, experiments by Wong et
al. [895] suggest that augmentations in the data space, when
applicable, are preferable to data augmentation in feature
space alone.

4.4.4 Data Generation
A more elaborate approach to create additional data is to
first train a generative model with the given data and then
sample from it. Neural Style Transfer [267][541] is a technique
that can be used to change the appearance of an image
while leaving the content unaffected. It has mainly artistic
applications, but can also be used to render images with the
appearance of different seasons, times of day, and different
weather conditions [541]. A major drawback is that these
models already require large amounts of training data and
may take a long time to sample.

4.4.5 Automatic Data Augmentation
Towards automating the machine learning pipeline, Cubuk et
al. [150] applied a reinforcement learning approach to search
the space of augmentations. The learned policies specify the
order and strength of predefined operations, including geo-
metric transformations, photometric transformations, kernel
filters, as well as Cutout [179] and SamplePairing [382]. Since
then, several variations and extensions have been developed
[752]. In contrast to the previous approaches, Benton et al.
[61] directly optimize distributions over augmentations with
respect to the training loss.

4.4.6 Simulation
Simulations provide another way to generate large amounts
of data at low cost, which is especially useful for data hungry

models like DNNs. They enable the generation of more data
for interesting situations or rarely occurring events, which
is often difficult or infeasible in the real world for financial
or moral reasons. Additionally, they offer the possibility to
evaluate safety-critical systems in specific test scenarios.

For the development of machine learning models, simu-
lation results are predominantly used in the natural sciences,
e.g., thermodynamics, material sciences, and autonomous
driving [695]. There exists a plethora of open source and
commercial simulators for the development and benchmark-
ing of Self-Driving Vehicles (SVDs) [190][672][63]. A recent
overview of their configuration options and available sensors
can be found in [685]. Besides data generation, there are other
ways to combine simulations and machine learning models.
We refer the interested reader to a recent overview [694].

One of the biggest hurdles in transferring the trained
models to the real world is the domain shift (distribution
change) between simulation and reality. Even highly accurate
models in simulation can perform poorly on real data
if the data distributions differ too much. Therefore, the
models often have to be additionally fine-tuned on real data.
Apart from developing more accurate models, there are two
approaches to bridge the gap, domain randomization and
domain adaptation.

The idea of domain randomization is that given enough
variability in the virtual environment, the model may inter-
pret the real world as just another variation. For example, in
the context of grasping experiments with a robotic arm, Tobin
et al. [815] demonstrated that randomizing the rendering
of images improves the transferability from simulation
to hardware. Interestingly, they found that designing the
simulation to be as realistic as possible was less effective
than varying the styles.

Domain adaptation is a type of transfer learning that
leverages labeled data in one or more related source domains
for prediction in a target domain. Two recent surveys with
applications in computer vision can be found in [149] and
[856]. The latter has a stronger focus on deep learning models.

4.4.7 Structural Causal Models for Data Augmentation
Structural Causal Models (SCMs) encode knowledge about
an environment [621]. In that respect, they can be thought of
as the data generating process. Mathematically, an SCM is
nothing else than a Directed Acyclic Graph (DAG) equipped
with both a set of functions and a distribution on the
DAG’s root vertices. While the DAG’s vertices correspond
to the variables of the environment, its directed edges
represent independent causal mechanisms between variables.
In particular, the causal mechanisms describe how variables
affect one another in a deterministic manner. Thus, every
SCM naturally defines a joint distribution on its variables.
Thereby, its shape is determined by the set of functions and
by the distribution of the SCM’s root variables. Moreover,
distribution shifts can be modeled in the SCM-framework
as interventions, for instance, exchanging one function for
another one.

As discussed, for instance, in [717], SCMs are perfectly
suited to generate valid and consistent samples at will in the
sense that they are consistent with causal relations encoded
in the SCM. In this way, SCMs serve as a kind of lightweight
simulator of the underlying environment leading to different
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interventional distributions depending on the concrete set of
interventions. To be more precise, an arbitrary training set can
be thought of as being composed of individual distributions.
These individual distributions can either represent the dis-
tribution defined by the unmodified SCM or originate from
different interventions applied to the original SCM at the
time data is being generated. Hence, interventions effectively
modify the environment and cover reasonable variations of
the environment. In this way, sampling data from different
joint and interventional distributions (as constructed from
the original SCM) naturally increases the diversity of the
overall training distribution and can be interpreted as some
kind of data augmentation.

4.4.8 Applications
Data augmentation can be used in all stages of autonomous
driving. Especially in stack-based architectures and end-
to-end approaches that compute interpretable intermediate
representations, data augmentation can be used in a variety
of ways.

The early end-to-end approach from Bojarski et al. [74]
learns steering commands directly from monocular image
data and emulates the SVD at various displacements from
the center of the lane and angles to the direction of the road.
They extend the dataset by transforming the viewpoint of
the images using two additional forward-facing side cameras
and adjusting the steering angle accordingly. This results in
a more robust driving model that is better able to recover
from adverse situations. Photometric transformations, kernel
filters, noise injection, and various other augmentation
techniques that do not affect the control commands can
also be applied at this stage [136].

Many of the techniques used in image-based object
detection were already discussed above. For 3D object
detection from point clouds, it is common to randomly shift,
rotate, flip and scale each ground truth bounding box and
its associated points [986][748][921]. Except for translations,
these can also be applied to the point cloud as a whole.
Yan et al. [921] additionally synthesize new point clouds by
inserting points belonging to bounding boxes from different
scans. Implausible outcomes are avoided by performing
collision tests.

In multimodal object detection, additional care must be
taken to ensure that augmentations do not cause incon-
sistencies between data streams such as pasting objects at
implausible locations. By performing occlusion and collision
tests the cut and paste augmentation can be extended to
image data for multi-modal object detection [973].

Many recent approaches to object detection, semantic
segmentation, and related tasks incorporate additional syn-
thetic data from virtual environments, such as from the
game Grand Theft Auto V [672][899] and the SYNTHIA
dataset [683]. Integrating synthetic data generally leads to
better performance, but the gains level off above a certain
ratio. In addition, photorealism plays a smaller role than
realistic modeling of sensor distortions and environmental
distribution.

Several approaches advocate a bird’s eye view, also
known as plan view, as an intermediate representation
for subsequent motion prediction, trajectory planning, and
control [46][850][118]. A common approach is to render

detected objects and information about the environment
into a multi-channel image, which is then processed by a
CNN. The bird’s eye view image can be augmented with
geometric transformations such as random translations and
rotations [118].

As yet another example of data augmentation in the
context of autonomous driving, imagine, for instance, an
SCM that describes the vehicle trajectories (i.e., the physical
laws connecting vehicle states and actions to new states).
New trajectories of the vehicle’s motion can be generated
from existing ones by means of such a vehicle SCM following
the subsequent steps. First, values of the external (and
usually) unobserved random variables are inferred from
existing trajectories (known as the abduction step) effectively
reconstructing the situation the vehicle was in when the
observed trajectory was recorded. Second, an intervention or
sequence of interventions (actions) are applied to the vehicle
SCM, while sustaining the updated distribution from the
abduction step. Third, the (intervened upon) SCM predicts
a new trajectory that is grounded in the observed trajectory.
The procedure just described returns a so-called counterfac-
tual trajectory that could have evolved, if another sequence
of actions had been taken. In this sense, this technique
transforms an observed trajectory into a counterfactual one,
while complying with the rest of the SCM that was not
intervened upon (data transformation). Thus, the technique
allows to augment data in a way that it is still anchored in
an observed trajectory, but can, at the same time, be used
to generate more data, especially covering hazardous and
underrepresented scenarios. Moreover, this technique was
shown to be useful for explaining the causes of Machine
Learning (ML)-model decisions, as discussed, for example,
in [170] and thus assists in situation understanding.

Bansal et al. [46] increase the diversity of vehicle trajecto-
ries by adding random perturbations. The perturbations
are chosen such that the vehicle is brought back to its
original trajectory after a perturbation. However, too strong
distortions degrade performance as the model learns bad
behavior.

They also employ an augmentation technique called past
motion dropout [46]. Because the model is provided with
past ego-motion from expert demonstrations, it can learn to
exploit cues in the motion history rather than learning the
underlying causes of such behavior, such as stopping at a
stop sign because it sees a deceleration. Randomly dropping
the past motion forces the network to look for other signals
to explain the future trajectory.

TrafficSim [790] learns to simulate multi-agent behaviors
which can be used as effective data augmentation for training
better motion planner. The learned driving model is fed into
other vehicles in the simulation to produce more realistic
behavior.

4.5 State Space Models

Author: Jörg Reichardt

Driving is an inherently sequential dynamic activity. Sensory
information is acquired through a stream of observations
that exhibits causal dependencies and correlations across a
very wide range of time scales.
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As a passive observer, our ability to understand any
dynamic phenomenon depends on our ability to predict
future observations ot..t+∆t from past observations o0..t in
probability [741]. We stress in probability to highlight that
possible inherent randomness of a dynamic process can only
be understood and modeled in terms of distributions, not
individual outcomes [148]. Our central object of interest is
thus the distribution over future observations given past
observations

p(ot+∆t|o0..t). (5)

We denote all time points from start time 0 to time t > 0
with the indices 0..t and further assume ∆t > 0. If we are
taking an active role in the dynamics of the system, then
future observations will naturally also depend on our past
and future actions a0..t+∆t and our central object of interest
becomes

p(ot+∆t|a0..t+∆t,o0..t). (6)

Equipped with this distribution, we are able to opti-
mize/plan our actions to increase the chances of a desired
future outcome and observation.

These two distributions are intimately related and State
Space Models (SSMs) are the most commonly applied tool
for their modeling. Firmly rooted in probability theory, state
space models are uniquely suited for the study of the steady
stream of information that originates from traffic phenomena.
They permeate all aspects of driving from perception to
situation understanding and planning [808].

In the context of knowledge integration, SSMs repre-
sent an algorithmic prior [400]. They provide a scaffold of
probability distributions and their corresponding conditional
independence structure. Data driven methods can then
be used to learn parameterizations for these probability
distributions. Ideally, optimization and learning can then
be achieved end to end.

We will next review the fundamental terminology and
assumptions of state space models that are central to their
understanding in the modeling of dynamical systems and
control. With this terminology clarified, we will then focus on
the peculiarities of applying SSMs to traffic and autonomous
driving and review the possibilities of creating hybrid
learning systems within the framework provided by SSMs.

State space models introduce a latent dynamical random
variable xt called the system’s state. The system’s state
governs the system dynamics, but is in general not directly
accessible to an observer, i.e., state information has to be
inferred. The system state has two defining qualities: First, it
gives rise to the system dynamics via a Markov Process:

p(xt+∆t|a0..t+∆t,x0..t) = p(xt+∆t|at..t+∆t,xt), (7)

i.e., only the most recent state and future actions mat-
ter for the future evolution of the system. The relation
p(xt+∆t|at..t+∆t,xt) is causal and is called the motion model
of the system. All prior knowledge about the system dynam-
ics may enter in this model.

Second, the current state and only the current state gives
rise to observations via measurements:

p(ot|xt). (8)

This relation is causal [619] and is called observation model or
measurement model. Measurements do not change the state.

Fig. 2: Conditional independence relations represented as
graphical model

Measurements can only reduce our uncertainty about the
state through Bayes’ theorem in which the observation model
plays the role of the observation likelihood. All knowledge
about the measurement process such as measurement noise
or sensor transfer functions are captured in the observation
model.

From these two qualities, it follows that the state renders
past and future observations and actions conditionally
independent through d-separation [619]:

p(ot+∆t|a0..t+∆t,xt,o0..t) = p(ot+∆t|at..t+∆t,xt). (9)

This means the state provides as much information about
future observations as all past observations and past actions
combined. If we know the state, we can forget about all past
observations and actions taken. Note that the state is not
meant to provide a good reconstruction of past observations
and actions - it only extracts the information from past
observations that is necessary to predict future observations.
The state is all we need to make optimal predictions about
the future and to plan our actions [741]. Figure 2 illustrates
the conditional independence relations discussed above in
the form of a graphical model.

With the state having such formidable quantities, the
central object of interest for state space models becomes the
posterior state density

p(xt|a0..t,o0..t), (10)

which can be obtained through the application of Bayes’
Theorem in a recursive manner from earlier state density, as
given in Eq. (11), where we have used that only the state
xt can give rise to observations at time t and the defining
quantity of the state as the sole generator of system dynamics.

The quantity

p(xt+∆t|o0..t) =

∫
dxtp(xt+∆t|at..t+∆t,xt)p(xt|a0..t,o0..t),

(12)
is called the predictive state density and we note the role of the
motion model in this expression.

The continued update of a state estimate over time is
called tracking or Bayesian Filtering. In the construction of
the posterior state distribution the observation model plays
the role of the likelihood term and the predictive state
distribution that of a prior. The evidence term p(o0..t+∆t)
acts as a normalizing factor for the posterior state density.
The Bayes Filter is a generative model for the observations.
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p(xt+∆t|a0..t+∆t,o0..t+∆t) =
p(ot+∆t|xt+∆t)

p(o0..t+∆t)

∫
dxtp(xt+∆t|at..t+∆t,xt)p(xt|a0..t,o0..t) (11)

It is this sequential process of absorption of current
evidence into a latent state representation via a sound proba-
bilistic framework that makes state space models extremely
appealing from a conceptual point of view [465, 808]. We will
next discuss under what conditions this conceptual appeal
can be translated into computationally efficient algorithms
and at what point approximations are introduced to obtain
computational efficiency.

The first condition is that p(xt|a0..t,o0..t) can be normal-
ized, i.e., we are able to evaluate p(o0..t). For all but the
simplest kinds of observation spaces, this is hopeless to do
exactly. One option is to resort to a sample / histogram based
approach [399]. Alternatively, one can make use of an assumed
density for p(xt|oo..t), i.e., via a parametric distribution for
which the normalization constant can be computed from a set
of sufficient statistics. The most common example of such an
assumed density is the multivariate Normal. This also fixes
the state representation xt ∈ Rn for which we have made no
restrictions so far. The canonical example of such a state vector
is the kinematic state vector describing an object’s position,
velocity and acceleration [808]. The second condition is that
we can perform the integration necessary to produce the
predictive state distribution. Variational methods [595] and
Monte Carlo methods are a viable option here in particular if
they can be executed on highly parallel hardware [400]. If an
assumption was already made on the form of the posterior
state distribution, then it is natural to make the same assump-
tion on the predictive state distribution. It then depends on
the form of the motion model p(xt+∆t|at..t+∆t,xt) whether
this is exact. If the motion model is also a multivariate
Normal with xt+∆t being a linear function of xt and
at..t+∆t, then no approximation is introduced at all. Under
assumed distributions for the state, it is further desirable that
the observation model p(ot+∆t|xt+∆t) be conjugate to the
predictive state distribution. Then condition, the posterior
can be updated in closed form [263, 289].

Depending on the type of approximations used, the
update equations for the posterior state density are com-
monly referred to as Kalman Filter for p(xt|o0..t) ∼
N (xt; x̂t,Σt) with linear Gaussian motion p(xt+∆t|xt) ∼
N (xt+∆t; x̂t+∆t = F(∆t)xt,Q) and observation models
p(ot|xt) = N (ot; ôt = Hxt,R) [406]. The co-variance
matrices Q and R herein model the so-called process noise
and observation noise, respectively. They have to account for
errors both introduced by the assumption of linearity for
dynamics and observation process as well as for actual noise
and measurement uncertainty and can be estimated and
tuned from data [126, 2]. If these modeling assumptions are
fulfilled, the Kalman filter update equations provide an exact
closed form solution to the state estimation problem. In case
the means of motion model and/or observation model are
non-linear functions x̂t+∆t = F(xt,∆t), ot = H(xt) one can
linearize around the mean of xt to obtain the Extended Kalman
Filter. The Unscented Kalman Filter instead uses integration by
Quadrature, i.e., nonlinear functions F and H are evaluated
at at set of judiciously chosen sigma points and the results are

combined into a weighted average to give x̂t+∆t and Σ̂t+∆t

[848, 328]. Giving up on the assumption of a Gaussian state
distribution, one models the state distribution as a population
of sample/particles and perform prediction and update step
in a Monte Carlo fashion. This approach is known as a Particle
Filter [280].

The above relations and algorithms form the basis for
much of the classic model based study of dynamical systems
and signal processing. We will next discuss the requirements
for their application in an autonomous driving application.
We will discover a wide range of opportunities for the
application of data driven learning algorithms while still
following the general scaffold of Bayesian data assimilation
described above.

Fundamental to the specific aspects of perception, situa-
tion interpretation and planning is the substrate on which
they operate: the state space. Hence, it will be discussed first.

Traffic is a multi agent phenomenon [675]. Traffic partic-
ipants are very diverse - we observe fast cars, slow cars,
small cars, large trucks, cable-cars, motorcycles, bicyclists,
pedestrians, roller skaters, scooter drivers and - depending
on country - horses, cows or moose on the road. Traffic
participants are not particles, but decision making goal
driven agents that are bound to move according to the laws
of physics as well as by the rules of the road - though the
latter being obeyed to a lesser extent in general. Goals and
intentions of traffic participants are not measurable. They are
either actively signaled by an agent in an explicit manner,
e.g., through turn signals, or must be inferred from the agents’
dynamical behavior. Traffic participants interact with each
other to avoid collisions and operate in a structured dynamic
environment, i.e., they follow roads and lanes or sidewalks
or react to stop lights.

Hence, a state variable must be able to represent a varying
number of diverse traffic participants at any given moment
in time. If the state is to be the sole generator of system
dynamics, it must include components for signaled/inferred
goals and intentions of traffic participants. It must further
include components that model the environment to the
extent it is necessary to make predictions about their future
movements [427, 323, 519, 849]. The multi agent nature
of traffic further requires that distributions over states are
invariant under a permutation of objects/traffic participants
[948].

In order to cope with these requirements, two classical
approaches exist. Multi-Object tracking algorithms [521]
abandon the representation of state as a single vector and
instead use a random finite set of state vectors for individual
objects [845, 289]. These representations are again fully
probabilistic and even treat the number of objects in the
set as a random variable. Alternatively, one can keep a fixed
size state vector by rendering state information into a fixed
size grid using the always available positional information of
objects for positional encoding, i.e., to specify the grid cells
[46, 173]. All available features are then stored in a dimension
perpendicular to the grid. In essence, this amounts to saving
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state information in a multi-channel image and unlocks the
ability to use (convolutional) neural network architectures
on the state variables at the expense of a vastly increased
state space dimension.

4.5.1 Applications in Perception
The perception stage of an autonomous driving stack enters
SSM through the generative observation model or observa-
tion likelihood p(ot|xt). In principle, the observations ot
could be raw sensory input such as camera images or lidar
points, but that is currently not computationally feasible
without strong approximations [438]. One alternative is to
drop the generative nature of the observation model and
learn to estimate the posterior state density p(xt|a0..t,o0..t)
directly, this approach is know as a discriminative Filter [311].
Note, however, that this approach is practical only for fixed
history lengths and thus sacrifices the ability of the standard
formulation to represent correlations in time of arbitrary
length.

The second alternative is to pre-process raw sensor
readings via detection algorithms to yield observations that
correspond to object-level data [943]. This corresponds to
the "tracking from detection" paradigm. One can further
differentiate if an object can give rise to at most one detection
("point detection algorithms") or multiple detections. If the
latter is not an artifact, but a result of multiple sensor read-
ings on an object’s physical extension, so-called "extended
object tracking" algorithms result [288, 905]. If detections
are available from every available sensor modality, the
observation likelihood is a natural place to perform sensor
fusion. Alternatively, sensor fusion is performed prior to the
application of a detection algorithm on the raw sensor level.

In correspondence to the set of objects we observe in
traffic, detection algorithms will return a set of detections.
Detection algorithms, however, are not perfect. There can
be false detections, so called clutter, that do not arise from
actual objects. There can also be objects that do not give rise
to detections at the current moment due to occlusions or
failures of the detection algorithm. Further, detection are not
necessarily labeled, i.e., there is no known correspondence
between a tracked object and its detection. From this arises
the so called data association problem of multi object tracking:
the need find this very correspondence of the elements of
the set of observations with the elements of the set of objects
tracked. Standard Algorithms exist to solve it [164, 548].
Once this correspondence is established and the posterior
state estimates of the tracked objects have been updated, any
errors made in updating the state vector of an object with the
wrong detections cannot be recovered. In order to mitigate
this problem, so-called multi-hypothesis tracking algorithms
[663] maintain several plausible potential data association
hypotheses until possible uncertainties in data association
are resolved by additional evidence [263].

Two more aspects of SSMs pertain to the perception
module that allow for knowledge integration. The first is
the so-called birth model, i.e., the prior distribution for the
state vector for new objects p(x0) that is needed for the state
estimation from an object’s first detection via p(o0|x0). The
birth model can represent the sensitivities of the sensors as
well as prior knowledge about where and how objects will
enter the sensor range of an autonomous vehicle. The second

are the probabilities of detection PD(x), survival PS(x) and
the clutter intensity PC(o) that can add further specify the
observation model [263]. With PD(x) we are able to specify
that an object, though present, currently cannot be detected,
e.g. due to occlusions [288]. With PS(x) we can express
our prior knowledge about how objects leave the sensor
range. For example, we can forget about oncoming traffic
immediately once it has left the sensor range, while objects
that have left the sensor range in the forward direction have
a much higher probability to be re-encountered. Finally, with
PC(x) we can model prior knowledge about the accuracy of
the detection algorithms used.

4.5.2 Applications in Situation Interpretation
In the previous section, we have decidedly spoken about
objects in order to address the handling of both traffic
participants and elements of the environment such as roads
or intersections. It is part of the appeal of SSMs that they can
be used to model both the moving traffic participants as well
as the static environment as seen from a moving sensor.

Situation interpretation primarily consists of two key
tasks, the problem of estimation and tracking of the current
state of the system xt from past observations o0..t and actions
a0..t, i.e., the state tracking and filtering problem. Specifically,
this entails the mapping and localization problems, i.e.,
modeling the static environment from observations and
referencing the ego vehicle and other traffic participants
in this environment [849]. It is important to note that the
state update equations are evaluated at the rate at which
new observations are available, typically ∆t ≤ 50ms and
thus the motion model is used on very short prediction
horizons. Hence, one generally uses simple kinematic motion
models [723]. Model uncertainty can then be adequately
modeled as random noise and data can be used to tune
the noise distribution [126, 2]. In particular, in multi object
tracking, one may assume independence between the motion
of individual agents and neglect the interactions with both
the environment and other traffic participants. This simpli-
fication results in growing errors as the time frame without
new observations, e.g., due to occlusion, grows.

The second task of situation interpretation is to extrap-
olate this estimate into the future and enable anticipatory
planning which is essential for safe and comfortable driving.
Now the situation becomes markedly different as we are
predicting the evolution of the traffic state over time scales ∆t
typical for driving maneuvers, i.e., several seconds. Consider
the situation illustrated in Figure 3 depicting two vehicles
driving on a highway on-off-ramp.

Given only the observable kinematic information for
the current point in time and the environmental structures,
we see that we have two possible future trajectories for
each vehicle. Assuming independence of future motion for
individual vehicles i, i.e.

p(xt+∆t|xt) =
∏
i

p(xit+∆t|xit), (13)

we would need to consider 4 different futures for the traffic
scene, three of which contain potential conflicts that a
planning algorithm may have to deal with as can be seen in
Figure 3b. Now consider the same situation in which two
different plausible past trajectories are given as shown in
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(a) Two cars driving on a highway on-off ramp.

(b) Four scenarios of future trajectories.

(c) Driver intent based on past trajectories.

Fig. 3: Illustration of potentially conflicting trajectory plan-
ning of two vehicles on a highway on-off ramp.

Figure 3c. These past trajectories provide information about
the probable intent of the drivers. Now, there is only one
plausible future trajectory for each vehicle and even the
uncertainty with respect to the future evolution of the scene
has been reduced. This underscores the necessity to model a
traffic participant’s intent.

Driver intent is often modeled as an unobservable discrete
state variable indicating one of several possible maneuvers
classes, such as lane change left, turn right, follow road
[720, 719]. These classes must be mutually exclusive and
collectively exhaustive and the concrete class has to be
inferred from observations. Often, specialized motion models
are associated with a maneuver class leading to so-called
multiple model filters for such maneuvering targets [536].

The complete reduction of uncertainty about future
trajectories is not always possible and more than one possible
option for future trajectories has to be represented. This
implies that p(xt+∆t|at..t+∆t,xt) should be multi modal
both for the motion of individual traffic participants as well
as for the entire set of traffic participants in a scene. Under
the factorization assumption, this can lead to a combinatorial
explosion of possible futures for the entire traffic scene
including many future scenarios with conflicting trajectories.
This problem can be dealt with by pruning the conflicting
scenarios with corresponding computational expense [892].
More desirable would be a motion model for the entire traffic
scene that produces conflict free scenarios from the start.

4.5.3 Applications in Planning

Planning happens in state space. Given the current state of
the traffic situation xt including the state vector of the ego
vehicle xet , the predicted trajectories of all traffic participants
and dynamic aspects of the environment, the planning
algorithm must find a sequence of actions that bring it closer
to its destination while maintaining safety and comfort. It
must do so taking into account the uncertainty in the future
behavior of the traffic participants [376].

For this, generally model predictive algorithms are em-
ployed that optimize the expected cost of a target function
C(xt,at) over a constant planning horizon T under a set of
feasibility constraints [571, 275]:

argmin
at..t+T

∫ T

0
C(xt+∆t,at+∆t)p(xt+∆t|a0..t,o0..t)d∆t

subject to fi(xt..T ,at..T ) ≥ 0 ∀i.
(14)

The feasibility constraints allow to include environmental
and safety constraints. The optimization problem is dis-
cretized in time as a Sequential Quadratic Program (SQM)
with initial condition set to the current kinematic state of the
ego vehicle and continuity constraints between the individual
stages of the SQM [73]. In order to perform the optimization,
the expected kinematic state of every other traffic participant
has to be known at every stage of the optimization. Hence, it
is required that the future trajectories of other traffic partici-
pants p(xt..t+∆t|xt) can be evaluated efficiently. Ideally, this
prediction model is interaction aware, i.e., it takes the influence
of the ego-vehicle’s actions on the expected behavior of other
traffic participants into account. This is a difficult problem,
especially if the motion model is non-linear and thus the
long term evolution is likely very susceptible to uncertainties
in the initial state estimate. A possible remedy is to learn a
state space representation and observation model under the
constraint of a linear motion model [879, 415]. This will shift
complexity and computational expense to the observation
model which may however be less critical as no temporal
extrapolation is needed in the observation model. Once an
optimal sequence of controls for the ego vehicle over the
entire planning horizon is found, the ego vehicle applies
only the first step of this sequence and the process repeats
with new observations, an updated state estimate of the
traffic scene, updated predictions of future trajectories.

4.6 Reinforcement Learning

Authors: Stefan Rudolph, Daniel Bogdoll, Tim Joseph

Reinforcement Learning (RL) is a set of techniques where
agents optimize their behavior given a reward signal over a
period of time. A detailed introduction to the field is given
in [793]. Here, we stick to a brief description of the so-called
RL problem, which is depicted in Figure 4. An agent interacts
with an environment by executing an action in each time step.
It decides which action to choose based on the current state
and its estimated evaluation from past experiences. This
mapping from the state to an action is called the policy of the
agent. Subsequently, the agent receives a reward in each time
step which reflects the notion of a local evaluation of the
agents actions. But, often, this immediate reward alone is not
sufficient to judge how good an action is since a larger reward
will only be given after a beneficial sequence of actions, i.e.,
the agent faces a sequential decision making problem. For
instance, the agent moves in the right direction over multiple
time steps to reach a defined goal. That is why RL algorithms
commonly aim to find a policy that maximizes the expected
cumulative reward instead of the immediate reward. Over
the last years, deep RL has become the dominant form of
RL, where deep learning is used to realize an RL agent. An
introduction to these modern approaches is given in [5]. They
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Fig. 4: The basic reinforcement learning setting.

can be roughly divided in two categories, namely model-free
and model-based algorithms. The model-based algorithms
make use of an explicit model of the environment which is
either given beforehand or learned from experience. Model-
free algorithms on the other hand do not use such a model
and always act directly in the environment. An overview
regarding current approaches is given in Section 4.6.1 and
Section 4.6.2. Another common classification is the distinction
between on-policy and off-policy algorithms. The former can
only improve the value estimation for the policy the agent
is currently carrying out. In contrast, the latter can improve
the estimation of the value of the best policy independently
from the actions taken by the agent. In the following, we
provide an introduction to recent developments in the
area of multi-agent reinforcement learning, where multiple
agents operate in the same environment and might interfere
(c.f. Section 4.6.3). Therefore, the agents have to take each
other’s actions into account. This type of reinforcement
learning is especially interesting since we face a multi-agent
system in the autonomous driving domain. Another current
approach is the idea of inverse RL, where one aims to learn a
reward function given examples of interactions with the envi-
ronments, briefly outlined in Section 4.6.4. Finally, we give a
brief overview regarding the recent works on the integration
of knowledge into RL algorithms (c.f. Section 4.6.5) and
the current state of the art regarding RL in the automotive
domain (c.f. Section 4.6.6).

