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Abstract

Retrieving information from some set of data is a classical research topic in computer
science. However, depending on the requirements of the particular application field,
different approaches for realising retrieval functionality have been developed. On
the one hand, traditional database management systems suppose users are beware
of their information needs and that they are able to express these needs exactly by
using a standardised query language. Here, the retrieval objective is the efficient
selection of data records matching exactly the users’ queries. On the other hand,
in other application fields such well-formulated queries cannot be presumed, either
because one has to deal with unstructured data (e.g. documents in the World Wide
Web), or because users are not beware of their actual information needs.

One such application field is a problem-solving technique developed in Artifi-
cial Intelligence (AI), called Case-Based Reasoning (CBR). Here, collected data
records—called cases—represent information about problems solved in the past,
and the basic idea is to reuse this knowledge when solving new problems. There-
fore, cases useful for the current problem-solving episode have to be retrieved from
all collected cases. The major problem of this retrieval task is that users usually
are not able to express exact retrieval criteria describing which cases are useful
and which are not. However, they should be able to describe their current prob-
lem situation. The selection of corresponding useful cases is then left to the CBR
system which retrieves cases to be used for solving the problem by employing so-
called similarity measures. Basically, a similarity measure represents a heuristics for
estimating the a-priori unknown utility of a case. As typically for heuristics, the
quality of a similarity measure can be improved by incorporating as much as possible
knowledge about the particular application domain. However, the definition of such
knowledge-intensive similarity measures leads to the well-known knowledge acqui-
sition problem of AI. Unfortunately, the difficulty to acquire and formalise specific
domain knowledge often prevents the usage of these actually very powerful kinds of
similarity measures in commercial applications.

The objective of this thesis is the development of a framework and algorithms
based on Machine Learning methods in order to facilitate the definition of knowledge-
intensive similarity measures in CBR. The basic idea of this framework is to extract
the mandatory domain knowledge form special training data that can be acquired
more easily than the actual knowledge itself.
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1. Introduction

In recent years Case-Based Reasoning (CBR) has become a very popular technique
for developing knowledge-based systems. In some real world application domains it
has even emerged to one of the commercially most successful approaches compared
to other techniques developed in Artificial Intelligence (AI) research.

One of the major reasons for this success of CBR is a fundamentally new paradigm
for realising knowledge-based systems. While the most traditional techniques aim
at building systems able to solve all problems of the respective domain exactly, CBR
does not focus on the completeness and exactness of the problem-solving process.
These actually desirable properties have been relaxed in order to decrease the ef-
fort required for implementing knowledge-based systems. Hence, the correctness
of a solution delivered by a CBR system usually cannot be ensured. However, a
CBR system should provide at least a good approximation of the correct solution.
Whether a particular CBR system is suitable for a particular real world application
or not, of course, strongly depends on the quality of this approximation process,
which itself strongly depends on the domain knowledge the CBR system is provided
with. However, similar to other AI techniques, the acquisition and formalisation of
domain knowledge is still the most difficult task when developing CBR systems.

The objective of this thesis is the development of a framework and algorithms
for facilitating the acquisition and formalisation of one particular kind of domain
knowledge CBR systems rely on, namely knowledge required for defining so-called
similarity measures. Although the quality of this knowledge crucially influences the
competence of a CBR system, up to now, a well-founded methodology for acquiring
it is still missing.

1.1. Motivation

The new paradigm the CBR approach is based on, might be described as “controlled
inexactness”. Instead of modelling a complete domain theory, for example, by using
rules, CBR exploits single situation-specific knowledge chunks called cases, which
are easier available than generalised knowledge about the domain. In the traditional
sense of problem-solving, a case represents a particular problem with a corresponding
solution. Such a kind of knowledge is also named experience (Bergmann, 2002).

In order to reason from cases for solving new problems, CBR systems rely on
knowledge required to select useful cases with respect to the current problem situa-
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1. Introduction

tion. In CBR, this selection of useful cases is based on a problem-solving assumption
that can be summarised by one short phrase:

The core assumption of CBR: Similar problems have similar solutions.

This assumption’s basic idea is to solve a current problem by reusing solutions
that have been applied to similar problems in the past. Therefore, the current
problem has to be compared to problems described in cases. Solutions contained in
cases that represent very similar problems are then considered to be candidates for
solving the current problem, too.

To enable a computer system to judge the similarity between two problems, CBR
systems employ so-called similarity measures that represent a mathematical formal-
isation of the very general term “similarity”. Similarity measures usually do not
describe the dependencies between problems and corresponding solutions in detail,
but only represent a form of a heuristics. Thus, the selection of actually useful
cases—and so the strict correctness of the output—cannot be guaranteed in gen-
eral. Nevertheless, by tolerating this inexactness one is able to develop powerful
knowledge-based systems with significantly less effort and costs compared to the
more traditional AI techniques relying on a complete and correct domain theory.

But of course, the relation between tolerated inexactness and development effort
leads to a crucial trade-off. A CBR system will only be accepted by the users, if
the inexactness can be restricted to a tolerable degree. Therefore, the quality of
the employed similarity measure is a very important aspect of every CBR system.
However, similarity measures used traditionally commonly represent only simple
distance metrics that do not consider much knowledge about the domain. Here,
similarity is rather interpreted as a “similar appearance”.

In many CBR applications developed in the past, a more precise definition of
similarity has not been introduced. On the one hand, in the addressed application
domains the quite simple heuristics of “similar appearance” was mostly sufficient
to obtain acceptable results. On the other hand, due to the novelty of the CBR
approach, many other research issues had to be treated first, for example, the devel-
opment of efficient retrieval algorithms. In recent years CBR research has reached
a level where the basic questions have been answered. Now, research focuses more
on an extension of the applicability of CBR on other, more complicated domains.
Therefore, it becomes important to precise the definition of similarity in order to
enable CBR systems to select useful cases also in domains, where the heuristics of
“similar appearance” is no longer sufficient.

Although such knowledge-poor similarity measures are often sufficient to obtain
acceptable results, the definition of more sophisticated measures may clearly improve
the quality of CBR systems. In general, the utility of cases completely depends on
the underlying domain and application scenario. Hence, considering as much domain
knowledge as possible during the similarity assessment should lead to much better

2



1.2. Objectives and Limitations of this Thesis

heuristics for selecting useful cases. Such knowledge-intensive similarity measures
might help decreasing the inexactness during problem-solving in domains where
CBR already has been applied successfully. Moreover, they might also allow to
apply CBR in domains where this technique could not be applied before, because
knowledge-poor measures led to unacceptable results.

The definition of knowledge-intensive similarity measures is a very difficult task
and leads again to knowledge acquisition problems like typical for other common AI
techniques. Unfortunately, no clear methodology or general applicable approaches
to support the modelling of such measures in an intelligent way have been developed,
yet. Nowadays, the mandatory knowledge usually has to be acquired manually, for
example, by interviewing domain experts. Further, the acquired knowledge has to
be formalised by using complex mathematical representations. Thus, the definition
of accurate similarity measures is still a complicated and time-consuming process
when implementing CBR systems.

It is important to point out that a clear distinction between knowledge-poor and
knowledge-intensive similarity measures is not possible. Both kinds of measures can
be defined by using the same representation formalisms. The only difference lies
in the amount of domain-specific knowledge encoded into the measures. So, each
approach that facilitates the definition of measures that contain more domain knowl-
edge without increasing the modelling effort significantly will probably contribute to
a more widespread use of knowledge-intensive similarity measures resulting in more
powerful CBR systems.

1.2. Objectives and Limitations of this Thesis

As discussed in the previous section, knowledge-intensive similarity measures allow
to approximate the utility of cases much better than traditional knowledge-poor
measures. However, this improvement of a CBR system’s competence is coupled
with the drawback of a significantly increased implementation effort, which is often
not acceptable in commercial applications. Unfortunately, no clear methodology of
how to define knowledge-intensive similarity measures efficiently has been developed,
yet. The state-of-the-art procedure can rather be characterised as a creative process
that requires particular skills and experiences from a human knowledge engineer. If
such an experienced knowledge engineer is not available or too expensive, the only
possibility is using standardised knowledge-poor similarity measures.

1.2.1. Objectives

The objective of this work is the development of a general framework towards a more
methodological approach for acquiring and formalising domain knowledge required
for the definition of knowledge-intensive similarity measures. In order to support a

3



1. Introduction

human knowledge engineer during this process, or even to automate the knowledge
acquisition process partially, the presented framework is based on the application of
machine learning strategies. The basic idea is to extract the required knowledge from
some special training data that can be acquired easier than the actual knowledge
itself. The fundamental goals used as guidelines during the development of our
framework can be summarised as follows:

General Applicability: In the last years several approaches towards learning of sim-
ilarity measures have been developed. The problem of these approaches is that
they mostly focus on very specific application situations. Firstly, they usually
allow to learn single representation elements of similarity measures only, but
are not applicable to support the definition of the entire similarity measure.
Secondly, they are often restricted to particular application tasks, e.g. classi-
fication tasks. However, nowadays CBR addresses a much wider spectrum of
application scenarios coupled with different properties and requirements. Due
to these differences, here, existing approaches for learning similarity measures
are mostly infeasible. Thus, one important objective of this work is the devel-
opment of a clear methodology for learning similarity measures that is suited
for various application scenarios in which CBR is applied today.

Integration into the CBR Process Model: In CBR research a generic process mo-
del introduced by Aamodt and Plaza (1994) is commonly accepted. This pro-
cess model describes the basic steps of problem-solving when applying CBR.
To point out the general applicability of our methodology for learning similar-
ity measures, we aim to integrate it into this generic process model. Therefore,
several basic steps of the process model have to be refined or extended, respec-
tively.

Implementation of Exemplary Learning Algorithms: Besides the development of
a general methodology describing basic concepts and processes required to
enable learning of similarity measures, another goal of this work is the devel-
opment of particular learning algorithms. These algorithms are required for
implementing the actual learning functionality as part of the entire framework.
We intend to realise this learning functionality by adapting well-researched
machine learning algorithms to the particular requirements of the learning
scenario targeted. Further, a first experimental evaluation will be necessary
to validate the basic learning capability of these algorithms.

Prototypical Implementation of the Introduced Concepts: Moreover, the imple-
mentation should not be restricted to particular learning algorithms, but
should also include other software modules required for applying the presented
framework. So, this work should result in a first prototype in order to show
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1.2. Objectives and Limitations of this Thesis

the applicability of the presented methodology and the corresponding con-
cepts. Because such a prototype relies on basic CBR functionality, it will be
realised in form of an extension of an existing commercial CBR tool.

1.2.2. Limitations

Since this work can be seen as a first step towards a more general application of
learning techniques in order to facilitate the definition of knowledge-intensive sim-
ilarity measures, this thesis cannot address all issues of this research topic. Thus,
we have to point out some basic assumptions and limitations to be considered when
employing the presented framework in real-world applications.

Focus on Particular Case Representation: Depending on the requirements of the
application domain, very different approaches to represent cases are used in
CBR. In this thesis, we focus on the formalism used most commonly, namely
attribute-value based case representations, which is sufficient in most domains,
and thus, is also employed in most commercial applications.

Focus on Particular Types of Similarity Measures: For attribute-value based case
representations, a particular method for defining similarity measures has proven
its worth. The basic idea of this approach is the so-called local-global principle
which states that the entire similarity assessment can be subdivided into a set
of local parts and a global part. Here, the local parts reflect the contribution of
individual attributes to the entire similarity assessment. Therefore, for each
attribute a so-called local similarity measure has to be defined. The global
part is responsible for estimating the actual utility of complete cases. It is
based on the outcome of the local similarity measures and so-called attribute
weights that reflect the relative importance of the individual attributes for a
case’s utility. Although sometimes other approaches to represent similarity
measures are used, in this work we focus on similarity measures defined ac-
cording to the local-global principle. On the one hand, this is a very powerful
approach and on the other hand, it is supported by the most commercial CBR
tools.

Prototypical Implementation: As already mentioned, one objective of this work
is an implementation of the presented framework by extending a commercial
CBR tool. However, it must be pointed out that the resulting prototype is only
intended to represent a demonstration and test environment for showing the
principle applicability of the concepts and algorithms introduced. This pro-
totype won’t be suited for a direct application of our framework in industrial
CBR practice. Therefore, also other issues (e.g. computational performance
or comfortable user interfaces) would have to be considered in detail, what
would go beyond the scope of this work.
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Limited Evaluation: In the scope of this thesis we restrict the necessary experi-
mental evaluation to two selected application scenarios with a clear practical
relevance. Nevertheless, the corresponding experiments should be sufficient to
show the capabilities of our framework.

1.3. Overview

This thesis is divided into four parts. The first part introduces the basic terminol-
ogy and discusses the problems addressed by this work. In the second part, the
framework and particular algorithms are presented. Scenarios how to apply the
framework in practice are discussed. The third part describes a prototypical imple-
mentation of the framework and a corresponding experimental evaluation. Finally,
in the fourth part an overview on related work and a discussion of the achieved
results is presented.

Part I: Foundations After this introduction, in Chapter 2 we start with a short
summary of Case-Based Reasoning. We discuss some of the characteristics
that are responsible for the great success of CBR. Later, in Chapter 4, we
will see that these aspects also motivate the development of a framework for
learning similarity measures. We also give a rough overview of the commonly
accepted process model of CBR and discuss the role of domain knowledge.
After summarising popular application fields, we investigate the relationship
between CBR and machine learning in more detail. In Chapter 3 we focus on
one important aspect of CBR, namely similarity measures used to select cases
that might be useful for solving a given problem. First, we discuss the role of
similarity measures and their mathematical foundations in detail. After that,
we review some traditional approaches for representing similarity measures and
introduce the more sophisticated representation formalism presumed in this
thesis. Finally, we show how such similarity measures are commonly defined,
and point out some crucial drawbacks of this state-of-the-art procedure.