4.6.1 Model-free Reinforcement Learning

Model-free Reinforcement Learning (MFRL) algorithms learn
a policy directly from real experiences in an environment
without the need for a model. MFRL can be divided into
methods that derive a policy from state-value estimates and
methods that directly optimize a policy (policy gradient-
based methods). Q-learning [878] has been one of the most
popular methods based on state-(action)-value estimates.
While early work in the tabular setting and with linear func-
tion approximation provided proofs on different convergence
properties [823, 41] and showed some first results [806], more
recent work showed the potential to solve complex tasks
when Q-learning is combined with deep neural networks,
called Deep Q Learning (DQN) [553]. Various improvements
have followed [710, 876, 53], including extending DQN
for partially observable Markov decision processes [326],
mitigating value overestimation [324] and a combination
of all previously mentioned improvements called Rainbow-
DQN [344].

In contrast to Q-learning, policy gradient-based methods
directly maximize the expected future sum of rewards [793].
A major advantage is the ability to learn in environments
with continuous action spaces, something that is not pos-
sible with standard Q-learning. An early policy gradient
method is the REINFORCE algorithm [890]. It uses the
policy gradient in its most basic form. However, when
the score function estimator is used as in REINFORCE
the policy gradient is known to be of high variance and
thus, learning is slow. Sutton et al. [791] show that the
variance can be reduced when a baseline function (e.g., an
advantage function) is incorporated into training. Another
approach is to use Deterministic Policy Gradient (DPG) [762,
489] which are advantageous in environments with a high
number of action dimensions. Another class of on-policy
policy gradient algorithms constrains the policy change at
each update step to allow for multiple updates with the
same batch of data (note that the policy gradient is only
valid in expectation with respect to data collected by the
current policy). The most prominent members of this class are
Trust Region Policy Optimization (TRPO) [725] and Proximal
Policy Optimization (PPO) [724]. In contrast, a recent state-of-
the-art off-policy algorithm is Soft Actor Critic (SAC) [312].
SAC adds an entropy bonus to the policy learning to enable
better exploration and uses the re-parameterization trick [668,
433] instead of the score function estimator which makes it
more stable than methods based on DPG. One of the major
disadvantages of pure model-free reinforcement learning
agents is that they often need a very high number of
environment steps (e.g., a common setting for ATARI [54]
based benchmarks is 200 millions steps) to converge to a
good policy. Furthermore, the black box characteristic of
most existing MFRL algorithms makes it hard to analyze and
interpret actions or future behavior. Thus, training a MFRL
in the real-world is prohibitively expensive.

4.6.2 Model-based Reinforcement Learning
Model-based Reinforcement Learning (MBRL) algorithms
make use of an existing or learned model of the world
to either provide imagined experiences [792] to train a
policy, to provide better gradients for policy training [334]
or to plan at inference time. The two main challenges of
MBRL are to learn a model (if none exists already) and to
use it effectively. A problem with learning a good model
is model bias, i.e., that the policy will exploit regions in
the model that deviate from the real environment. One
approach that considers this problem is PILCO [169]. The
model is implemented as a Gaussian process and used
to roll out imagined trajectories from which a policy can
be learned with analytic gradients. Gal, McAllister, and
Rasmussen [251] improve PILCO with an ensemble of deep
neural networks instead of Gaussian processes. Both avoid
model bias by not just training the policy with a single
dynamics model, but with a distribution of possible models.
Similar approaches have also been used in further works in
combination with TRPO [725] instead of back propagation
through the transition dynamics [455], to learn a meta-
policy [134] or with terminal Q-functions [132] for better
long-term learning. Model bias is mostly addressed when
an agent acts in an environment with a low-dimensional
observation space.
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For high-dimensional observations, such as images from
an RGB camera, the focus shifts to higher-capacity models
and efficiently predicting future rewards. Wahlström, Schön,
and Deisenroth [847] learn a deep dynamics model that
consists of an auto-encoder and a latent dynamics model.
They then plan with this model with model predictive control.
PlaNet [315] learns a sequential latent variable model to
account for the stochasticity of the environment and uses
Model-predictive Control (MPC) to efficiently plan in latent
space. Ke et al. [423] uses a similar approach, but explicitly
enforces correct long-term predictions through an auxiliary
loss that enforces latent variables to be informative about the
future. Ha and Schmidhuber [310] train a policy purely on
imagined experiences in a low-dimensional latent space that
are generated with a learned world model. Dreamer [314]
makes use of the differentiable model of PlaNet [315] to learn
a policy by back propagating through the latent transition
dynamics.

Finally, there are approaches that use an existing model,
most famously AlphaGo [764] and AlphaZero [763]. Both
assume that a model that can be queried efficiently for a lot
of trajectories does exist. It is then rolled out with Monte-
Carlo Tree Search (MCTS) and a policy and value function
are learned. However, recently Schrittwieser et al. [721] have
presented a variant of AlphaZero called MuZero, that uses a
learned model and is able to match or outperform AlphaZero.

4.6.3 Multi-agent Reinforcement Learning
In Multi-Agent Reinforcement Learning (MARL), the basic
idea of the interaction of an agent with an environment
is extended to a setting where multiple agents interact
with the environment and each other at the same time.
A full review of current methods and a taxonomy of the
algorithms can be found in [343]. Here, we focus on some
recent main achievements regarding the application of RL to
multi-agent systems, as well as some extensions of standard
RL algorithms to the multi-agent case.

The authors in [842] present a method to train an agent
capable of playing competitively with top human players in
real-time strategy games. Such games can be categorized
as two-player zero-sum games and a special emphasis
regarding the training of the agent must be put on the fact
that an agent should be robust against a variety of counter
strategies. To stimulate the learning of such a behavior the
authors introduced a so-called league training with the main
idea to extend fictitious self-play with three types of special
agents (cf. Figure 5). The first type is named main agents and
uses prioritized fictitious play meaning it selects opponents
based on the win rate against the agent. The second is the
main exploiter type which is playing against current main
agents only to find weaknesses in their behavior. The third
type are the league exploiter agents which use a similar strategy
as the main agents but cannot be targeted by the main exploiter
agents. Therefore, they have the opportunity to find strategies
to exploit the entire league.

A similar challenging environment has been approached
in [594]. There, an agent for a Multiplayer Online Battle Arena
(MOBA) game has been trained which shows super human
performance on a slightly less complex version of the game
that, e.g., limits the number of available champions. MOBA
games are interesting in the context of MARL because this

Fig. 5: League training as proposed in [842].

type of game is played five on five, meaning that there are
five cooperative agents which face five competitive agents.
In this work, the authors used PPO as a basis. As in single-
agent reinforcement learning, the agents start the training
with a local reward only based on their own benefit from
certain actions because a global reward introduced too much
variance to the reward function. Later in the training, their
mechanism team spirit shifts gradually from the local reward
to the global reward to encourage the agents to play as a
team.

The authors in [933] improved on the results in the MOBA
domain by introducing curriculum self-play learning. Here,
the limitation regarding the number of champions has been
weakened by training individual agents for small sets of
champions and later merge them with a multi-teacher policy
distillation. Furthermore, they used an off-policy variant of
PPO called Dual-clip PPO.

The authors in [387] trained a team of agents for a capture
the flag game. Each game consisted of two agents who use
the same interface as humans, i.e., a RGB image as input
and produces control actions while the in-game statistics are
used as reward signal. To address the special circumstances
a hierarchical learning mechanism has been installed that on
the one hand uses an actor-critic algorithm for the individual
agents and on the other hand an evolutionary algorithm that
optimizes the reward function of the agents based on the
available game points.

Based on MCTS, there is a multi-agent extension that has
been applied to a simple grid world, where each agent has
to learn to move to one of the defined goals but each tile can
only be used by one agent [954]. The method uses MCTS with
default and random policies for the rollout and combines it
with difference evaluation in the reward function.

4.6.4 Inverse Reinforcement Learning
Inverse Reinforcement Learning (IRL) is the process of learn-
ing a reward function from data-based observations. Arora
and Doshi [29] provide a recent survey on IRL, motivating
IRL based on its potential to model the performance and
preferences of others. They address two core challenges:
"Finding a reward function that best explains observations
is essentially ill-posed" and "computational costs of solving
the problem tend to grow disproportionately with the size
of the problem", which is especially relevant in the complex
domain of autonomous driving, since existing methods
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"do not scale reasonably to beyond a few dozens of states
or more than ten possible actions". They cluster existing
methods based on four categories. Max margin methods try to
"maximize the margin between value of observed behavior
and the hypothesis", while max entropy methods are designed
to "maximize the entropy of the distribution over behaviors".
Bayesian learning methods "learn posterior over hypothesis
space using Bayes’ rule" and Classification and regression
methods "learn a prediction model that imitates observed
behavior". Additionally, there are many extensions to IRL,
which Arora and Doshi again cluster in three categories:
"Methods for incomplete and noisy observations, multiple
tasks, and incomplete model parameters".

4.6.5 Reinforcement Learning and Knowledge Integration

In the following, we shortly summarize which techniques of
knowledge integration have been identified.

Reward Shaping: The most common form of knowl-
edge integration is the shaping of the reward [573, 684].
The idea is to design the reward function in a way that
makes it easier for the agent to find an optimal policy, while
still optimizing the original target in the limit. This can be
especially useful in situations with long time horizons and
sparse reward signals [594].

Models: A common way to integrate prior knowledge
in an RL algorithm is to use some sort of model of the
environment. This method has defined the area of MBRL in
the first place. While the trend goes towards models that are
learned by the agent during runtime, e.g., in [721], it has been
showcased that human-designed models can allow to solve
very complex tasks [764] and improve the learning speed
by integrating knowledge, e.g., represented by a structural
causal model (cf. Section 8.2) [91], in the learning system.

Learning by Demonstration: The idea of learning
by demonstration (or apprenticeship learning) is around for
some time [709]. It defines a paradigm where humans give a
demonstration of a desired behavior of a learning system to
speed up the learning process. One common approach to it
is to use IRL [1]. In others, there is already a reward signal
available [594, 842]

Auxiliary Tasks: A method to integrate prior knowl-
edge into neural networks are auxiliary tasks. The main
idea is to share one network over several tasks that force it
to create structures that are beneficial for the main task.
It has been used with actor-critique methods in a 3D
labyrinth environment [388] and a multi-agent capture the
flag game [387], for instance.

4.6.6 Applications

Kiran et al. [435] provide a broad overview of deep reinforce-
ment learning within the context of autonomous driving.
They see many tasks where RL could be utilized, including
path planning, controller optimization and scenario-based
policy learning. They provide an overview of common
simulation environments and a detailed overview about the
topics motion planning and inverse reinforcement learning
for behavior cloning of experts. Since bridging the gap
from simulation to reality is hard, they discuss many real
world challenges, including validation, sample efficiency,
and exploration issues.

Since RL is often utilized to train agents end-to-end,
perception tasks on an explicit level have not been within the
scope of RL in the past. To tackle this issue, a recent method
called Latent Deep Reinforcement Learning [120] utilizes the
latent space to not only create control commands, but also
map the sensor input, namely RGB camera data and a
Bird’s-Eye-View (BEV) lidar pointcloud, to a semantic mask
of the environment, including the map and surrounding
objects. This way, the model does provide an interpretable
environment model, which is a common output of pure
perception modules.

Krasowski, Wang, and Althoff, as part of a Safe Rein-
forcement Learning framework [447], predict the occupancies
of other traffic participants on a highway scenario. Their
predictions are part of a safety layer within their RL frame-
work, which they utilize to only allow for safe actions during
the exploration phase. Since these occupancy predictions
stem from an external algorithm [442], RL is not utilized for
situation interpretation, but situation interpretation is em-
bedded within RL. Further approaches on safe reinforcement
learning can be found in [264].

Ye et al. [934] provide an overview of recent methods
on RL-based planning methods. They separate methods
into end-to-end systems, based on sensor data as input,
and motion planning modules as a follow-up module of a
perception stage. The type of available actions ranges from
strategic maneuvers over lane changes and trajectories to
direct control. The utilized algorithms vary widely, including
classical RL, DQN, Deep Deterministic Policy Gradient
(DDPG) and Asynchronous Advantage Actor-Critic (A3C).

4.7 Deep-Learning with Prior Knowledge Maps
Authors: Evaristus Fuh Chuo, Han Chen, Hendrik Stapelbroek
Object detection and recognition problems are often ap-
proached with deep-learning methods. They yet remain
a great challenge in aspect of model accuracy, especially
for certain circumstances, i.e., objects are occluded, too far
away from the sensors or in bad light conditions. Challenges
can also be found in improving data efficiency, especially
when the data capacity is low. Finding a way to extract and
combine information becomes important.

4.7.1 Semantic Segmentation
One possible way to address these issues is to incorporate
prior knowledge into data-driven models. In [27], Ardeshir
et al. introduced a method of combining RGB image with
information extracted from Geographical Information System
(GIS) system. The RGB images are firstly segmented as the
initial status. GIS databases can provide interesting semantics
in 3D coordinates, which are projected onto the 2D plane
of the camera. The projected geo-semantics are weighed in
terms of projection accuracy before used in improving the
image segmentation and projection accuracy in an iterative
manner.

In [722], a prior fusion network is introduced, which
leverages information from revisited locations during pre-
vious traversals to improve image semantic segmentation.
A scene prior is defined as images frames that have a high
degree of visual coherence to the current scene. In the paper,
Schroeder and Alahi experimented with 3 different network
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architectures, two of them have access to prior knowledge,
the other one is an eight-layer convolutional network that
serves as the baseline model. The difference between the two
prior networks lies in the integration of the scene prior, one
lets the prior images pass through an encoder along with
the current frame, while the other one through a decoder.
The results suggest that the decoder network which enables
the prior to be fused at various resolutions outperforms the
others and the improving of the model performance is even
more significant for dynamic objects such as pedestrians,
cars, cyclists, etc.

4.7.2 Applications
In [922], Yang et al. introduced the HDNET for 3D object
detection with High-Definition (HD) map integration. In this
approach they exploit the semantic road mask available
on HD maps as prior knowledge about the scene and
convert road layout information into a binary channel in
discretized lidar representation. They also conduct map
estimation from a single lidar revolution for where a HD
map is not directly available and apply data dropout on
the semantic prior, which randomly feeds an empty road
mask to the network, to get also good results when HD
maps are unavailable or noisy. Another work that aims at
improving 3D object detection with HD map integration
introduced a more generalized framework that can be used
with other 3D object detection algorithms [218]. A 2D
Feature Extractor module is implemented to extract high-
level features from HD maps and the features are fused to
the voxel representation of the input points. For evaluation,
the framework was integrated with three major 3D object
detection algorithms, SECOND [921], PointPillars [461] and
CenterPoint [939] and a general improvement of the mean
Average Precision (mAP) on public datasets can be seen for
all models.

Instead of integrating HD maps, another approach [123]
uses ground plane as prior, as the detected objects should
appear on the ground. A set of 3D sampled bounding box
candidates on the ground are projected and classified in the
image space.

5 KNOWLEDGE TRANSFER

In the previous chapter, knowledge integration has been
predominantly addressed by means of proper modeling, e.g.,
modifications of the architecture and cost function design.
This chapter examines the task from a more algorithmic
perspective, leading to learning strategies capable of trans-
ferring implicit knowledge, often captured and represented
by the weights or representations of a neural network, to
some target domain of interest. One of the primary goals
here is to learn reliable models given only a small amount of
data from the target domain. Fine-tuning of selected layers
of a pre-trained network can be attributed to transfer learning
as presented in Section 5.1. While this concept focuses on
adaptation to a single target task, in continual learning the aim
is to steadily adapt to various consecutive targets, without
forgetting previous tasks. An overview is given in Section 5.2.
A similar idea is pursued in meta learning where experience
from multiple tasks is gathered in an episodic training
process in order to improve the learning strategy with regard

to upcoming tasks. Section 5.3 gives an introduction to this
topic. Finally, knowledge transfer is considered form the
perspective of purposeful selection and re-labeling of data.
Current paradigms of this active learning strategy are outlined
in Section 5.4.

5.1 Transfer Learning
Authors: Florian Wasserrab, Niklas Keil
DL has gained much momentum in recent years and is
now the de facto standard approach in many applications.
The use cases range from speech recognition to image
processing or AD. Despite the great success, DL algorithms
share the serious drawback that they rely on large amounts
of well-annotated data to achieve their performance. The
collection of such a dataset becomes very expensive and
time-consuming in reality. In addition to the procurement of
the datasets, the processing of such volumes of data is also a
major challenge, as it requires large amounts of computing
power and electricity. Transfer learning is a technique that
tries to tackle these issues by reducing the amount of
training data while maintaining or even improving the
performance. Therefore, it has become an integral part of
many deep learning models. In simple terms, this technique
takes knowledge in the form of intermediate representations
learned from previous tasks and applies it to novel tasks
[799]. A great advantage of this approach is the possibility
for any developer to make use of parameters optimized by
data centers or supercomputers of big companies like Google
(GoogLeNet) without needing resources for it themselves
[795]. As a contemporary example, [378] implemented a lung
cancer detection model based on GoogLeNet and showed
that other state-of-the-art methods are outperformed on the
same dataset while only requiring a fraction of training
iterations.

According to a survey [604], transfer learning involves
the concept of a domain and a task. A domain D consists
of a feature space X and a marginal probability distribution
P (X) over the feature space, where X = x1, x2, ..., xn ∈ X .
In this context, X is a particular dataset and xi represents
the ith feature vector. If two domains differ, they either have
different feature spaces or different marginal distributions.
Based on the domain D = {X , P (X)}, a task is described
by a label space Y and a predictive function f(·) that is also
be written as conditional probability function P (Y |X). The
target function is not observed directly but can be learned
from the data consisting of pairs {xi, yi}, where xi ∈ X and
yi ∈ Y . Based on a source domain DS and a corresponding
source task TS , a target domain DT and learning task TT ,
the objective of transfer learning is to improve the predictive
function f(·) in DT with the knowledge gained from DS and
TS , where TS 6= TT or DS 6= DT .

5.1.1 Network-based Transfer Learning
The authors of [799] classified transfer learning in the
context of DL into four different categories: instances-based,
mapping-based, adversarial-based and network-based deep
transfer learning. The first approach selects specific data
points from the source domain and adds them to the
target domain adjusted with a weight. The second method
combines two domains into one data space, where instances
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are similar to each other. The third approach aims to find
representations that apply to both the source domain and
the target domain by using adversarial technology. Finally,
network-based deep transfer learning takes a model which
was pre-trained in the source domain and re-use it in the
target domain. In the following, we focus on the latter
approach, which is currently the most commonly used way
to perform transfer learning.

The intuition behind network-based transfer learning
stems from the nature of neural networks. Typically, first few
layers capture low-level features such as edges in an image,
while higher layers focus on more complex details. Since
low-level features of a pre-trained model are not domain-
specific, we simply use these features for a different task
and train a new model on them [799]. In practice, this is
done by replacing the last layers of the pre-trained network
with new ones. We then fix all base layers to ensure that we
do not unlearn previously acquired knowledge. In this way,
only the new classifier is initially trained for the intended
task. Depending on how different the new use case is, the
model may additionally benefit from further fine-tuning.
This means instead of keeping the pre-trained parameters
fixed, they are only used for initialization and included in
the training process, such that they also get adjusted to
the new problem. However, to ensure that the learned low-
level features are still kept, the learning rate for fine-tuning is
usually set rather low [153]. In the last years, transfer learning
has been particularly popular for computer vision tasks. As
one of the first implementations, [596] transferred parameters
taken from a classification model pre-trained on ImageNet
to other visual tasks with limited data and demonstrated
significant improvements over previous results. Nowadays,
popular CV models like ResNet [332], VGG [768], Inception
[795] or DenseNet [369] are typically pre-trained on a large
image dataset to produce universal image features which
serve as foundation for the specific task. For example, in [785]
the authors used pre-trained models of different domains as
foundation for further fine-tuning on historical documents.

5.1.2 Applications
Transfer learning does not refer to a specific application,
but is understood as a general approach that optimizes the
learning process of complex DL models. This often involves
computer vision tasks, such as image classification [596] or
object detection [278], which are also applied in the field of
autonomous driving. For instance, [352] showed that using a
pre-trained CNN significantly improves the task of detecting
pedestrians. They applied a large network trained for the
ImageNet classification task and fine-tuned it for the pedes-
trian detection use case. In this context, they demonstrated
that using another model pre-trained for a different task,
i.e., scene recognition on the Places dataset [984], led to
similarly performance. From this they concluded that the
specific pre-training task was not crucial, since pre-training is
mainly about learning basic universal features. The authors
of [745] went a step further by using a pre-trained model
from a completely different domain. In order to develop a
framework for fault diagnosis of mechanical machines, they
first transferred low-level features from a model pre-trained
on ImageNet. Then, they converted machine sensor data to
images using time-frequency imaging and performed their

target task on it. Using this approach, they were able to
improve accuracy and reduce the training time, even though
completely different domains were combined. Of course, the
idea of transfer learning is not limited to pedestrian detection
or sensor data evaluation, but can be applied to various use
cases in the area of AD, e.g., road lane detection [996].

In many DL scenarios, collecting data in the real world is
expensive and time-consuming. For such use cases, we use
simulations to acquire knowledge about the real world by
pre-training our model on it. Especially in large-scale projects,
such as the development of AD technology, simulations play
an essential role, as it massively reduces the training time.
For example, Waymo [880] stated that one day of simulation
is comparable to 100 years of real-world driving experience.
Moreover, with simulations, we focus on the most interesting
situations in AD, making the model able to handle rare edge
cases more easily. For example, [12] pre-trained their model
with data from CARLA [190], an open-source simulator for
AD research. In addition to the CNN model, their architecture
also consists of an LSTM model. This allowed them to
consider temporal information, such as the speed of the
vehicle, instead of focusing only on spatial features.

The planning stage of AD deals with finding the optimal
trajectory that the ego vehicle follows in certain situations.
One of the most relevant examples are lane changing and
overtaking scenarios where, among other parts of the envi-
ronment, traffic of the current and the adjacent lanes must
be considered to find potential time slots and trajectories to
pass a vehicle or obstacle in front while satisfying kinematic
and safety constraints [184]. Most of the recently proposed
ways for controlling an AD vehicle use methods like po-
tential fields, cell decomposition, optimal control or model
predictive control [600]. As these strategies are real-time
optimization problems, i.e., they do not fall in the category
of deep learning, the above mentioned network-based deep
transfer learning is not applicable here. However, besides
them, there are also learning based methods for controlling
AD vehicles that incorporate previously learned knowledge.
These are mainly (deep) reinforcement learning or (semi-
)supervised learning approaches for trajectory planning for
which literature shows that transfer learning could indeed
be utilized.

As an example, [704] used transfer learning for real-time
robot path planning, which is similar to the planning of AD
vehicles. The robot recorded sequences of actions (called
options) while passing different obstacles which were reused
afterwards to learn suitable, collision-free trajectories in more
complex situations in the future. The options were stored in a
library L and depending on the fitness score or Jacard Index
of the currently perceived obstacle and those of L, a suitable
option of L is retrieved. Subsequently, it is transformed
to best align with the new obstacle and finally applied
to the current environment. Also for Unmanned Aerial
Vehicles (UAV) as provider for emergency communication
services, the trajectory design problem was modeled as a
deep reinforcement learning process with transfer learning
to benefit from previously learned knowledge [974]. In
case the base station of a communication system fails (for
instance, due to a natural catastrophe), an UAV then served
as aerial communication station that needs to adjust its
position to dramatic changes of geography, surviving user
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distribution and demand. Even though the domain of both
applications is different, such approaches also serve as
basis for the development of AD technology. In the area
of semi-supervised learning, [460] showed that scaling up
the pre-training by enabling the usage of unlabeled data
considerably outperformed supervised models on state-
of-the-art benchmarks. Due to the significantly increased
number of images in pre-training, the models benefit even
more from transfer learning effects.

Summarizing, for autonomous driving, one of the major
present challenges remains to close the simulation-reality
gap, where transfer learning plays an important role [435].
As it is the case for nearly all AI problems that rely on
data, transfer learning definitely helped solving many AD
use cases. However, it should be mentioned that transfer
learning can only be applied to trajectory planning, if the
vehicle controlling strategy actually learns from data.

5.2 Continual Learning

Authors: Christian Wirth, Stefan Rudolph
Continual learning aims at learning a model for multiple
tasks sequentially without performance degradation on
preceding tasks. It is closely related to transfer learning,
as it is also applicable to reuse already trained models
as a starting point for learning a new task. However, in
contrast to transfer learning, continual learning aims to keep
the important parts of the learned model intact. Therefore,
continual learning does not use past task for (only) improving
the results for new tasks, but for creating a unified model
that for solving all tasks. Technically speaking, continual
learning does not allow arbitrary changes to the model, but
only such changes that will not introduce a degradation of
the performance on past tasks. Therefore, the most important
aspect is to identify which parts of the model are relevant
for an observed outcome. Most of the continual learning
methods work with the assumption, that it is relevant to
determine the relevance of models parameters in regard to
the prediction. For instance, Synaptic Intelligence (SI) [952]
determines the importance of a parameter by its contribution
to the loss. An alternative approach is approximating how
much a weight can be changed while not reducing the
performance on already observed tasks [436]. For these
approaches, the scalar parameters are replaced by parametric
probability distribution, e.g. a Gaussian, by directly learning
the mean and variance of these distributions during training
(see Section 8.1.1). It is then assumed, that it is possible to
limit the acceptable parameter changes in terms of the Fisher
matrix or the Kullback-Leibler (KL) divergence. Another,
recent family of methods are the gradient based algorithms.
They alleviate catastrophic forgetting during the training by
directly manipulating the gradient for the weight update.

In this chapter, we are focusing on Bayesian and gradient
based approaches. Bayesian approaches are interesting, due
to the desired properties of Bayesian Neural Networks, as
explained in Section 8.1. The gradient-based approaches have
shown good results in the past years and especially they
promise to allow for positive backward transfer, meaning the
accuracy on past tasks can be improved while training new
tasks.

Known types of Continual Learning are [358]:

• Incremental domain learning: The input and the
output space are assumed to be identical but the
data distribution differs.

• Incremental class learning: The input space is identi-
cal, but the output space differs. Each task covers a
subset of classes from the same multi-class set. The
data distribution may also differ.

• Incremental task learning: The input space is identical,
but the output space differs. Each task covers a
distinct set of different prediction targets. The data
distribution may also differ.

5.2.1 Bayesian Continual Learning
Nearly all Bayesian Continual Learning approaches follow
the same principle:

1) Learn parametric weight distributions on task N
2) Use (parts of) the weight distributions as a precondi-

tioner
3) Add a regularization term for training on task N+1,

that penalizes the distance to the preconditioner

Some approaches [813, 603] do not operate in the weight
space, but in the function space. However, the differences
revolve more around the structure of the (neural network)
model and that will be covered in Section 5.2.9. We categorize
Bayesian Continual Learning algorithms by their following
properties:

• Approximation: Which approximation of the weight
distribution is used?

• Preconditioner: How is the approximation captured?
• Regularizer: How are the parametric distributions

regularized against the preconditioner?
• Update Mode: Which information from seen tasks has

to be preserved?

Furthermore, some approaches do not work on a purely
incremental scheme, where explicit information over all his-
tory tasks is captured in the last model. These methods merge
the task specific models [436, 199], requiring an additional
computation step. On the other side, some approaches work
fully online, meaning it is possible to discard information
from all but the latest model. Additionally, some approaches
use a replay buffer [813, 603, 574], meaning parts of the
training data are preserved and reused. For an method
overview, see Table 1.

5.2.2 Gradient-based Methods for Continual Learning
The gradient-based approaches are a recent development in
the continual learning domain. The main idea is to:

1) Save a small set of samples from previous tasks in a
memory (similar to a replay buffer)

2) Constraint the gradient calculated for the samples
of the current task by the gradient wrt. the replay
buffer samples.

This avoids that the results on the previous tasks, which
are represented by the replay buffer, degenerates since the
loss on samples does not increase.

Such a method has first been proposed in [511] and is
called Gradient Episodic Memory (GEM). There, the main
idea is to keep the angle between gradient of the samples
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TABLE 1: Overview of Bayesian Continual Learning Methods

Method Year Space Preconditioner Regularizer Approximation Replay Buffer (Selector) Mode
EWC [436] 2017 Weight Fisher Matrix L2 mean-field (MF) Laplace - Incremental
EWC [677] 2018 Weight Fisher Matrix L2 KF Laplace - Incremental
IMM [467] 2017 Weight Fisher Matrix L2, Custom MF Laplace - Incremental
VCL [574, 794] 2018/19 Weight Mean & Scale KL MF VI (K-means) Online
GVCL [510] 2020 Weight Mean & Scale Tempered KL MF VI - Incremental
UCL [603] 2020 Weight Variance LR MF VI - Online
CBLN [481] 2020 Weight Mean & Scale (Expectation) MF VI (GMM) Incremental
BGD [953] 2018 Weight Mean & Scale KL MF Approx. - Online
FRCL [813] 2020 Projected Fn. Cholesky KL FC Approx./VI Reconstruction Error Incremental
FROMP [603] 2020 Full Fn. Mean & Scale Expectation MF Laplace Maximal Uncertainty Incremental

TABLE 2: Overview of Gradient-based Continual Learning Methods

Method Year Space Constraint Replay Buffer (Selector) Update Mode
GEM [511] 2017 Gradient Gradient angle Random Incremental
A-GEM [114] 2019 Gradient Gradient angle Random Incremental
MER [674] 2019 Loss Regularize on gradient angle Random Online
MEGA [305] 2020 Gradient Adaptive loss constraint Random Incremental
Adam-NSCL [862] 2021 Projected Gradient Project update in null space - Incremental
GPM [703] 2021 Projected Gradient Orthogonal task updates - Incremental

from the memory and the gradient of the currently new
sample below 90 degree to avoid the adaption of the weights
in a direction that will likely make the accuracy on a previous
task worse. The authors formulate an optimization problem
that is solved during the training phase and finds the
gradient that does not violate the constrains regarding the
memory and is closest to the original gradient of the current
samples.