Part II: The Framework In Chapter 4, we motivate why machine learning ap-
proaches seem to be promising for supporting the definition of similarity mea-
sures. After that, we present the basic concepts of our framework. We intro-
duce an alternative type of knowledge—called utility feedback—that can be
be used as a foundation for defining similarity measures. Further, we show
how this knowledge, in principle, might be exploited by machine learning al-
gorithms in order to learn accurate similarity measures. In Chapter 5, we
introduce two concrete learning algorithms that are suited to perform the
learning process described before. Finally, in Chapter 6 we discuss several
scenarios how the presented framework might be applied in practice.

6



1.4. Expectations on the Reader

Part III: Implementation and Evaluation In Chapter 7, we shortly describe the
prototypical implementation of our framework. Here, we do not focus on the
actual software code (e.g. class hierarchies), but more on the basic concepts
and the implemented user interfaces. In order to show the capabilities of the
learning algorithms developed, Chapter 8 discusses some evaluation experi-
ments carried out with the implemented prototype.

Part IV: Related Work and Conclusions In Chapter 9, we give an overview on
other work that is related to the topic of this thesis. After a short summary,
in Chapter 10, we then discuss this works’s outcome and contribution and
point out some open questions and further research issues.

1.4. Expectations on the Reader

In principle, we do not expect particular previous knowledge from the reader of this
thesis. However, although we give a short overview on CBR in Chapter 2, some
experiences in this field would certainly help to understand the motivation of this
work. For a more detailed description of CBR the reader is referred to respective
literature, e.g. (Bergmann, 2002; Lenz et al., 1998). Readers who are familiar with
the CBR technology, and in particular with the similarity measure representation
presumed, might also start with the actual description of our framework directly.
Concerning the learning algorithms described in Chapter 5, some basic knowledge
in Artificial Intelligence and Machine Learning might be helpful. A good overview
on Artificial Intelligence is given, for example, by Norvig and Russell (1995), while
Mitchell (1997) gives a good introduction into the fundamental concepts of Machine
Learning.
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2. Case-Based Reasoning

The desire for computer systems being able to support human experts during com-
plex problem-solving tasks is a traditional topic of Artificial Intelligence (AI) re-
search. In order to enable a computer system to give reasonable support when
solving problems in a complex application domain, it is indispensable to provide it
with specific knowledge about that domain. Several methodologies to realise such
knowledge-based systems have been developed, for example, rule-based and model-
based approaches. In the last years an alternative approach called Case-Based Rea-
soning (CBR) has become very popular. A huge number of applications have been
developed yet, addressing a wide range of domains like classification, diagnosis, de-
cision support, configuration or planning. In contrast to some other traditional AI
technologies, CBR has made the step from research to successful commercial ap-
plication very quickly. This success can be explained by the new problem-solving
paradigm that avoids some crucial problems of the traditional approaches and takes
care of some characteristic properties of problem-solving.

In this chapter, we want to give a brief overview on Case-Based Reasoning. We
start with a motivation of the problem-solving paradigm laying the foundation of the
CBR technology. After that, a short introduction to the basic concepts of CBR is
given, followed by an overview of some typical application fields. We also introduce
the basic terminology and some important definitions required in the scope of this
thesis. Because the aim of this work is to extend the capability of CBR systems
to learn domain knowledge, the last section of this chapter focuses on the relation
between CBR and Machine Learning (ML).

2.1. Motivations for CBR

The underlying paradigm of CBR introduced in Section 1.1 can be discussed from
two different points of view. On the one hand, it may be interpreted as the founda-
tion of a cognitive model of human reasoning. On the other hand, it gives an idea
of how to implement efficient problem-solving functionality for realising knowledge-
based computer systems. In the following, we want to discuss these two aspects of
the CBR paradigm in more detail.
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2. Case-Based Reasoning

2.1.1. Cognitive Model

The roots of CBR are founded in the research field of cognitive science. Here,
researchers try to understand and explain the procedures that human beings use
to solve the problems of their daily life. Therefore, cognitive models on how the
problem-solving processes might be executed within the human brain have been
developed on the basis of evidences obtained through psychological experiments.

One observation during the development of these models of human reasoning was
that human beings obviously use two different types of knowledge during problem
solving:

Generalised rules and procedures: This kind of knowledge represents general ex-
pectations that human beings possess about the world around them. A special
type of generalised knowledge is propagated by the script-theory (Schank and
Abelson, 1977). According to this model, a script is a special structure in
memory which describes general expectations about a typical situation. By
using generalised knowledge human beings are able to reason and act in the
world. However, the accumulation of such knowledge also requires a certain
understanding of the coherences in that world.

Situation-specific knowledge: Problems with the script-theory showed that human
beings use an additional kind of knowledge to act in the world appropriately.
The dynamic memory model (Schank, 1982) introduces specific knowledge
about typical situations as an additional knowledge resource. In contrast to
generalised knowledge, the acquisition of such specific knowledge requires no
deeper understanding of the underlying coherences. While the generation of
rules implies an inference process, specific knowledge is only stored in memory
in form of independent knowledge chunks.

According to the dynamic memory model, general knowledge and situation-specific
knowledge may be recalled to solve current problems. Which knowledge is actually
used depends on the particular situation. If no appropriate generalised knowledge
is available, particular situation-specific knowledge containing knowledge about a
situation that is similar to the current one might be reused.

To validate the developed models and to illustrate how situation-specific knowl-
edge might be used to solve problems more efficiently than without this kind of
knowledge, some of the models have been implemented by using computer systems.
An example for such an implemented cognitive model based on the dynamic memory
theory is CYRUS1 (Kolodner, 1993).

The prototypical implementations of cognitive scientists can be interpreted as the
first CBR systems. However, the focus of these systems was not a real support

1Computerized Yale Retrieval and Updating System
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2.1. Motivations for CBR

for solving important real-world problems, but an illustration of the underlying
cognitive models. Nevertheless, the ideas of these systems have been taken up by
AI research in order to build knowledge-based systems for practical usage.

2.1.2. Approach for Building Knowledge-Based Systems

Motivated by the cognitive models, the CBR paradigm has founded a new research
direction in AI2. Here, the focus of research is not an explanation of human reasoning,
but the implementation of knowledge-based computer systems being able to solve
real-world problems.

Most AI approaches to problem-solving developed so far are based on the formal-
isation and application of generalised knowledge about the addressed application
domain. In contrast, the paradigm that propagates the use of situation-specific
knowledge to solve problems offers three potential functional benefits compared to
the traditional methods (Leake, 1994).

Increased Problem-Solving Efficiency

Depending on the problem task, the process of finding a solution is often a complex
procedure since the solution has to be generated by combining a (possibly huge)
number of operations or components. This situation typically occurs in synthetic
problem domains like planning or configuration. Here, the generation of solutions
by employing generalised knowledge (e.g. rules) often leads to difficulties due to
the high computational complexity. This complexity is caused by the huge number
of theoretical possibilities to compose a solution. Storing already generated solu-
tions in order to reapply them for problems occurring in the future may increase
the problem-solving effort significantly compared to generating the solution again
from scratch. Besides such an increase of problem-solving efficiency with respect to
computation time, an increase of the generated solution’s accuracy is possible, too.
Consider a situation where the application of generalised knowledge may lead to
several valid solutions for a given problem. In such a situation reusing a well-tried
solution available in form of situation-specific knowledge can implicitly guarantee
high quality of the system’s output. In order to be able to consider solution quality
when applying a pure rule-based approach would require to encode the quality cri-
teria by introducing additional rules. However, quality criteria are often very vague
and therefore difficult to formalise.

2The first scientific conferences that address CBR as a methodology to build knowledge-based
systems have been organized around 1990. Today, CBR plays a significant role in AI research.
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2. Case-Based Reasoning

Handling of Incomplete Domain Knowledge

One major drawback of the traditional rule-based and model-based approaches to
problem-solving is the need of a complete and correct domain theory. Unfortunately,
in practice one is often confronted with poorly-understood domains where such a
domain theory is not available. Here, even human domain experts do not know all
the interdependences within the domain. When solving problems in such domains,
they often make decisions not based on generalised knowledge but on experiences
they made in similar situations in the past. If a knowledge-based systems is able
to process such situation-specific experience knowledge, it may provide reasonable
solution proposals even if it does not posses a complete and consistent model of the
underlying domain. Of course, such a procedure is couple with the drawback that
the proposed solution’s correctness cannot be guaranteed in general. However, if it
is not possible to guarantee the consistency of a domain theory this holds for the
other approaches as well.

Simplification of Knowledge Acquisition

Even if a complete and consistent domain theory exists in principal, another draw-
back of traditional AI approaches is the well-known knowledge acquisition bottleneck.
In order to enable a rule-based or model-based system to reason within the domain
theory, the domain knowledge has to be formalised by using the formal knowledge
representation required by the employed reasoning techniques (e.g. rules). How-
ever, generalised domain knowledge usually does not exist in such an explicit form.
Instead it is mostly only implicitly available in form of human domain experts who
use informal methods when being asked to describe their knowledge. Sometimes the
human experts even have serious difficulties to describe their knowledge instead of
applying it only. Therefore, a sophisticated and time-consuming knowledge acquisi-
tion process is usually a prerequisite when developing knowledge-based systems that
employ traditional AI approaches. In a first step, the knowledge has to be acquired,
for example, by performing interviews with domain experts. In a second step, the
acquired—but still informal—knowledge has to be formalised by transforming it into
the assumed knowledge representation.

One of the major functional benefits of Case-Based Reasoning is the possibility to
reduce the knowledge acquisition effort. Of course, the CBR approach also relies on
domain knowledge to be able to provide solution proposals for given problems. How-
ever, the use of situation-specific knowledge as core knowledge resource from which
to reason, simplifies the still necessary knowledge acquisition phase significantly.
In contrast to generalised domain knowledge, specific knowledge is often explicitly
available in form of documented solutions applied to problems already treated in the
past. In such a situation, knowledge acquisition is reduced to an appropriate for-
malisation of the already documented knowledge. Due to the underlying reasoning
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2.2. CBR in a Nutshell

mechanism of the CBR approach even this formalisation step is usually easier than
more formal AI approaches. However, it is a natural desire to reduce the remain-
ing knowledge acquisition effort for developing CBR systems further by providing
“intelligent” computer support.

2.2. CBR in a Nutshell

In the last years Case-Based Reasoning research has led to the development of
numerous concepts, techniques, and algorithms to implement the CBR paradigm in
practice. This section gives a brief overview of the main aspects of CBR as an AI
technology. Since a detailed description would go beyond the scope of this thesis,
we restrict the summary only on the fundamental aspects relevant for the work
described in the subsequent sections. More detailed information about the CBR
technology can be found, for example, in publications by Kolodner (1993); Aamodt
and Plaza (1994); Lenz et al. (1998); Bergmann et al. (1999a).

First, it is shown how situation-specific knowledge can be used to solve problems.
In order to illustrate the general functionality of CBR systems, an overview of a
commonly accepted process model of CBR is given. In the following, the role of
knowledge in this process model is pointed out in more detail. Finally, basic terms
and definitions representing the foundation for the subsequent parts of this work are
introduced.

2.2.1. Case-Based Problem-Solving

In CBR situation-specific knowledge originally was seen as experience about particu-
lar problem-solving episodes observed in the past. Typically, such an episode, called
case, is represented by a pair consisting of a problem description and a description
of the corresponding solution.
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Figure 2.1.: Case-Based Problem-Solving
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2. Case-Based Reasoning

According to the basic CBR paradigm (see Section 2.1), case knowledge can be
used to solve a new, still unsolved problem (see Figure 2.1). For this, the description
of the new problem is compared to the problem parts contained in the available cases.
The set of all available cases is also called case base. The case with the problem
description being most similar to the new problem then is selected as a candidate to
solve the current problem. For this, the solution part of the candidate case is tried
to be reused to solve the new problem. If the solution cannot be applied directly, it
has to be adapted in order to fit the new situation.

2.2.2. The Case-Based Reasoning Cycle

The general procedure when applying CBR, is commonly described by the classi-
cal Case-Based Reasoning cycle introduced by Aamodt and Plaza (1994) (see Fig-
ure 2.2).
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Figure 2.2.: The Case-Based Reasoning Cycle by Aamodt & Plaza

The starting point of a new problem solving-process is a given problem for which
a solution is required. This problem can be characterised as a new case for which
the solution part is still unknown. This new case—often also called query—is then
processed in four consecutive steps.
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Retrieve

The first step is the retrieval of one or several cases considered to be useful to support
solving the current problem. The hope is to retrieve one or several cases that contain
solutions that can be easily reused in the current problem-solving context. Because
it is usually very unlikely that the case base already contains a problem description
that matches the new problem exactly, a method to estimate the utility of available
cases is required. According to the basic CBR assumption (cf. Section 1), here the
concept of similarity is used. This means, the task of the retrieval phase is to select
cases whose problem descriptions are similar to the current problems’ description.
The underlying assumption is that these cases contain solutions being very similar
to the searched—but still unknown—solution of the current problem.

To realise this retrieval task, CBR systems employ special similarity measures
that allow the computation of the similarity between two problem descriptions. Be-
cause the interpretation of this similarity strongly depends on the particular domain,
similarity measures are part of the general knowledge of the system.