Since the runtime to solve the optimization problem
is considerably long Averaged Gradient Episodic Memory
(A-GEM) [114] has been introduced. It provides similarly
good results with a lower runtime by using only a randomly
sampled subset instead of all samples of the memory to
constrain the gradient. Furthermore, they make use of task
descriptors that allow for improvements regarding zero-shot
learning techniques.

In [305], a unified view on the approaches GEM and
A-GEM has been found and two new methods based on a
Mixed Stochastic Gradient (MEGA) have been introduced.
The generalization uses a reformulation of the problem to
reveal the fact that it is possible to weight between the current
and past tasks via a parameter. Based on this knowledge the
new methods utilize information from the loss to balance
between these tasks automatically by setting the parameters
appropriately, i.e., they put emphasis on the current task if
the loss is high and emphasis on the past tasks if the loss is
low.

Recently, Gradient Projection Memory (GPM) has been
introduced which uses gradient subspaces that are only
calculated once after each task with a singular value de-
composition and a basis is stored [703]. For the current task,
the gradient is then projected in a space that is orthogonal
to this projected subspace. A property of this algorithm is
that it does not require to hold samples from past tasks in
the memory but only the basis of the subspace. This method
reduces the required memory and improves privacy. In [862],
another idea based on singular value decomposition called
Adam-NSCL has been introduced. Here, the authors calculate
the feature covariance of past tasks and approximate the null
space of it. Subsequently, they calculate a gradient that lies

in this null space. Similar to GPM the samples for each tasks
do not have to be stored after one task has been learned. See
Table 2 for an overview.

5.2.3 Update Mode

Most continual learning algorithms work in an incremental
update mode. That is, each new model will be suitable
for predicting all already-seen tasks and are regularized
against all preconditioners or replay buffer samples from all
those older tasks. Hence, these algorithms require to store
the preconditioner and replay buffer for all tasks, which is
a memory overhead. Different to that, online approaches
use only the solution from the last task. A special case is
the Progress & Compress algorithm [728], which works by
training each task independently (possible initialized by the
last solution), but computes a joined model by regularizing
against the preconditioners in an online fashion.

5.2.4 Replay Buffer

Some algorithms reuse data from old tasks as a replay
buffer. This means, a subset of the training data is used
as "keypoints", where it is assumed that retraining (or con-
straining) with these will ensure the performance on already
seen task. Therefore, all data needs to be stored, but only
small parts are used for continual trainings. The methods for
selecting datapoints for replay try to obtain elements, that
are interesting, either in terms of representativeness by using
cluster centers [574, 794], or by determining their importance
for the prediction quality, in terms of a (model) reconstruction
error [813] or uncertainty [603]. Gradient-based continuous
learning methods usually simply use a randomly sampled
subset of all training data [511, 114].

5.2.5 Parametric Approximation

Bayesian Continual Learning methods usually require to
approximate the posterior parameter distribution of the
model. As explained in in the Subspace and Parametric
Approximation parts of Section 8.1.1, the approximations
differ in expressiveness and runtime requirements. In the
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following, we will only present a short recap. Please refer to
the according chapter for more details.

The most common approximation is the mean-field (MF)
approximation which only covers the mean and variance of
each parameter distribution independently. A full-covariance
(FC) approximation also captures the layer-wise covariances,
whereas the Kronecker Factorization (KF) is an approx-
imation of the full covariance matrix. For learning the
parametric distributions, usually Variational Inference (VI)
(c.f. Section 8.1.3) is used, which learns the mean and (co-)
variance by gradient decent. The Laplace approximation can
be computed after learning a deterministic model, but is
computationally more costly and does not scale well. Only
few methods use method specific approaches.

5.2.6 Preconditioner

The preconditioner determines the form in which the infor-
mation captured by the parametric approximation is stored.
This implicitly defines the regularization basis for learning
additional tasks, as the regularizer works by penalizing the
distance between the preconditioner and the current model
in the same space. Therefore, the regularizer employs a given
distance function.

A common preconditioner is the Fisher matrix [436, 728,
677, 467], which is an approximation of the second order
derivative of the loss near a minimum [609]. Gradients are
sufficient for its computation, but the method induces some
computational overhead. However, this preconditioner is
usually paired with a Laplace approximation of the poste-
rior distribution, which requires an approximation of the
Hessian, which is computationally substantially more costly.
An alternative is directly using the mean and variance of
posterior weight distribution, which can be learned "online"
with variational inference. However, in this case common
L2 regularizers are ususally not applicable, as described in
the regularizer section. A substantial limitation of nearly all
used preconditioners is the disregard of the covariance, with
the exception of FRCL [813], which uses the lower triangular
cholesky matrix. However, this limitation is not induced due
to issues with the preconditioner or the reguarlization, but
by the scalablility of the parametric approximation.

5.2.7 Regularizer

As explained before, the basic idea is to ensure that parameter
values relevant for already observed tasks stay the same.
Therefore, it is important to consider which information is
contained in the used preconditioner. The Fisher information
matrix is a measure of the information contained in a
parameter, given a loss function (and examples). Hence, large
changes of the values in the Fisher matrix also mean large
changes in the information contained within a parameter
and therefore it is sufficient to place an l2 regularization
on these values. An alternative is the Kullback-Leibler (KL)
divergence over the posterior distribution. If the variance
of the preconditioner is small, relevant changes to the mean
will result in large KL values. However, when changing the
mean for values with large variance, the KL loss will stay
small. Hence, parameters where it was possible to determine
precise values (low variance) stay the same.

5.2.8 Constraints
Regarding the gradient-based methods, we see different
possibilities to formulate concrete constraints that are used
to avoid an update that makes the network perform worse.
Early algorithms [511, 114] simply limit the actually used
gradient to one that has a smaller angle than 90 degrees to
the gradient from the old tasks, or regularize based on the
difference [674]. Modern approaches [862, 703], project the
gradients into a subspace that fulfills certain conditions, like
orthogonality to previous task(s).

5.2.9 Function Space Regularization
Most continual learning approaches regularize in the weight
space, assuming this is sufficient for preserving performance
on old tasks. However, function space regularization [813,
794] tries to preserve the function (output) values for old
tasks. This is computational infeasible to do directly, as
it would require storing (and reusing) all training data.
Nevertheless, approximations are possible with the use of
kernel neural networks, as explained in Section 8.1.2, since
these approaches capture the full output distribution in
the model parameters of the kernel. However, using a full
kernel matrix is usually computationally too expensive and
therefore variational distributions at inducing points are
often used. With knowledge over the kernel matrix and
possibly the variational distribution from past tasks, it is
possible to compute the difference of the output distribution
between the model of the new and the old model(s) at a
given set of points. This will require to store (a subset) of
the training data from past tasks, as described in the replay
buffer section.

5.2.10 Applications
Most aforementioned applications of continual learning
focus on image classification tasks, like rotated/split MNIST,
belonging to the domain of incremental class learning
(c.f. Section 5.2). With regard to AD, this bears relation to
adding new classes to object detection tasks. Hence, continual
learning allows to increase the number of available classes
later on.

Furthermore, the incremental domain learning setting is
of interested in the area of AD. It allows for incremental learn-
ing, in the sense that it is possible to improve already learned
predictors with newly available data, without training from
scratch. Although, with regard to knowledge integration, we
use incremental domain learning for integrating multiple
knowledge sources into a joined model. The knowledge
sources can relate to physical knowledge, expert knowledge,
rules of the road or observed examples. As example, it is
possible to train a model that predicts all locations, where it
is physical possible that a vehicle can occur or drive to and
then use continuous learning approaches for learning with
examples where vehicles have been observed. The joined
model can then correctly predict all viable positions (with low
probability) for vehicles, while still emphasizing positions
where this is most likely, based on the observed examples.

5.3 Meta Learning
Authors: Julian Wörmann, Alexander Sagel, Hao Shen
One factor of intelligent behavior is the capability to effort-
lessly transfer skill and knowledge from one task to a related
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one. While humans generally exhibit this ability, e.g., humans
can derive concepts about certain object classes from only
a few representative examples, data-driven AI approaches
usually require a vast amount of samples in order to achieve
the intended task. Meta-learning, also referred to as learning-
to-learn [809], addresses this issue via training a model
that improves its learning performance after encountering
multiple tasks. In this context, recognizing images of the
same class, or predicting the trajectory of a robot in a specific
environment can be considered a task. The goal of meta
learning is to update the training algorithm in such a way,
that the model easily adapts to new tasks, e.g., inferring
the class label from only a few unseen instances in a few-
shot scenario or planning the trajectory in an environment
with modified conditions. Eventually, this approach allows
the algorithm to re-use some structure that is shared across
different tasks in order to improve its performance on a
similar task, which can hardly be solved by learning entirely
from scratch. Guiding the training phase via meta-learning
can thus be considered as implicit integration of knowledge
into data-driven models. The preparation and organization of
the data, as well as the inclusion of the meta-objective is key
in order to transfer existing architectures into knowledgeable
systems.

5.3.1 Concepts and Algorithms
According to Hosepdales et al. [353], meta-learning can be
viewed from several perspectives, namely task oriented,
from an optimization point of view, or model-centric. While
the task oriented view allows to motivate the overall goal,
i.e., to gather knowledge about how to learn a model that
generalizes well to unseen tasks, the optimization perspective
enables to formalize this concept as an explicit bi-level
optimization problem. In general, two intertwined objectives
are pursued. Base learning aims at optimizing a model that
is capable in solving a base problem, e.g., achieving high
classification accuracy. In the associated meta-learning stage,
the meta algorithm updates the base algorithm, i.e., the
algorithm used to learn the base model. Through updating
the learning strategy of the base algorithm, the base model
improves an outer or meta-criterion, e.g., fast learning due
to effective initialization. The progress is generally measured
by means of the outcome of learning episodes. An episode
represents the current model as well as its performance on
instances from the training tasks. After updating the base
algorithm, the performance of the resulting model is assessed
again. Via iterating this scheme, the training algorithm itself
’learns how to learn’ such that, e.g., generalization to new
classes can be achieved from only a few samples. The model-
centric view reveals the close relation to general represen-
tation learning approaches. Meta-learning an embedding
function represented as a feed-forward model is one of the
cornerstones to provide solutions which quickly adapt to
new tasks. A decisive advantage of these so called amortized
models is that they can be readily applied to new tasks in
form of a simple feedforward pass.

One of the most popular realizations of the meta-learning
paradigm is presented by Finn et al. [229], called Model-
Agnostic Meta-Learning (MAML). Their framework focuses
on acquiring meta-knowledge about how to learn the pa-
rameters of a model, e.g., a neural network, such that the

learned model can be fine-tuned to a new task in only a
few gradient steps with a small amount of training data. To
put things more formally, denoting Ti as a task sampled
from a distribution of tasks p(T ), fθ the sought model
parameterized by θ and LT (·) the loss according to task
T , the base objective is to update the parameters, such that
the loss on task Ti is improved. Applying gradient descent,
this step reads

θ? = θ − α∇LTi(fθ), (15)

with α denoting the step size. The outer meta-objective
consists in finding the optimal parameters θ across several
tasks drawn from p(T ), i.e.

min
θ

∑
Ti∼p(T )

LTi(fθ−α∇LTi (fθ)). (16)

Via optimizing the outer criterion (16), the parameters θ are
forced to a representation where, according to (15), only one
gradient step improves model performance regarding the
individual tasks Ti. In this way, a suitable initialization of
the weights is provided that allows for fast adaptation.

The gradient based MAML framework has been applied
in various domains, e.g., fast adaption to environmental
changes in a trajectory estimation problem tackled via
reinforcement learning [133], or acquiring meta-knowledge
from clustered data in an unsupervised learning setting
[357]. Furthermore, extensions exists with regard to Bayesian
Meta-Learning [941], which aims at rapid estimation of an
approximate posterior that allows to infer uncertainty, as
well as Probabilistic Meta-Learning [230], that combines
MAML with structured variational inference in order to
enable simple and effective sampling of models for new
tasks.

Meta-learning or meta-criterion design can also be used
to learn other design parameters of the optimization process,
e.g., an optimal step size [25, 487], the weighting of regular-
izers [235] or a suitable update direction [653], leading to an
approach that is agnostic of the choice of base optimizer.

Model-centric approaches often involve meta-learning a
mapping realized as a feed-forward network, i.e., η = g(S),
where S denotes the input data, and the function g(·) is
approximated by means of a neural network architecture
[775]. This approach is also closely related to metric learning,
where the high-dimensional input S is mapped to a low-
dimensional, even scalar representation η such that the
similarity between two instances can be easily compared.
Another interesting field of application is to meta-learn the
loss used in the base algorithm by means of a simple neural
network [287]. In this way, non-differential objectives like,
e.g., Area under the ROC curve, or F1 measure, can be
approximated and thus, the base model can be tuned towards
certain metrics. Meta-knowledge can further be gathered
about architectures, where for instance [498] propose a
gradient-descent based method that efficiently searches for
suitable convolutional or recurrent network architectures.
Other approaches in turn focus on curriculum learning
[397], which aims at finding a sample strategy such that
the meta-learned models require less resources (training data
or iterations) and generalize better to unseen data.

Many meta-learning approaches, however, require the
meta-objective to be differentiable. The authors in [353]



35

denote another dimension of meta-learning as the choice
of optimization strategy. Besides the presented gradient
descent scheme, especially reinforcement learning or closely
related evolutionary algorithms are appropriate methods.
The design of the overall goal pursued in meta-learning, e.g.,
generalization across many tasks vs. efficient optimization in
single-task scenarios can be considered another axis.

In the remainder of this section, applications of meta-
learning to perception, situation interpretation and planning
are discussed, while the range of applications goes even
beyond, covering, e.g., architecture search, transfer from
simulation to real environment, or language processing.

5.3.2 Applications
One of the main application domains of meta-learning is
the problem of few-shot learning, which is of high practical
relevance in many real world computer vision settings. The
main goal of few-shot learning is to learn reliable models
from only limited amount of data such that the model
generalizes well to unseen or underrepresented instances.
Meta-learning is often used to acquire class-agnostic features
that contain information shared by many classes. Adaptation
is then achieved via modulating these features based on
class-specific information. Among the few-shot learning
approaches, one-shot or few-shot classification [843, 439] aim
to learn a class from only one or a few labeled instances. Few-
shot meta-learning usually involves a set of N support and
query pairs that constitute a base set, i.e., B = {(S,Q)i}Ni=1,
where S and Q represent a set of images, respectively. Each
of the N pairs can be considered a task, where meta-training
consists in updating the model given Si. The performance
on the task is measured by means of Qi. While updating
the model after encountering several tasks, the learning
algorithm gathers knowledge about how to learn such that
during meta-testing, the same learning algorithm can be used
to train a model on the support set of a new, unseen pair
(Stest,Qtest). The knowledge about how to learn allows the
algorithm to learn a model that generalizes to the samples in
Qtest, even when the number of samples in Stest is small.

As another branch, few-shot detection has emerged re-
cently, focusing on recognition and localization of multiple
objects in images from only a few annotated samples [869,
216]. Rather than missing class labels, few-shot detection
handles cases where only a few bounding box annotations
are available. Analogously to the standard object detectors
outlined in Section 2.1, also their meta-counterparts can be
divided into one-stage and two-stage approaches. Kang et.
al propose Meta-YOLO [411] that combines feature map
learning with a reweighting module. In the first stage, gen-
eralizable meta features are learned from base classes, that
allow for simple adaptation to novel classes. The subsequent
reweighting scheme transfers class specific feature informa-
tion from few support images to the meta features of the
query image via modulating the feature coefficients. Together
with the detection prediction module that outputs class labels
and bounding boxes, the whole detector can be trained
end-to-end. Another approach is presented in [628], that
augments the one-stage CentreNet object detection model
with a meta-learned class-specific code generator in order to
achieve incremental few-shot detection. A meta variant of the
two-stage R-CNN based object detector can be found in [920].

Given the features generated by the original Faster/Masked
R-CNN implementation, meta learning is applied to ROI
features where background and potential objects are already
separated. Similar to [411], feature reweighting in form of
class specific channel-wise attention vectors is performed on
the ROI features.

Object detection usually requires the definition of anchor
points or identification of auspicious regions (via Region Pro-
posal Networks). In order to allow for an end-to-end learning
without the need for an intermediate region proposal step,
Zhang et al. [960] recently introduced Meta-DETR, which
combines meta learning for few-shot object detection with
the transformer structure presented in [101].

In order to increase the generalization capabilities of data
driven classification or detection models, data augmentation
has been used as pre-processing step to improve general-
ization capabilites (see also Section 4.4). Meta-learning has
also been used to automate the augmentation process such
that models can efficiently adapt to given tasks or datasets.
One of the most famous approaches has been introduced
by Cubuk et al. [150]. The overall goal consists in searching
for an augmentation policy that maximizes accuracy in the
respective downstream task. For this purpose, different aug-
mentation operations, e.g., translation, or rotation with vary-
ing parameters are applied to the images. The corresponding
search algorithm is implemented as a reinforcement learning
problem. The authors in [485] propose to relax the costly
policy selection to a differentiable optimization problem with
the aim to reduce the computationally complexity on the one
hand, and to allow for a joint optimization of the network
weights and the augmentation parameters on the other hand.

The concept of meta-learning offers useful advantages
also in the context of RL, which has been applied for
motion planning in dynamic environments. Especially, meta-
knowledge about, e.g., goals, rewards or environments can
be used in order to reduce the training time in terms of
sample efficient exploration strategies [353].

Gupta et al. [306] propose an exploration strategy based
on the MAML approach, that is informed by prior knowledge
due to a meta-learned policy and latent space. Quick adapta-
tion of the RL agent to new real world tasks or environments
via meta-learning is also investigated in [133]. RL combined
with a meta-learned self-supervised interaction loss is pro-
posed in [897]. By aligning the gradients of a supervised and
self-supervised loss in the training phase, during inference
the agent can use the gathered meta-knowledge about the
imitated supervised loss for self-adaptive visual navigation.

Applications to trajectory planning scenarios are pre-
sented in [935], where the authors combine meta learning
with RL to develop a strategy for decision making for lane
change maneuvers on highways. Again, a variant of MAML
is used to improve adaptation speed for new scenarios, e.g.,
traffic density, road geometries, or traffic environments.

5.4 Active Learning
Author: Tino Werner
AL is an iterative learning strategy that incorporates hu-
man/expert feedback. The idea is to query the labels of some
yet unlabeled instances resp. to create new labeled instances
and to update the model taking the new information into
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account, alternatingly. The advantage of AL when querying
labels is the reduction of the annotation cost while clever
sampling of new data points enables to train the model
with less data than with uninformed sampling. Due to these
benefits and the opportunity to better estimate the model
uncertainty (see also Section 8.1), AL is a promising strategy
for integrating knowledge into the AI training process.

Querying labels requires the existence of a so-called unla-
beled pool and is therefore known as pool-based sampling
[475], so one selects an unlabeled instance or a batch of
unlabeled instances and asks for its label. Another strategy is
to generate new samples which is called selective sampling if
such samples can be selected from an existing pool or stream
of data so the learner can still decide whether to ask for the
label or not without having wasted significant computational
time. The latter method is also called membership query
synthesis if artificial new instances are generated according to
criteria listed below or by just combining valid features from
an abstract feature space ([137, 24, 739], see also for example
[163, 162]). The key question is which of the unlabeled
samples have to be considered for annotation resp. how new
samples can be generated since, evidently, random sampling
is not efficient and leads to high annotation costs. There
are different sampling paradigms like uncertainty/margin-
based sampling, see [475, 43], i.e., sampling from regions
where the model is uncertain which for classification model
means to sample from near the decision boundaries or
query-by-commitee [740] where one invokes different mod-
els and samples from regions where the models disagree
most. Another paradigm is density-based sampling, i.e.,
sampling from representative regions, emerging from the
fact that uncertainty sampling is prone to select outliers.
Other paradigms consider the informativity/impact of the
samples which is quantified by criteria like expected model
change, expected error reduction or variance reduction.
Furthermore, active learning is not limited to querying the
label of one single unlabeled instance per iteration but can
also consider whole batches of unlabeled instances. This has
been studied for example in [107, 391, 404, 915] who aim at
finding the batch of the best instances according to the given
paradigm but by simultaneously being aware to minimize
the redundancy of the single instances in the batch. The
number of samples in a batch does not have to be uniform
over the iterations and may have to be appropriately chosen,
see, e.g., [612]. AL can be used for knowledge integration
in AI training by augmenting the training data (see also
Section 4.4) with instances where high losses are suffered,
where the model is uncertain or where an expected model
change or variance reduction is possible in supervised tasks
like object recognition, semantic segmentation, person re-
identification or tracking. Furthermore, AL can even enter
unsupervised tasks by considering for example the model’s
entropy. One may invoke AL in knowledge extraction or
conformity checking tasks by sampling from regions where
the model output diverges from existing knowledge. As for
testing a particular trained model, active testing may be
applied in order to reduce the annotation costs for the test
data.

See [739] for an excellent overview of sampling paradigms
for AL. See [665] for a recent overview of deep AL which is
a combination of deep learning and AL in order to keep the

high predictive quality of deep neural networks, including
feature abstraction while reducing the labeling costs.

5.4.1 Different paradigms for active learning
An important result that connects the paradigm of AL with
the available sampling budget is given in [313] who theo-
retically derive that the best AL strategy crucially depends
on the available labeling budget. More precisely, for a high
budget, one should query uncertain samples while for a low
budget, one should focus on "typical" points where they
define the typicality as the inverse of the average squared
distance to the nearest neighbors. In order to encourage
diversity, they first cluster the points and then sample typical
points from clusters which not yet contain labeled points.

Uncertainty sampling: For uncertainty sampling, a
lot of different criteria have been suggested in literature.
The authors in [87] focus on the 1-vs-2-score, i.e., the
difference of the class-probabilities for the best and second
best class for a given sample, in the context of deep object
detection, based on the fact that a small difference between
the probability of the most resp. second most probable class
indicates uncertainty, more precisely, the sample is located
near the intersection of the decision boundaries. The authors
in [193] propose DeepFool active learning (DFAL) where
the selection of unlabeled data is performed by choosing
those which are closest to their adversarial attacks (generated
by DeepFool, see [560]) whose corresponding perturbation
magnitudes can be seen as approximating the distance
to the nearest decision boundary. A Bayesian approach
is given by Bayesian active semi-supervised learning for
Deep CNNs [688] that iteratively reduces the classification
entropy on the unlabeled data which can be combined
with MC Dropout [781, 248]. Other Bayesian approaches
include Generative Adversarial Active Learning (GAAL)
[989] where training instances are iteratively generated by a
GAN and task-aware VAAL (variational adversarial active
learning), [431] who combine the VAAL strategy from [772]
with the loss prediction technique of [940] which predicts
the target loss for the yet unlabeled instances. Ensemble
methods for uncertainty estimation have been considered
in [55] and [452]. In [413], specific uncertainty measures for
object detection are proposed, namely localization tightness
(how tight the bounding boxes are around the object) and
localization stability (how stable are the boxes in the presence
of input perturbation). Imbalanced data has been considered
in [647] who propose to compute a weighted uncertainty
to take the imbalance into account. The authors in [355]
take a contrary position to the paradigm to sample from the
vicinity of the decision boundaries by performing lowest
likelihood sampling where the likelihood is approximated by
a Gaussian Mixture Model (GMM) in order to discover yet
unseen classes. In [174], an adaptive supervision framework
for AL for object detection is proposed. The idea is to
avoid querying strong labels, here bounding boxes, but
weak labels in the sense of weak supervision in order to
optimize the model. Concretely, they use center-clicking from
[606] and derive an algorithm that decides whether one has
to switch to querying strong labels. [338] propose DEAL
(deep evidential AL) for image classification by replacing
the softmax output of a CNN by a Dirichlet distribution
that allows for uncertainty quantification. [57] consider
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the label-dispersion, a measure to quantify how much the
label assigned to a specific instance changes during NN
training, i.e., over different epochs. A high label-dispersion
indicates that there is a large uncertainty. Experiments show
a considerable benefit of this method. The method from [8]
can be interpreted as a narrower version of label-dispersion.
They introduce the alamp uncertainty measure that is given
by the difference of the 1-vs-2-scores for a given sample on
the current and the previous iteration, divided by the sum of
these two quantities.

Diversity/informativity sampling: Diversity of the
samples is encouraged using clustering [576, 124] and
sampling representative points from each cluster. Methods
based on the KL-divergence or the cross-entropy have been
suggested in [918, 198, 107, 612]. Adversarial active learning
has been considered in [955] who introduce state-relabeling
adversarial active learning (SRAAL) where a state discrim-
inator identifies the most informative samples which are
those being dissimilar from the already labeled ones. Further
adversarial strategies are VAAL, based on a discriminator
which considers the difference of the unlabeled instances to
the latent representation of the labeled instances in [772] and
adversarial active learning for LSTMs [483] where again the
similarity of labeled and unlabeled samples is considered. In
[821], the most informative sample is detected using a Varia-
tional Auto Encoder (VAE). The authors in [856] propose true
positive sampling in the context of person re-identification
with multi-view data and argue that true positives are
informative. Since true positives from the same camera view
are often similar, so that a view-specific bias would arise,
they compute the distance of two tracklets for an adaptive
resampling strategy. Density-based approaches are given in
[486], based on an information density measure related to the
conditional entropy, and in [926] where uncertain samples
that are similar to most of the training samples are selected.
The authors in [855] consider informativity based on either
entropy, least confidence or margin and iteratively select the
K most informative unlabeled samples. Their CEAL algo-
rithm checks for which of these instances the current model
makes a high-confidence prediction and adds these pseudo-
labeled instances into the labeled set so that the model can
be updated. [203] state the problem of selecting informative
points to query as a constrained optimization problem and
derive that the Lagrangian dual arising by optimizing some
loss L subject to some loss L′ being bounded by some
threshold on the whole training set allows for using the dual
variables as an informativity measure. [327] experimentally
compare different informativity scores and techniques to
ensure the diversity of the selected samples. [270] derive
minimax rates for the excess risk in batch AL. They propose
to optimize a tradeoff between informativity and diversity in
pool-based AL. More precisely, for noisy linear models, their
algorithm first considers all points where the current model
is not confident and queries the labels for a batch of points
whose Mahalanobis distance from the already queried points
exceeds an iteratively refined threshold, allowing for varying
batch sizes among the iterations. They extend their method
to generalized linear models and detail out the logistic case.
As for the noise, they point out that by re-training the model
at most logarithmically often w.r.t. the size of the available
pool, their algorithm adapts to the noise level provided that

a low-noise condition is satisfied.
Variance reduction/expected model

change/expected model improvement: An approach
based on kernel mean matching where two conditional
distributions are matched without requiring to estimate the
densities has been introduced in [871] for transfer learning
(match the conditional distributions of the responses in the
training resp. the test domain) with the goal to reduce the
predictive variance. Variance reduction has also been the
goal in [65, 687, 643] who combine AL with importance
sampling where one samples from a so-called proposal
distribution in order to reduce the variance compared to
sampling from the original distribution. Several works aim at
reducing the misclassification risk, either by approximating
it with the Shannon entropy in person re-identification
tasks [160], by finding wrong detections by exploiting the
temporal coherence in object detection in videos [56], via
decomposing the expected loss [733], via Bagging to reduce
the variance of the error estimate [689] or by approximating
the expected error/performance by Bayesian approaches
[445, 446, 705]. Analogously, [354] and [903] consider the
expected accuracy/utility improvement. The authors in
[915] approximate the expected improvement by means of
influence curves which assign a real number to each point of
the input space, quantifying its infinitesimal impact on the
estimator. The authors in [356] consider entropy reduction by
maximizing the decrease in the expected posterior entropy
in a Bayesian approach. Their objective is termed as BALD
objective while [250] also consider a Bayesian setting and
aim at optimizing a generic acquisition function. In [903]
and [857], one aims at minimizing the total annotation cost
by dividing the data into clusters and by determining the
optimal number of queried labels per cluster, leading to
the algorithms CADU resp. CATS. The expected model
change is considered as criterion in [330] (change in the
modelled local density around each sample). The authors in
[241] estimate the expected changes in a Gaussian process
model and [240] generalize the works of [241] and [841]
who consider Gaussian process regression and provide
the EMOC algorithm. This EMOC algorithm also has been
applied in [86, 405, 404]. Expected model change can even
enter as AL strategy in reinforcement learning where the
sensitivity of the optimal policy towards changes in the
rewards resp. transitions are considered [206]. In a tracking
and video annotation context, [846] interpolate the trajectory
and approximate the expected trajectory label change when
querying the annotations for selected frames.

Combined approaches: Several strategies explicitly
combine different sampling paradigms. In [760], superpix-
els of images are selected in segmentation tasks in an
uncertainty- and diversity-based manner. Uncertainty and
diversity are also simultaneously considered in [204], based
on the entropy resp. the ratio of the minimal distance to
another unlabeled sample, see also [930]. The authors in
[870] address person re-identification with weak labels, i.e.,
which only indicate whether a particular person appears in
a video but not in which frame, and propose a combined
criterion based on the cross-entropy and a penalty term
that discourages sampling highly correlated videos. The
authors in [872] concentrate on informativity and diversity
while [391] aim at selecting influential, uncertain and diverse
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instances. The authors in [944] apply AL in deep visual
tracking using CNNs by considering representativeness and
diversity of the queried samples. Diversity is encouraged
by a cooperation-based selection method using multiple
frames in order to eliminate the background so that it does
not affect the selection, while for the representativeness, a
nearest neighbor discrimination method is applied in order
to detect low-quality samples.

Other applications and paradigms of active learn-
ing: Other approaches include concentrating on strong
negatives in person re-identification tasks [851], learning
a selection strategy for AL using RL [219, 505, 896], AL
for ranking [509] or Kriging (Gaussian process regression)
[929] or active Support Vector Machine (SVM) [816]. The
authors in [450] propose active reinforcement learning where
one has to pay for observing the rewards. [441] consider
active offline policy selection where a set of candidate
policies can only be evaluated on a fixed total budget of
rollouts, which is solved by Bayesian optimization. AL is not
limited to select single instances resp. batches of instances.
For example, [760] sample superpixels instead of whole
images and [478] experimentally compute the uncertainties
for the estimation in active learning approaches in image
segmentation and derive that such approaches where regions
instead of whole images are labeled are much more effective
and significantly reduce the labeling effort. The authors in
[870] consider the case of weak labels for videos which
do not provide the frame indices in which a particular
person appears but only the binary response whether this
person appears in the whole video and [846] propose to
query only the annotations in selected frames of videos. [258]
propose unsupervised clustering AL (UCAL) for person re-
identification. After having applied a clustering algorithm
like DBSCAN, they consider centroid pairs of person IDs
that are erroneously grouped into the same resp. different
clusters. These clusters are re-organized via representative
pairs, i.e., splitting clusters is done via an independence-
compactness tradeoff while for merging, one decides which
pairs to label via the similarity of adjacent centroids. [730]
propose fine-grained AL for partially labeled scenes, e.g., for
predicting future positions by autonomous vehicles. They
criticize that there exist AL approaches for object detection
but none for prediction and perception. Sensor observations
are represented by HD maps and the labels by bounding
boxes. They point out that considering a fixed batch size in
AL per iteration assumes that each sample can be labeled
for the same cost which is not true. They introduce a cost
function so that the different efforts for manually labeling
sparse or crowded scenes are reflected and fix a cost bound
per iteration. They choose the next scenes to label by the ratio
of the informativity score (e.g., the detection or prediction
entropy) and the cost. The costs are unknown but can
be approximated by the number of detections after non-
maximum suppression [224]. They generalize their method
to partially labeled scenes where they consider a fine grid
of the scene, allowing for a fine-grained selection, again by
the ratio of the informativity and the cost. [59] study the
combination of self-supervised learning and AL and derive
than it is only beneficial for high labeling budgets, marginally
improving the cost for self-supervision and considerably for
AL. The two paradigms themselves are also compared with

the result that the former is way more efficient in reducing
the labeling cost than AL.

Limitations: Despite the successes of AL, there are
several limitations. The authors in [551] experimentally
show that AL without data augmentation for semantic
segmentation and image classification may fail (i.e., they
are worse than random sampling) if the labeling budget
is small and postulate that this may result from biasing
the distribution of the annotated samples. Especially, their
findings encourage to combine semi-supervised learning
with AL. Another study has been executed in [564] who
derive that the question whether AL in a DL context provides
an improvement heavily depends on the hyperparameters,
the paradigms, the data sets etc.. The authors in [514]
derive that it is difficult to assess the quality of AL since
this would normally require a large number of queried
samples. Additionally, the first queried samples may improve
the model, but later queried samples may decrease its
performance. Moreover, the training set and the model are
coupled due to AL which decreases the generalization ability
across models and tasks. The authors in [391] point out that
human annotations in semantic segmentation are often too
expensive while automatic segmentations are not sufficiently
accurate. The sampling bias is studied in [637] who derive
that methods based on the posterior entropy are robust to
sampling biases while [381] show that sampling probabilities
proportional to the uncertainty often lead to suboptimal
proposals and can perform worse than random sampling.
They propose optimal sampling schemes where optimality
is meant either w.r.t. the variance of the estimated loss,
the mean squared error of the prediction or the expected
total loss. The authors in [220] study the sampling bias
and propose corrective weights which leads to estimators
which are unbiased and convergent as long as the acquisition
proposal puts non-zero mass on all training samples. [58]
point out that AL may become problematic in the presence of
class imbalance due to AL may be biased towards particular
regions, see also [65], [220]. [58] correct this bias, due to
the true labels not being available, by treating the predicted
labels (more precisely, the softmax output) as proxy. Having
this softmax matrix P and z ∈ {0, 1}n which represents
the selection of samples in AL, the goal is to minimize
||Ω(c) − PT z||1 for the number Ω(c) of required samples
of class c. This leads to the class balanced AL (CBAL)
algorithm which minimizes the entropy regularized with
the norm above. They also show how to find a tradeoff
between representativeness and class balance. [7] propose
an AL strategy that is more focused on the minority class in
imbalanced data by assigning more budget to them. They
experimentally derive that transfer learning an AL can be
combined by using the features extracted from a pre-trained
model on a generic data set. [456] experimentally derive that
AL indeed does not imply monotonically increasing accuracy
but that learned knowledge can be forgotten during the AL
iterations. They propose to use knowledge distillation in
order to mitigate this but point out that the current model
may not be the best teacher due to this issue. They select the
teacher by a tradeoff between accuracy and consistency (i.e.,
making correct predictions over subsequent AL iterations).
The authors in [109] study how to select the initial pool in
pool-based AL. The initial pool usually contains around 1-
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10% of the data set. The goal is to cope with the disadvantage
that deep AL seldomly outperforms random sampling AL
in the presence of changes in the data (class imbalance)
or training procedures (regularization, data augmentation).
They propose two strategies. The first is to train a self-
supervised model on the raw data and to include the samples
on which this model suffers a high loss into the initial pool.
The other strategy is cluster sampling, i.e., the data are
divided into clusters and one samples from each cluster
with equal weight in order to encourage diversity and that
the initial pool represents the data set well. A related semi-
supervised strategy is given in [765] who point out that semi-
supervised learning concentrates on the most certain samples
while AL concentrates on the most uncertain ones. However,
[254] criticize that the method of [765] is independent from
the model training and propose to unify selection and model
updates. They point out that uncertainty sampling is often
not appropriate for deep learning AL since DNNs tend to be
overconfident. They found out that their consistency-based
approach outperforms the entropy-based approach and also
works sophisticatedly in terms of diversity of the queried
samples. A severe issue of their method (including related AL
methods) is the cold start failure which means that the initial
model trained on the initial pool has a poor performance
and leads to significantly wrong decision boundaries, so an
entropy-based method would query from near this wrong
boundary. Their semi-supervised strategy also suffers from
cold start failures. They point out that if one had a validation
set, one could track the performance of the model to avoid
cold start failures, however, this is often not the case in
practice. For the CE-loss, they propose an upper and a lower
bound which enable a tracking during training. As for a
validation and a test set, [444] introduce active testing, i.e.,
sample-efficient model evaluation where test data is labeled
in an active manner by maximizing the accuracy of the
risk estimate. They point out that (naturally) selecting most
uncertain points to label overestimates the risk which is even
worse for overconfident models. To remedy this, they apply
the IS strategy from [220] since a sampling bias is much more
harmful for testing than for training.

5.4.2 Application

We point out that AL is not tailored to a specific task but
serves as a paradigm for sophisticated iterative (re-)training
of the respective AI. Therefore, AL can be used to improve
a particular learning algorithm for perception or planning
models, but as already outlined above, the concrete sampling
or selection paradigms of AL differ.

As for existing work for perception, AL has been applied
to object detection/segmentation in [87] who invoke the
PASCAL VOC 2012 data set. The authors in [174] additionally
run experiments on the PASCAL VOC 2007 data set and point
out that it is crucial how the threshold in their strategy is
chosen since switching too quickly to strong labels causes
much higher annotation costs than staying in the weak
labeling case which however is prone to produce noisy
labels. The authors in [413] consider the PASCAL VOC
2007, the PASCAL VOC 2012 and the MS COCO data set and
derive that their localization tightness metric improves the
model significantly provided that the ground truth is known,
otherwise the improvement is rather low. Their localization

stability metric improves the model but is more expensive
to compute than other metrics. The authors in [478] apply
their region sampling method to the GlaS Challenge Contest
and the 2016 International Skin Imaging Collaboration data
and find out that sampling regions instead of whole images
can indeed lead to a better calibrated model and significantly
reduce the annotation cost. Evidently, all these approaches
and other ones for classification or segmentation tasks, even
if not primarily designed for automotive use cases, can
directly be applied for automotive data. As for person (re-
)identification which is of course directly related to the
automotive setting, [856] apply their method to the PRID,
the MARS and the Duke-video data set. On all data sets,
a significant improvement is observed while keeping the
annotation ratio below 3%. The authors in [160] consider
the iLIDS-VID data set and [56] consider a synthetic data
set as well as the ImageNet-VID data set where they only
require to label 10% of the latter data set. The authors in [846]
make experiments on the VIRAT data and report that they
are able to reduce the annotation costs by 90% compared
to a labeling strategy where a fixed rate of instances is
to be labeled. In [851], experiments are executed on the
CUHK03, the Market-1501 and the VIPeR data set where also
the human-out-of-the-loop (HOL) case is considered which
means that the number of human annotations is limited, so
human feedback becomes eventually unavailable. They show
that their AL strategy even leads to competitive performance
in the HOL setting. The authors in [870] consider the two
weakly labeled data sets WL-MARS and WL-DukeV and
even study the setting of missing annotations where for
example a person that is visible in a few frames is missed
by the annotator so that even weak labels are not available.
They show that even in the latter setting, their method can
improve the performance of the model. [944] apply their
AL method on seven benchmark data sets for tracking and
derive that it achieves a comparable performance to methods
that require huge labeled training data. [226] apply AL
with the uncertainty criterion (measured using MC dropout
or ensembles) for lidar 3D object detection. They conduct
experiments on the lidar depth and intensity maps from the
KITTI data set and derive superior performance in terms of
required labeling effort in comparison to a training method
where samples are queried randomly.

Active learning also successfully entered trajectory plan-
ning and MPC, see, e.g., [540] where the uncertainty is
actively learned and [970] where informative trajectories
for MPC are generated. In stochastic MPC, [335, 337, 336, 26]
apply AL for learning structural uncertainties of the model
in order to enable better model discrimination. In [92, 99,
144, 993], AL for Gaussian process dynamics, where either
uncertainty minimization or informativity maximization is
performed, is considered. Model-based active exploration in
MPCs has been suggested in [757, 726]. [359] propose active
uncertainty learning for motion planning with stochastic
MPC.

6 KNOWLEDGE EXTRACTION - SYMBOLIC EXPLA-
NATIONS

The explanation and interpretation of the functioning of data
driven models is an essential prerequisite on the way to trust-
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worthy systems. Special focus is put on an understandable
representation and formalization of the behavior learned
by a neural network. The extraction and consideration of
learned decision patterns and concepts not only motivate a
final validation of the function but are already equally useful
in the development of methods for use in safety-critical
applications.

Symbolic interpretations play an important role and have
been extensively investigated in recent years. In order to
inspect the functionality of a neural net in a more formal way,
rule learning has established itself as one of the most promi-
nent methods in this context. The approaches introduced in
Section 6.1 range from methods that focus on the internal
structure and interplay of neurons to methods that try to
model the input-output relations in a human interpretable
way. The latter is also connected to rule extraction and
pattern mining with respect to the input data as discussed in
Section 6.2 focusing on structured output prediction.

Natural language, as another form of symbolic represen-
tations beyond rules, is considered in the two remaining
sections. While knowledge extraction in the context of
regulations and norms from legal domain is the focus in
Section 6.3, natural language as accompanying explanation
to visual stimuli is the goal in visual question answering,
presented in Section 6.4.

6.1 Rule Extraction and Rule Learning
Authors: Adrian Paschke, Ya Wang, Kevin Krone, Etienne Bührle,
Hendrik Königshof
This section looks at algorithms for rule extraction and
rule learning. A distinction is made between extraction
approaches that use the internal structure of the trained
models (e.g. decompositional rule extraction) and approaches
that use the models and extracted concepts as a whole (peda-
gogical and eclectic rule learning) to derive new (symbolic)
knowledge, and inductive learning approaches (e.g. Induc-
tive Logic Programming), which learn rules from training
data. The section first considers the extraction approaches,
then approaches for inductive logic programming (inductive
learning of symbolic rules), and last applies rule learning in
the context of planning.

6.1.1 Rule extraction from trained neural netwoks
In recent years DNNs have achieved remarkable perfor-
mance. However, their extremely complex internal structures
make them incomprehensible as a black box, which is not
acceptable in some safety crucial application domains, such
as medical diagnosis, industrial process control and fully
autonomous driving [329]. Many approaches have been
proposed to interpret and explain the DNNs in a human
acceptable way. One feasible approach is to extract under-
standable symbolic rules from neural networks. The study
on rule extraction dates back to early 90s, which originally
aimed to synthesize knowledge for knowledge-based sys-
tems and discover the full potential of neural networks [21].
It is basically recognized that acquired knowledge during
training is encoded as the network parameters, activation and
architecture design. Knowledge could be extracted in form of
If-Then rules, M of N rules [817], decision tree, decision table,
etc. [736]. Based on whether extracted rules reveal the internal

Fig. 6: Illustration of the functionality of decompositional
(top) and pedagogical (bottom) approaches [329]. (red color
stands for activated state and transparent color for deacti-
vated state)

structure of neural networks, Craven and Shavlik [146]
proposed a classification of rule extraction into two basic
categories, namely the decompositional and pedagogical
approaches. The former [60, 490, 824, 708] extracts the rules
by analyzing the activation and parameters of the layers,
while the latter [145, 715, 737, 807, 810, 797, 980] extracts
rules by mapping the input-output relationships as closely as
the neural networks understand without considering internal
structure. As illustrated in Figure 6 (top), the decompo-
sitional approach extracts the rule IF σ(x1) ∧ σ(¬x2) ∧
σ(x3), THEN h2, h4 from the first layer and the rule
IF σ(¬h1) ∧ σ(h2) ∧ σ(¬h3) ∧ σ(h4) ∧ σ(¬h5), THEN y1

from the second layer. As we aggregate them and eliminate
h2, h4, the rule mapping between input layer and output
layer is extracted as IF σ(x1)∧σ(¬x2)∧σ(x3), THEN y1.
In contrast, the pedagogical approach (Figure 6, bottom)
treats the whole network as a black box and learns the
rule mapping directly by observing the inputs and outputs.
Besides that, a third class could be the eclectic approach
[817, 738], which is a combination of both decompositional
and pedagogical approaches. Since our goal is to understand
NNs by analyzing their internal structure, we will only focus
on the decompositional approach in this subsection.

Though Neural Networks have been widely studied and
applied, there is still a lack of research on rule extraction
from DNNs [316, 992]. Most proposed algorithms targeted
shallow neural networks. The reasons is attributed to two
aspects. First, the number of extracted rules is proportional to
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Fig. 7: A controlled rule exception scenario

the depth of the network. [992] applied their algorithm to a
four-layer NN with structure of 784-10-5-2 and extracted over
105 rule terms and consumed large amount of computation
time and memory space. Nowadays, even the first version of
DNNs AlexNet consists of 8 layers, state-of-the art NNs are
often designed over 100 layers which makes decompositional
rule extraction intractable without pruning. Secondly, the
interpretability of the rules will be lost if the number of rules
is too large. Many End-to-End NNs are applied directly on
perceptional level which take the raw sensory data as the
input. Although Guido Bologna’s [78] algorithm extracts
rules from a simple convolutional neural network for image
classification task, the relationship between individual input
pixel and the output class does not explain the decision
process very well. Based on these considerations, we argue
that extracted rules will be more understandable if we apply
the decompositional approach to the top layers of DNNs.
Instead of mapping from raw data, the algorithm takes the
features, which have significant semantic meanings, from
intermediated layers as the input.

The decompositional approach helps to understand the
classification process of DNN. In the context of autonomous
driving, the reason for identification of a rule exception
can be extracted as human understandable knowledge. We
consider the following specific driving scene as shown in
Figure 7: an ego-vehicle E (blue marked) drives along a lane
which is partially blocked by an obstacle F (black marked)
and limited to the right by a solid line. A rule exception of
crossing solid line is allowed if it is not foreseeable when
the obstacle F will disappear. Before path planning and
legal rule integration, the class of the situation should be
correctly predicted. To explain rationales of the prediction,
we identified two existing algorithms that are potentially
applicable to this problem. The first one called DeepRED
[992] was proposed in by Jan Ruben Zilke et al. in 2016,
which was claimed as the first algorithm that has explicitly
been tested on the task of extracting rules from DNNs. The
algorithm was developed based on CRED [708]. It uses
decision trees to describe a NN’s performance based on
the units in its hidden layer. Then, it builds up new decision
trees to describe the split points of the first decision trees.
At last, the rules are merged to describe a NN’s behaviour.
We refer to [992] for more detail. Formally, we define the
rule extraction task as follows: given a well-trained NN and
an example as input, the goal of the task is to find rule sets
Rvi→o that describe the relationship between the input layer i
and the output layer o for each class v as closely as possible.
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rule 
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Fig. 8: Comparison of two different approaches for rule ex-
traction from FCs in neural network models (top: DeepRED,
bottom: ICDT)

As mentioned before, when applying rule extraction, the
input layer must not be the example itself but the features
of intermediated layers in the NN. For classification of rule
exception scenarios problem, the input can be the result of
different detectors and sensory data, and the output can be
the class of one or multiple defined use cases.

As shown in Figure 8 (top), the FCs (fully connected
layers) are built on the top of one or multiple subNets (e.g.,
CNN models). The supervisory signals for different tasks,
such as for object detection, lane detection assign semantic
meanings to the input of FCs. When applying DeepRED to
the FCs, the following rule set is expected to be extracted:

IF isSolid(Line) = True,

AND Speed(V ehicleF ) = 0,

AND LocX(Line)− LocX(V ehicleF ) > 3,

AND LocY (V ehicleO)− LocY (V ehicleE) < 0,

THEN classRuleexception1.

In other words, the rule set says a rule exception case is
identified, when a left ego-line is solid, an upfront vehicle is
stopping and it is more than 3 meter right from the solid line
and all oncoming vehicles are already behind the ego-vehicle.
In this case, an overtaking of the upfront vehicle is allowed.
These rationales explain the decision very well, however, we
still need ground truth data to supervise different detection
tasks. To overcome this problem, an approach proposed by
Zhang et al. [965] is potentially transformable to this task.



42

Fig. 9: top: Comparisons between ordinary CNN feature
maps and disentangled feature maps; bottom: Decision tree
that encodes all potential decision modes of the CNN in a
general-to-specific manner [965]

Instead of using additional supervisory signal, the author
designed specific filter loss [964] (Figure 8, bottom) that
disentangles the feature representations in the top layers. It
is commonly recognized that, an ordinary filter in the top
conv-layers usually represent the pattern that is the mixture
of parts and textures. Using such disentangled filters we
make each filter represent a specific object part (Figure 9,
top). Different from the first approach, the author designed
a clustering algorithm on the FCs to derive a decision tree
to explain the decision process (Figure 9, bottom). Despite
its advantages of no need for additional supervisory signal
for object parts, it requires adaption of the NN structure and
finetuning of FCs. In the case of lane detection, disentangled
filters may not work, since the texture of the lane lines plays
key role in distinguishing. Another shortcoming as claimed
by the author is that it is not compatible with the Nets that
have skip connections, such as ResNet. Though the first
approach requires additional annotations for different tasks,
the rule sets extracted by DeepRED are more expressive and
easier to understand.

6.1.2 Inductive Logic Programming
While modern ML approaches based on deep learning have
been extremely successful in recent years, they still often fail
to generalize on seemingly simple tasks. For example, given
enough training data a standard deep learning model learns
the less-than relation on handwritten numbers, but it will fail
to generalize it to previously unseen pairs of digits. Inductive
Logic Programming (ILP) is a set of techniques for learning
logic programs from given examples. Instead of relying on
statistical mechanisms, ILP is based on logical inference while
incorporating ideas from automated reasoning and knowl-
edge representation. This way ILP programs are often able to
generalize from very small data sets. Another key advantage
of ILP is the fact that its solutions are comprehensible and
verifiable.

While different ILP frameworks employ different strate-
gies to solve a given task, most of them agree on the following

definition of an ILP problem. An ILP problem (B, E+, E−)
consists of the following data:

1) B is a set of background assumptions,
2) E+ is a set of positive examples,
3) E− is a set of negative examples.

The goal of ILP is to construct a logic program (a hypothesis)
that, together with given background assumptions, entails
the positive examples and rejects the negative examples.

Over the last decades many significant improvements
to ILP have been made. Today, it is possible for ILP sys-
tems to learn recursive programs and to invent auxiliary
predicates from background assumptions [147]. However,
there are a few weaknesses most ILP frameworks have
in common. Since ILP represents data as logic programs
this requires the user to choose from a range of available
languages for this task. For example, Prolog is a Turing-
complete logic programming language that is commonly
used in ILP. Datalog is a subset of Prolog, which trades
Turing-completeness for efficiency and decidability. Similarly
to feature selection in classical ML approaches, choosing
the appropriate background assumptions is crucial for the
success of ILP.

One of the main disadvantages of traditional ILP frame-
works is their inability to handle mislabeled data. Recently,
there have been attempts to combine the strengths of deep
neural networks with the benefits of ILP by replacing
absolute logical reasoning with continuous values reflecting
the confidence of the conclusion. Richard Evans and Edward
Grefenstette [209] presented a reimplementation of ILP in an
end-to-end differentiable architecture called ∂ILP. According
to the authors ∂ILP is robust to mislabeled data (up to
20%), while also being able to handle ambiguous and fuzzy
data. However, the search space needs to be constrained
via handcrafted rule templates and all logic programs are
restricted to definite Datalog clauses, disallowing function
symbols. Furthermore, ∂ILP only allows for two atoms per
rule and predicates of arity of at most two. Shindo et al. [749]
improve on ∂ILP by introducing several new algorithms
that deal with more complex programs including function
symbols. For both frameworks scalability remains an issue.
Another approach by Ali Payani and Faramarz Fekri [618]
implements a differentiable version of forward chaining.
According to the authors, first-order rules are learned without
prior specification of a rule template, while maintaining
desirable ILP features such as being able to learn recursive
predicates as well as predicate invention. A second architec-
ture avoiding the use of rule templates is named Neural Logic
Machiness (NLMs) and was proposed by Matthieu Zimmer
et al. [994]. It combines reinforcement learning and ILP in a
differentiable framework, while retaining full-interpretable
solutions. However, only a restricted space of first-order
programs is learned and predicate invention is only possible
at the loss of explainability of the solutions.

6.1.3 Applications
In the context of autonomous driving, extracted symbolic
rules reveals the internal functionality of the neural networks,
which can explain the result of a scene classification task by
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identifying key features and their importance. Furthermore,
ILP can be employed to derive unwritten legal or behav-
ioral rules from a given formalization of traffic rules. This
extracted knowledge can afterwards be incorporated into the
body of legal or behavioral knowledge.

6.1.4 Rule Learning for Planning
The goal of rule learning is to infer the constraints that
govern expert behavior based on observed demonstrations. A
difficulty arises from the fact that the rule inference problem
is ill-defined – the rules are not unique. Furthermore, human
expert demonstrations are noisy, i.e., suboptimal, and might
even occasionally violate rules.

The following sections highlight methods to extract rules
from expert data, with applications to traffic rule extraction.
The extracted rules can be used as knowledge bases for
subsequent algorithms. The presented methods leverage an
explicit formalization of the rules, which, in the case of traffic
rules, is still an area of ongoing research [208].

Parameter Learning: The task of rule learning can
be framed as learning an objective function which includes
penalty terms for rule violations. In fact, Ng and Russell
argue that "the reward function is the most succinct, robust,
and transferable definition of the task" [573]. Under this
interpretation, methods from behavioral cloning and inverse
reinforcement learning can be used.

Behavioral Cloning. Behavioral Cloning aims at replicat-
ing the observed expert behavior in a supervised learning
setting. In the context of autonomous driving, the method
was notably used by Pomerleau in his seminal work [634].
A large body of work has used this approach to learn end-
to-end driving policies, which, given sensory information,
reproduce the observed system inputs [46, 706, 385]. More
recently, Generative Adversarial Imitation Learning (GAIL)
has been shown to require less training data, while yielding
more robust policies [346].

Behavioral Cloning can be used to tune parameteres
of explicitly stated rules. In [950, 500], a Markov Random
Field (MRF) is used to jointly reason over actor trajectories.
The MRF encodes rules as potential functions that penalize
violating settings of nodes, which represent the trajectory
choices of the actors present in the scene. To find the combi-
nation of trajectory choices with the lowest potential, Loopy
Belief Propagation is used, which is a differentiable message-
passing procedure. Thus, the weights and parameters of the
rules can be adjusted by backpropagation of a loss function.
The authors use a standard classification loss with expert
data as the ground truth.

In [485], a Differentiable Logic Layer (DLL) is presented
that can be used as an additional layer on top of any network,
and takes a set of Signal Temporal Logic (STL) rules as inputs.
Temporal Logics are a popular way to express constraints
on trajectories, and have been used to express traffic rules
[529, 208, 28, 131, 130]. The STL semantics have the added
advantage of being differentiable. The DLL can thus act as a
corrector in the forward pass, increasing rule conformity. In
the backward pass, gradients can be propagated to both the
underlying network and the STL rule parameters.

Inverse Reinforcement Learning. The goal of Inverse
Reinforcement Learning (IRL) is to estimate the objective
function governing expert behavior. It was first posed by

Kalman [407] in the context of Inverse Optimal Control, and
later by Ng and Russell [573]. Typically, the structure of
the objective function is assumed to be known, reducing
the problem to a parameter estimation problem. A recent
overview is given in [29].

Maximum Margin IRL. The IRL problem is ill-posed,
because multiple objective functions can explain a given ex-
pert behavior, including the "always zero" reward. Maximum
Margin IRL overcomes this difficulty by requiring that expert
trajectories be optimal by some margin [29]. This requirement
can be encoded as a loss function.

In [951, 882], the max-margin loss is used to train a
numerical scene-dependent planning cost volume end-to-
end. In [700], it is used to learn the parameters of an objective
function that is subsequently used for behavior (coarse-scale)
and trajectory (fine-scale) planning. In [701], it is used to
learn the weights of an objective function that uses a semantic
occupancy grid map to score trajectory candidates. A similar
idea is presented in [103], which uses the max-margin loss to
learn penalties for a small set of illegal behaviors, including
off-road and opposite-direction driving, and running traffic
lights.

Maximum Entropy IRL. Maximum Margin IRL suffers
from a problem known as label bias, which arises from the
fact that the algorithm has to commit to what it deems to
be the optimal objective function with a margin. Maximum
Entropy IRL overcomes this by maximizing the entropy of
the trajectory distribution [991]. It can be shown that the
distributions with highest entropy belong to the exponential
family [29]. The principle can be extended to deep architec-
tures [904].

Structure Learning: The previous section presented
methods for parameter learning, where the learning problem
was framed as an optimization problem over a fixed class
of functions with tunable parameters (e.g., the weights of a
neural network). However, the structure of rules is often hard
to express succinctly and needs to be discovered, requiring a
joint optimization over the (typically) continuous parameter
space and the (typically) discrete rule space. The following
paragraphs highlight methods that bridge this gap.

Maximum-Likelihood Constraint Learning. The maxi-
mum entropy principle yields a distribution over trajectories.
This can be used to find constraints with maximum like-
lihood, given an objective function and system model. In
[729], the case of of an Markov Decision Process (MDP) with
markovian constraints is studied. The authors present an
algorithm that iteratively maximizes the probability mass of
forbidden trajectories, while keeping observed trajectories
legal. To prevent overfitting, the process is stopped once the
decrease of the KL divergence between the observed and
inferred trajectory distributions crosses a lower threshold. A
similar method is presented in [838], which uses a surrogate
likelihood criterion and leverages inclusion relations to
efficiently search the space of constraint candidates.