Depending on the size of the case base, the information amount contained in
single cases, and the complexity of the used similarity measure, the retrieval step is
often a challenging task with respect to computation time. In order to manage this
complexity, a large number of different retrieval strategies have been developed, e.g.
see Lenz (1999); Wess (1993); Schaaf (1996); Schumacher and Bergmann (2000).

Reuse

After selecting one or several similar cases, the reuse step tries to apply the con-
tained solution information to solve the new problem. Often a direct reuse of a
retrieved solution is impossible due to differences between the current and the old
problem situation. Then the retrieved solution(s) have to be modified in order to
fit the new situation. How this adaptation is performed strongly depends on the
particular application scenario. An overview of existing approaches to adaptation
is, for example, given by Wilke and Bergmann (1998).

In general, adaptation methods require additional general knowledge about the
application domain. Because this leads to additional knowledge acquisition effort,
many CBR systems used today do not perform case adaptation automatically, but
leave this task to the user. Then, of course, the quality of the retrieval step influ-
ences the problem-solving capabilities of the entire CBR system primarily. Even if
automatic adaptation is provided, the quality of the retrieval result will strongly
influence the efficiency of the system due to its impact on the required adaptation
effort.

After adapting the retrieved case automatically or manually to fit the current
situation, a solved case is obtained containing a suggested solution for the current
problem.
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2. Case-Based Reasoning

Revise

Depending on the employed adaptation procedure, the correctness of the suggested
solution often cannot be guaranteed immediately. Then it becomes necessary to
revise the solved case. How such a revision is performed, strongly depends on the
particular application scenario. For example, it might be possible to apply the
suggested solution in the real world to see whether it works or not. However, often
a direct application of an uncertain solution is impossible due to the corresponding
risks (e.g. medical diagnosis systems). Then the revision has to be performed
manually by a human domain expert or by alternative methods such as computer
simulation.

If the revise step fails, the case has to be repaired or a new attempt to generate
a valid solution has to be carried out. This new attempt can be realised in different
ways. One possibility is to apply another adaptation alternative (if existing). Other
possibilities are adapting another retrieved case or executing a new retrieval in order
to obtain hopefully more useful cases.

Usually, the focus of the revise phase lays on the detection of errors or incon-
sistencies in the suggested solution and the initiation of further problem-solving
attempts. Unfortunately, up to now less research has been carried out to enable
CBR systems to recognise the reasons for failed problem-solving processes. If the
system would be able to detect these reasons, it could react and, for example, adapt
its internal knowledge resources in order to avoid similar failures in the future. Such
a behaviour is often characterised as introspective reasoning or introspective learning
and is discussed in more detail in Section 2.4.

Retain

If the solved case has passed the revise step successfully, a tested/repaired case
will be available representing a new experience that might be used to solve similar
problems in the future. The task of the CBR cycle’s last step is to retain this
new case knowledge for future usage. Therefore, the new case may be added to
the case base. However, it has been shown that a general storage of all generated
cases is not always useful. In order to enable better control of the retain process,
various approaches for selecting cases to be retained have been developed (Aha,
1991; Smyth and Keane, 1995b; Leake and Wilson, 2000; Ferrario and Smyth, 2000;
Reinartz et al., 2000). These approaches often imply a reorganisation of the entire
case base when adding a new case, for example, by removing other cases.

Generally, the capability to acquire new case knowledge during a CBR system’s
lifetime principally adds these systems to the class of learning systems. However,
many CBR systems developed so far do not exploit this concept of the CBR cycle
at all. This holds especially for the commercially employed systems. Further, the
original idea of the CBR cycle focuses on learning case knowledge. Nevertheless, the
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possibility to learn also general knowledge when processing the CBR cycle should
be considered, too (see Section 2.4).

2.2.3. Knowledge Container

As other approaches to building knowledge-based systems, the CBR approach also
relies on specific domain knowledge to be able to draw reasonable conclusions. Al-
though the CBR paradigm propagates the use of situation-specific knowledge, the
exclusive usage of knowledge contained in cases is usually insufficient to build pow-
erful CBR applications. Hence, already the classic CBR cycle (cf. Section 2.2.2)
introduced additional general knowledge to be used during the different phases of the
reasoning process. According to Richter (1995) one can generally distinguish four
different knowledge containers (see Figure 2.3) within a CBR system, namely the
vocabulary, the case knowledge, the similarity measure, and the adaptation knowl-
edge.

���������	

Figure 2.3.: Knowledge Containers

Vocabulary

The vocabulary represents the central foundation of the other knowledge containers.
It defines which information is considered to be important in the respective domain
and how this information can be expressed. Therefore, it introduces information
entities and structures to represent domain knowledge and can be characterised as
the “language” used to talk about the domain. Although the vocabulary does not
directly define knowledge used for problem-solving, it is also an important knowledge
resource. When defining the vocabulary, one has to decide whether an available
information item about the domain is important for problem-solving or not. Usually,
this decision can only be made by a domain expert based on her/his expertise.
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2. Case-Based Reasoning

Generally, various approaches to represent the vocabulary are known. Which
knowledge representation is the most appropriate one depends on the domain ad-
dressed. In Section 2.2.4 we will introduce the representation formalism that we
presume in the scope of this thesis.

Case Knowledge

The use of case knowledge is obviously a property of CBR that distinguishes this
approach from most other AI approaches to problem-solving. Case knowledge is
situation-specific knowledge typically obtained in problem-solving situations of the
past. Since an already performed problem-solving process can be characterised as
a kind of experience, case knowledge is often also denoted as experience knowledge.
In contrast to general knowledge, one important characteristic of situation-specific
knowledge is that is has not to be understood exactly to be exploited for problem-
solving.

The traditional CBR approach assumes that a case consists of two major parts:

Problem Part: This part of a case contains information characterising the problem
situation occurred in the past. Due to the basic assumption of CBR, it is cru-
cial that this description in particular includes information relevant to decide
whether two problems are similar or not.

Solution Part: This part contains information used to reproduce the solution ap-
plied successfully in the past when being confronted with new problem situa-
tions.

Nevertheless, the solution part can also include additional information that might
improve or simplify the reuse of the experience, for example, information about

• the way how the solution was obtained,

• the solution’s quality,

• constraints restricting the solution’s application,

• alternative solutions.

In some domains a strict differentiation between the problem and the solution part
is impossible or inaccurate. Instead, sometimes a case might be characterised as an
arbitrary situation-specific knowledge chunk. In Section 2.3 some application fields
are discussed where CBR has been successfully applied even though the traditional
problem-solution distinction is not obvious.

In order to be able to reuse case knowledge efficiently, it is important to consider
the characteristics of the particular application domain. Because CBR has been
applied successfully in many different domains, several formalisms to represent case
knowledge have been developed, for example:
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• Attribute-value based representations are a very flexible and commonly used
approach to represent case knowledge in a structured way.

• Object-oriented representations can be seen as an extension of the “flat” attrib-
ute-value based representation. They are useful in situations where additional
structural information is required.

• In planning domains representations based on first order logic are commonly
used.

• To represent locality information (e.g., in architecture) sometimes also graph
representations are suitable.

In the scope of this thesis we presume an attribute-value based representation,
which we will define formally in Section 2.2.4.

Similarity Measure

To be able to reuse case knowledge accurately, additional general knowledge is re-
quired. In order to select cases to be reused in a particular problem situation,
CBR systems employ special similarity measures. The task of these measures is to
estimate the utility of cases with respect to the current problem-solving task. Un-
fortunately, the actual utility of cases cannot be determined until problem-solving
is finished, or in other words, utility is an a-posteriori criterion. The reason for
this is the general problem that the underlying utility functions are usually only
partially known. In order to be able to approximate the utility of cases before the
actual problem solving process, CBR systems rely on specific similarity knowledge
encoded in form of similarity measures. Hence, similarity measures can be charac-
terised as an a-priori criterion or a heuristics used to approximate the unknown
utility functions.

It is obvious that the knowledge contained in these measures is crucial for the
retrieval step of the CBR cycle, and so for the entire problem-solving capability of
the system. The amount and quality of the available similarity knowledge strongly
affects the outcome of the retrieval phase.

Depending on the concrete interpretation of the term similarity, modelling similar-
ity measures is a more or less difficult task when implementing case-based systems.
Chapter 3 deals with this issue in detail. It also introduces approaches how to
represent similarity measures in CBR systems.

Adaptation Knowledge

Adaptation knowledge just as similarity knowledge is general knowledge needed to
allow efficient reuse of situation-specific knowledge contained in cases. While the
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similarity measure is used to select cases to be reused, adaptation knowledge is
required to control the actual reuse of previously selected cases. It defines how a
retrieved solution can be adapted to fit the special circumstances of a new problem
situation. Generally, one can distinguish between two basic approaches to perform
solution adaptation:

Transformational Adaptation: Here, the cases’ solution part represents a concrete
solution generated in the past. During adaptation the retrieved solution has to
be transformed to a new solution fulfilling the current situation’s requirements
by adding, modifying or deleting solution parts.

Generative Adaptation: Instead of storing the actual solution it is also possible to
store the process by which the solution was generated in the past. This infor-
mation can be reused to generate an accurate solution in a similar situation
efficiently. Therefore, a generative problem-solver tries to replay the known
solution way as far as possible. If some solution steps cannot be replayed,
alternative solution steps have to be generated from scratch. This strategy is
also denoted as derivational analogy (Cunningham et al., 1993).

The major difference between these two basic approaches is the way how adap-
tation knowledge has to be provided and how it is employed. One the one hand,
generative adaptation requires a generative problem-solver that is, in principle, able
to solve a given problem without the use of cases. Hence, this problem-solver re-
quires a complete and consistent domain theory. This general domain knowledge
is also used to perform adaptation of retrieved cases. Some approaches realise case
adaptation by using constraint satisfaction techniques (Purvis and Pu, 1995).

On the other hand, transformational adaptation is performed without a generative
problem-solver. Thus, it requires another formalism to represent and to apply adap-
tation knowledge within the CBR system. Which concrete representation formalism
is appropriate depends on the application domain. A common approach are adap-
tation rules (Bergmann et al., 1996; Leake et al., 1995; Hanney and Keane, 1996)
or adaptation operators (Schmitt and Bergmann, 1999b). Another approach for de-
scribing adaptation knowledge within the case representation are generalised cases
(Bergmann et al., 1999b; Bergmann and Vollrath, 1999; Mougouie and Bergmann,
2002). A detailed overview of adaptation techniques is given, for example, by Wilke
and Bergmann (1998); Fuchs et al. (1999); Hanney et al. (1996).

Relations between Knowledge Containers

Richter (1995) pointed out that the four knowledge containers should not be seen
as completely independent. Generally, it is possible to shift knowledge between the
separate containers in order to adapt CBR systems to the specific conditions of
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the addressed application domain. Two basic motivations for shifting knowledge
between knowledge containers are conceivable:

Facilitating Knowledge Acquisition: This situation occurs if it is easier to acquire
knowledge of one container compared to another one. A typical example is a
knowledge shift between case and adaptation knowledge. On the one hand,
if it is easy to describe valid adaptation possibilities (e.g. through rules) one
may save case knowledge acquisition effort. On the other hand, if it is really
difficult to acquire or formalise general adaptation knowledge, additional case
knowledge might replace general adaptation knowledge.

Improving Problem-Solving Efficiency: Shifting knowledge between containers mi-
ght also increase the efficiency when solving problems. For example, knowledge
about provided adaptation possibilities can significantly improve the quality
of the case retrieval. If the similarity measure would “know” valid adaptation
possibilities it could use this knowledge to retrieve the best “adaptable” cases
instead of only retrieving the most similar ones. How to realise a shift between
adaptation and similarity knowledge to enable such an adaptation guided re-
trieval (Smyth and Keane, 1993, 1995a; Leake et al., 1996a) is discussed in
detail in Section 6.5.

Finally, it can be summarised that a proper management of the knowledge con-
tained in the four knowledge containers is necessary to ensure powerful CBR applica-
tions. Such a management includes the accurate distribution of available knowledge
over the containers just as the maintenance of the knowledge to guarantee its quality
continuously (Roth-Berghofer, 2002; Heister and Wilke, 1997). Although numerous
techniques and algorithms to process the knowledge have been developed yet, the
management of the knowledge has come into focus of CBR research just recently.

2.2.4. Basic Terms and Definitions

As mentioned in the previous section, the foundation to describe information and
knowledge about a particular application domain is the vocabulary. In this section
some general assumptions and corresponding definitions about the basic structure
of the vocabulary used to describe case knowledge in the scope of this work are
introduced.

Basic Case Structure

Contrary to the case structure of the traditional CBR approach that distinguishes
between a problem and a solution part, in this work we assume a case structure
that can be used in a broader sense. According to Bergmann (2002) we distinguish
between the following two components of cases:
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Characterisation Part: The case characterisation part contains all information re-
quired to decide whether a case can be reused in a certain situation. That
means this part of the case can be seen as an index used to estimate the
utility of cases.

Lesson Part: The lesson part describes all additional information that might be
useful for the actual reuse of the case. Note that the lesson part may also be
empty. In this situation, the information contained in the case characterisation
part is already sufficient to reuse the case.

From the traditional point of view the problem part corresponds to the case
characterisation part and the solution part corresponds to the lesson part of cases.
In the following, the representation formalism used to describe the two mentioned
case components is introduced.

Attribute-Value Based Representation

In the scope of this work we assume attribute-value based case representations. The
basic element of this representation formalism are attributes:

Definition 2.1 (Attribute) An attribute A is a pair (Aname, Arange) where Aname

is a unique label out of some name space and Arange is the set of valid values
that can be assigned to the attribute, also called value range. Further, aname ∈
Arange ∪ {undefined} denotes the current value of a given attribute A identified by
the label Aname.