Neural Architecture Search. Neural Architecture Search
attempts to find the optimal structure of network layers for
a given task. This problem has many similarities with rule
structure learning. A multitude of methods, including Rein-
forcement Learning, Evolutionary Algorithms, and Gradient
Descent can be applied, which are surveied in [205].

A related field is Neural Program Synthesis, which
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attempts to infer programs based on input-output exam-
ples. Successful approaches include the use of sequence-to-
sequence models and beam search to generate valid pro-
grams in domain-specific languages [607, 177]. An overview
of Neural Program Synthesis is given in [412].

In [787], a gradient descent-based method from neural
architecture search is used to learn a symbolic decision
program for autonomous vehicles in a domain-specific
language. To this end, the space of programs is expressed
as a supergraph, whose edge weights define the inferred
computation graph. The authors use the GAIL objective to
learn the computation graph from expert demonstrations.

In [646], a recurrent neural network is used to generate
rule candidates for knowledge graph completion. A survey
on knowledge graphs is given in [393].

6.2 Structured Output Prediction
Author: Christian Hesels
Pattern Mining is used to discover unexpected and useful
patterns in a database. The resulting patterns are human
interpretable and thus useful for data understanding and
decision making. Pattern Mining first was introduced to
create association rules for market basket analysis [10]. The
subsequent algorithms built up on this idea and are generally
summarized as Frequent Pattern Mining. Algorithms like
association rules only consider the occurence of itemsets
and they are applied to non sequential databases. This
is called Frequent Itemset Mining. Another approach in
Frequent Pattern Mining is Sequential Pattern Mining, where
not only the amount of occurences is taken into account,
but also the order determined by a timestamp in a given
database. A slightly different approach but yet very close
to the mentioned ones is Time Series Pattern Mining. While
Frequent Itemset Mining and Sequential Pattern Mining
receive a symbolic representation as input data, Time Series
Pattern Mining is used to find patterns in high dimensional
data [245]. Generally, sorted episodes or sequences are
defined as serial, not sorted ones are called parallel and
if both is possible epsiodes are named general.

6.2.1 Pattern Mining
Frequent Itemset Mining algorithms like Association Rule
Mining searches for if.. then.. statements for Items. Which
in the context of Basket Case Analysis means, if a customer
buys one item then he buys another one with a certain
confidence. This rules are not limited to single cardinality,
but also work for more combinations. To find these rules,
Association Rule Mining calculates three metrics: Support,
Confidence and Lift. The support is calculated from the
item count N and the frequency of two items freq(A,B)
occuring together. Confidence gives information about how
often the items A and B occur together. Lift is calculated
from the support of A, B and the global support.
Apriori is an algorithm to optimize this principle. Because
with this Association Rule Mining approach thousands of
rules would be generated without pruning the input, it takes
a lot of space and iterations to mine those rules. Apriori is
based on the concept, that a subset of a frequent itemset
must also be a frequent itemset. Therefore when a subset
does not fullfill a given minimum support every itemset

in this subset might as well be removed from the dataset [11].

For Sequential Pattern Mining the definitions are the
following: an event is defined by a set of items i with the
length k, i.e., (i1, i2, ..., ik), often in combination with a
timestamp. A sequence is a set of events and a sequence
with k-items is called a k-sequence. The events are taken
from a database D. The support (or frequency) is given by
σ(α,D). When a sequence pops up more often than the user
defined minimum support value, it is considered a frequent
sequence. Often a user defined Time Window is given, in
which range the patterns need to appear in. Otherwise
frequent patterns from huge sequences would be mined,
that may not have any correlation.

Time Series Mining has two different approaches to
generate a suitable data representation. One is to reduce
the dimension of the input data with methods like basic
sampling or critical point model [47]. Yet the goal remains to
reduce the dimensions and calculate the distances between
multiple time series to cluster them. The second approach
is to discretize the data to receive a symbolic representation.
On this symbolic representation, algorithms from Sequential
Pattern Mining are applied. Measuring the similarity of time
series is done in two ways. Whole sequence matching and
subsequence matching. To calculate the distance between the
time series the nearest pairs need to be saved and the distance
measurement has to be done with all possible offsets [245].
One way to do it for whole sequence matching is to minimize
the dimension as mentionend before (for example with DFT
coefficients [9]) and calculate the Euclidean distance on it. In
subsequence matching, a query is given and the goal is to
find it in the longer time series. The subsequence therefore
needs to be compared to every offset in the longer time series.
There are a lot of ways to do this like DualMatch [932] or
GeneralMatch [559]. The final pattern mining is mostly done
with clustering. An initial cluster center is defined (random
or from a sequence). As a parameter the amount of clusters
is given (static or variable). Afterwards the distance of each
input datapoint to the cluster is calculated and the closest
cluster wins and updates the cluster center. The algorithm
either converges or finishes when the maximum iteration
number is reached [245].

6.2.2 Applications in Situation Interpretation

Because the input is a high level symbolic representation,
Time Series Pattern Mining is not suitable for this approach
(except sensor data is used, in which case a suitable sampling
method is needed to reduce the complexity). Assuming
that in traffic a sequence is of importance, for example
stopping the car before a pedestrian is in front of the car,
Sequential Pattern Mining is reasonable. State of the Art
algorithms like CM-Spade are used to extract the patterns
[234]. These extracted Patterns (complex events) are used to
train a transparent classifier for action/event prediction. For
this approach the training data is created in a way where a
certain time window is given and every time the events to
predict occur, it is defined as a label and the previous events
(depending on the time window) as training data.
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6.3 Natural Language Processing for Legal Domain
Authors: Stefan Griesche, Anh Tuan Tran
Previous sections about knowledge representation learning
and knowledge crafting highlighted knowledge graphs and
ontologies as a feasible approach to represent knowledge.
These concepts rely on annotated data. For smaller data
sets and proof-of-concepts this can be achieved by a human
annotator or crafting by hand. However, legal knowledge in
form of norms, traffic regulations and laws sum up to a large
amount of unstructured data in different languages. Natural
Language Understanding (NLU) and Natural Language Pro-
cessing (NLP) provide methods to tackle this large amount
of data. However, for the legal domain additional challenges
have to be considered. As mentioned by [638], computational
models which deal with legal texts and traffic regulations
have to take exceptions, rule conflicts, open texture and
vagueness, rule change, and the need for commonsense
knowledge into account. Therefore, existing NLP concepts
and models have to be tailored or trained to the domain and
domain specific solutions have to be developed [681].

6.3.1 NLP tasks
The adaptation to the legal domain addresses already differ-
ent NLP tasks. This includes legal entity recognition [473],
text similarity [549], [566], legal question answering [982],
legal summarization [410] and pretrained legal language
models [108]. Zhong et al. [981] provides a good summary on
the benefits of AI in understanding legal text. An additional
task that is particularly well-suited to legal NLP is argument
mining [496], in which the arguments are extracted from
unstructured documents in a hierarchical form: in the lower
level exists linguistic form such as argumentative sentences,
argumentation boundary, etc. while in the higher level, the
arguments are formed from argumentative utterances and
evidence. Further tasks in legal NLP are also of recent
research interest [139], including legal case retrieval, legal
case entailment, judicial prediction. Sleimi et al. [773] used
NLP to query legal requirements and support the legal
requirement handling.

6.3.2 Datasets and legal language models
There is a increasing proliferation of new corpora specific
to legal domains such as [636], [473], [339], [829]. Most
of these corpora are designed to facilitate a specific task.
Recently, there are attempts to provide the data for multiple
task training (and with it, a pre-trained model that can be
customized and fine-tuned to further downstream tasks),
for example CaseHold [979], Edgar [79]. Most pre-trained
models rely on transformer architectures and provide a
lightweight variant, fine-tuning from larger models such as
BERT or GPT, namely Legal-BERT [108] and Legal-GPT [79].
The Natural Legal Language Processing (NLLP) community
[587] provides a good amount of references to these corpora.

6.3.3 Software
There is an increasing number of open-source and proprietary
software system for legal NLP. ICLR&D (Incorporated
Council of Law Reporting for England and Wales) has open-
sourced Blackstone [71], which is a legal NLP pipeline built
on top of Spacy [213]. Blackstone NLP models consider the

nature of legal texts. The named-entity recognizer is for
instance able to detect legal concepts such as provisions,
citations, the text categorizer annotates axioms, issues, con-
clusions. LexNLP [476] offers segmentation, tokenization,
pre-trained word embedding, classifiers, fact extraction
specific for legal texts. FlairNLP also provides easy to access
API for working with deep learning models via HuggingFace
and PyTorch. QuantLaw [648] has recently open-sourced
their toolkits for analyzing and detecting legal references
from text.

6.3.4 Research projects

There have been two European projects in the past years of in-
terest in the legal domain which considered NLP techniques
and made an essential contribution to the state-of-the-art. The
Mirel project [550] developed tools for mining and reasoning
with legal text. The project aimed to close the gap between the
community working on legal ontologies and NLP parsers
and the community working on reasoning methods and
formal logic. The project provided first legal ontologies [50],
[180] and used NLP techniques for legal reasoning [191]. The
lynx project [523] developed a legal knowledge graph for
information retrieval services. Moreover, the lynx project
developed an annotation service, published legal datasets
and trained language models to the legal domain [473].

6.3.5 Applications

The state-of-the-art shows an increasing activity of research
on NLP in the legal domain. For automated driving, traf-
fic rules and parameters written in traffic regulation and
norms are of utmost concern. However, to the authors’ best
knowledge, NLP for traffic regulations and norms seems
currently largely unexplored. Even though there are first
NLP applications which focus on analyzing requirements
and technical documentation (test specifications) in soft-
ware and system development [718], [228], the potential
of NLP is not fully exploited. NLP can play an essential
role to analyze legal requirements and find similarities and
conflicts among traffic regulations and norms of different
countries. Furthermore, NLP can deliver the metadata to
enrich requirements with different sources such as legal
commentaries to interpret fuzzy traffic rules. This can be
further processed in knowledge graphs or reasoning engines
and support the software development process to design
for instance legal conformity planner. NLP methods also
have the potential to support editors such as [488] to
semi-automate the process of formalizing traffic rules [208].
Ontologies for traffic regulations introduced by [82] or [89]
provide first formal descriptions. Using this as an input, NLP
methods can be seen as a part of a pre processing to accelerate
/ to automate the process of formalization legal statements
into logical statements by supporting the understanding
of legal texts through a semantic annotation. These logical
statements can be further processed and integrated into
hybrid AI models for situation understanding or planning
as described in Chapter 4.
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6.4 Question Answering

Author: Tianming Qiu

Question Answering (QA) is a NLP task of answering
questions based on a given certain question and the cor-
responding context. As a popular task towards general
artificial intelligence, the algorithm is designed to understand
the context and grasp some human knowledge. A step
further, Visual Question Answering (VQA) extends question
answering by combining it with computer vision tasks. The
VQA task aims at answering a given question based on
images. Hence, VQA approaches are required to possess
not only language understanding but also image reasoning
ability. The answers predicted by the algorithm are seen as
the knowledge in the visual scene. The more questions are
answered, the more knowledge the algorithm extracts from
the images.

6.4.1 VQA: a combination of NLP and CV
Current VQA tasks are solved by supervised learning: the
image and the language feature extractors are applied to the
input, that contains one picture question pair. The next step is
to forward the image-language features via another network
to get the final output answer. By comparing the output
answer with the ground-truth label, the whole network
which consists of the three aforementioned parts is updated.
Therefore, various VQA algorithms investigate different
modifications on the following perspectives:

• Image or language feature extraction;
• Fusion of image and language features;
• Network model for final answer. prediction.

Since VQA is extended from QA, a language model
like RNN or LSTM model is used as both the language
feature extractor and the final language output. All the latest
developments of these NLP models are further deployed
in VQA models. For the image part, different convolutional
neural network backbones are widely used. A key issue in
the VQA problem is how to fuse image features together
with the RNN or LSTM language representation. Two-modal
feature fusion approaches are summarized in a compre-
hensive survey work [901]. A basic method is the joint
embedding approach which embbed image features and
language features to a common space. Other approaches
apply the attention mechanism to find the most relevant
part for final answers. [901] keeps the attention mechanism
from NLP. The algorithm pays attention to different areas
in the image feature map instead of tokens in previous NLP
tasks. The attention mechanism is believed to reinforce the
performance by re-weighting the image features differently
according to their spatial positions.

Since Transformer [837] has been widely used in NLP and
even CV communities, the VQA community is also looking
for breakthroughs with the help of this powerful frame-
work [362]. The original Transformer [837] is a sequence-to-
sequence NLP model which uses a self-attention mechanism.
For a sentence, the Transformer encoder calculates the
relevance of each token in this input sentence by the inner
product. Such a relevance matrix is called a self-attention
matrix. In the VQA task, the Transformer structure replaces
the traditional NLP model such as RNN or LSTM. And the

self-attention between language tokens and image feature
units provides stronger semantic meanings due to the inner
product.

Another popular task called Weakly Supervised Object
Localization (WSOL) [958] is also related to VQA. Weakly
supervised learning refers to a training process when only
partial information regarding the task (e.g., class label
or bounding box) on a small dataset is available. WSOL
refers to the object detection task with insufficient ground-
truth bounding boxes. Without bounding box labeling,
categorical token or language query is helpful for object
localization [257]. Token Semantic Coupled Attention Map
(TS-CAM) [257] first splits an image into a sequence of patch
tokens for spatial embedding and then re-allocates category-
related semantics for patch tokens, enabling each of them
to be aware of object categories. As a multi-modal task,
these language-query-based WSOL problems have a strong
connection with the VQA tasks.

6.4.2 Applications

If we take language-based WSOL also as VQA problems,
then it is related to the perception topic. Otherwise, VQA is
usually not relevant to perception. VQA tries to understand
the image and question at the same time, hence, from this
perspective, all the papers mentioned above are related to
situation understanding. Regarding the autonomous driving
scenario, an autonomous driving VQA dataset called ISVQA
[45] queries a set of images instead of one single image for
answers. The set of images are taken by six cameras mounted
at different positions of a vehicle. Traditional VQA methods
are deployed on this ISVQA dataset, while Transformer
architecture achieves better performance. VQA methods
provide a tool to extract more knowledge from a given
autonomous driving scene.

7 KNOWLEDGE EXTRACTION - VISUAL EXPLANA-
TIONS

Visualization is a great way to represent abstract and complex
knowledge in impressive form. Therefore, it can also serve as
an effective tool to demonstrate knowledge extracted from
machine learning models. Unlike text, formulas, or other
symbolic interpretations, visualizations can provide humans
with an intuitive impression of some complex information.
Better understandings and even algorithm improvements
can be inspired by the visualization.

Much research has focused on the visual interpretation of
machine learning models. One of them, called visual analytics,
aims to use the human visual system and human knowledge
to identify or hypothesize patterns that are often hidden in
large datasets. Different methodologies of visual analytics are
discussed in Section 7.1. Saliency map methods in Section 7.2
emphasize how to generate heatmaps on input images for
computer vision tasks. In Section 7.3, interpretable feature
learning demonstrates how visualization results can be used
to generate ad-hoc explanations or numerical evidence. All
these visual explanation offer semantic level knowledge
extraction approach for better interpretability.
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7.1 Visual Analytics

Authors: Kostadin Cvejoski, Johann Kelsch

Visual Analytics (VA) is a field of research that defines and
investigates processes that use the human visual system
and human knowledge for identifying or hypothesizing
about usually hidden patterns in big datasets. While this
encompasses a number of techniques that have long been
used in data visualization and therefore applied statistics and
data science, the need for thorough examination of complex
machine learning models like neural networks has driven
the development of VA methods in this field as well.

The actual deployment of VA in the ML lifecycle is flexible
as is the basis and the goal of its investigation. In the scope
of machine learning, VA investigates and develops both the
methodology and organizational processes, i.e., feedback
loops among different stages of the ML development life-
cycle. For the scope of this concise introduction, we refer
to the CRISP-ML Lifecycle and focus on the stages Data
Preparation, which includes acquisition and labelling of data,
Model Engineering, which includes architecture search and
training regimen, and Quality Assurance. First and most
straightforward, VA can be used as quality check for the Data
Preparation stage. Investigations focus on comparing data
points and checking consistency of related labels in similar
or equal situations. At this point, VA is also often used to
perform dataset analysis, e.g., they investigate and quantify
imbalanced distributions and recognize missing cases which
is, hence, fed back to the data acquisition process. Insights
can directly be reported and taken into account within Data
Preparation stage itself. Second, by use of a trained model,
VA allows for identifying merits and shortcoming of ML
models and cluster semantic situations in which they succeed
or fail systematically. These findings can subsequently be fed
back to the Model Engineering stage, specifically to the model
definition or model training process. However, if it becomes
apparent that a desired analysis cannot be performed due to
lack of input data or insufficient annotations, a corresponding
request can be issued to the Data Preparation stage. For
example, VA can support the labelling process in suggesting
meta data for future analysis and straightforward search and
selection operations. This touches upon the field of active
learning (c.f. Section 5.4) in which an interplay of a human
operator and a trained machine learning models drives
the selection of new data points and its labels. Likewise,
intuitive visualization techniques bear overlap with the field
of Explainable AI (c.f. Section 7.3) which as one part aims to
derive clear visual representations for hard-to-interpret ML
models.

Shneiderman [751] summarizes the levels of VA process
in his mantra: Overview first, zoom and filter, then details-
on-demand. This defines the main components of any VA
approach: means for visualization, selection and search. For
this brief overview, we restrict ourselves to forms of VA that
go in line with knowledge extraction or plausibility checking.
These usually includes data-driven machine learning but
we explicitly do not cover visualization methods as they
have long been established in data science. Instead we focus
on use cases relevant for automated driving which, by the
nature of the field, puts its main emphasis on environment
perception, in particular computer vision tasks.

7.1.1 Surveys of Visual Analytics
We cite Sacha et al. [699] who provide an overview and a fun-
damental categorization of known VA workflows. Hohman
et al. [350] provide an extensive survey over VA techniques
for the most common use case of deep learning. As one
prime example for VA in the field of safety in automated
driving, albeit without a special focus on machine-learning-
driven vehicle functionality, we refer to the toolset SafetyLens
by Narechania et al. [568]. Chatzimparmpas et al. [113], on
the other hand, focus on machine learning approaches but
open the field of application to safety-critical problems in
general. Yuan et al. [945] provide a survey of VA Techniques
for ML where the first-level categories in their proposed
taxonomy are: techniques before model building, techniques
during model building, and techniques after model building.
Further, for each category they provide example analysis task
and the most recent works.

7.1.2 Visual Analytics in Environment Perception
In particular computer vision but also 3d lidar or radar
perception are prime examples for the use of VA in robotics
and automated driving. Gou et al. [286] develop and in-
vestigate a VA system for their sophisticated traffic light
classification model. Computer vision models in automated
driving are investigated by Bojarski et al. [75] who present
a real-time capable visualization method for CNNs and
verify its potential on several well-known datasets from
automated driving. Similarly, Wang et al. [875] present
their CNN Explainer which aims explicitly at teaching the
functionality and stepwise transformations of convolutional
neural networks. Liu et al. [501] target the susceptibility of
deep neural networks to adversarial attacks and allow for
visualizing the set of neurons in the network that were fooled
by the attack. In doing so, they enable the human operator
to find prevalent adversarial attacks to a network and work
out techniques to build up robustness against them. Ma et
al. [526] address the problem of domain shift and aim to
reveal the knowledge that two models share due to transfer
learning.

7.1.3 Deriving Symbolic Knowledge
Due to their need for straightforward and low-dimensional
data representations, VA is often deployed to derive human-
understandable rules in datasets or model behaviour. Cao
and Brown [98] developed a system that combines machine-
learning-based rule deduction with a visualization of the
corresponding data and the degree of satisfaction of auto-
matically derived rules. This enables the human operator
to identify promising, semantically meaningful relations
without being an expert in machine learning. Xie et al. [910]
present a system for the causal analysis of predictions with
a small number of semantically meaningful features. Their
system is able to incorporate and convey uncertainty of
the decision making process and aims to help decision-
makers with multi-causal data. Andrienko et al. [22] provides
theoretical definition for the concept of a pattern as a
combination of multiple interrelated elements of two or
more data components that can be represented as whole
object. This definition raises a range of interactive analytical
operation for discovering knowledge. Ge et al. [269] propose
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the visual reasoning explanation framework (VRX) that
gives causal understanding of a model’s inference step. The
method has the main contributions: (i) understanding to what
an NN pays attention to using high level concept graphs and
their relationships; (ii) to explain the NN’s reasoning process
they use GNN-based graph reasoning network. In their paper
they also empirically show that their proposed framework
can answer questions like "why" and "why not".

7.1.4 Applications
VA is a field where visual techniques are developed to better
understand the data, the building of the models and the
decision the models make. In a safety critical domain like
autonomous driving, transparency and accountability of the
models is of great importance. The increased utilization of
DNN in the autonomous driving domain requires develop-
ing techniques that will give answers to the questions "Why"
and "Why not" the model came to certain decision. Using VA
techniques in all stages of the ML pipeline can help experts
gain better understanding of the strengths and weaknesses of
the object detection models they build. VA systems opens a
door for building human-in-the-loop AI systems which will
help to develop better models for perception. It will give us
visual explanation for example "why an object was detected
as person" and why not as a dog. By using techniques from
VA we will be able to build better dataset for perception,
situation interpretation or planning tasks ([51], [62], [116],
[403]).

7.2 Saliency Maps
Author: Christian Hellert
Methods for heat mapping, pixel attribution or saliency maps
are methods to obtain interpretable visual representations.
These methods are generating heatmaps that indicate the
relevance of the input pixels for a certain input sample or a
set of input samples towards the output. Figure 10 shows
two examples of saliency maps. Thereby, these maps can
be directly used for manual interpretation or debugging.
According to [727], there are two kinds of methods regarding
locality, which are local and global locality in the context
of Explainable Artificial Intelligence (XAI). Local methods
explain a ML model only on a subset of samples or for a
specific behavior on a restricted input data space. Saliency
map methods are belonging to the local locality category
and often local methods are used on very similar samples
to evaluate if a model uses the same clues for a prediction.
For example, when classifying pedestrians, specific regions
like the head or the body are assumed to be important for
the classification result. Global XAI methods try to explain
the behavior of a complete ML model. As an example, for
the task of image classification, for a class it is expected that
one class consists of multiple parts. Each of these parts are
treated as concepts and the global method will reveal the
shared concept between all samples of a class. The concepts
itself can be semantically interpretable and in the case of
the class vehicle concepts can be tires, windows, or lights.
Section 7.3 provides more details on global XAI methods.

Furthermore, saliency map methods can be model-
specific or model-agnostic [557]. Model-specific methods can
only be used for a specific kind of model, e.g., a CNN, while

Fig. 10: Examples of saliency maps for the task of image
classification [37]. Note that reddish and bluish pixels
represents positive and negative attribution respectively.

model-agnostic methods treat the ML model as a blackbox.
Typically, model-specific methods are using gradient and
model-agnostic methods are using perturbation approaches.
Table 3 gives an overview of the saliency map methods along
with the type and the task, which will be discussed in the
following sections.

7.2.1 Model-specific Methods

One of the first saliency map methods was introduced by
Simonyan et al. [767] and called image-specific class saliency
or often called vanilla gradients. The method generates
the saliency map for classification tasks by computing the
derivative of the class score with respect to the input image.
The interpretation is that the method seeks for the input
pixels that needs to be changed the least and affects the
class score the most, which is equal to the magnitude of the
class score derivative. One problem of the image-specific
class saliency method is the saturation problem [756], which
was solved by [949], by redefining backpropagation for
ReLU layers, so that only positive error signals are back-
propagated. In addition, Springenberg et al. [780] combined
both approaches, resulting into a method called Guided
Backpropagation.

Another method was introduced by Selvaraju et al. [731]
and is called Gradient-weighted Class Activation Map (Grad-
CAM) and is able to generate saliency maps for different
tasks as long as a convolutional layer is involved in the
architecture. Typical tasks involve image classification, visual
question answering and image captioning. The method starts
by performing a forward step following by setting the class
gradient of interest (layer before soft-max) to one and all
others to zero. Then, the gradients are backpropagated till
the first occurring convolutional layer. The gradients are then
globally averaged pooled and afterwards a ReLU is applied
to obtain a class saliency map. Grad-CAM can also be used
for object detection without modification, but for very small
objects that are very close nearby, it will not be possible
to distinguish between them, since Grad-CAM stops at the
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TABLE 3: Overview of sailency map methods

Method Type Task Reference
Image-Specific Class Saliency specific Classification [767]
DeconvNets specific Classification [949]
Guided Backpropagation specific Classification [780]
CAM specific Classification [983]
Grad-CAM specific Classification [731]
SIDU specific Classification [562]
Grad-CAM++ specific Classification [112]
Score-CAM++ specific Classification [852]
SmoothGrad specific Classification [774]
Integrated gradients specific Classification [789]
XRAI specific Classification [414]
DeepLIFT specific Classification [756]
LRP specific Detection [37]
Deep Taylor Decomposition specific Classification [558]
CRP specific Detection [825]
LIME agnostic Classification [669]
RISE agnostic Classification [631]
D-RISE agnostic Detection [632]
Anchors agnostic Classification [670]
SHAP agnostic Classification [518]
Explain to Fix agnostic Detection [294]

last CNN-layer, which has a considerably lower resolution
compared to the input data or image. Therefore, some of
the spatial information gets lost. Note that Grad-CAM is the
generalization of CAM [983]. There are also some improved
versions of Grad-CAM: Chattopadhay et al. [112] propose a
method that gives better object localization and improved
heatmaps, when multiple object instances occur and in
[562] a method with a more precise heatmap is described
using a similarity difference mask, which is combined
with a heatmap to generate the final heatmap. In addition,
Wang et al. [852] introduced a class activation mapping
method, that removed the dependency on the gradients by
using a linear combination of weights and activation maps.

For all gradient-based methods, an extension is described
by Shrikumar et al. [774], where noise is added to the input
image. The resulting batch of saliency maps is then averaged
to obtain the final heatmap. The intuition behind this is that
gradients in DNNs are fluctuating on slight changes in the
input. Hence, this method smoothes the gradients and is
therefore also called SmoothGrad.

There are also methods that propagate completely back
from output to input. One of these methods is called Layer-
wise Relevance Propagation (LRP) [37]. LRP performs a
decomposition of the classifier output into sums of feature
and pixel relevance scores. The relevance scores are propa-
gated from output (classification results) through the layers
(features) to the input, i.e., pixel level. Thereby, the relevance
score is obtained by a set of constraints resulting into several
relevance functions. Another way of obtaining the relevance
scores is proposed by Montavon et al. [558] and called Deep
Taylor Decomposition, where the outputs of the neurons are
rewritten in first-order Taylor expansions. This allows the
computation of partial relevance scores for the neurons in
previous layers. LRP was also adapted for object detection
for the special case of a SSD network architecture in [825].

Many gradient-based saliency map methods have the
problem, that sometimes the resulting heatmap looks like
noise. One of the underlying problems is that well-trained
models are flat in the vicinity of an input. This problem

is addressed in [789], where a method called Integrated
Gradients (IG) is proposed. IG introduces a baseline or
reference, which can be in terms of an image classification
task, a black image. The baseline is a kind of reference point
where basically no information exists. From this point along
a straight line to the input image, the gradients are calculated
and integrated. Practically, the integration is replaced by
stepwise approximation. An adaptation of IG is described
in [414] and is called XRAI. XRAI uses two baselines, a black
and a white image, to compute the attributions for a provided
image. In addition, the image is segmented into regions and
the final saliency map is obtained by adding regions in
dependency of the summed attributions. Another method
that uses a reference is DeepLIFT [756]. In contrast to IG the
contribution of a feature towards the output is computed
by the difference to the reference using multipliers, which
are basically a modified variant of partial derivatives. In
addition, some rules are proposed to assign the contribution
scores for different layer types.

7.2.2 Model-agnostic Methods

Apart from gradient-based methods, there are also methods
that perturb the input in order to estimate the importance
of the input to the output. Ribeiro et al. [669] introduced
a method called Local interpretable model-agnostic expla-
nations (LIME), which learns a surrogate model that can
explain a blackbox model locally. Thereby, an input sample is
perturbed resulting into multiple samples in the proximity of
the original input sample. Afterwards the predictions from
the blackbox model are obtained and finally an interpretable
ML model (e.g., a decision tree) is learned. LIME is also
applicable for image data, by perturbing the image via
superpixels. A superpixel is a region in the image that
belongs together by similar color values and can be blinded
out by setting the superpixel to a defined color value (e.g.,
gray or black). Another method that also perturbs the
input, but does not learn a surrogate model, is proposed
by Petsiuk et al. [631] and is called Randomized Input
Sampling for Explanation (RISE). The method perturbs input
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images by randomly generated masks, which blind out
input pixels, resulting into multiple images, where different
pixels are blacked out. Then, the predictions are obtained
from the image classification model and a weighted sum
multiplied by the respective mask generates the saliency
map. This method was also adapted for object detection
in [632]. Furthermore, another perturbation-based method
was published in [670] and is called Anchors. Like RISE,
the input is perturbed, but the predictions are then used
to generate rules, the anchors, containing model features
along with a coverage and precision. The method can be
applied for image classification, but unfortunately not for
object detection.