The special attribute value undefined may be used, if an attribute value is un-
known or irrelevant. In principle, the value range of an attribute may contain an
arbitrary (possibly infinite) collection of elements of a basic value type. Examples
of basic value types are

• the numeric type Integer

• the numeric type Real

• symbolic types

• temporal types like Date and Time

• etc.

Usually, the range of allowed values is not defined directly within the attribute
declaration but by the declaration of a specialised value type. This approach sim-
plifies the definition of identical value ranges for several attributes by assigning type
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names to attributes. In order to simplify the notation, however, in this work we
assume that each attribute possesses its own value range.

To describe the set of allowed attribute values efficiently, three possibilities to
define attribute ranges can be used:

1. By specifying only the basic value type all values of this type are allowed to be
assigned to the attribute (e.g., all Integer values).

2. When using numeric types, a set of allowed values can easily be defined by the
specification of an interval (e.g., Real values of the Interval [0, 1]).

3. The most flexible way, which is also the only feasible way for the definition
of symbolic types, is an explicit enumeration of all allowed values (e.g., an
enumeration of colours {red, yellow, green}).

As already mentioned above, we assume that cases consist of a case characterisa-
tion and a lesson part:

Definition 2.2 (Case Characterisation Model, Space of Case Char. Models) A
case characterisation model is a finite, ordered list of attributes D = (A1, A2, . . . , An)
with n > 0. The symbol D̂ denotes the space of case characterisation models.

Definition 2.3 (Lesson Model, Space of Lesson Models) A lesson model is a fi-
nite, ordered list of attributes L = (A1, A2, . . . , An) with n ≥ 0. The symbol L̂
denotes the space of lesson models.

Now, we are able to introduce the basic definitions for a formal description of
cases using an attribute-value based representation:

Definition 2.4 (Case Model, Space of Case Models) A case model is a pair C =
(D, L) = ((A1, A2, . . . , An), (An+1, An+2, . . . , Am)) ∈ D̂×L̂ with m ≥ n. The symbol
Ĉ denotes the space of case models.

Note that we assume a non-empty case characterisation part in opposite to the
lesson part of cases that might contain no information at all.

Definition 2.5 (Case, Case Characterisation, Lesson) A case according to a given
case model C ∈ Ĉ is a pair c = (d, l) where d = (a1, a2, . . . , an) with n > 0
and l = (an+1, an+2, . . . , am) with m ≥ n are vectors of attribute values and ai ∈
Airange ∪{undefined} is the value of the attribute Ai. Further, the vector d is called
the case characterisation and the vector l is called the lesson of c.

Definition 2.6 (Case Space, Case Characterisation Space, Lesson Space) The
set of all valid cases according to a given case model C ∈ Ĉ is the case space CC of
C. Moreover, the symbol DD denotes the case characterisation space according to
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a case characterisation model D ∈ D̂, and the symbol LL denotes the lesson space
according to a lesson model L ∈ L̂.

Compared with an object-oriented programming language, the case model corre-
sponds to the concept of a class and a single case corresponds to an instance of that
class.

Note that attributes just as attribute values of a case model C, or a case c re-
spectively, can be accessed either by referring the index i = 1 . . . n within the case
model C or by the unique name of the attribute. In this thesis, we use the following
notation to access attributes and attribute values:

• access to attributes of a case model C: C.Ai or C.Aname

• access to attribute values of a case c: c.ai or c.Aname

Further, we define a special kind of cases called queries:

Definition 2.7 (Query) Given a case model C ∈ Ĉ, a query is a special case q =
(d, l) ∈ CC with an empty lesson part l, i.e., for all attributes Ai ∈ l holds q.ai =
undefined.

In a CBR system one has to deal, of course, not only with single cases and queries
but with as set of cases leading to the following definition:

Definition 2.8 (Case Base) A case base CB for a given case model C is a finite
set of cases {c1, c2, . . . , cm} with ci ∈ CC .

Example of an Attribute-Value Based Representation

To illustrate the definitions introduced in the previous section, in Figure 2.4 an
example of an attribute-value based case representation is shown. Here, cases repre-
sent descriptions of personal computers and might, for example, be used to realise a
CBR-based product recommendation system (see Section 2.3.4). The corresponding
case model consists of several attributes with adequate value ranges representing
the technical properties of PCs.

2.3. Application Fields

The CBR approach has already proven its general applicability in many different
application domains. The capability to build powerful knowledge-based systems
without the need of a complete formalisation of the underlying domain has also
led to a great commercial success of CBR recently (Bergmann et al., 1999a; Lenz
et al., 1998; Stolpmann and Wess, 1999). In particular, in domains not requiring
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Figure 2.4.: Example: Attribute-Value based Case Representation

necessarily case adaptation, a huge number of commercial applications have been
developed yet. However, in very complex domains, where sophisticated adaptation
functionality and knowledge is essential, existing applications are still restricted to
research prototypes.

In this section, an overview of some typical application fields of CBR is given,
comprehending commercially successful domains as well as domains still in focus of
research only.

2.3.1. Classification

One of the first application fields where CBR systems have been applied success-
fully is classification.Here, the origin is a technique called Nearest-Neighbour (NN)
classification (Dasarathy, 1991; Mitchell, 1997), that can be characterised as a quite
simple CBR approach.

The goal of classification is to predict the class membership of given entities. The
basic idea of NN-classification is using information about entities for which the class
membership is already known. In order to classify a new entity, its description has
to be compared to the descriptions of the known entities. From an abstract point of
view, each entity can be characterised as a point in some problem space defined by
the properties used to describe the entity (see Figure 2.5). To predict the unknown
class of the new entity, its nearest neighbours within the problem space have to be
determined by using some distance metric. Finally, the information about the class
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membership of these NNs is used to predict the unknown class of the given entity.
Depending on the concrete realisation, the class of the actual NN or a weighted
voting using the classes of k -NNs is used as prediction.
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Figure 2.5.: Nearest-Neighbour Classification

In the example shown in Figure 2.5 the entities belong either to the class “+” or
“-”. Using a voted 4 -NN classification the prediction for the shown query would be
that it belongs to class “+” because 3 of the 4 NNs belong to this class.

From the CBR point of view it is obvious that this approach requires no sophis-
ticated adaptation methods as long as the number of cases exceeds the number of
possible classes significantly. Although a weighted voting can be characterised as
a simple form of compositional adaptation3 (Wilke and Bergmann, 1998), the case
retrieval is the central task in classification domains. This is one reason for the very
good suitability of CBR for classification. Another reason is the easy capability to
handle noisy and incomplete data, leading to problems when deploying traditional
approaches to classification like decision trees4. Due to these advantages, numerous
commercial and prototypical case-based classification systems have been developed.

2.3.2. Help Desk

Another application field, in which CBR is already an established technology, are
so called help desk systems. These systems are used to provide support in diagnosis
situations in technical or medical domains (Althoff, 1992; Althoff et al., 1998). A
case-based help desk system used to diagnose computer problems is described by
Göker et al. (1998). A diagnosis task is similar to a classification task, however, it
is also coupled with some significant differences.

In a diagnosis situation one wants to find out the reason for an observed malfunc-
tion of a complex system like a technical machine, software, or a biological organism.

3One speaks about compositional adaptation if a solution is composed of solutions obtained from
several cases.

4Special techniques to handle these problems (e.g. tree pruning, determination of probable values
for unknown attributes) have been developed here, too.
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Of course, the reason of such a malfunction can also be interpreted as a form of class
membership. However, in a diagnosis situation one is also interested in a way to
remedy the malfunction, also called therapy. Another important difference to classi-
fication is the fact that it is often difficult to obtain the necessary information about
the current problem situation, also called symptoms. For example, in medical di-
agnosis one has to perform sophisticated examinations (e.g., blood examination) to
acquire this information. Therefore, one concern of diagnosis systems is to minimise
the amount of required information about symptoms while ensuring high diagnosis
accuracy.

2.3.3. Knowledge Management

In the last years a new interdisciplinary research field called Knowledge Management
has found a growing attention in the business world. The issue of knowledge man-
agement is a systematic collection, storage, sharing, and maintenance of knowledge
that is relevant for business processes of organisations and companies (Liebowitz,
1999). By managing such knowledge in a systematic and computer-aided way, one
expects to increase the efficiency of the business processes in order to gain compet-
itive advantages.

When comparing the issues of knowledge management with CBR, one can recog-
nise that both disciplines have a lot in common. Principally, CBR can be considered
as a technique to manage a specific form of knowledge, namely situation-specific ex-
perience knowledge. Hence, the CBR methodology can also be characterised as
Experience Management (Bergmann, 2002). However, when applying CBR func-
tionality to provide “intelligent” computer-aided techniques for knowledge manage-
ment, some specific characteristics of this application domain have to be taken into
consideration:

• The experience knowledge used in business processes does often not comply
with the problem solution distinction assumed by the traditional CBR assump-
tion.

• The CBR functionality usually has to be integrated into the existing IT-infra-
structure and superior organisational processes.

• Knowledge management systems are commonly used by many users who pos-
sess very different experiences and demands when working with the system.

• The users of knowledge management systems are often enabled to enter new
knowledge into the system by themselves due to their expertise in the un-
derlying domain. However, they are usually not familiar with the internal
knowledge representation of the systems.
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In particular, in the research field Software Engineering the deployment of CBR
concepts in order to improve software development processes has become very pop-
ular (Tautz and Althoff, 1997). Here, experiences collected in software development
processes of the past are reused in order to improve the efficiency of ongoing pro-
cesses. One such approach of Software Engineering is called Experience Factory
(Basili et al., 1994; Althoff et al., 1997) that establishes a framework for manag-
ing all kinds of experience knowledge being are relevant for software development
projects.

2.3.4. Electronic Commerce

Today, the internet is becoming increasingly a widely used platform for selling in-
formation, services, and goods. Electronic Commerce (eCommerce) offers both,
companies and customers new opportunities for trading. The major advantages of
the new medium are, in principle,

• the availability around the clock,

• the irrelevancy of the physical location of the business partners,

• easier possibilities to provide or take up personalised services,

• the chance to save both, money and time.

However, in practice these principle advantages lead to big challenges for the
development of the required software tools. Besides security and performance issues,
intelligent methods to automate the traditional sales processes are required (Segovia
et al., 2002).

Product Recommendation Systems

Traditional sales processes are often characterised by an intensive interaction be-
tween the seller and the customer and can typically be divided into three phases:
pre-sale, sale, and after-sale (Wilke, 1999). Particularly, the automation of the pre-
sales phase in an electronic shop requires the development of intelligent software
agents able to take the place of human shop assistants, which advise customers
during the selection of adequate products or services.

Recently, CBR turned out to be a suitable and commercially very successful ap-
proach to implement such product recommendation systems (Wilke, 1999; Wilke
et al., 1998; Bergmann et al., 2002; Burke, 1999). Here, descriptions of available
products are considered to be the cases and the wishes and demands of customers
are interpreted as the problems to be solved. This means, the task of the CBR
system is to find a product description that fits the individual wishes and demands
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of a particular customer as well as possible (Schmitt, 2003). Because the perfect
product is usually not available or even does not exist at all, the system has to find
an available product that is most similar to the perfect product.

Depending on the products to be sold, different CBR techniques have to be em-
ployed to handle this task. On the one hand, if the products are fixed and cannot be
changed (e.g., books or standard music CDs) a similarity-based retrieval might be
sufficient to select appropriate products. On the other hand, if the products allow
modifications to customise them with respect to the particular customer demands
(e.g., cars or personal computers), adaptation functionality might be required to
adapt given base products. Depending on the extend of the provided modification
possibilities, different adaptation strategies are suitable, for example, simple rule-
based modifications (Schmitt and Bergmann, 1999a) or more sophisticated configu-
ration procedures (Stahl and Bergmann, 2000).

The E-Commerce scenario is also associated with several specific characteristics
similar to the characteristics of the knowledge management scenario discussed in
the previous section. Generally, the following aspects have to be considered when
implementing intelligent customer support systems based on CBR:

• The absence of a clear distinction between problem and solution parts of case
knowledge. Instead, cases might be seen as solutions only, namely product
descriptions.

• Intelligent customer support systems are used by many different users (here,
customers) who may have implicit and individual preferences with respect to
the offered products.

• The language of the customers used to describe their needs and wishes may
differ from the language used by the providers to describe their products.

• Customers may have problems to describe their needs and wishes exactly and
sometimes they even do not know them in detail a-priori.

• The interaction between the sales agent and the customer has to be minimised,
i.e., suitable products have to be offered as fast as possible to achieve best
customer satisfaction (Schmitt, 2003).

Collaborative Filtering

In the last years another technique called collaborative filtering has become very
popular to realise product recommendation systems. This approach has obvious
similarities with the CBR idea, even if it possesses also its own characteristics. A
detailed comparison of the two approaches is given, for example, by Hayes et al.
(2001).
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Using collaborative filtering, the product recommendations for a particular cus-
tomer are based on recommendations of other customers who are believed to have
similar preferences. Therefore, the set of products preferred by the individual cus-
tomers has to be compared to determine correlations in the customer’s interests.
After detecting groups of customers who have all shown an interest in similar prod-
ucts, the set of these preferred products can be used to recommend new products
to the members of these groups. For example, in Figure 2.6 three customers have
shown an interest in products B, C, and D and rejected product E. That might
be an evidence they have a similar taste with respect to the offered products. Be-
cause of Customers 1 and 2 have also preferred the product F, Customer 3 might
be interested in this product, too.
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Figure 2.6.: Product Recommendation based on Collaborative Filtering

One of the major strengths of the collaborative filtering approach is that it allows
to build powerful recommendation systems without needing formal representations
of the products being recommended. This is in particular an advantage, if it is
very difficult to extract product properties being relevant for the buying decision
of the customers. Typical examples are books, music CDs, or films where interest
in products mainly depends on subjective tastes of the customers. However, tra-
ditional collaborative filtering approaches have problems to provide good quality
recommendations for customers who want to buy a type of product for the very first
time.

Recent work has shown that it may be useful to combine CBR and collaborative
filtering in order to profit of the advantages of both when implementing product
recommendation systems (O’Sullivan et al., 2002). From the CBR point of view,
a profile of a customer together with her/his preferred products can be considered
to be a case. In order to advise a product to a customer her/his profile has to
be compared to the profiles of other known customers. The products preferred by
very similar customers according to the given profiles are then candidates to be
recommended to the current customer.

2.3.5. Configuration and Design

A traditional application field of AI systems are configuration and design tasks.
Here, knowledge-based systems are used to support the generation of complex enti-
ties (e.g., technical systems or buildings in architecture) that have to fulfill a given
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specification. The common procedure for generating such entities is a composition
and adaptation of different primary entities, called components. Because usually not
all compositions theoretically possible represent valid entities in the underlying do-
main, special constraints have to be considered during the configuration procedure.
For example, the general functionality of a technical system has to be guaranteed.

Although only a few commercial successful applications have been developed yet,
several research prototypes have already proven the suitability of CBR to build
efficient configuration systems. A detailed description of a case-based configuration
system to be applied in the E-Commerce scenario is described by Stahl (2000); Stahl
and Bergmann (2000); Stahl et al. (2000).

2.3.6. Planning

As configuration and design, planning also belongs to the traditional synthetic tasks5

of AI. Generally, a planning problem is given by an initial state, a goal state and a
set of planning operators. The objective of the planning process is to reach the goal
state by consecutively applying operators on the initial state. A series of planning
operators is called a plan.

Similar to the configuration scenario, CBR can be used, in principle, to build
efficient planning systems. Here, the basic idea is to reuse existing plans in order
to improve the generation of new plans in similar situations. However, because of
the complexity of planning tasks, adaptation is a crucial aspect of every case-based
planning system. This is one of the reasons why case-based planning is still in focus
of research only.

2.4. CBR and Machine Learning

Case-based Reasoning is not only an approach to problem-solving but also provides
the possibility to build computer systems that are able to learn new knowledge
during usage. The original learning capability of CBR is operationalised by the
retain phase of the CBR cycle (see Section 2.2.2). Here, new knowledge acquired
during problem-solving is added to one knowledge container (see Section 2.2.3),
namely the case base.

In this section a more general overview of aspects concerning learning in CBR is
given. After a short discussion of the foundations of learning, approaches to realise
learning functionality in CBR systems are discussed more detailed.

5Synthetic tasks require the active generation of a solution in contrast to analytic tasks like
classification, where a solution consists of an analysis of a given problem only.
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2.4.1. Foundations

To be able to talk about learning possibilities of CBR systems, first we have to
clarify the interpretation of a learning computer system. In the field of Machine
Learning learning systems are commonly defined as follows (Mitchell, 1997):

Definition 2.9 (Learning System) A computer system is said to learn from expe-
rience E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.

So, for example, a case-based system used for a classification task might improve
its performance measured by classification accuracy by collecting experiences ob-
tained when classifying new entities.

This general definition states nothing about the way how to achieve the described
learning ability. In a CBR system we assume that the improvement of the system’s
performance is based on changes in the employed knowledge rather than on changes
in the employed base algorithms. Therefore, it is useful to introduce a specialised
definition for learning CBR systems:

Definition 2.10 (Learning CBR System) A CBR system is said to learn, if its per-
formance at tasks of some class of tasks T, measured by a given performance measure
P, improves through changes in the knowledge containers triggered by experience E.

To achieve an improvement of a CBR system’s performance, two different kinds
of changes in the knowledge containers can be distinguished:

1. Changes in one container might be performed independently from the other
containers, by adding or removing knowledge items. Such modifications obvi-
ously change the amount of knowledge available for problem-solving.

2. Shifting knowledge from one container to another container might be useful,
too. This means, the amount of available knowledge is not changed, however,
parts of the knowledge are represented in a different form.

In Section 2.2.3 the general possibility to shift knowledge from one container to
another one has already been discussed. There, the focus was laid on the devel-
opment phase of a CBR application. However, shifting knowledge as a result of
learning is usually performed automatically during the CBR system’s lifetime.

In Machine Learning another aspect concerning the application of acquired knowl-
edge is important. Basically, two contrary learning methods are distinguished
(Mitchell, 1997):

Lazy Learning: Lazy learning methods defer the generalisation required to solve
problems beyond the presented training data until a new problem is presented.
Such a procedure leads to a reduced computation time during training but to
an increased computational effort when solving new problems.
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Eager Learning: On the contrary, eager learning methods perform the mandatory
generalisation before new problems are presented to the system by construct-
ing a hypothesis about the appearance of the unknown target function of the
domain. After constructing a hypothesis of the target function based on some
training data, new problems might be solved very efficiently with respect to
computation time. However, eager methods cannot consider the current prob-
lem during the generalisation process.

2.4.2. Collecting and Maintaining Case Knowledge

Obviously, learning according to the traditional CBR cycle is a form of lazy learning.
Here, the training data—given in form of cases—is only stored during the training
phase. How to use this data to solve new problems is not decided until such a new
problem is presented to the system.

Several algorithms to realise this original learning approach of CBR have been
developed very early (Aha, 1991). These case-based learning (CBL) algorithms,
which mainly focus on traditional classification tasks, can be summarised as follows:

CBL1: This is the most simple algorithm. Here, all presented cases are stored in
the case base.

CBL2: The aim of this algorithm is to avoid storage of irrelevant cases. Only
cases classified incorrectly using already stored cases are added to the case
base. However, the success of this strategy also relies on the cases’ presenta-
tion order. Hence, this strategy might cause classification failures in future
problem-solving situations.

CBL3: This modification of the CBL2 algorithm also removes those cases from
the case base that decrease the overall classification accuracy of the system.
Therefore, CBL3 keeps track of the frequencies with which cases contribute to
correct classifications. Cases coupled with significantly low frequencies are re-
moved from the case base. However, removing cases might cause classification
failures in the future, too.

The CBL3 algorithm can also be seen as a kind of maintenance technique because
it administrates the case knowledge in order to preserve high classification accuracy
with time when storing new cases. In the last years a lot of other approaches
to case base maintenance have been developed. Such work can also be seen as
a contribution to improve the retain phase and so the learning facilities of CBR.
The aim of many of these techniques is to minimise the size of the case base while
preserving the problem-solving competence (Smyth and Keane, 1995b; Smyth and
McKenna, 1998; Leake and Wilson, 2000; Roth-Berghofer, 2002). Others also try to
discover and eliminate inconsistencies within the case base (Reinartz et al., 2000)
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similar to the CBL3 algorithm’s objective that was originally introduced to handle
noisy training data. Recent approaches now also consider other application fields
like knowledge management or E-Commerce. Here, cases might be stored by several
different users of the system which leads to the need of collaborative maintenance
(Ferrario and Smyth, 2000).

A detailed investigation of theoretical aspects concerning case-based learning al-
gorithms is given by Globig (1997). Here, it is discussed which concepts, in principle,
can be learned by a case-based learning algorithm when dealing with classification
tasks.

2.4.3. Learning General Domain Knowledge

According to the knowledge container model (see Section 2.2.3), cases are not the
only domain knowledge employed in CBR systems. The additional general knowl-
edge contained in the vocabulary, the similarity measure, and the adaptation knowl-
edge is also important to ensure efficient problem-solving. In principle, it should
also be possible to learn this general knowledge, too, even if the traditional CBR
cycle does not operationalise this facility explicitly. In the following, we give a
brief overview of the state-of-the-art concerning the learning of general knowledge
in CBR. To motivate the work described in this thesis we discuss the aspect of
learning similarity measures more detailed.

Learning the Vocabulary

As discussed in Section 2.2.3, the vocabulary represents the basis for all other do-
main knowledge incorporated in a CBR system. Therefore, high quality of this
knowledge is absolutely essential to ensure reasonable problem-solving capabilities.
For example, choosing the wrong attributes for characterising case knowledge will
prevent accurate retrieval results, even if the similarity measure is quite sound.

Due to the fundamental character of the vocabulary, the development of strategies
to learn it is a really hard task. Nevertheless, basically, two operations to improve
an initially given vocabulary can be distinguished:

• Many works in Machine Learning have shown that removing irrelevant at-
tributes can increase the accuracy of classifiers (e.g., decisions trees, nearest-
neighbour and neural-network classifiers) significantly.

• In particular, the CBR approach often requires the introduction of additional
attributes to ensure reasonable retrieval results. Typically, these virtual at-
tributes are used to represent important relations between other, already given
attributes.
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Virtual attributes are very important when applying CBR, because they may
simplify the definition of adequate similarity measures significantly. They provide
a possibility to avoid non-linear similarity measures by shifting the non-linearity to
the definition of the vocabulary. For example, to classify rectangles with respect to
the property “quadrat”, it is important to consider particularly the ratio between
the height and width, although the height and width do already describe a given
rectangle completely. Without a virtual attribute that makes this relation explicit,
the similarity measure would have to consider this crucial relation to enable correct
classifications. This is an example for the possibility to shift knowledge between the
vocabulary and the similarity measure.

Although, feature selection is a classic topic of Machine Learning, approaches to
support the definition of an accurate case representation when developing a CBR
application are very rare. Today, the acquisition of the vocabulary is usually still
a creative process that can only be carried out appropriately with intensive help
of domain experts. Nevertheless, in the future existing feature selection strategies
developed to improve classifiers might be adapted to apply them in the more general
CBR context.

Unfortunately, suitable approaches to facilitate the determination of crucial vir-
tual attributes are rare. In the field of Machine Learning the branch of constructive
induction aims on constructing accurate representations from given raw data. Due
to the high combinatorial complexity6 only learning strategies guided by human
domain experts might be feasible.

Learning the vocabulary only seems to be suitable during the development phase
of a CBR application. Because the representation of all other knowledge relies on
the defined vocabulary, changing the vocabulary always necessitates maintenance
of the other knowledge containers. Such a maintenance procedure is a complex
and time-consuming task that cannot be automated completely (Heister and Wilke,
1997). Thus, one usually tries to avoid changes in the vocabulary during the lifetime
of CBR applications as far as possible.

Learning the Similarity Measure

High quality case knowledge is meaningless until it cannot be retrieved in the right
situation. Therefore, the similarity measure is obviously a very crucial aspect of
every CBR system. As already discussed in Section 2.2.3, when defining similarity
measures, one has to consider the specific circumstances of the particular application
domain. Similar to the vocabulary, the definition of similarity measures is mostly a
creative process requiring a certain understanding of the application domain. Hence,
usually only domain experts are able to provide the knowledge to be encoded into
the similarity measure.

6Note that new virtual attributes might be defined by arbitrary functions over existing attributes!
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However, domain experts usually are not familiar with the formal representation
of similarity measures used by the employed CBR tools. This leads to additional de-
velopment effort because CBR experts are required to translate the informal knowl-
edge provided by the domain expert into the formal “language” of the CBR system.
In addition, domain experts often are able to detect similarities between different
problem situations without being able to explain precisely the reasons.

Generally, approaches towards learning similarity measures might improve the
similarity definition process. On the one hand, they might reduce the effort required
to model the measures. On the other hand, learning might ensure high quality
measures even in poorly understood domains or in situations where experienced
domain experts are not available (e.g., because the associated personal costs cannot
be justified).

In contrast to the vocabulary, similarity measures contain knowledge that is di-
rectly reuse-related. This means that changes in this knowledge container generally
do not require changes in other containers. This allows a redefinition of similar-
ity measures without major problems during the lifetime of a CBR application in
order to adapt the system to changes in the environment. So, due to the rela-
tive independence of similarity knowledge, learning strategies might also facilitate
periodical modifications of the similarity measures to ensure or even improve the
problem-solving capabilities of a CBR system.

Basically, the following arguments motivate the development of methods for learn-
ing reuse-related knowledge:

• From the cognitive point of view (see Section 2.1.1) it is an obvious step to
extend the learning facilities of CBR towards learning general knowledge, too.
Experimental studies have shown that human beings do not only memorise
situation-specific experiences but also improve their background knowledge
with increasing problem-solving routine (Suzuki et al., 1992).

• When recalling the functional benefits of CBR discussed in Section 2.1.2, it
is obvious that methods to learn general knowledge might increase the appli-
cability of CBR. Firstly, improving reuse-related knowledge would, of course,
increase the problem-solving efficiency, too. Secondly, if reuse-related knowl-
edge could be acquired by learning approaches, the applicability of CBR in
poorly understood domains might be increased additionally. And last but not
least, learning would obviously also simplify the knowledge acquisition that
would lead in turn to lower development costs for developing CBR applica-
tions.

• The introduction of well-founded learning strategies might establish a more
engineering-like procedure of similarity measure construction. The creative
procedure representing the state-of-the-art still complicates a widespread em-
ployment of the CBR technology.
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• Particularly, in non-traditional application fields like Knowledge Management
and E-Commerce (see Sections 2.3.3 and 2.3.4) in some situations learning
approaches are probably the only feasible way to acquire accurate reuse-related
knowledge. This issue will be discussed in Chapter 6 in more detail.