An alternative to perturbation-based methods are meth-
ods that uses Shapley values [746]. Shapley values are in-
spired by game theory and measure the contribution of each
feature or a feature group to a respective result. The method
SHapley Additive exPlanations (SHAP) [518] uses Shapley
values to let features be present or absent for calculating
the contributions, by random sampling. Afterwards the
predictions are obtained from the original model along with
the weights and then a linear model is trained to finally
obtain coefficients of the linear model. A further extension
of SHAP is introduced by Gudovskiy et al. [294] for object
detection tasks.

7.2.3 Applications
Almost all methods listed in Table 3 can be used to gain
local explanations for perception components. The majority of
the methods can be applied to models solving classifications
tasks, but some of them are already, or can be, adapted
for object detection, which is the primary task to solve for
perception components in automated vehicles. Often, the
local explanations are used to debug or improve the ML
models´ performance, but the results from those methods can
also give hints about robustness of the perception component,
when the input is perturbed (e.g., dirt on the camera lens).
Of course, there is in general one major disadvantage of all
the methods: they can only give local explanations to specific
inputs and it is not possible to generalize the observations.
But there are also attempts to obtain global information
from local saliency maps [463]. Furthermore, especially for
perception also the computational costs for the saliency map
methods are considerable. Model-agnostic methods, like
RISE or LIME, require several forward evaluations of the
ML model, while structure-based or gradient-based methods,
e.g., LRP, only require one backpropagation of the outputs.
In addition, smoothing approaches as IG or SmoothGrad,
require again some forward and backward runs to ensure
stability.

Saliency maps are not directly applicable for situation
interpretation. On the one hand, saliency maps can be used to
gain interconnections between objects, where certain features
contribute to multiple object instances. On the other hand, a
heatmap can also serve as an additional source of uncertainty.
Of course, the drawbacks are additional computational costs.
For planning components, saliency map methods are also
applicable, if they can handle tabular data, which is true
for some of them. Therefore, it is possible to estimate the
importance of object instance with respect to the predicted
trajectory of the automated vehicle. This can give insides

into the behavior of the automated vehicle and other road
participants. Formally, it could be possible to perform sanity
checks if the predicted trajectory is compliant with a set of
rules. Furthermore, saliency map or explainability methods
can be used to reveal, which objects influenced the trajectory.

7.3 Interpretable Feature Learning
Authors: Erwin Kraft, Leonie Kreuser
The performance of vision based machine learning models
strongly depends on their feature representations. Early
works in computer vision focused on the development
of hand-crafted features such as Histograms of Oriented
Gradients (HOG) [157]. With the advent of deep learning,
feature representations were automatically learned from
the training data and did no longer require manual tun-
ing. Automatically learned features have been shown to
outperform classical hand-designed representations [223],
[157] by very large margins, especially for image classi-
fication [332], [800] and object detection tasks [72], [801].
However, feature representations found in state-of-the-art
deep learning models are often difficult to understand and
interpret by humans [428], [902]. This is usually caused by
their huge dimensionality and complexity. Explainability
and interpretability are very important safety requirements
as one has to be able to understand the limitations of a
safety-critical system before deploying it to a real-world
application. The opaque black-box nature of deep learning
models therefore makes it difficult to meet such demands.
This applies in particular for applications such as AI-enabled
automated driving, where any prediction error could have
severe consequences.

To alleviate the problem, researchers have introduced a
variety of methods to explain the feature representations
of deep learning models [428], [902], [273]. According to
Wu et al. [902], these can be roughly grouped into local
explanations, based on individual data samples, and global
ones, which try to derive decision patterns for the samples
of entire classes. In the following section, we give a brief
overview of current state-of-the-art developments with an
emphasis on methods that provide global explanations.

7.3.1 Post-hoc Explanation Methods
To interpret the internal states of pre-trained deep neural
networks, Kim et al. [428] introduced Concept Activation
Vectors (CAVs), which are used to test whether the features
of an image classification model are sensitive to a specific
visual concept. A high-level concept is defined by a set
of images, for example images showing striped patterns.
CAVs are derived by comparing the feature activations
obtained from concept images to those of random images.
To do this, a linear binary classifier is trained to separate
the concept activations from the non-concept activations
by constructing a hyperplane. A CAV is then defined as a
normalized perpendicular vector to this plane. Using CAVs
in combination with directional derivatives, it is possible
to measure the presence or absence of a visual concept
for a specific category. For example, the method can be
used to verify if the visual concept of striped patterns was
learned by an image classification model to distinguish
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zebras from horses. CAVs are also used by Graziani et al.
[291], who investigate their application in medical domains.
They extend the method to also include non-binary concepts
since these are more suitable to explain the model behaviour
to physicians.

One of the drawbacks of CAVs is that the visual concepts
have to be manually selected. This makes it difficult to
deploy the method in an automated setting. To address
this limitation, Ghorbani et al. [273] introduced Automated
Concept-based Explanation (ACE), which can be seen as an
automated version of CAVs, as it does not need human
supervision. ACE starts with segmenting a given set of
images from the same class into groups of pixels. In the next
step, these segements are passed through a CNN and similar
segments are identified by using the Euclidean distance in
the activation space of the final layer. After removing some
outliers, an importance score is calculated for the extracted
concepts, resulting in a set of automatically generated visual
concepts.

Another interesting post-hoc analysis method is pre-
sented by Wu et al. [902], who utilize adversarial patterns
to occlude specific feature representations in the network
and thus are able to measure their overall importance for
classifying images. It has been shown that small image
perturbations (adversarial patterns) can be used to fool
classification models into producing wrong predictions [67].
Wu et al. [902] use these patterns to build global feature
occluders, which supress the activations of specific features
in the network for a given category. Thus, they are able to
compute feature importance scores. This allows to investigate
how important a feature set is for classifying an image.

7.3.2 Disentangled Representations
An approach to learn interpretable features in neural net-
works is based on disentangled representations. The idea of
disentangled representations is to train neural networks in
a way to identify meaningful input properties that do not
influence each other. Thus, if one input property changes,
all other properties remain largely unaffected. For example,
Zhang et al. [964] train an interpretable CNN by forcing each
filter in the network to learn a disentangled representation.
A similar idea is also investigated by Chen et al. [127] who
replace the batch normalization layers of image classification
models with concept whitening modules. The purpose of
theses modules is to disentangle the latent feature space and
align it with pre-defined concepts. This is done by learning
a whitening matrix that decorrelates and standardizes the
data and maximizes the activations of known concepts along
the latent space axes. In general, there exist different ways
to achieve disentangled representations [544]. Unsupervised
methods extract factors of variation directly from the data
while supervised disentanglement uses data with the desired
semantic properties. Locatello et al. [507] point out some
shortcomings of unsupervised methods and argue that well-
disentangled models cannot be learned without supervision.

7.3.3 Interpretable Model Design
It is possible to use a set of pre-defined high-level concepts
in the network design. Koh et al. [440] introduced Concept
Bottleneck Models (CBMs). Unlike end-to-end models that
go directly from raw input to a prediction, CBMs first

learn a set of concepts and thereafter use these concepts
to make a prediction. The final prediction module has only
access to these pre-defined concepts (information bottleneck).
Therefore, it is possible to assess to what degree a concept
contributed to the decision and if the decision made by
the model follows human reasoning. It is also possible to
create a concept bottleneck using variational autoencoders.
For example, Mijolla et al. [544] develop an explainability
framework based on an encoder-decoder architecture, where
the encoder module aims to reduce raw input features of
high-dimensional data to compact, semantically meaningful
and thus more interpretable latent features.

Interpretable models are also learned by Chen et al. [117]
who introduce prototypical part networks (ProtoPNet). The
idea is to classify images by identifying object parts that
can be matched to prototype parts of object categories. For
example, if the input image shows a bird, the model identifies
parts of the bird (e.g., the head) that are matched to the parts
of a prototypical bird. A prediction is then made based on
the weighted combinations of the part similarity scores. Since
the prototypical parts are learned by a clustering method, it
is possible to inspect the clusters and assign them to high-
level concepts. In this way, a model is created that does
achieve comparable results with some of the best-performing
deep learning models in terms of accuracy and is also more
interpretable. However, some shortcomings of ProtoPNet are
demonstrated by Hoffmann et al. [349] who claim that image
patches that look similar to a ProtoPNet might not necessarily
look similar to a human. In their experiments, they show
that the models do not perform well in the presence of
compression noise.

7.3.4 Applications
Interpretability is a very important prerequisite for object
detection tasks in autonomous driving. Detection (2D or
3D) usually resembles the backbone of camera based scene
perception. As autonomous driving is a safety critical ap-
plication, the need for interpretable object detection arises.
One of the challenges is that many methods in the literature
focus exclusively on image classification tasks. It would be
therefore interesting to investigate how these methods could
be extended or improved for object detection tasks.

8 KNOWLEDGE CONFORMITY

Autonomous vehicles are safety-critical systems, which
means that their malfunction potentially has severe con-
sequences, e.g., when a pedestrian is overlooked by the
detection system. We thus must ensure that they operate
safe and reliable. In particular, they should conform with
existing safety principles and knowledge. One such principle
is the identification and handling of uncertainties, i.e., factors
that potentially cause the system to behave in unpredictable
ways. We provide an overview over existing concepts and
methods for the estimation and assessment of uncertainties in
Section 8.1. Another principle is interpretability, i.e., humans
should ideally be able to understand why a system made a
particular decision. To improve in that regard, the decision
making process of a DL system should be more aligned
with human decision-making of which causal reasoning is
a central component. Therefore, we discuss methods for
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infusing causal reasoning into DL systems in Section 8.2.
Another aspect is conformity with existing knowledge about
the environment of the autonomous vehicle. In particular, the
environment is subject certain rules, e.g., traffic regulations,
physical laws or human common sense, and Section 8.3
discusses concepts and approaches regarding rule conformity.
The ability to generalize to previously unseen phenomena is
another essential requirement for the safe and reliable use of
neural networks. Hence, approaches for a verification of the
intended functionality are discussed in Section Section 8.4.

8.1 Uncertainty Estimation
Authors: Maximilian Alexander Pintz, Christian Wirth, Sebastian
Houben
Conventional machine learning algorithms, like neural
networks, are only able to predict a single best estimate
y = f(x, ω) (with ω as the network parameters). By default,
they do not provide any probability of this single estimate
being correct neither do they provide a probability for all of
the possible estimates of being correct, i.e., a distribution over
the output space. Therefore, neither (reliable) probabilities of
correctness for classification tasks, nor a measure of spread
of the prediction for regression tasks are available. However,
these pieces of information are highly relevant for safety-
critical applications like autonomous driving. A measure
of correctness or spread allows us to determine if and to
what extent it is safe to use a prediction for downstream
tasks. Additionally, a system might recognize when the
input deviates from the ODD and can therefore likely not
be handled correctly. Furthermore, depending on the use
case, it is possible to use numeric limits to "err on the side
of caution" or to "err on the side of being optimistic". As
an example, when performing visual object detection, we
should be conservative about "free parking" signs (e.g., only
predict if sure) but should predict pedestrians even if we
are not sure. Especially in urban scenarios, we also have to
factor in the uncertainty over the exact position of a road user
and keep some distance, based on the possible localization
error. When considering trajectory predictions for other road
users, we also need to be able to react to highly different
possibilities (like turn vs. drive straight), which requires
multiple estimates with according probability of correctness.
Furthermore, several advanced machine learning methods,
like active learning (c.f. Section 5.4) or continuous learning
(c.f. Section 5.2), explicitly require some form of confidence
or uncertainty estimates.

In the literature [377], two different types of uncertainty
are usually considered: aleatoric and epistemic uncertainty.
Aleatoric uncertainty relates to the uncertainty that is in-
herent to the data, meaning it can not be "explained away"
with better models or more data (e.g., observation noise or
information that is lacking to solve the problem optimally).
Epistemic uncertainty is induced by the limitations of our
machine learning model(s) and their training and can theo-
retically be eradicated with more data or better approaches.

8.1.1 General Methods
In uncertainty estimation, we seek to find distributions that
describe the uncertainty in our machine learning models. The
distributions are typically in the space of model parameters

(for describing epistemic uncertainty) or in the output
space (describing aleatoric or combinations of aleatoric and
epistemic uncertainty). Uncertainty in the output space is
modeled by replacing scalar output values y = f(x, ω)
with a distribution p(y|x, ω) (see likelihood optimization
in Section 8.1.2). For learning distributions in the parameter
space, we usually compute the posterior probabilities of
parameter values, given the (training) data by applying Bayes
theorem

p(ω|D) =
p(D|ω)p(ω)

p(D)
, (17)

with p(D|ω) being the probability of the (training) data D
given the parameter values (the joint likelihood), p(ω) is
a prior over the parameters and p(D) is the probability
of observing the data. The prior p(ω) captures an initial
belief about the model parameters before any training data is
observed and is commonly chosen to be uniform or Gaussian.
We can then compute the predictive distribution

p(y|x,D) =

∫
ω
p(y|x, ω)p(ω|D)dω, (18)

to describe the uncertainty for new datapoints x. However,
computing the posterior or the predictive distribution of
neural networks directly is computationally intractable and
approximations are required. It is possible to empirically
approximate the posterior (see MCMC-based methods in
Section 8.1.3), but the number of required samples is usually
too high for modern deep learning architectures.

Parametric Approximations: The requirement for an
empirical approximation of p(ω|D) can be circumvented by
the assumption that it is possible to approximate the posterior
distribution with a parametric distribution p(ω|D) ≈ q(ω, θ),
like a Gaussian or Laplace distribution. This allows us to only
store the distribution parameters θ, instead of the empirical
samples and directly sample from the approximation of
p(ω|D) for inference (see Section 8.1.3). This procedure
reduces the amount of samples required for a sufficient
approximation of the predictive distribution p(y|x,D) (Equa-
tion (18)). In some cases (see Section 8.1.2), it is even possible
to compute the predictive distribution analytically, without
any sampling.

Aleatoric uncertainty is commonly modeled via paramet-
ric distributions p(y|θ(x)) that replace the (deterministic)
outputs of a network, e.g.,

θ = (µ, σ) = f(x, ω). (19)

Similarly, epistemic uncertainty is often modeled by re-
placing the network parameters ω with a parametric dis-
tribution. Parametric approximations commonly use loc-
and-scale family distributions like Gaussian, Laplace or
Cauchy distributions. In these cases, the scalar value we
replace is the location µ of the distribution while the scale σ
allows us to capture the "range" of possible values (e.g., the
displacement error for object detection). In the aleatoric case,
it is possible to either also use a model output for defining
the scale parameter (as in Equation (19)), or to consider it a
free parameter, which does not depend on the inputs. The
first setting is called heteroscedastic uncertainty, whereas
the second variant relates to homoscedastic uncertainty.
Homoscedastic uncertainty is input-independent observation
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uncertainty, e.g., identical for every datapoint, whereas
heteroscedastic uncertainty captures data dependence.

Multimodality: By replacing the weights (epistemic)
or outputs (aleatoric) with a unimodal distribution, we
can capture the variance but not multimodalities. Within
the epistemic setting, this is a less severe problem as it is
still possible to obtain multimodal predictions due to the
model-inherent nonlinearities. There are efforts to employ
multimodal parameter distributions, like Gaussian mixtures
(c.f. [69]), but this is computationally difficult due to mode
collapse and the computational cost of high dimensional
distributions. Therefore, independent distributions are often
used, see Ensembles in Section 8.1.2. In the aleatoric case,
the computational costs are less severe, as the mixture only
scales with the number of outputs, not the number of model
parameters.

Covariance Matrix Approximation: In the case of
parametric approximations of the posterior or multidi-
mensional outputs, fully specifying the multidimensional
distribution goes along with storing and learning the full co-
variance matrix. This can induce scalability issues, especially
for networks with many parameters or high dimensional
outputs, as the matrix scales quadratically. Therefore, it
is often assumed that all distributions are independent,
disregarding the covariances. For epistemic uncertainty, this
is also known as the mean-field approximation. However,
it can be empirically shown that it is highly relevant to
also capture the dependence between the distributions [233,
138], meaning approximations of the covariance matrix are
of relevance. The lower Cholesky triangular approximation
reduces the size of the covariance matrix by a factor of 2,
exploiting that the co-variance matrix is symmetric positive
definite but still scales quadratically. Therefore, many state-
of-the-art approaches use a vector decomposition of the
covariance matrix as an approximation [884, 138].

Subspace Approximation: As mentioned, full covari-
ance matrix approximations are usually computationally
very costly. This is especially problematic for epistemic
uncertainty estimation due the large number of parameters
encountered in conventional neural networks. However, even
vector approximations (c.f. previous paragraph) are often not
sufficient as approximation [449]. As an alternative, one
delineates neural networks into two distinct parts: A feature
projector which only projects into a latent space and the clas-
sifier/regressor itself. In case of computer vision approaches,
the feature projector is the backbone network whereas the
classifier is only the last layers, the head. This allows us
to capture only the uncertainty in the classifier/regressor
head, substantially reducing the number of parameters that
need to be approximated by a parametric distribution. This
approach is in line with conventional machine learning,
like Gaussian Processes, which are not using any learned
feature projectors. Due to the parameter reduction, it is
then possible to approximate the full covariance matrix,
which has shown empirically better results than an all-layer
vector or mean-field approximation [449]. Additionally, this
allows us to build on uncertainty estimation methods used in
conventional machine learning, like replacing the last layer
with a Gaussian Process [499]. Another area of research tries
to use non-predefined sub-spaces, by selecting the model
parts where the probabilistic treatment is most important.

As example, [166] determines relevant model parameters
by considering the induced Wasserstein distance to the full
probabilistic solution.

8.1.2 Deterministic Inference
Deterministic approaches do not require Monte Carlo sam-
pling for inference and provide uncertainty estimates with
a single forward pass. These approaches avoid the inherent
cost of sampling, but may substantially increase the memory
footprint and operation count of a network. Therefore, these
are often either computationally costly [375] or only work
under certain model assumptions, like specific activation
functions [898]. In the following, we present general areas
of deterministic inference, that are not restricted by severe
model assumptions.

Likelihood Optimization: Among the simplest deter-
ministic approaches is letting the network directly compute
the parameters of a predictive distribution p(y|θ(x)) (Equa-
tion (19)) and using maximum likelihood or a-posteriori
optimization for learning the parameters. Such approaches
do not require the computation of (costly) posterior dis-
tributions p(ω|D) and thus enable training and inference
without any need of sampling, but come at the cost of
restricting the predictive distribution to a simple parametric
form, such as a Gaussian in regression or categorical softmax-
based distributions in case of classification. In the latter case,
the uncertainty is characterized by the probability of the
predicted class or by the entropy of the estimated distribution.
However, softmax-based class probabilities are often poorly
calibrated [266] and thus require recalibration [299, 451]
or more advanced training procedures besides likelihood
optimization.

A natural extension of this approach is to consider the
distribution parameter θ to be uncertain as well. Evidential
deep learning [18, 734] considers a parametric distribution on
θ, i.e., p(θ|η(x)) that takes the form of a Dirichlet distribution
(classification) or a Normal-Inverse-Gamma distribution
(regression). This enables new ways of measuring uncertainty
and taking other types of uncertainties into account, such as
epistemic uncertainty. These measures include the variance
or entropy of θ or the mutual information between y and
θ. The distribution parameters are learned by optimizing
the marginal likelihood

∑
i p(yi|η(xi)), a procedure also

known as Type II maximum likelihood optimization [70]. A
related approach are prior networks, with the main difference
lying in the optimization procedure. Prior networks [531]
optimize a KL divergence between p(θ|η(x)) and hand-
crafted distributions centered on the ground-truth. Besides
the given training inputs, the model is also explicitly trained
on chosen out-of-data inputs (e.g., corrupted training inputs)
to encourage the variance of θ to increase for inputs that are
atypical relative to the training inputs.

Laplace Approximation: The Laplace approxima-
tion [527] approximates optimal Gaussian scale parameters
given a mean. Meaning, we compute a point estimate
ω, minimizing NLL(ω) = −

∑
i log p(yi|f(xi, ω)), as in

conventional deep learning, but with an L2-regularization
(or other prior-based terms) added to the loss. The resulting
parameters ω are Maximum-a-posteriori (MAP) estimates
that serve as the mean of a Gaussian approximation to the
posterior p(ω|D) ≈ q(ω, θ) (c.f. Parametric Approximations
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in Section 8.1.1). The variances can then be estimated by
computing the Hessian at the MAP. However, this method is
computationally very costly due to the approximation of the
Hessian. This applies to the computational cost in terms of
operations as it does to memory consumption. Deterministic
inference can than be performed using probit scaling or
the Taylor approximation [70], using the stored Hessian.
Different methods for approximating the Hessian have been
suggested [676]. It should also be noted, that it is not required
to use deterministic inference approaches, but one can
directly sample from the obtained posterior, comparable to
the inference step typically employed in Variational Inference
(VI) (c.f. variational inference in Subsec. Section 8.1.3).

Ensembles: Ensembles subsume all approaches that
combine the outputs of several models to obtain several
samples that represent a distribution over the output space.
Usually this involves using techniques for obtaining inde-
pendent outputs from all models or techniques for properly
addressing the dependency among model outputs. In this
sense, ensembles constitute the frequentist’s approach for pro-
viding a distribution over the output space. Ensembles have
been and continue to be deployed for better performance
and increased robustness but bear a straightforward solution
for uncertainty estimation. Special cases comprise bagging,
i.e., training the same model type with different parts of
the training data, and boosting [239, 325], i.e., selecting and
training the next member of the ensemble with the aim of
addressing shortcomings of the current ensemble.

Ensembles of neural networks with the same architecture
trained with different random initialization are called Deep
Ensembles [458]. Such ensembles capture multimodality
using the fact that neural networks usually converge to
different solutions, based on the initial parameter weights
and the optimizer settings. They have been trained and
tested with adversarial training which allows for a smoother
prediction and a better uncertainty estimation. Hyper-deep
Ensembles [887] extend the random initialization of weights
to a selection of hyperparameters. However, ensemble tech-
niques are costly in terms of parameters as it is required to
store (and train) the parameters for each ensemble member
independently. Batch Ensembles [884] try to alleviate this
problem by approximating the joint weight matrix over
all models by a vector decomposition. The weights of
each ensemble member are defined by a shared parameter
set, multiplied with a row and column vector, specific for
each model. This method is also applicable for parametric
approximations, by replacing the row and column vectors
with parametric distributions [194].

Kernel-based Methods: An alternative way is the use
of Kernel methods, capturing the uncertainty in the space of
functions. This allows us to build on uncertainty estimation
methods used in conventional machine learning, by replacing
the last layer (cf. Section 8.1.1) with a kernel function. Known
approaches use RBF Layers [17] or Gaussian Processes [499].

However, it should be mentioned that exact kernel
methods, are not applicable in this setting due the high
number of training datapoints and the resulting size of
the kernel matrix. Therefore, it is not possible to use all
training datapoints as inducing points. The authors in [17]
suggest using a single prototype per class, whereas [499]
uses a random feature approximation of the inducing point

space. When using multiple inducing points, it is required
to ensure that the deterministic feature projector (everything
before the last layer), is preserving the distance between
datapoints. Without this constraint, it is possible that the
feature projector maps all datapoints of the same class to
the same feature vector. This can be achieved by spectral
normalization, bounding the Lipschitz constant [499]. Other
commonly considered approximations besides the random
feature approximation of the inducing point space, are
variational Gaussian processes [818].

8.1.3 Sampling-based methods
The ability of deterministic approaches to provide uncer-
tainty estimates with a single forward pass typically goes
along with restrictions on the uncertainty distribution (e.g.,
via imposing parametric models). Sampling-based methods
allow to approximate more flexible and complex distribu-
tions. A universal tool for this purpose is MC integration.
For example, it can be used to approximate an arbitrary com-
plex predictive distribution p(y|x,D) ≈ 1/N

∑
i p(y|x, ω(i)),

given N samples ω(i) from the posterior p(ω|D). This idea
gives rise to multiple approaches that seek to obtain samples
from the posterior, that are discussed in the following. In
addition, there are also non-Bayesian approaches that employ
MC integration, which we discuss at the end of this section.

MCMC-based: A common method for computing
an empirical approximation of the posterior distribution
is Hamiltonian Monte Carlo (HMC) [192, 570] and its
extension No-U-Turn Sampling (NUTS) [348]. The predictive
distribution is then obtained by directly inferring a single pre-
diction for every posterior sample. However, these methods
are not applicable to batched training and can therefore
not be applied to common deep learning tasks. Batch-
enabled variants exist, like Stochastic Gradient Langevin
Dynamics (SGLD) [480] or Stochastic Gradient Hamiltonian
Monte Carlo (SGHMC) [121], but the resulting posterior
distributions p(ω|D) are usually very complex and a large
amount of samples is required for an sufficiently good
approximation. Obtaining these samples, and/or inferring
predictions, is usually computationally to costly for modern
neural networks. Note that implementations of HMC, NUTS
and SGLD are available in Tensorflow probability and similar
libraries.

Variational Inference: Another approach is Varia-
tional Inference (VI) [70, 345, 290], that seeks to approximate
the parameter posterior using a (simpler) parametric distri-
bution q(ω, θ), the so-called variational distribution. This is
done by optimizing the (empirical) Evidence Lower Bound
(ELBO)

V̂ (θ) = 1/N
∑
i

log p(Y |X,ω(i))−KL[q||p(ω)], (20)

with ω(i) ∼ q(ω, θ), which effectively minimizes the KL
divergence between the posterior and q. For neural net-
works, computing gradients of the ELBO is possible via
the reparametrization trick [432], which sets the sampled
parameters ω(i) = t(θ, ε(i)) to the result of a deterministic
function t and a sample ε(i) from a distribution which
does not depend on any parameters. A common case
is that q is a Gaussian with diagonal covariance, which
allows for the reparametrization ω = µ + diag[σ]ε with
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ε ∼ N [0, I], where we can compute gradients with respect
to the variational parameters µ and σ. Applying a VI-based
method to an existing neural network requires changing the
loss function to the ELBO and modifying every layer due
to the reparameterization. The methods scale to large NNs
under the choice of small number of samples (typically one
chooses N = 1) and feasible q and priors. Several variants
of this procedure have been proposed that typically aim at
reducing computational costs, faster convergence (eg. Flipout
[885]) and enabling the use of more expressive priors and
variational posteriors (e.g., Horseshoe priors [274], MVG
[513], normalizing flows [667]).

Dropout: Another approach to Bayesian VI in neural
networks is MC dropout [248]. This approach utilizes the
dropout mechanism [781], which randomly omits units
from the neural network in each forward pass. In practice,
this is done by multiplying the activations in each layer
with a binary mask, whose entries are sampled from a
Bernoulli distribution with "drop probability" p. Gal et. al
[248] showed that training such a network with a standard
L2-regularized Mean Squared Error (MSE) approximately
optimizes an ELBO between a deep Gaussian process model
and a variational posterior on network weights, giving
further theoretical motivation for the approach. The mean
and variance of the corresponding predictive distribution
can be obtained by simply computing the mean and vari-
ance (plus a hyperparameter-dependent offset) of multiple
dropout forward passes. MC dropout has become a popu-
lar approach for uncertainty estimation, especially among
applied practitioners, as it requires only a small change in
network architecture, has low computational complexity and
is directly applicable to several different architectures, such
as CNNs or RNNs. A drawback of MC dropout is that it
employs a quite restrictive variational posterior, that utilizes
heavy independence assumptions. In addition, it assumes
a fixed-variance Gaussian likelihood, thus allowing it only
to describe homoscedastic aleatoric uncertainty. To mitigate
this drawback, the authors in [424] proposed to combine MC
dropout with parametric likelihood methods, to incorporate
heteroscedastic aleatoric uncertainty as well. This method is
also the basis for many uncertainty-aware object detection
models [319]. Sicking et al. [759, 758] introduced Wasserstein
dropout, which directly optimizes the dropout sub-networks
to model (heteroscedastic) aleatoric uncertainty. Several
other proposed variants include dropout with trainable drop
probabilities p [249], different distributions besides Bernoulli
[432] and sampling-free variants [635].

Distributional Output: The authors in [138] take a
non-Bayesian approach to uncertainty estimation in classifi-
cation tasks. Classification networks can generally be thought
of as generating a utility value uc for each class c. The
network assigns class c to a given input if the corresponding
utility uc is larger than the utility for all other classes. For
uncertainty estimation, the framework considers the utility
values to be corrupted by random noise εc, which allows to
assign a probability to each class for having maximum utility.
The probabilities reduce to standard softmax probabilities, if
the noise is homoscedastic and follows a standard Gumbel
distribution for each class. However, the framework allows
to generalize this to more realistic types of noise, including
noise that is not identically distributed across classes or

heteroscedastic noise with full covariance. Due to the higher
complexity, the class probabilities cannot be computed in
closed form anymore and are thus approximated via MC
integration. Regardless, the approach is one of the few
highly scalable approaches that incorporate full covariance
uncertainty distributions.

8.1.4 Quality Measures

Considering ways to express a prediction uncertainty intro-
duces a number of additional quality measures apart from the
original performance metrics of the machine learning model,
like classification rate, root-of-mean-squared-error, mean
average precision and others. The quality of uncertainty
estimates can be evaluated with proper scoring rules [279],
which quantify the alignment of the predicted distributions
with given ground-truth data points. They attain their
optimum when the predicted distribution coincides with
the data distribution. Commonly used proper scoring rules
include the Negative Log-Likelihood (NLL), brier score (for
classification) or the Continuous Ranked Probability Score
(CRPS). An alternate way of assessing uncertainty estimates
provides the framework of calibration. In general, calibration
measures whether class probability or confidence interval
estimates conform to the actual model error. A calibrated
classifier satisfies that the fraction of correct prediction is p
among all class predictions with estimated class probability
p. This calibration property can be evaluated quantitatively
with the Expected Calibration Error (ECE). It should be noted,
that ECE is subject to several pathologies, that should be
considered explicitly [585]. A qualitatively assessment is
possible via reliability diagrams that compare class probabil-
ities against classification accuracy [299]. Similar notions of
calibration also exist for regression models (based on how
ground-truth outputs conform with the predicted confidence
intervals [451]) and for certain application domains such as
object detection models [453]. For a more strict assessment,
we might want the calibration property to hold not only
across the whole (evaluation) dataset, but also on local
regions of the dataset, which is captured by adversarial group
calibration [978]. We can also measure the performance of
uncertainty estimates in auxiliary tasks, such as out-of-data-
detection. Separating true from false detections or in- from
out-of-data inputs is a binary classification task, where the
classes are determined by thresholding uncertainty estimates.
Thus, we can employ standard evaluation methods for binary
threshold classifiers, including plotting precision-recall or
receiver operating curves for qualitative assessment or
computing average precision or the area under the Receiver
Operating Characteristic (ROC) curve. Another approach
is to compare histograms of uncertainty estimates (e.g.,
variance or predictive entropy) on inputs from each class
(e.g., in-data or out-of-data), as done in [597]. In technical
applications the computational complexity, i.e., the overhead
for computing the uncertainty estimate when compared
to the single-point-estimate, and the latency, i.e., the part
from the computational complexity that cannot be efficiently
parallelized or pipelined and, thus, result in additional
inference time, are taken into account for assessment as
well.
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8.1.5 Applications

Many of the approaches for uncertainty estimation outlined
before apply to a wide range of different models and are
used in numerous different application scenarios. Main
challenges of uncertainty estimation in specific application
scenarios include a principled treatment of specialized
layers, incorporating uncertainty in pre-/post-processing
steps, dealing with unusual data structures, leveraging task-
specific assumptions and efficiency. In the following, we
discuss several works that employ uncertainty estimation in
perception tasks. A larger-scoped review of applications of
uncertainty estimation can be found in the surveys [3] and
[268].

Object detection: A wide bandwidth of models
employing uncertainty estimation for object detection tasks
have been presented in the literature and we refer to [225]
for a survey and comparative study with a focus on object
detection in autonomous driving. The approaches cover both
2d and 3d [517] localization of objects as well as different
input types such as camera images [547], lidar scans [227]
or radar [189]. The main techniques employed by such
approaches are typically direct optimization of parametric
distributions (e.g., [227, 333]), MC dropout (e.g., [547]) or,
based on the work of [424], a combination of both (e.g., [448,
319]). Other works consider ensembling [546] or a spatial
clustering of redundant detections [466]. Approaches often
differ in the way uncertainty estimates are integrated into
non-maximum suppression, a post-processing step to filter
redundant detections, or whether anchor-based or anchor-
free [470] methods are employed.

Trajectory Prediction: For path planing, it is impor-
tant to correctly predict the future trajectories of other traffic
participants. Naturally this is not possible in a deterministic
manner as there are usually multiple options and we can
only derive the prediction from the participants past behavior.
Therefore, nearly all approaches use multimodal predictions
[106, 633, 834, 185] (c.f. Multimodality in Section 8.1.1), usu-
ally by reducing the continuous distribution over trajectories
(or keypoints) to a categorical distribution over distinct tra-
jectories. These methods may be enhanced by also allowing
to predict displacement of the expected trajectory wrt. the
predicted trajectory from the categorical distribution. These
displacements can be modeled using likelihood optimization
(see Section 8.1.2), usually using bivariate Gaussians [106, 834,
706]. This allows to model the aleatoric uncertainty, but not
the epistemic uncertainty. Due to the realtime requirements
usually involved in trajectory prediction, full Bayesian
approaches are uncommon. However, some methods employ
Conditional Variational Auto Encoder (CVAE) conditional,
variational auto encoder (CVAE) [706] for learning a latent
space. CVAEs are in fact a kind of variational inference
(Variational Inference in Subsec. Section 8.1.3 method, but
only applied to a very limited subspace of the network (see
Subspace Approximation in Section 8.1.1).

Other: Parametric distributions and dropout are
also utilized in other computer vision-related tasks such
as semantic segmentation for single image inputs [563] and
video [374], as well as camouflaged or salient object detection
[477, 924], which respectively refer to the tasks of segmenting
objects that are hidden in the surrounding or stand out

for humans on an image. Similar uncertainty estimation
techniques are also considered for human pose estimation [64,
298]. To better represent the uncertainty of the rotational part
of pose estimates, several works on pose estimation or visual
odometry consider employing distributions from directional
statistics, such as the von Mises-Fisher [639] or Bingham
distributions [172, 627]. Approaches for complete monocular
visual odometry also exist that provide uncertainty estimates
of trajectories (sequence of position and rotation) based
on image sequences. The work of [803] considers object
detection based on a sequence of images from multiple
camera positions. The approach leverages dropout and
Bayesian updating to maintain a posterior class distribution
based on multiple images. There is also a similar method
[222] that explicitly incorporates localization information into
the estimation.

The authors in [266] propose a general framework for
probabilistic deep learning that employs Assumed Den-
sity Filtering (ADF), an alternative uncertainty estimation
method to pure parametric output distributions or dropout.
ADF is an efficient approximate form of expectation propa-
gation, where we seek to find the output distribution of the
network that arises from stochastic inputs (that, e.g., follow
a Gaussian distribution) when all other network components
are deterministic. The authors apply their framework to
large CNNs to find the optical flow in given video sequences.
Dropout-based uncertainty estimation in optical flow tasks
is also considered in [469] or [877]. Building on the ADF-
based framework, the authors in [512] combine assumed
density filtering with dropout to further integrate epistemic
uncertainty into the framework. They demonstrate their
framework on tasks such as future motion prediction and
steering angle prediction.

8.2 Causal Reasoning

Author: Tobias Latka

8.2.1 Background

“Would I have arrived at my destination earlier, had I taken route
A instead of route B?” Such a query looks familiar to humans
and is an instance of human reasoning. The above example
can be attributed to the notion of Causal Reasoning (CR)
[620], a subcategory of Causal Inference (CI) [743] that also
deals with Causal Discovery (CD), i.e., inferring cause-effect-
relationships from data and encoding these in form of a
Causal Model. As Causal Discovery is beyond the scope of this
section, we refrain from giving an overview on the topic of
Causal Discovery here.

There are two common frameworks for the description
of Causal Models that are mathematically equivalent:

• the Rubin Causal Model [351, 692] (also known as the
Neyman-Rubin Causal Model or the potential outcome
framework of Neyman [572] and Rubin [693])

• the Structural Causal Model (SCM)1 [318].

1. "Graphical Models serve as a language for representing what we
know about the world, counterfactuals help us to articulate what we
want to know, while structural equations serve to tie the two together in
a solid semantics." [621]
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Fig. 11: An SCM consists of both a set of causal mechanisms
(fX and fY ) and a DAG modeling the flow of causation
between variables (directed arrows). The shown SCM is
composed of a cause (X) and its effect (Y), which are both
confounded by a latent variable (U). Nodes associated with
the exogenous noise variables εX and εY are omitted for the
sake of clarity.

While the potential outcome framework of Neyman and Rubin
solely resorts to counterfactual notation, SCMs make explicit
use of a graphical representation in terms of a DAG which
counterfactual expressions can be inferred from (see Figure 11
for an illustration of an SCM). The key characteristic of SCMs
is that they represent each variable as a deterministic function
(fX and fY in Figure 11) of its direct causes together with
latent exogenous noise variables (εX , εY and U in Figure 11),
whose causes lie outside the SCM.

By definition, Causal Reasoning is the process of draw-
ing conclusions from a Causal Model, similar to the way
probability theory reasons about the outcomes of random
experiments. However, since Causal Models are thought of as
the data-generating process, they contain more information
than probabilistic ones and are thus more powerful, as they
allow to analyze the effects of interventions or distribution
changes on target variables [743].

Questions posed to the Causal Model are phrased as Causal
Queries. They are at the heart of Causal Reasoning and can
be differentiated into three levels of causation of increasing
complexity [620]:

• Associations (correlations),
• Interventions (actively changing causal mechanisms),
• Counterfactuals (retrospective reasoning).

The just described Causal Hierarchy is also often referred
to as Pearl’s Ladder of Causation (see Table 4).

On top of that, there are different types of Causal Reasoning
[620]:

• Prediction (reasoning forward in time),
• Abduction (reasoning from evidence to explanation),
• Transduction (reasoning through common causes),
• Induction (from experience to causal knowledge).

Abduction, for instance, is the first step in the three-step
process in counterfactual reasoning (abduction, intervention,
prediction), as the following example illustrates:

The introductory counterfactual query can be mapped
to the graph in Figure 11 and formulated mathematically as
E(YX=A|Y ′, X ′ = B). Here, E is the expected value, Y is the
time of arrival at the desired destination, X stands for the
route taken by the driver and X ′ and Y ′ are the evidences.
The background factor (e.g., the traffic situation) influencing

both the driver’s decision and the time of arrival is signified
by U , which is inferred during the abduction step such that
it complies with the evidences. With this information, the
expression, E(YX=A|Y ′, X ′ = B) reads: "I would have arrived
at my desired destination at Y instead of Y ′ o’clock, if I had taken
route A instead of route B."

One of the strengths of Causal Reasoning, that is closely
linked to the above example, is its capability to assess the
causal effect of one variable on another from observational
data alone, without the need of collecting experimental data.
A causal query that is (uniquely) evaluable in this way is said
to be identifiable, but whether it is identifiable highly depends
on the causal structure used for answering it. There is a rich
literature on theoretical work regarding Causal Reasoning, e.g.,
Do-calculus [373], c-components [398] and identification of
joint [372, 380, 754] and conditional interventional distribu-
tions [755] even under partial observability [468] for the sake
of commonsensical decision making and policy evaluation
[620].

8.2.2 Connection to Machine Learning Insufficiencies
Although CI and ML arose separately, there is, now, an
increasing interest in both fields to benefit from the advances
of the other [717]. Despite, many ML-methodologies still
do not consider causality, but keep modeling correlations
between variables, although the maxim “Correlation does
not imply causation” proves itself true on every occasion.
Indeed, the open problems of today’s ML-systems like
insufficient robustness, generalizability and explainability are
closely related to the lack of causality considerations. See
[717] for an excellent review on this topic. Further discussions
from various domains on why causality is linked to ML-
deficiencies and on how to equip ML with Causal Inference
can be found in [640, 104, 716, 671, 621, 622].

We will next discuss already existing applications of
Causal Reasoning in the field of Machine Learning. For this
purpose, we highlight a couple of publications from various
domains that take aspects of Causal Reasoning explicitly into
account for the sake of overcoming today’s ML-deficiencies.
Eventually, we get on to its potential applications in the
context of AD.

8.2.3 Applications
Policy Search / Decision Making: As for policy

search in MBRL (see Section 4.6 for more information
on RL), Buesing et al. [91] present an algorithm called
Counterfactually-Guided Policy Search (CF-GPS) that utilizes
counterfactual reasoning explicitly for improving an agent’s
policy. Thus, it effectively combines RL-concepts with those
from Causal Inference to enhance the sampling efficiency on
required experiences. Moreover, CF-GPS is thought of as an
extension of Model-based Policy Search (MB-PS) algorithms. In
CF-GPS, the environment is modeled as a Partially Observable
Markov Decision Process (POMDP), but cast into the SCM-
framework, where its exogenous variables summarize all
aspects of the environment that cannot be influenced by
the agent and where its causal mechanisms connect state-
action-pairs to new states. The central idea of CF-GPS is
that, instead of running an agent on scenarios sampled from
scratch from a model, one infers these scenarios in hindsight
from given off-policy data (real experience, see Section 4.6
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TABLE 4: The Causal Hierarchy. Questions at level i can be answered only if information from level i or higher is available.
Reproduced from [621].

Level (Symbol) Typical Activity Typical Questions Examples

1. Association
p(y|x) Seeing

What is?
How would seeing X

change my belief in Y ?

What does a symptom tell me about a disease?
What does a survey tell us about the election results?

2. Intervention
p(y|do(x), z)

Doing,
Intervening

What if?
What if I do X?

What if I take aspirin, will my headache be cured?
What if we ban cigarettes?

3. Counterfactuals
p(yx|x′, y′)

Imagining,
Retrospection

Why?
Was it X that caused Y ?

What if I had acted differently?

Was it the aspirin that stopped my headache?
Would Kennedy be alive had Oswald not shot him?
What if I had not been smoking the past two years?

for more information on off-policy RL). Then, the agent’s
policy is evaluated and improved on model predictions
of alternate outcomes consistent with both the inferred
scenarios and the given or learned causal mechanisms,
but under counterfactual actions (i.e., actions that had not
actually been taken), while keeping everything else the same.
Concretely, while MB-PS algorithms usually sample from
a prior trajectory distribution for model rollout, CF-GPS
samples trajectories from a posterior distribution under a
certain model that is anchored in off-policy data from another
policy.

Based on these ideas, Hart and Knoll [320] propose a
Counterfactual Policy Evaluation (CPE) algorithm with which
the authors assess the safety of an ego vehicle’s policy prior
to its execution in the actual world using counterfactual
worlds. In a counterfactual world, the policy of at least
one vehicle near the ego vehicle is replaced to estimate
the impact another vehicle’s policy may have on the ego
vehicle’s decision. To validate their method, the authors learn
a policy using a SAC [311] RL-approach in a lane merging
scenario. In the application-phase, the ego vehicle’s policy
will only be executed after CPE had been performed and if
the policy is found to be safe. Here, safety means that the
expected collision rate of the current policy does not exceed
a predefined threshold. Otherwise, the ego vehicle follows a
simple lane-following policy.

Unlike Buesing et al. [91], who use counterfactuals to
approximate draws from the interventional distribution,
Oberst & Sontag [590] treat the counterfactual distribution
as the primary object of interest. The authors point out
that evaluating an RL-policy on observational (off-policy)
trajectories is challenging, as it is often prone to issues such
as confounding and a lack of introspection. To overcome
the latter, they propose to pair observed with counterfactual
trajectories, so that a domain-expert can “sanity-check” a
proposed policy, especially in high-risk settings, e.g., health-
care. In particular, Oberst and Sontag introduce an off-policy
evaluation procedure based on counterfactual distributions
in POMDPs with discrete states and actions and stochastic
state transitions. There, they try to answer counterfactual
questions such as: “How would a specific trajectory have changed,
had the policy been different and had all other variables (including
noise) been the same?” The main idea behind their approach
is that if the counterfactual trajectory is unreasonable given
an observed trajectory (for instance, an individual patient’s
full health record), the policy might be flawed. The authors
finally demonstrate their method on a synthetic environment
of sepsis management. From comparison of divergent coun-
terfactual and observed trajectories, they reveal dangerous

failure modes of the learned policy, even when off-policy
evaluation is overly optimistic.

Richens, Lee, and Johri [671] compare the accuracy of
associative diagnostic algorithms to their counterfactual
counterparts for the purpose of clinical decision making. The
authors argue that the inability of associative algorithms
to disentangle correlation from causation can result in
sub-optimal or even dangerous diagnoses. Reformulating
diagnosis as a counterfactual inference task, they show that
counterfactual analysis, in contrast to standard associational
approaches, yields expert clinical accuracy on electronic
health records, especially for rare and very-rare diseases.
In their analysis, they compare the diagnostic accuracy
of ranking diseases using traditional associative posterior
probabilities to the results obtained from counterfactual
inference. To be more precise, the authors set up a disease
model in terms of a three-layer Bayesian Network with
a Noisy-Or-operation connecting diseases to symptoms.
A team of doctors and epidemiologists parameterize this
model using prior knowledge, while prior and conditional
probabilities of disease and risk factors are attained from
multiple independent medical sources and doctors.

Explainability / Interpretability: In an attempt to
find human-understandable explanations for the incentives
driving the behavior of MFRL-agents, Déletang et al. [170]
illustrate a methodology for investigating the underlying
causal mechanisms. In particular, they show that each
question cannot be addressed by pure observation (Level 1 in
the Causal Hierarchy) alone, but instead requires conducting
experiments with systematically chosen interventions (Level
2 in the Causal Hierarchy) in order to get the correct causal
evidences. For this purpose, an analyst formulates a causal
hypothesis (SCM), conducts experiments with carefully
chosen interventions and confirms the predictions made by
the resulting causal model. Similarly, [100, 212] use structural
causal incentive diagrams, a hybrid of influence diagrams
and SCMs, to reason about the causal pathways of decisions
in the service of maximizing certain utility functions.

In another approach, Madumal et al. [528] use an SCM
to derive causal explanations of the behavior of Model-free
Reinforcement Learning-agents. In particular, they propose
a method that learns an SCM during RL, where the causal
structure is given, but where the SCM’s structural equations
are learned as multivariate regression models. Subsequently,
the learned SCM generates explanations of behavior from
counterfactual analysis.

A more direct approach of using SCMs in DL is presented
by Pawlowski, Coelho de Castro, and Glocker [617]. The
authors propose a framework capable of learning SCMs
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with DNNs as causal mechanisms. In particular, they focus
on Markovian causal models with mutually independent
exogenous variables and with no latent confounders. Addi-
tionally, the authors present an approach capable of inferring
exogenous noise (potentially up to approximation) using a
tractable evaluation of the abduction step via (amortized)
variational inference or normalizing (gradient) flows. To that
end, Pawlowski et al. assume that each structural function in
the SCM can be expressed as a functional composition of an
invertible (low-level) function (e.g., a cumulative distribution
function as used in the reparameterization trick) and a non-
invertible (high-level) branch (e.g., a CNN or a probabilistic
decoder). The proposed method shows good performance
on both real (brain MRI scans) and simulated data (Morpho-
MNIST).

In contrast to the formal approaches, Dasgupta et al.
[161] recently showed that Causal Reasoning can also emerge
via Meta-Reinforcement Learning (see Section 5.3 for more
information on Meta-Learning) when no knowledge of
causality is explicitly provided to an agent. The agent is
trained with Model-free Reinforcement Learning to solve
a range of problems backed by (latent) causal structures,
which themselves are represented as Causal Bayesian Networks
(CBNs). They split the experimental setup into an information
phase and a quiz phase. During the information phase the agent
is allowed to collect information by observing or interacting
with the environment (CBN) to acquire causal knowledge of
the environment. In the subsequent quiz phase, the agent is
asked to answer causal queries along all three rungs of the
Ladder of Causation. The authors conclude that the trained
agent is able to perform Causal Reasoning implicitly from
observational data, even in novel situations, and can even
make counterfactual predictions without having access to a
full causal inference machinery.

For a more comprehensive survey of both traditional and
frontier methods in learning causality and relations along
with the connections between causality and ML, see [301].
Another survey [561] discusses interpretable / explainable
models from a causal perspective and contrasts these with
traditional interpretability approaches in ML.

Autonomous Driving: As advertised, we next exam-
ine the potential applicability of Causal Reasoning in the
domain of AD. In particular, we will explore the three
main subtasks in AD: Planning, Situation Interpretation and
Perception.

According to Pearl [620], a plan is an ordered sequence
of value assignments to the control variables (actions).
Planning itself is an optimization procedure of a sequence
of concurrent or sequential actions, where each action may
be influenced by its predecessors in the plan, with a view
of achieving a specified goal (like arriving at a desired
destination or preventing accidents). Therefore, Planning
is closely connected to causality. Causal Reasoning can be
employed not only for planning the ego vehicle’s trajectory,
but also for predicting physically reasonable trajectories
of other vehicles in its immediate vicinity. A prerequisite
for this approach is that existing knowledge about the
vehicles’ motion (governed by physical laws) is modeled
by an SCM in both diagrammatic and algebraic form. As
the resulting SCM serves as a lightweight simulator of the
vehicle dynamics, it can be leveraged to generate physically

reasonable trajectories by repeatedly calling the SCM on
sequential state-action tuples, one for each time step. As for
planning, actions in the plan can be either dictated by the
ego vehicle’s learned policy (a mapping from state to action)
or enforced by hard interventions on the SCM (setting the
action to a fixed value irrespective of the policy’s output). The
obvious advantage of using an SCM modeling the vehicle
dynamics is that an agent does not have to interact with
the environment at all, but can rather act (in the sense
of interventions) in an imagined space that is created by
the SCM’s predictions. For instance, the CF-GPS method
presented in [90] could potentially be transferred to the
AD domain, but must first be adapted for application in
continuous action spaces.

Besides Planning, Causal Reasoning naturally lends itself
to Situation Interpretation, insofar as that a causal analysis
of a particular plan assesses an action’s impact on the
trajectory’s subsequent evolution. There are basically two
forms of causal analyses that matter here: The counterfactual
and the interventional analysis. For instance, the counterfactual
analysis of an existing trajectory, that is recorded under a
certain policy, can unveil explanations / causes (like specific
actions taken at a certain time step) for events / effects (such
as colliding vehicles after an elapsed time interval). The latter
only works as a post hoc method, after an event has occurred,
while the interventional analysis (an ex ante approach) does
not make use of a recorded trajectory. As opposed to the
counterfactual analysis, the interventional analysis assesses
the importance of certain actions for future events in specific
situations and is solely based on the assumptions encoded in
the SCM. On the whole, Causal Reasoning can give answers
to questions like "Which actions have led or might lead to an
accident in a certain situation?"

As for perception, things are not that easy, since Causal
Reasoning struggles to derive high-level concepts (like objects
in images) from low-level features (e.g., image pixels).
However, applications of Causal Reasoning to vision tasks
can be found in, e.g., [867, 644, 928]. In Wang et al. [867],
for instance, high-level features are extracted by an R-CNN,
while the high-level features are post-processed and used to
make these plausible by tools of Causal Reasoning, which are
also part of the learning objective.

8.3 Rule Conformity
Authors: Abhishek Vivekanandan, Etienne Bührle, Hendrik
Königshof

8.3.1 What is Rule conformity?
According to ISO 9000:2000 norms, conformity is defined as
fulfilling certain requirements. Rules are a set of formal codes
derived from local laws and socio-behavioural structures
while effectively considering the Operational Design Domain
(ODD) of the algorithm. Conforming to rules is a crucial
factor while attempting to categorize the risk an action could
lead to, making the Autonomous Vehicles (AVs) safe not only
for the passengers but also for other traffic participants like
pedestrians and cyclists etc.

Formalizing a subset of traffic rules and associating pri-
orities to the vehicles not only achieves compliant behavior
but also maintains the vehicle in a safe state, as can be seen
from the works [678].
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8.3.2 Rules and Safety

From the literature works [554, 583], one can define mathe-
matical rules to formalize common-sense notions/behaviors
such as maintaining a safety gap between vehicles, safe
behavior to merge and as such to avoid maneuvers which
could lead to possible collisions. Depending upon the ODD
one could broadly categorize the behaviors based on formal
rules; which are stated by law and could also be derived
from the environment, these include stop signs, appropriate
speed markings, solid double or dotted lane markings. Each
of these briefly define laws which demand an integration
into the learning process of the model. In contrast to rules
which are explicitly stated by law, informal rules, on the other
hand, are difficult to formalize but expected to be followed
to avoid collision or (and) increase the comfortability of the
passengers. For example, to leave way for an emergency
vehicle, it is acceptable to cross the solid line or pass a red
light at an intersection paving a gap for the ambulance to
pass through. In this situation if there exists a maneuver
where breaking the rule does not endanger both the pas-
senger and the Vulnerable Road Users (VRUs) then under
defined priority this maneuver could be executed with strict
adherence to safety.

8.3.3 Always be compliant, but have common sense

When to follow or to relax the rules is a complex decision pro-
cess for AVs to comply with, since recognizing the situation
itself which lead to such behavior requires General Intelligence
which could be seen in humans due to the implicit notion of
common sense. Let us consider the example of achieving a
collision free maneuver in case of an unanticipated merge
by an adjacent vehicle driving on the right onto our lane. To
generate a compliant behavior, the algorithm should respect
the properties iterated below. This hierarchy is defined from
the perspective of Ego Vehicle, following a simple bicycle
model.

1) Detects and tracks the surrounding objects via fore-
casting networks, which considers the uncertainties
based on the object class. For example, a cyclist
could emit different states when compared with
pedestrians whose degrees of movement are higher.

2) Calculate the safe lateral and longitudinal gaps
defined via Formal rules.

3) Based on 2; a continuous trajectory path which
complies not only with the traffic rules but provides
safety and comfortability assurances for the passen-
gers and VRUs involved.

a) If no such valid paths exist, priority should
be given to the next best plan, which could
be switched at optimal cost.

b) Backup plans could be pre-calculated (via
multi-modal trajectory forecasting) by en-
suring that a delicate balance is maintained
between relaxation of rule compliance versus
safety of the passengers. For example, if it
means that lives could be saved by crossing
over a double solid lane, then it should be
taken.

c) Bringing the vehicle to a Minimal Risk Condi-
tion (MRC) should also be evaluated to bring
the vehicle to a safe state.

Within the current scope of this work, we do not consider
the effects of uncertainty and the ethics involved about
human lives. Normally, these plans should be calculated
under uncertainty to reduce the risk posed by the real world.

8.3.4 Constraints and Conformity
Embedding constraints on the learning functions are a
direct way to ensure conformance of a neural network to
a certain objective by defining upper and lower bounds
to the output space. Modern AVs utilize machine learning
model which are trained with algorithms based on Stochastic
Gradient Descent via regularizers and optimizers; placing soft
constraints in the subspace. Here, regularizers are a set of rules
to fine-tune the expected behavior. On the other hand, when
hard constraints are a part of the neural network structure
[416, 556] the networks should be attentive to the physics
involved, and their predictions should not deviate from the
said constraints which are imposed. With which we expect
the outputs from the networks to be restricted to the physical
subspace, ensuring a compliance to the bounds placed. When
compared with their Neural Network counterparts trained
via soft constraints, physics guided nets respect the bounds
implicitly by never deviating from them.

Conformance to rules could be rephrased as a constraint
satisfaction problem by reasoning about the temporal prop-
erties of the system. Ensuring the safety of the vehicles
during planning operation is a crucial task such that possible
collisions could be mitigated. As a result, expressing rules
and satisfying those specifications in the form of temporal
logics [214] and verifying the system properties using Signal
Temporal Logic (STL) [682], where rules are checked and
verified for their formal conformance. Although, works from
Censi et al. take a different approach by defining rules in
the form of relational hierarchical structures represented via
Linear Temporal Logic (LTL). This allows one to have the
flexibility to describe the relative priorities between rules
which result in a control command to the planner deemed
compliant according to the specification. These scalable
“rule book” could explicitly capture the common-sense and
informal rules to some extent in the context of automated
driving.

8.4 Artificial Intelligence Verification
Author: Tino Werner

Deep AI models are well-known for their often very good
prediction accuracy. However, the authors in [417] point out
that AI often lack of generalization ability in the sense that
there is no guarantee that it behaves correctly on unseen
data points. Hence, AI verification is a necessary step in
order to prove that a particular AI model works correctly.
A major difficulty is the non-linearity of most activation
functions so that any kind of AI verification leads to non-
convex problems. Moreover, due to a NN being composed
of non-linear and transcendental real-valued functions, it is
in general undecidable whether a particular property holds
[238]. Rational approximations of real numbers are generally
too expensive [642].
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Standard approaches in order to perform AI verification
are over-approximation of non-linear functions by intervals
or sets that cover the true function values with certainty,
while for time-dependent models, the reachable sets are over-
approximated. Usually, the constraints that the AI has to
satisfy are negated so that one checks whether there exists
points for which the negated constraints are satisfied (i.e., the
AI fails on these points) using approaches like Satisfiability
Solvers (SAT) (e.g., [238], [236], [711], [712]), Satisfiability
Modulo Theory (SMT) (e.g., [581], [167]), stochastic SMT
(e.g., [237], [805], [804], [260], [261], [259]), Mixed-Integer
Linear Programming (MILP) or Satisfiability Modulo Convex
Programming (SMC) (e.g., [589], [753]).

Although many verification algorithms are motivated by
safety and security, there are other highly relevant aspects of
trustworthy AI (see [891] for a critical overview) apart from
safety and security for which there are already verification
algorithms, e.g., for privacy [957] or fairness [16]. As for
conformity checking, the verification techniques can be used
as tools in order to verify whether the knowledge constraints
imposed on the AI models are satisfied, lifting the concept
to the whole field of informed ML, including applications in
autonomous driving.