Although the advantages of incorporating learning strategies to acquire reuse-
related knowledge are obvious, and although several researchers have already pos-
tulated the need for such strategies (Richter, 2003, 1992; Leake, 1994; Leake et al.,
1997b; Aha and Wettschereck, 1997), general approaches to learning similarity mea-
sures are still very rare. A detailed review of existing work will be given in Chapter 9.

One reason for the absence of general feasible approaches might be the “unusual”
learning task. Due to the very specific formalisms used to represent similarity knowl-
edge (see Section 3.3) and due to the specific role of this knowledge, applying com-
mon Machine Learning strategies directly is difficult. The objective of this work is
the development of a framework and particular algorithms enabling CBR systems
to learn similarity knowledge.

Learning Adaptation Knowledge

The most aspects discussed concerning learning of similarity measures also hold for
the second container containing reuse-related knowledge, namely adaptation knowl-
edge.

However, one difference can be noticed: In contrast to similarity knowledge, adap-
tation knowledge usually is described in form of a common representation formalism,
namely rules. Although several approaches to learn rules have been developed in
Machine Learning, only few strategies to learning adaptation knowledge in the CBR
context can be found in literature.

For example, Wilke et al. (1996) present a general framework for learning adap-
tation knowledge but they do not discuss concrete learning algorithms. Further,
Hanney and Keane (1996, 1997) have developed a general approach to learn adap-
tation rules from case knowledge and Leake et al. (1996b) present an approach that
learns adaptation knowledge in form of “adaptation cases”.
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When recalling the basic assumption of CBR (cf. Section 1.1), it is obvious that
the term similarity is crucial here. In order to employ the assumption for building
knowledge-based systems, a formalisation of the term similarity, that can be pro-
cessed by computer systems, is required. In practice, so-called similarity measures
are used to compute the similarity between queries and cases.

In this chapter, the role of similarity measures for case-based problem-solving is
discussed in detail. First, the basic task of similarity measures, namely the retrieval
of useful cases, is recapitulated. After describing fundamental properties of simi-
larity measures, approaches to represent them in computer systems are introduced.
Further, two different views on similarity measures regarding the role of domain
knowledge are discussed. The last section deals with the state-of-the-art procedure
of modelling similarity measures in CBR systems and the drawbacks caused by this
procedure.

3.1. The Task: Retrieving Cases

When initiating a case-based problem-solving process, the first phase is the retrieval
of useful cases providing solutions to be reused easily for solving the problem at
hand (see Section 2.2.2).

3.1.1. Exact Match Vs. Approximation

The need for retrieving information is not an exclusive issue of CBR. Retrieval mech-
anisms are also a central topic in traditional Database Management Systems (DBMS)
and in the research field of Information Retrieval (IR). However, the retrieval goals
are quite different:

• In traditional database applications queries1 are used to express hard condi-
tions with respect to the expected retrieval results. This means, only an exact
match between the query and a particular data set leads to the retrieval of
this data set.

1In DBMS queries are usually expressed in a standardised query language like SQL (Structured
Query Language).
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• In Information Retrieval as well as in CBR, queries are processed in a more
flexible manner. Here, in principle, all data sets approximately matching a
given query may appear in the retrieval result. So, the retrieval goal is the
selection of a certain number of data sets matching the query as exactly as
possible.

The main difference between these two different retrieval strategies lays in the
expectations of the users. In a DBMS the users usually know exactly in what kind
of data sets they are interested in. Hence, they are able to define a query that
describes their information need explicitly. On the one hand, if the corresponding
retrieval result is empty, the users will accept this fact because it gives them the
information that the searched data is not available at all. On the other hand, the
users are usually interested in all matching data sets, even if their number is really
huge.

In IR and CBR systems the users are in a different situation. Here, mostly they
either do not precisely know what they are searching for, or they are not able to
express their information needs explicitly. Moreover, they are often reliant on some
results even if the returned information is slightly different to the query. So, on the
one hand, if the database contains no data matching their query exactly, the users
will still be interested in alternative data sets being quite close to the given query.
On the other hand, the users are mostly not interested in arbitrary large retrieval
results. They rather expect that the system provides a ranking of the retrieved data
corresponding to its relevance regarding the query. Such a ranking allows the users
to decide more easily which information might be useful for them and which not.

To estimate the relevance of data sets both IR and CBR systems try to estimate
a form of mathematical distance between the query and the data sets. However, the
difference between IR and CBR approaches is the amount of employed background
knowledge and the way how this knowledge is used to compute such distances.
While IR approaches are based on keyword matching between textual documents,
CBR systems usually deal with more structured data (cf. Section 2.2.4) allowing
more sophisticated retrieval approaches. In the following, we focus on the specific
retrieval task of CBR systems.

3.1.2. Approximating Utility of Cases

The basic task of the retrieval phase in CBR is the selection of cases being useful
for the current problem-solving process. In the following, we assume the existence
of some case model C = (D, L) ∈ Ĉ according to Definition 2.4. This leads us to
the following formalisation of the term utility :

Definition 3.1 (Utility Function) A function u : DD × CC −→ R is called utility
function on the case space CC .
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Such a utility function assigns a value from the set of Real numbers to a case c
and a case characterisation d (the query). This value represents the utility of c with
respect to d. Of course, a utility function depends on the underlying case model C.
However, for one case model C there might exist an arbitrary number of different
utility functions u1, u2, . . . , un. A utility function induces the following preference
relation:

Definition 3.2 (Preference Relation Induced by Utility Function) Given a case
characterisation d, a utility function u induces a preference relation �u

d on the case
space CC by ci �u

d cj iff u(d, ci) ≥ u(d, cj).

Generally, the utility of cases and so the underlying utility function may be influ-
enced by several different aspects, for example, by

• the underlying domain and the application scenario addressed,

• the provided problem-solving functionality of the CBR system employed,

• the knowledge contained in the different knowledge containers of the CBR
system,

• the preferences of all users, individual users, or groups of users,

• the point of time of the problem-solving situation, etc.

Such influences on utility functions will be discussed in more detail in Chapter 6.

The basic problem of utility functions is that they are usually only partially known
and thus, cannot be computed a-priori, i.e. before a particular case has been reused.
In CBR similarity measures are used to approximate the unknown utility function.
This means, the quality of the case retrieval—and so the outcome of the first phase
of the CBR cycle—strongly depends on the quality of the used similarity measures.
If the similarity measure does not approximate the underlying utility function suf-
ficiently, the retrieval phase might select cases not reusable at all, although useful
cases are principally available in the case base. Because the case retrieval lays the
foundation of the entire CBR cycle (cf. Section 2.2.2), insufficient retrieval results
will strongly restrict a CBR system’s problem-solving competence and performance.

Today, in most commercial CBR applications the importance of the similarity
measure is even increased. Here, the benefit of the applications is mostly com-
pletely determined by the quality of the case retrieval. Because existing commercial
applications mostly do not provide case adaptation mechanisms, only the quality
of the available case knowledge and the capability to select the most useful cases is
responsible for the quality of the output.
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3.1.3. Similarity-Based Retrieval

To estimate the utility of a given case c for a given query q, the case characterisations
of c and q have to be compared by a similarity measure generally defined as follows:

Definition 3.3 (Similarity Measure, General Definition) A similarity measure is
a function Sim : DD × DD −→ [0, 1].

Assume a given query q, a case base CB, and a similarity measure Sim. The aim of
a similarity-based retrieval can be illustrated as shown in Figure 3.1. By computing
the similarity between q an the case characterisations of the cases contained in CB,
the retrieval mechanism has to identify a list of cases, called retrieval result, ordered
by the computed similarity values. The number of cases to be retrieved may be
specified by one of the following parameters:

• An integer value specifying the maximal number of cases to be retrieved.

• A real value specifying a similarity threshold. This threshold defines the least
similarity value required for some case c to appear in the retrieval result.
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Figure 3.1.: Similarity-Based Retrieval

Now we are able to introduce a formal definition for a similarity-based retrieval re-
sult. Note that this definition states nothing about the particular retrieval algorithm
used to obtain this retrieval result.
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Definition 3.4 (Similarity-Based Retrieval Result) Let C = (D, L) ∈ Ĉ be a case
model, q = (dq, lq) ∈ CC be a query, CB = {c1, c2, . . . , cm} be a case base containing
cases ci = (di, li), and Sim be a similarity measure. A similarity-based retrieval
result based on Sim is an ordered list RRx

Sim(q) = (c1, c2, . . . , cn) with Sim(dq, di) ≥
Sim(dq, dj) for all 0 ≤ i ≤ j ≤ n fulfilling the following conditions:

• either x > 0 is an integer value and it holds |RRx| = x if x ≤ |CB| or
|RRx| = |CB| if x > |CB|. The retrieval result is then called size limited and
x is called maximal retrieval result size,

• or x > 0 is a real value and it holds Sim(dq, dretrieved) ≥ x for all cretrieved ∈
RRx. The retrieval result then is called threshold limited and x is called
similarity threshold,

• or x is undefined and it holds |RR| = |CB|. The retrieval result then is called
unlimited.

Sometimes it cannot be guaranteed that retrieval results are always complete
according to the following definition:

Definition 3.5 (Completeness of Retrieval Results) Assume RRx
Sim(q) to be de-

fined as in Definition 3.4. RRx is complete with respect to the given case base CB if it
holds Sim(dq, dretrieved) > Sim(dq, dnot retrieved) for all cretrieved = (dretrieved, lretrieved)
∈ RRx and for all cnot retrieved = (dnot retrieved, lnot retrieved) ∈ CB \ RRx.

Whether the completeness2 of retrieval results can be ensured or not depends on
the applied retrieval algorithm. Over the years, several retrieval algorithms have
been developed to guarantee efficient retrieval of similar cases (Lenz, 1999; Wess,
1993; Schaaf, 1996). For example, Schumacher and Bergmann (2000) present a spe-
cific retrieval strategy that abandons the completeness property due to performance
issues. Such specialised algorithms are in particular necessary, if the retrieval has
to deal with huge case bases containing several thousands of cases. However, in
this work we imply the completeness of retrieval results as long as not pointed out
differently. This is not a crucial restriction since many retrieval algorithms applied
in practice ensure completeness.

3.2. Mathematical Foundations

After having formulated the general task of similarity measures in the previous sec-
tion, this section deals with some basic mathematical foundations concerning simi-
larity measures. First, different ways to represent similarity formally are presented.
Further, the relation between distance measures and similarity measures is investi-
gated. After that, some general properties of similarity measures are discussed.

2Note that unlimited retrieval results are inevitably complete.
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3.2.1. Formalising Similarity

Besides the formalism introduced in Definition 3.3, other mathematical ways to
represent similarity can be defined. For example, Richter (1992) enumerates the
following possibilities:

1. A binary predicate SIM(x, y) ⊂ D
2
D meaning “x and y are similar”.

2. A binary predicate DISSIM(x, y) ⊂ D2
D meaning “x and y are not similar”.

3. A ternary relation S(x, y, z) ⊂ D3
D meaning “y is at least as similar to x as z

is to x”.

4. A quaternary relation R(x, y, u, v) ⊂ D4
D meaning “y is at least as similar to

x as u is to v”.

5. A function sim(x, y) : DD × DD −→ [0, 1] measuring the degree of similarity
between x and y. This possibility corresponds to our formalism introduced in
Definition 3.3.

6. A function d(x, y) : DD × DD −→ R+ measuring the distance between x and
y.

Obviously, these formalisms contain in increasing order more and more informa-
tion about the similarity of case characterisations. On the one hand, the two binary
predicates SIM and DISSIM are quite simple formalisms that cannot be used to
compute ranked retrieval results. Hence, they are insufficient to be used in CBR
systems. On the other hand, the two relations S and R are in principle already
sufficient to rank cases. For example, S allows to define the concept “y is most
similar to x” for some set of case characterisations M ⊂ DD:

(∀z ∈ M) S(x, y, z)

The relation R can be used to induce the relations S by S(x, y, z) ↔ R(x, y, x, z).
While S and R contain only ordinal information about similarity, the two functions
sim and d also contain cardinal information. Although ordinal information is mostly
sufficient, CBR implementations usually use similarity or distance functions. Of
course, these functions also induce the similarity relations, for example sim induces
S and R as follows:

S(x, y, z) ↔ sim(x, y) ≥ sim(x, z)

R(x, y, u, v) ↔ sim(x, y) ≥ sim(u, v)
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Generally, distance measures are a dual notation to similarity measures because
a given distance measure d can be transformed to a similarity measure sim via an
accurate function f :

sim(x, y) = f(d(x, y))

Popular candidates for f are, for example, f(z) = 1− (z)/(1 + z) for unbounded d
or f(z) = 1 − (z)/(max), if d attains a greatest element max. Due to this dualism,
in the following we restrict the discussion on similarity measures only.

3.2.2. Properties of Similarity Measures

First, some basic properties of similarity measures are described. After that, it is
discussed how soundness of similarity measures might be defined.

Basic Properties

In general, we do not assume that similarity measures necessarily have to fulfill
general properties beyond the basic Definition 3.3. Nevertheless, in the following
we introduce some definitions of basic properties typically be fulfilled by similarity
measures.

Definition 3.6 (Reflexivity) A similarity measure is called reflexive if Sim(x, x) =
1 holds for all x. If it additionally holds Sim(x, y) = 1 → x = y, Sim is called
strong reflexive.