The authors in [370] provide a thorough survey on safety
verification and trustworthiness (certification combined with
explanation as defined in their work). They categorize the
methods for safety verification into constraint solving, over-
approximation, global optimization and search-based meth-
ods. Most popular AI verification approaches are those based
on constraint solving and over-approximation. Constraint
solving indicates that the requirements can be encoded
as a set of constraints. Then, transforming the verification
problem into constraint verification provides deterministic
guarantees and can be achieved using SMT, SAT or MILP
solvers. Over-approximation is a technique that intends
to cover the whole output range of a neuron by simple
constraints. One well-known example (see [201]) is to over-
approximate a ReLU node by a linear constraint. If one
knows that the input c for the ReLU node is contained
in some interval [l, u], maybe by having applied interval
arithmetic, the output z of the ReLU node is contained in
the set determined by the three linear constraints z ≥ 0,
z ≥ c and z ≤ u(c − l)/(u − l). The advantage is that this
over-approximation avoids to distinguish different cases (for
ReLU, whether the input is non-negative or negative) and
covers a non-linear input-output relationship with linear con-
straints, therefore allowing for linear solvers. As a drawback,
the set corresponding to the over-approximation contains
non-feasible points, but this issue is encountered in literature
with more tight over-approximations. Over-approximation
is also used for reachability analysis, in particular for time-
dependent NNs, in order to over-approximate the states
that can be attained by the system, given some input
space. Further categorizations include adversarial robustness
verification and testing. Other surveys include [474] who
provide an overview of DNN verification algorithms and
outline that one may use model reduction by pruning or by
distillation, i.e., training a smaller NN with only insignificant
accuracy loss. Alternatively, one may decompose the NNs so
that one only verifies critical parts of the models as in [371]. A
thorough survey on the algorithms for verification of DNNs

themselves is given by the authors in [497] who also show
code snippets. See [906] for another survey. The authors in
[828] provide a survey of the application of formal methods
in machine learning and distinguish between complete and
incomplete (scalable, but prone to false positives) methods.

8.4.1 Adversarial robustness

There are discussions in literature in order to distinguish
AI verification from checking adversarial robustness (e.g.,
[49]) since the latter is achieved if there are no adversarial
samples around the training points which only covers a
limited radius around these points, leaving a large part of
the input space unexplored. At most, only statistical safety
guarantees can be shown or, as spelled out by the authors in
[417], only an "approximation of the desired property" can be
verified. The authors in [909] point out that AI certification
is based on over-approximating the adversarial polytope so
that the certification output can be interpreted as a relaxed
verification task where safe input points may be flagged
as unsafe, see also [211] for the terminology. Algorithms
for verifying adversarial robustness of neural networks are
usually based on over-approximation, typically by over-
approximating the activation functions and therefore the
reachable activations.

The authors in [886] propose the FastLin algorithm that
over-approximates ReLU activations linearly, and also the
FastLip algorithm that bounds the local Lipschitz constant of
a ReLU network. Both algorithms do not require optimization
algorithms but compute the bounds explicitly layer per
layer. The authors in [894] (ConvDual) propose a convex
outer approximation of the set of reachable ReLU activations
in feed-forfard NNs. The authors in [771] consider feed-
forward networks with differentiable activations and use
global curvature bounds while the authors in [962] (CROWN)
and [524] (FROWN) consider feed-forward networks with
general non-linear activations and bound them with linear
and quadratic functions. In [221], quadratic abstractions
of nonlinear activation functions are considered. [770] (Re-
fineZono) and [769] (DeepPoly) cover ReLU, maxpool and
sigmoid-type activations and can also handle CNNs using
MILP resp. over-approximation. Reachability analysis for
CNNs has been proposed by the authors in [820] who use
the ImageStar set representation which can both perform
exact and over-approximated set-based analysis of CNNs
using linear programming which is then used for adversarial
robustness certification.

There are also approaches that do not directly over-
approximate activations. For example, the authors in [49]
propose an adversarial robustness metric and show, for
ReLU activations, how to approximate the constraint system
corresponding to the robust set by a linear program. The
authors in [907] over-approximate the reachable set for the
output layer which, for monotonic activation functions, can
be done using convex optimization. The authors in [128]
consider feed-forward ReLU and softmax networks and
compute maximum perturbation bounds using MILP. [285]
(DeepSafe) propose an approach for classification networks
by combining clustering and Reluplex which encodes ReLU
activations via the Simplex algorithm (see [417]). The authors
in [814] (MIPVerify) compute an over-approximation of the



62

set of tolerable perturbations for piece-wise linear feed-
forward ReLU networks using MILP. The authors in [691]
compute the adversarial robustness of CNNs w.r.t. the l0-
norm.

Some works focus on better over-approximation of ReLU
activations. A speed-up technique for ReLU networks has
been proposed by the authors in [909] who point out that
a major issue of ReLU network verification is that ReLU
nodes branch in the sense that one has to respect both cases,
i.e., active or inactive nodes, i.e., the output is non-zero or
zero. The authors in [909] concentrate on minimizing the
number of such splits by maximizing the number of stable
ReLU nodes which stay active or inactive, therefore calling
their approach ReLU stability. As for time-dependent NNs,
the authors in [211] (CARRL) consider deep RL (4.6) and
compute lower bounds of theQ-values. As for the adversarial
robustness of Binarized Neural Networks (BinNNs), an MILP
approach has been proposed by [569]. The certification of
quantized NNs which imposes the additional difficulty of
quantization errors is considered by the authors in [732] who
adapt software model checking techniques to this setting.

From the perspective of informed ML, such adversarial
robustness verification/certification approaches are tailored
to safety and therefore not directly applicable in order to
verify the satisfaction of knowledge constraints.

8.4.2 Verifying non-recurrent NNs
AI verification itself is indeed tailored to some set of
constraints, for example, given by inequalities, equalities
or temporal logic. One of the first algorithms of this kind was
NEVER from [641] where MLPs (or Feed-Forward Neural
Networks (FFNNs)) are verified according to some SMT
formula. The basic idea is to over-approximate the activation
function, leading to an "abstraction" or "abstract activation
function" given in terms of intervals. This abstraction is
propagated, leading to abstractions of the outputs. The
satisfaction check is then done using HYSAT [236] w.r.t.
the negated constraints so that either the constraint set is
unsatisfiable which is equivalent to the result that there is
no point that violates any of the original constraints, so the
AI is safe. In this case, a refinement step is executed in order
to find a tighter approximation of the activation function.
Otherwise, the algorithm finds an input interval so that
the abstract output violates the constraints, i.e., the input
interval serves as abstract counterexample which itself is then
checked for feasibility. Note that NEVER is not restricted to
ReLU activations but can, in principle, handle general non-
linear activation functions. Many works on non-recurrent
NN verification however focus mainly on ReLU activations.

Since the NEVER algorithm, as stated by the authors in
[417], is only feasible for networks with at most 20 hidden
nodes, [417] proposed the Reluplex algorithm which adapts
the Simplex algorithm to ReLU constraints. Their algorithm
inherits the soundness (the decision of satisfiability resp.
unsatisfiability is correct) and completeness (any starting
configuration leads to a decision) properties from the Simplex
algorithm. Reluplex was extended by the Marabou platform
provided by [418] which speeds up Reluplex by a lazy search
strategy so that even CNNs with piece-wise linear activation
functions can be handled. However, as pointed out by the
author in [201], Reluplex is not feasible for max-pooling

activations since replacing them with multiple ReLU layers
would be too cumbersome. The author in [201] himself
proposes the algorithm Planet where general nonlinear
activation functions in FFNNs are approximated in a piece-
wise linear fashion and linear programming is used in order
to approximate the NN behavior and discard infeasible parts
of the search space in advance.

Apart from the works that focus on ReLU over-
approximation in the context of adversarial robustness, there
are additional works on ReLU over-approximation in the
context of AI verification. A symbolic linear relaxation of
ReLU units has been proposed by the authors in [863] who
introduce the Neurify algorithm which can handle much
larger NNs. In [340], the indirect effect of splitting a ReLU
node on the subsequent nodes is estimated, leading to the
DEEPSPLIT algorithm. ReLU over-approximation has also
been considered by the authors in [686] who combine Mixed-
Integer Programming (MIP) and branching.

Apart from the verification of ReLU networks, there are
also approaches that consider other activation functions.
Lipschitzian activation functions (which cover convolutional
and fully-connected ReLU layers as well as max-pooling
and contrast-normalization layers as shown in [796]) have
been considered by the authors in [690] who show that
softmax, hyperbolic tangent and sigmoid activation layers
are also Lipschitz and who derive linear constraints for an
output reachability problem for FFNNs with such activation
functions. They call their software tool DeepGO. In [195],
feed-forward ReLU networks are considered for which out-
put range analysis is performed with the goal to determine a
tight interval that covers the network output for the whole
input space. Their algorithm Sherlock is based on MILP. In
[542], the output of a FFNN is over-approximated using
mixed monotonicity. The authors in [508] provide an MILP-
type variant of Reluplex for feed-forward ReLU networks. In
[296], star sets are considered in their pyNeVer algorithm.

The authors in [93] consider piece-wise linear neural
networks and inequality verification tasks in the sense that,
e.g., the output of the network has to be non-negative. They
propose a general branch-and-bound algorithm that splits
the input domain into sub-domains where sub-domains
are pruned away if the lower bound of the network is too
high there, i.e., if the desired property cannot be falsified
there. They identify Reluplex and Planet as special instances
of their algorithm. Their ReluVal algorithm is much faster
than Reluplex on small networks but it cannot cope with
large NNs. A speed-up strategy based on symbolic interval
arithmetic in order to avoid SMT solvers has been proposed
by [864].

Pruning approaches where several parts of a deep NN
are pruned in order to make verification algorithms feasible
have been proposed in [281] and [297]. The verification of
BinNNs has been considered in several works. In [129, Thm.
1], it is proven that verifying a BinNN is NP-complete. They
show how to encode BinNNs as SAT instances and propose
an inter-neuron factoring approach for BinNN verification,
see also [394]. In [19], the Reluplex algorithm is adapted to
BinNN by extending it to sign activation functions which
allow for strict binarity using sign constraints and new
splitting rules that can handle them.
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8.4.3 Verifying time-dependent NNs

The techniques listed so far consider static models in the
sense that they do not invoke a time component. For time-
dependent models, there are already many techniques in
literature that can handle these cases. We distinguish between
hybrid automata, controller systems where the NN maps
states into actions and RNNs. A survey on stochastic hybrid
systems, including verification, is given by [464].

Verifying hybrid automata: As for the verification of
hybrid automata, popular approaches include a reachability
analysis where one aims at guaranteeing that the system
never can attain unsafe states, often in a weakened fashion,
for example for a finite horizon or in terms of probabilistic
guarantees.

The authors in [861] propose SReach for safety verification
of stochastic hybrid systems. The idea is to verify a weakened
version of the requirements over a k-step horizon. Random
variables are sampled and a δ-complete analyzer and dReach
from [256] is applied, i.e., inequality constraints like a > 0
are replaced by a > −δ so that the algorithm either
returns non-satisfaction or δ-satisfaction. However, as they
restrict themselves to k-step reachability, they cannot provide
guarantees for infinite horizons. The authors in [750] propose
Probreach, an algorithm that computes the probability that
a hybrid system reaches an unsafe region of the state space.
They more precisely consider probabilistic δ-reachability and
partition the state space into iteratively finer intervals and
check the safety on these intervals. According to the authors
in [367], this method is computationally very expensive. In
[384], the Verisig algorithm for safety verification of closed-
loop NN-controlled systems is proposed. They translate the
DNN into a hybrid system with sigmoid activation and apply
reachability analysis. Their method also covers actor-critic
RL methods.

The authors in [919] instead propose a probabilistic
safety verification of dynamic hybrid systems for infinite
time horizon by computing PAC (probably approximately
correct) barrier certificates (differentiable functions that map
each initial state to a real number where unsafe states
always get a positive number and whose gradients satisfy
a regularity condition) using linear programming which
amounts to chance-constrained optimization of some convex
cost function. These chance constraints are circumvented
by randomly drawing control inputs and enforcing the
solution to satisfy the corresponding hard constraints for
each realization.

Verifying NN controllers: There are many reach-
ability approaches for NN controllers based on an over-
approximation/abstraction of reachable states. Reachability
approaches for the verification of NN controllers are given
by the authors in [402] who over-approximate reachable
states for NN-controlled agents, see also [906], [908]. The
authors in [819] propose star sets instead of polyhedra for
reachability analysis of ReLU-FFNN-based systems by over-
approximation while [713] combine Taylor models and zono-
type set representations for NN controllers for a more precise
reachability analysis, and [210] consider reachability analysis
for closed-loop NN-controlled systems and for a discrete-
time linear time-varying system and derive explicit bounds
for the next state by respecting convex constraints and input

constraints. The authors in [383] propose Verisig2.0 which
approximates NN controllers by Taylor models. Quadratic
abstraction of nonlinear activation functions for reachability
analysis is considered by the authors in [360]. In [788], finite
state abstraction for reachability analysis for discrete-time
continuous linear dynamics and a ReLU controller network
are considered. They propose to partition the state space
into a set of polytopes according to the laser angles of the
LIDAR perception in their context. They encode the problem
as a SMC optimization problem [753] in order to detect
the set of safe resp. unsafe states (which can result in an
unsafe trajectory). In [368], ReachRNN is proposed which
approximates a Lipschitz-continuous NN (including ReLU,
hyperbolic tangent and sigmoid activations which have
shown to be Lipschitz in [690]) by Bernstein polynomials and
estimates the approximation error bound. Their algorithm is
parallelized by the authors in [215]. Bernstein polynomials
as a tool for over-approximating node activations in NN
controllers have also been used in the POLAR algorithm
from [366]. In [761], piecewise linear approximations of ReLU
activations for NN controllers in their OVERT algorithm are
considered.

Nevertheless, there are also algorithms that aim at finding
probabilistic guarantees that the system does not reach unsafe
states. In [36], the MOSAIC algorithm for probabilistic guar-
antees for RL based on iterative state abstractions via MDPs
is introduced, assuming that the policies are memoryless
and deterministic. They consider k-step reachability and
the goal is to under-approximate the safe set or to over-
approximate the worst-case probability of failure. Having
state abstractions ŝ, an environment abstraction is a mapping
T̂ : Ŝ × A → Ŝ which can be constructed using interval
arithmetic, leading to abstracted MDPs, where the state ab-
stractions are refined by splitting the corresponding regions.
The authors in [421] propose Verily for the verification of
deep RL-controlled systems. The tool provides a concrete
scenario where the safety requirements are violated or where
the liveness requirements cannot be met. The algorithm
searches for a physically reasonable sequence of states (i.e.,
every state can be reached from the previous state) and that
end up in a bad state. They only consider paths of limited
length and use Marabou for solving the verification problem.

The authors in [419] over-approximate deep policies for
finding probabilistic safety guarantees. They partition the
input space into cells and perform the verification on each
cell for over-approximated policies that map such whole cells
into the action space. They propose an adaptive strategy how
to find a suitable partition.

The authors in [826] compute barrier certificates for
FFNN-based cyber-physical systems, enhanced with sim-
ulation. The idea is to generate a set of simulation traces
by randomly sampling initial states and by solving a linear
program. More precisely, the validity of the barrier certificate
conditions for each candidate are checked using dReal
[255]. The authors in [367] also apply barrier certificates for
probabilistic safety verification of hybrid systems and assume
that the behavior of the system is defined by polynomial
constraints but that the initial states are stochastic, so the
goal is to bound the probability of facing initial states that
lead into an unsafe region.

Other approaches include [14] where a FFNN-based agent
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interacting with a non-deterministic environment is studied
and where the verification problem is re-written as an MILP
with recursive encoding, extending their former work [13]
which considers a static environment. Their algorithm is
called NSVerify. In [102], verification of RNN-based policies
for POMDP based on discretization techniques is proposed.
The authors in [782] study a general online verification
concept using an online verification monitor (supervisor)
aiming for full safety coverage of a black-box model. In
[912], it is proposed to decouple training and verification for
better scalability and invoke verified linear controllers (safety
shields) to guarantee the safety of the training procedure and
based on the verified properties, RL is used to learn other
properties. The authors in [623] provide an online verification
framework for motion planning in order to guarantee that a
safe plan is computed, i.e., collision-free given all possible
future plans of other agents/dynamic obstacles. For each
traffic participant, a mathematical model for the feasible
future behaviors is computed in an over-approximative
way. The fail-safe trajectories are computed by solving a
quadratic optimization problem with a convex cost function
and kinematic constraints.

Verifying RNNs: As for the certification of the
adversarial robustness of RNNs, [437] propose POPQORN
which computes linear bounding planes for nonlinear acti-
vation functions and especially cross-linearity (products of
activations) for RNNs, GRUs and LSTMs. The relaxation of
all non-linear operations of LSTMs, in particular, products of
sigmoid and tanh or sigmoid and identity operations, with
linear convex operations so that bounds can be derived is
considered in the algorithm R2 from [698].

An approach that really aims at AI verification for time-
independent models available has been proposed by the
authors in [386] who propose invariant inference to reduce
the RNN verification problem to an FFNN verification
problem which has been introduced by [15]. The idea is
to over-approximate the RNN by the FFNN of the same size
by encoding time-invariant properties of the RNN into the
FFNN. [386] criticize that this unrolling approach produces a
very large FFNN, hence it is infeasible because an RNN with
K memory units produces an FFNN withK(t−1) new nodes
if t is the number of time steps corresponding to the property
that is to be verified. The FFNN is constructed by replacing
each memory unit by a standard neuron, connected with the
original neurons and weights. Then, by bounding the values
from each new node and properly adjusting these bounds so
that they are neither too tight nor too weak, standard FFNN
verification techniques are applicable.

8.4.4 Verifying NN differences
There are some works that have lifted the verification concept
to the analysis of differences of neural networks, for example,
in order to verify the accuracy of a compressed network. For
the original (deep) neural network f and the compressed
counterpart f ′, the verification amounts to showing that
|f(x) − f ′(x)| < ε for all x in the input space. The authors
in [615] use symbolic interval analysis for analyzing differ-
ences in the values of neurons and gradients and call their
algorithm ReluDiff which over-approximates the respective
differences and checks in a forward pass if the resulting
output difference exceeds ε. According to the authors in

[616], ReluDiff is too conservative, so the authors provide
the extension NeuroDiff which is based on fine-grained
convex approximations of the difference intervals. The whole
concept has been lifted from feed-forward networks to RNNs
by the authors in [555] who propose the DiffRNN algorithm
in order to verify the equivalence of structurally similar
RNNs. As ReluDiff cannot handle non-linear activation
functions, including the products that occur in LSTMs, they
apply the SMT-solver dReal [255] that can handle non-linear
real-valued functions. In fact, they rewrite the activation
differences σ(x′)− σ(x) by σ(x+ δx)− σ(x) for δx = x′− x
and compute tight bounding boxes corresponding to the
ranges of x and δx using dReal. The authors in [457] aim
at finding neurons that can be removed from the DNN (not
only neurons with zero weight but also redundant ones), so
they aim at verifying that the pruned network is equivalent
to the original one. The idea is domain slicing so that the
original NN N associated to domain D is represented by a
family of NNs where NNi is associated do domain slice Di.
For each NNi, they apply MILP in order to check whether
neurons are redundant.

8.4.5 Repair of NNs
One question that the AI verification algorithms do not
answer is how to proceed if the models do not satisfy
the requirements (cf. [188]). If an AI verification algorithm
concludes that the NN does not satisfy the given require-
ments, i.e., the NN is falsified, a naïve approach could be to
retrain the NN and to hope that the retrained one satisfies
the constraints. The idea of repairing a NN however is
to avoid expensive retraining by using the falsified NN
as warm start. As for the notion, the term "repair" has
already been used in [641], however, as pointed out in [295],
their technique is essentially adversarial re-training based
on counterexamples that NEVER detected. The authors in
[777] propose Arachne which however, as pointed out in
[188], modifies the weights of neurons which are relevant for
failures using a particle swarm optimization algorithm but
it does not guarantee the correctness of the repaired model.
The authors in [942] propose DeepRepair, but it is essentially
based on style-guided data augmentation using clustering
so that unknown failure patterns can be learned, so it
follows ideas like adversarial testing or DeepXplore. In [830],
NNRepair is proposed which modifies one intermediate layer
(neuron values) or the output layer (decision boundaries) for
classification DNNs. However, their approach is based on
detecting adversarial examples for repair and on positive
examples to keep the performance there.

As for true repair, recently, [282] propose provably min-
imal modifications of DNNs in order to make them satisfy
the given requirements. In order to quantify the modification,
they propose a distance measure between two DNNs of
the same architecture. The idea is to solve a constrained
optimization problem where a modified NN is computed
so that the distance of the NNs is minimized while the
modified NN satisfies all requirements which enter as hard
constraints. Due to non-convexity and high-dimensionality,
they propose to solve layer-wise verification problems by
computing the layer change matrix for the layer where
a modification should happen so that all previous layers
remain unchanged. The authors in [188] point out that the
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approach in [282] aims at finding a repaired network that
behaves correctly on multiple specific inputs while [188]
want to have a verified repaired network that always behaves
correctly. The modified layer can be the output layer itself
which, according to [282], has the advantage to make the
verification problem linear. The authors in [188] however
argue that modifying only the output layer is often too late.
The idea of [188] is based on a minimal modification by
detecting the neurons which are most relevant for the failure
and performing gradient descent w.r.t. these neurons. The
goal is to find a repaired NN that satisfies the required
properties on each erroneous partition (on which the original
NN violated them). One starts with an initial input space
partition and checks if a partition is possible into disjoint
constraints. If a partition is possible, one checks for each
partition if the NN is verified. If a counterexample is detected,
they aim at finding a modification of the NN with the same
architecture such that the violation loss is minimized. As
for the repair itself, they order the neurons according to the
magnitude of their gradients of the loss and fix a budget of
neurons that are allowed to be modified. If after modifying
the most relevant neuron the NN is repaired, the procedure
ends, otherwise, it is repeated for the second-most relevant
neuron and so forth. Their empirical results show that the
overall task performance of the repaired network does not
significantly decrease compared to the original one. They
admit that their method may become infeasible for large NNs.
The authors in [778] describe the method of [282] as layer-
wise repairs whose computational time grows exponentially
(becoming infeasible except for linear activations). Their
repair algorithm allows for point-wise (for specifications
concerning finite points) and polytope repair (infinitely many
points) and can handle general activation functions. They
point out that directly encoding the constraints and the DNN
into an SMT is infeasible due to coupled weights. They
introduce decoupled DNNs (DDNNs) where, by a first-order
expansion of the activation function, the activated values
and the activations are decoupled. For point-wise repair, the
DDNN is then repaired by checking whether modifying a
single value channel layer leads to satisfaction using a LP
which can be done in polynomial time. They also provide an
algorithm for polytope repair for piece-wise linear activations.
The extension to repairing multiple layers is given in [662]
whose idea is to split the DNN into sub-networks consisting
of subsequent layers of the large DNN and to repair one layer
of each sub-network. The authors in [530] use the task loss
function for optimization instead of weight differences and
propose a mixed integer quadratic programming approach.
A repair on the output layer is considered in [472]. The
authors in [244] do not repair neurons but propose to use the
piece-wise linear nature of ReLU networks and to construct
patch networks for each linear region which violates the
constraints. They point out that modifications of neurons or
the architecture result in global output changes so that there
is no guarantee that formerly safe input points stay safe after
the modification. Their patch functions are linear functions
that are added to the original NN in the respective region and
whose absolute maximum should be as small as possible.
The corresponding optimization problem is solved using
linear programming. They theoretically and experimentally
prove the efficiency of their so-called REASSURE algorithm.

The authors in [911] point out that complex properties, for
example, that an agent always stops in front of a stop sign, are
very hard to verify. Therefore, they propose a neuro-symbolic
(4.2) approach where the NNs take the role of proxies
for semantic properties, e.g., whether the perception NN
detects the stop sign and whether the controller NN decides
for deceleration. The resulting neuro-symbolic property is
translated into a verification condition which can be checked
using existing AI verification tools.

8.4.6 Applications
A quite large number of AI verification techniques has
been outlined above which are all relevant for autonomous
driving due to the heterogeneous AI applications in this area.
Roughly speaking, verification techniques for non-recurrent
NNs, especially CNNs, correspond to perception or image
segmentation modules in order to check whether there are
situations where these models become unrealiable. As for
planning, techniques for RNN verification become more
relevant.
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LIST OF ABBREVIATIONS

A3C Asynchronous Advantage Actor-Critic
ACE Automated Concept-based Explanation
AD Autonomous Driving
ADF Assumed Density Filtering
ADMM Alternating Direction Method of Multipliers
AE Auto Encoder
A-GEM Averaged Gradient Episodic Memory
AI Artificial Intelligence
AL Active Learning
ALM Augmented Lagrangian Method
AV Autonomous Vehicle
BEV Bird’s-Eye-View
BP Backpropagation
BinNN Binarized Neural Network
CAV Concept Activation Vector
CBM Concept Bottleneck Model
CBN Causal Bayesian Network
CD Causal Discovery
CF-GPS Counterfactually-Guided Policy Search
CI Causal Inference
CNN Convolutional Neural Network
CPE Counterfactual Policy Evaluation
CR Causal Reasoning
CRPS Continuous Ranked Probability Score
CT Computerised Tomography
CV Computer Vision
CVAE Conditional Variational Auto Encoder
DAG Directed Acyclic Graph
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DLL Differentiable Logic Layer
DNN Deep Neural Network
DOT U.S. Department of Transportation
DPG Deterministic Policy Gradient
DSL Domain-Specific Language
DQN Deep Q Learning
ECE Expected Calibration Error
ELBO (empirical) Evidence Lower Bound
ERM Empirical Risk Minimization
FC full-covariance
FCN Fully Convolutional Network
FFNN Feed-Forward Neural Network
FOL First order Logic
FPN Feature Pyramid Network
GAAL Generative Adversarial Active Learning
GAIL Generative Adversarial Imitation Learning
GAN Generative Adversarial Network
GEM Gradient Episodic Memory
GIS Geographical Information System
GMM Gaussian Mixture Model
GNN Graph Neural Network
GPM Gradient Projection Memory
HD High-Definition
HMC Hamiltonian Monte Carlo
HOG Histograms of Oriented Gradients
IG Integrated Gradients
ILP Inductive Logic Programming
IRL Inverse Reinforcement Learning
KF Kronecker Factorization

KG Knowledge Graph
KGE Knowledge Graph Embedding
KKT Karush Kuhn Tucker
KL Kullback-Leibler
KRL Knowledge Representation Learning
LIME Local interpretable model-agnostic explanations
LRP Layer-wise Relevance Propagation
LSTM Long Short-Term Memory
LTL Linear Temporal Logic
LTN Logic Tensor Network
MAML Model-Agnostic Meta-Learning
mAP mean Average Precision
MAP Maximum-a-posteriori
MARL Multi-Agent Reinforcement Learning
MB-PS Model-based Policy Search
MBRL Model-based Reinforcement Learning
MC Monte Carlo
MCTS Monte-Carlo Tree Search
MDP Markov Decision Process
MF mean-field
MFRL Model-free Reinforcement Learning
MILP Mixed-Integer Linear Programming
MIP Mixed-Integer Programming
ML Machine Learning
MLP Multi-Layer Perceptron
MOBA Multiplayer Online Battle Arena
MPC Model-predictive Control
MRC Minimal Risk Condition
MRF Markov Random Field
MRI Magnetic Resonance Imaging
MSE Mean Squared Error
NAS Neural Architecture Search
NLL Negative Log-Likelihood
NLM Neural Logic Machines
NLP Natural Language Processing
NLU Natural Language Understanding
NMT Neural Machine Translation
NN Neural Network
NSBP Neural-Symbolic Behavior Program
NSDP Neuro-Symbolic Decision Program
NSP Neuro-Symbolic Program
NSPS Neuro-Symbolic Program Search
NUTS No-U-Turn Sampling
OEDR Object and Event Detection and Response
ODD Operational Design Domain
PATH California Partners for Advanced Transportation

Technology
PDE Partial Differential Equation
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
QA Question Answering
R-CNN Region-based Convolutional Neural Network
R-CNN Regions with CNN
RGB Red Green Blue
RISE Randomized Input Sampling for Explanation
RL Reinforcement Learning
RPN Region Proposal Network
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
ROI Region of Interest
SA Situation Awareness
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SAC Soft Actor Critic
SAT Satisfiability Solvers
SBR Semantic Based Regularization
SCM Structural Causal Model
SVD Self-Driving Vehicle
SGD Stochastic Gradient Descent
SGHMC Stochastic Gradient Hamiltonian Monte Carlo
SGLD Stochastic Gradient Langevin Dynamics
SHAP SHapley Additive exPlanations
SI Synaptic Intelligence
SMC Satisfiability Modulo Convex Programming
SMT Satisfiability Modulo Theory
SRM Structural Risk Minimization
SSD Single Shot MultiBox Detector
SSM State Space Model
STL Signal Temporal Logic
StVO Straßenverkehrsordnung
SQM Sequential Quadratic Program
SVM Support Vector Machine
TRPO Trust Region Policy Optimization
TTC Time-To-Collision
UAV Unmanned Aerial Vehicles
VA Visual Analytics
VAE Variational Auto Encoder
VI Variational Inference
VQA Visual Question Answering
VRU Vulnerable Road User
WSOL Weakly Supervised Object Localization
XAI Explainable Artificial Intelligence
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