Reflexivity is a very common property of similarity measures. It states that a
case characterisation is maximal similar to itself. From the utility point of view,
this means, a case is maximal useful with respect to its own case characterisation.
Therefore, similarity measures might violate the reflexivity condition, if a case base
contains sub-optimal cases. Similarity measures are usually not strong reflexive,
i.e. different cases may be maximal useful regarding identical queries. For example,
different solution alternatives contained in different cases might be equally accurate
to solve a given problem.

Definition 3.7 (Symmetry) A similarity measure is called symmetric, if it holds
Sim(x, y) = Sim(y, x) for all x, y. Otherwise it is called asymmetric.

Symmetry is a property often assumed in traditional interpretations of similarity.
However, in many application domains it has been emerged that an accurate utility
approximation can only be achieved with asymmetric similarity measures. The
reason for this is the assignment of different roles to the case characterisations to be
compared during utility assessment. Usually, the case characterisation representing
the query has another meaning than the case characterisation of the case to be rated.
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Definition 3.8 (Triangel inequality) A similarity measure fulfills the triangle in-
equality, if Sim(x, y) + Sim(y, z) ≤ 1 + Sim(y, z) holds for all x, y, z.

The triangle inequality is usually demanded for distance measures only and is
required to ensure the property of a metric. However, due to the dualism of similarity
and distance measures it can also be formulated for similarity measures by applying
an accurate transformation.

Definition 3.9 (Monotony, General Definition) Let C = (D, L) ∈ Ĉ be a given
case model and Sim be a similarity measure according to Definition 3.3. Further,
assume the existence of an order relation <DD

defined over DD. Sim is called
monotonic, if it holds Sim(x, y) ≥ Sim(x, z) for x <DD

y <DD
z or z <DD

y <DD
x.

The monotony property, which can be characterised as a kind of “compatibility”
to the ordering on DD (if existing), is an important aspect when modelling similarity
measures in practice. We will discuss this issue in more detail in Section 3.3.

Soundness of Similarity Measures

Like utility functions, which induce the preference relation introduced in Defini-
tion 3.2, a similarity measure also induces a preference relation:

Definition 3.10 (Preference Relation Induced by Similarity Measure) Given a
case characterisation d, a similarity measure Sim induces a preference relation 
Sim

d

on the case space CC by ci = (di, li) 
Sim
d cj = (dj, lj) iff Sim(d, di) ≤ Sim(d, dj).

These preference relations can now be used as a foundation to define correctness
criteria for similarity measures. According to Bergmann (2002), the soundness of a
similarity measure Sim can be defined on different levels of generality:

1. Total soundness w.r.t. the complete domain, if Sim orders all possible cases
correctly according to a given utility preference relation.

2. Total soundness w.r.t. a given case base CB, if Sim orders all cases contained
in CB correctly according to a given utility preference relation.

3. Partial soundness w.r.t. a given case base CB, if Sim orders the “most useful”
cases of CB correctly according to a given utility preference relation.

Because these general soundness criteria are difficult or even impossible to measure
in practice, in this work we will focus on measurable and more expressive criteria.
Basically, we are interested in retrieving the most useful cases regarding to some
utility function u. However, depending on the concrete application scenario, minor
retrieval errors can be tolerated. This leads to the following definitions:
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Definition 3.11 (Best-n List) Suppose a list of cases CL = (c1, c2, . . . , cn, . . . , cm)
partially ordered according to some preference relation �, i.e. ∀i, j ci � cj holds.
The list CLbest−n = (c1, c2, . . . , cn, . . . , cr) so that ∀ci ∈ CLbest−n, ∀cj ∈ CL \
CLbest−n ci � cj holds, is called best-n list of CL where n is a parameter to be
determined. Further, ∀n ≤ i, j ≤ r it holds: ci �� cr and ci �≺ cr.

This definition states that the best-n list for some list of cases CL consists of
the n most preferred cases (c1, c2, . . . , cn) of CL extended by all cases of CL being
indistinguishable from cn w.r.t. the underlying preference relation �. Figure 3.2
illustrates this exemplarily for a best-4 list. Here, the best-4 list consists of the 4
cases c1, c2, c3, c4 preferred mostly, and three additional cases c5, c6, c7, since these
cases are indistinguishable from c4 w.r.t. �.
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Figure 3.2.: The best-n List

Definition 3.12 (n-in-m Soundness of Retrieval Results) Let q = (d, l) be a que-
ry, CB be a case base and Sim be a similarity measure. Further, let RRSim(q) be the
corresponding complete, unlimited retrieval result according to Definitions 3.4 and
3.5, and let CBu(q) be the partially ordered CB induced by the preference relation
�u

d according to Definition 3.2. RRSim(q) is called n-in-m sound with n ≤ m iff the
best-m list RRbest−m

Sim (q) of RRSim(q) includes the best-n list CBbest−n
u (q) of CBu(q),

i.e. iff it holds: CBbest−n
u (q) ⊆ RRbest−m

Sim (q).

Informally spoken, a retrieval result is n-in-m sound, if the set of m most similar
cases contains the n most useful cases. A quite hard criterion is the 1-in-1 soundness
because it requires that the most useful case is also returned as most similar case.
The best-n list criterion is required because we are not dealing with totally ordered
lists but only with partial orders.

The n-in-m soundness of retrieval results can be used to evaluate the quality of the
underlying similarity measure in practice. Therefore, one has to validate whether a
given similarity measure leads to n-in-m sound retrieval results for a particular set
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of queries. Because the soundness can mostly not be achieved for every query, one
might measure the percentage of n-in-m sound retrieval results with respect to all
considered retrievals.

3.3. Representing Similarity Measures

To be able to implement a similarity-based retrieval (see Definition 3.4) in a CBR sys-
tem, one has to represent the necessary similarity measure in a way that a computer
system can process it. Generally, accurate representations for similarity measures
strongly depend on the used case representation and the defined vocabulary. In
this section we introduce representation formalisms suitable for the attribute-value
based case representation (cf. Section 2.2.4) presumed in this work. We review some
common similarity and distance measures being used in many traditional CBR ap-
plications. After that, we introduce the local-global principle and show how this
principle allows a decomposition of similarity measures to enable efficient modelling
of similarity aspects when developing CBR applications. We also discuss the differ-
ent components of similarity measures defined according to the local-global principle
in more detail.

3.3.1. Traditional Measures

The similarity measures employed in many traditional CBR systems are often quite
simple. They have not been developed especially for the purpose to be used in
the scope of CBR, but they are founded on common mathematical principles and
are also used in other scientific fields. In the following, we review some of these
traditional measures.

Traditional Measures for Binary Attributes

The most simple attribute-value based case representation consists only of binary
attributes, i.e. attributes with a binary value type, for example, the values {0, 1}.
The following distance and similarity measures have been proposed for such case
representations, where x̄, ȳ represent the attribute vectors to be compared:

distH(x̄, ȳ) =
1

n
· | {i | xi �= yi} | (Hamming Distance)

The Hamming distance computes a distance value proportional to the number of
attributes with different values. It fulfills the properties strong reflexivity, symmetry
and the triangle inequality introduced in Section 3.2.2.

simH(x̄, ȳ) =
1

n
· | {i | xi = yi} | (Simple Matching Coefficient, SMC)
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The simple matching coefficient (SMC) represents a similarity measure fulfilling
the same properties as the Hamming distance. While both the Hamming Distance
and the simple matching coefficient treat all attributes equally, the following gen-
eralisation of the SMC introduces weights to express the importance of individual
attributes for the similarity assessment:

simH,�w(x̄, ȳ) =
n∑

i=1, xi=yi

wi with wi ≥ 0 and
n∑

i=1

wi = 1

(Weighted SMC)

A second generalisation of the SMC allows to assign equal and unequal attributes
a different influence on the computed similarity by the introduction of an additional
parameter 0 < α < 1:

simH,α(x̄, ȳ) =
α · simH(x̄, ȳ)

(α · simH(x̄, ȳ)) + (1 − α) · (1 − simH(x̄, ȳ))
(Non-linear SMC)

On the one hand, when choosing a value α < 0.5, the influence of unequal at-
tributes is weighted higher. On the other hand, a value of α > 0.5 leads to higher
weighting of equal attributes.

Another popular similarity measure for binary attributes is the Tversky contrast
model (Tversky, 1977). This measure is again a generalisation of the SMC and
allows to treat every value combination differently by introducing three parameters
α, β and γ:

simT,f,α,β,γ(x̄, ȳ) = α · f({i | xi = yi = 1}) −
β · f({i | xi = 1 ∧ yi = 0}) −
γ · f({i | xi = 0 ∧ yi = 1})

(Tversky Contrast Model)

Here, the function f measures the set of attributes with a particular value com-
bination, for example, f might simply return the number of these attributes.

Traditional Measures for Numeric Attributes

Of course, case knowledge often also contains numeric data. The most traditional
measures used to handle numeric attributes are distance measures in the mathemat-
ical sense. Popular examples of such distance measures are the following:

dist|·|(x̄, ȳ) =
1

n
·

n∑
i=1

| xi − yi | (City Block Metric)

distEuklid(x̄, ȳ) =

√√√√ 1

n
·

n∑
i=1

(xi − yi)2 (Euclidean Distance)
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distMax(x̄, ȳ) = maxn
i=1 | xi − yi | (Maximum Norm)

Basically, these three metrics can be generalised by introducing a parameter p,
leading to the Minkowski norm:

distMinkowski,p(x̄, ȳ) = (
1

n
·

n∑
i=1

| xi − yi |p)
1
p (Minkowski Norm)

To express the different importance of different attributes, all mentioned metrics
allow the introduction of attribute weights leading to the weighted Minkowski Norm:

distMinkowski,p, �w(x̄, ȳ) = (

n∑
i=1

wi· | xi − yi |p)
1
p (Weighted Minkowski Norm)

3.3.2. The Local-Global Principle

When dealing with more complex case representations consisting of attributes with
various different value types, the previously described traditional similarity and dis-
tance measures are not appropriate. Instead one needs a more flexible similarity
measure that can be adapted on a particular attribute-value based case representa-
tion. The foundation of such a similarity representation is the so-called local-global
principle. According to this principle it is possible to decompose the entire simi-
larity computation in a local part only considering local similarities between single
attribute values, and a global part computing the global similarity for whole cases
based on the local similarity assessments. Such a decomposition simplifies the mod-
elling of similarity measures significantly and allows to define well-structured mea-
sures even for very complex case representations consisting of numerous attributes
with different value types. In the following the different elements required to de-
fine similarity measures according to the local-global principle are discussed more
detailed.

3.3.3. Local Similarity Measures

Local similarity measures represent knowledge about the utility of cases on a very
low and detailed level. Basically, they are used to express the influence of each single
attribute on the utility estimation. In this work, we assume the existence of a local
similarity measure for each attribute of the case representation3 according to the
following general definition:

3In CBR systems local similarity measures are often not defined particularly for attributes, but
for data types that may be assigned to several attributes. However, for simplicity reasons in
this work we assume that each attribute has its own data type and so its own local similarity
measure.
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Definition 3.13 (Local Similarity Measure, General Definition) A local similar-
ity measure for an attribute A is a function simA : Arange ×Arange −→ [0, 1], where
Arange is the value range of A.

This general definition still states nothing of how to represent local similarity
functions in practice. Basically, an accurate representation strongly depends on the
basic value type of the attribute. Therefore, in the following we introduce some
representation formalism for different value types used commonly.

Local Similarity Measures for Discrete Value Types

CBR applications often have to deal with symbolic data represented by attributes
with symbolic, discrete value ranges. For unordered symbol types, i.e. if no addi-
tional information about the relation between the defined symbols is available, the
only feasible way to represent local similarities is an explicit enumeration in form of
a lookup table:

Definition 3.14 (Similarity Table) Let A be a symbolic attribute with the value
range Arange = (v1, v2, . . . , vn). A n × n-matrix with entries si,j ∈ [0, 1] representing
the similarity between the query value q = vi and the case value c = vj is called a
similarity table for Arange.

A similarity table represents a reflexive measure, if the main diagonal consists of
similarity values sii = 1 only. Further, we call a similarity table symmetric if the
upper triangle matrix is equal to the lower triangle matrix, i.e. if for all i, j sij = sji

holds.
Figure 3.3 shows an example of a similarity table for the attribute casing of the

personal computer example domain. This table represents the similarities between
different kinds of computer casings, for example, it expresses that a mini- and a
midi-tower are quite similar. However, the degree of similarity between these casings
also depends on which value occurs as query, i.e. the similarity table is asymmetric.
The semantics here is, that customers will probably be less satisfied with a mini-
tower when demanding a midi-tower (sim(midi-tower, mini-tower) = 0.7), than in the
opposite case (sim(mini-tower, midi-tower) = 0.9). The underlying assumption is
that bigger casings would be tolerated due to the advantage of the greater number
of extension slots.

A similarity table represents a very powerful representation because of the possi-
bility to define separate similarity values for all possible value combinations. Nev-
ertheless, the effort required to define such a measure increases quadratically with
the number of values to be considered.

Generally, similarity tables can be used for all discrete value types where the
value range is defined by an explicit enumeration of a finite set of values, i.e. the
values need not necessarily be symbols. However, for an enumeration of numbers it
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Figure 3.3.: Similarity Table

is usually more accurate to use the available ordinal information in order to reduce
the modelling effort.

Local Similarity Measures for Numeric Value Types

For numeric attributes similarity tables are usually not suitable, either because the
value range contains an infinite number of values or because other representations
simplify the similarity definition dramatically. In order to reduce the modelling
effort, one can profit from the implicit ordering of numbers. A commonly used
method is to reduce the dimension of the similarity measure by defining it on the
difference between the two values to be compared. In contrast to the general 2-
dimensional similarity functions, this approach results in a 1-dimensional function
only:

Definition 3.15 (Difference-Based Similarity Function) Let A be a numeric at-
tribute with the corresponding value range Arange. Under a difference-based similar-
ity function we understand a function simA : R −→ [0, 1] that computes a similarity
value simA(δ(q, c)) = s based on some difference function δ : Arange ×Arange −→ R.
Typical difference functions are

• the linear difference δ(q, c) = c − q,

• or the logarithmic difference δ(q, c) =




ln(c) − ln(q) for q, c ∈ R+

−ln(−c) + ln(−q) for q, c ∈ R−

undefinied else

The foundation of such difference-based similarity functions is the assumption
that the decrease of similarity stands in some relation with increasing difference of
the values to be compared. The identification of this relation and its formalisation
by choosing an appropriate similarity function is the crucial task when modelling
local similarity measures for numeric attributes. Typically, an accurate similarity
function can be defined by combining some base functions f1, f2 for negative and

54



3.3. Representing Similarity Measures

������

��	

�
�� ������
�
�� ������

������������		

δ
δ

�
����������		δ

�
�
����������		δ

�
�
����������		δ

�����	���δ

���

���

Figure 3.4.: Difference-Based Similarity Function

positive distances:

simA(q, c) =




f1(δ(q, c)) : c < q
1 : c = q

f2(δ(q, c)) : c > q

Here, we assume that the overall similarity function is reflexive due to simA(q, c) =
1 for c = q. Further, the base function f1 is usually a monotonic increasing and f2

a monotonic decreasing function. If f1(| δ(q, c) |) = f2(| δ(q, c) |) holds, then simA

is symmetric. The described structure of a difference-based similarity function is
illustrated in Figure 3.4.

Figure 3.5 shows examples of base functions typically used, namely threshold,
linear, exponential and sigmoid functions. All these base functions provide specific
parameters to define the particular decrease of similarity:

sim(δ(q, c)) =

{
1 : δ(q, c) < θ
0 : δ(q, c) ≥ θ

(Threshold Function)

sim(δ(q, c)) =




1 : δ(q, c) < min
max−δ(q,c)
max−min

: min ≥ δ(q, c) ≥ max

0 : δ(q, c) > max

(Linear Function)

sim(δ(q, c)) = eδ(q,c) · α (Exponential Function)

sim(δ(q, c)) =
1

e
δ(q,c) − θ

α + 1
(Sigmoid Function)

When modelling local similarity measures in that way, the utility approximation
can be influenced by the following parameters that have to be defined during the
similarity assessment process:
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Figure 3.5.: Base Functions for Difference-Based Similarity Functions

• the difference function δ

• the base functions f1 and f2

• the parameters required by the chosen base functions

Difference-based similarity functions represent a comfortable way to model the
similarity for numeric attributes and are sufficient to fit the requirements of most
application domains. However, sometimes it might also be necessary to define more
flexible functions according to the general Definition 3.13. Then one has to model a
2-dimensional function that is, of course, a more complex task compared to modelling
a 1-dimensional function.

Local Similarity Measures for Structured Value Types

Generally, the similarity definition can be simplified, if it is possible to encode in-
formation being relevant for the similarity assessment into the used data type itself.
This is in particular useful for symbolic types. Therefore, CBR systems often sup-
port the usage of the following structured symbolic types:

Ordered Symbol: Here, the user is allowed to define an order on the symbols to
express relations among them.

Taxonomy Symbol: By arranging symbols in a taxonomy tree generalisation or
specialization relations, respectively, can be expressed.

When dealing with such structured data types, the knowledge contained in the
type definition is usually directly relevant for the similarity assessment. Hence,
the underlying structure can be used to simplify the similarity definition. This is
in particular useful for types containing a large number of symbols because then
similarity tables are difficult to handle.

A way to take advantage of ordered symbols is to treat them like numbers. In
the simplest case one assigns an Integer index to each single symbol according to its
position in the order. In order to express more flexible “distances” between symbols
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these indexes can also be manipulated by the user, i.e. the first symbol might get
the index 1 while the index of the second symbol can be set to an arbitrary value
greater 1, and so on. These index values can be used to compute the similarity in the
same way as for a numeric type by defining an accurate difference-based similarity
function.

A powerful approach to profit from the structure of a taxonomy tree during the
similarity assessment is described by Bergmann (1998). We refrain from a descrip-
tion of this approach because it is not directly relevant for the work described here.

3.3.4. Attribute Weights

The second important part of similarity measures defined according to the local-
global principle are attribute weights. They are used to express the different impor-
tance of individual attributes for the entire utility approximation.

Definition 3.16 (Attribute Weights) Let D = (A1, A2, . . . , An) be a case char-
acterisation model. Then a vector �w = (w1, w2, . . . , wn) with wi ∈ [0, 1] and∑n

i=1 wi = 1 is called weight vector for D, where each element wi is called attribute
weight for Ai.

Basically, the following approaches to define attribute weights can be distin-
guished:

Global Weights: This is the most general weight model where the importance of
attributes is defined globally, i.e. the defined weights are valid for the entire
application domain. Here, the influence of attributes on the utility approxi-
mation is constant for all cases and queries that may occur.

Case Specific Weights: This is a more fine-grained weight model that allows the
definition of different attribute weights for different cases. This means, when
comparing a query with a given case, a specific weight vector for this particular
case is used to perform the similarity computation. A special form of this
weight model are class specific weights used for classification tasks. Here,
the weight vector to be used is determined by the class membership of the
particular case.

User Weights: Another approach is the use of specific weights for each new re-
trieval task, i.e. the weights are acquired together with the query. Such a
weight model is in particular useful in domains where the users might have
individual preferences with respect to the utility of cases. For example, a
product recommendation system in eCommerce might allow customers to in-
put attribute weights in order to express the importance of particular product
properties for her/his buying decision.
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Different weight models can also be combined. For example, user weights are often
not used exclusively, but they are combined with a global weight vector defining the
general importance of attributes from the application domain point of view. Such a
combination can be realised easily by a multiplication and a final normalisation of
the used weights, for example, global weights �wgobal and user weights �wuser. Here,
we assume that it holds �wglobal �⊥ �wuser:

�wfinal = (wfinal1 , wfinal2 , . . . , wfinaln) =
(wglobal1 · wuser1, . . . , wglobaln · wusern)

(�wglobal) · (�wuser)

Although the effort to model attribute weights, at least global weights, is signif-
icantly lower compared to the effort required to model local similarity measures,
defining attribute weights is a crucial and difficult task. On the one hand, small
deviations in the defined weights may lead to very different retrieval results due
to their great influence on the entire similarity computation. On the other hand,
the determination of concrete weight values is usually more an act of instinct than
a well-founded decision process. Although domain experts are often able to state
that one attribute is more important than another one, mostly they have difficulties
to determine the particular quantitative difference of the importance by assigning
exact weight values.

3.3.5. Global Similarity Measure

In order to obtain a final similarity value when comparing a query and a case, the last
element of the described similarity representation is the so-called global similarity
measure. This measure is represented by an aggregation function computing the
final similarity based on the local similarity values computed previously and the
attribute weights defined:

Definition 3.17 (Global Similarity Measure, General Definition) Let D = (A1,
A2, . . . , An) be a case characterisation model, �w be a weight vector, and simi be a
local similarity measure for the attribute Ai. A global similarity measure for D is a
function Sim : DD × DD −→ [0, 1], of the following form:

Sim(q, c) = π(sim1(q.a1, c.a1), . . . , simn(q.an, c.an), �w)

where π : [0, 1]2n −→ [0, 1] is called aggregation function that must fulfill the follow-
ing properties:

• ∀�w : π(0, . . . , 0, �w) = 0

• π is increasing monotonously in the arguments representing local similarity
values
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Basically, the described similarity computation that is founded on the local-global
principle presumes a specific property of the underlying case model:

Definition 3.18 (Linear Independence of Case Model) If the utility of cases is
not influenced by non-linear relationships between attribute values, we call a case
model linearly independent.

In Section 2.4.3 we have already mentioned the possibility to introduce virtual at-
tributes in order to guarantee the linear independence of a case model. The definition
of the global similarity measure makes clear why shifting non-linear dependencies
to the definition of the vocabulary is important. Because the aggregation function
does not directly access attribute values, but only similarity values computed by
the local similarity measures, this function cannot consider non-linear relations be-
tween attributes during the similarity computation. Further, it is assumed that the
global similarity measure is monotonic in the sense that the global similarity only
decreases, if at least one local similarity decreases.

In principle, the aggregation function π can be arbitrarily complex. However, in
practice usually quite simple functions are used, for example:

π(sim1, . . . , simn, �w) =

n∑
i=1

wi · simi (Weighted Average Aggregation)

π(sim1, . . . , simn, �w) = (
n∑

i=1

wi · simp
i )

1
p (Minkowski Aggregation)

π(sim1, . . . , simn, �w) = maxn
i=1(wi · simi) (Maximum Aggregation)

π(sim1, . . . , simn, �w) = minn
i=1(wi · simi) (Minimum Aggregation)

3.4. Semantics of Similarity Measures

As already described in Section 3.1, the purpose of similarity measures is an approx-
imation of the cases’ utility for particular problem situations. Hence, a similarity
measure can also be characterised as a heuristics to select useful cases. Basically,
such a heuristics can be more ore less sophisticated, depending on the amount of do-
main knowledge exploited. In this section two different interpretations of the seman-
tics of similarity measures are discussed: the traditional interpretation of similarity
in CBR, and a new view on the role of similarity measures inspired by application
fields recently addressed by CBR.
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3.4.1. Knowledge-Poor Similarity Measures

In traditional CBR applications the term similarity has often been interpreted as a
kind of similar look. Similarity measures defined according to this semantics consider
only syntactical differences between the entities to be compared. Popular examples
are the traditional similarity and distance measures like the Hamming distance,
the simple matching coefficient, the Euclidean distance, and other simple distance
metrics already discussed in Section 3.3.1. If any, such measures consider only little
domain knowledge during the similarity assessment. For example, the Hamming dis-
tance measures exclusively syntactical differences, while weighted measures at least
consider the different importance of individual attributes. The generalised versions
of the simple matching coefficient can be adapted on domain specific requirements,
but the provided parameters represent very superficial knowledge about the domain
only.

In the following, we call those measures knowledge-poor similarity measures (kpSM).
While such measures can be defined easily, the drawback of them is that they do not
consider the particular coherences of the addressed application domain. Only mea-
suring syntactical differences between descriptions of problem situations often leads
to bad retrieval results due to an insufficient approximation of the cases’ utility.

3.4.2. Knowledge-Intensive Similarity Measures

Because in many application domains an exclusive measuring of syntactical differ-
ences between problem descriptions is insufficient for obtaining reasonable retrieval
results, many CBR applications developed in the last years employ more “intel-
ligent” similarity measures. The general need for a more goal-directed retrieval
functionality is discussed by Bergmann et al. (2001). By encoding more specific
domain knowledge about the utility of cases into the similarity measure, both the
efficiency and the competence of a CBR system can be improved significantly. On
the one hand, the retrieval of a more useful case might lead to decreased adaptation
effort and so to faster problem-solving. On the other hand, the competence to solve
a given problem might be increased. For example, the competence of a retrieval-only
system is strongly influenced by the ability to retrieve the most useful cases.

Besides attribute weights, particularly local similarity measures (see Section 3.3.3)
provide the possibility to represent detailed knowledge about the attributes’ contri-
bution to the utility approximation. A similarity table defined for a symbolic type
represents specific knowledge about the relationships between the defined symbols.
A traditional knowledge-poor similarity measure would typically only perform an
exact-match comparison between the values of a symbolic type.

Similarity functions can be used to compute the similarity between numbers based
on domain specific criteria instead of only relying on information about the math-
ematical distance of the values. This even holds for the difference-based similarity
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functions introduced in Definition 3.15. Here, the domain knowledge has to be
represented in form of accurate 1-dimensional similarity functions. By selecting,
combining and parameterising suitable base functions it is possible to consider the
particular characteristics of the domain and the specific application scenario. In
the following, we call similarity measures that try to approximate the utility of
cases through the intensive exploitation of domain knowledge knowledge-intensive
similarity measures (kiSM).

��� �

��������

��� ���

Figure 3.6.: Example: Knowledge-Intensive Local Similarity Measure

A typical example of knowledge-intensive similarity measures are asymmetric sim-
ilarity measures. Consider again a product recommendation scenario and a numeric
attribute price representing the price of the offered products. For this attribute a
similarity function like shown in Figure 3.6 might typically be used to approximate
the utility of products regarding the price demands of customers. Basically, the se-
mantics of this measure can be interpreted as follows: “I want to have a product that
costs not more than x EUR”. However, the shown function encodes further knowl-
edge for a flexible interpretation of this semantics. The max parameter expresses
a threshold for the maximal exceedance of the given price limit probably tolerated
by most customers. Only when reaching or even exceeding this price difference,
the similarity decreases clearly. Products cheaper than the given price limit lead
to maximal similarity, because customers are usually happy when getting cheaper
products (provided that the required functionality is still fulfilled). However, if
the price difference under-runs the min parameter, the similarity decreases slightly
because some customers would perhaps be deterred by the fear to get a product
with low quality. So, the described similarity function represents a lot of knowledge
about expectations on the customers’ buying behaviour to be encoded in the two
parameters min and max, and the actual steepness of the decreasing parts of the
function.

Another example of a knowledge-intensive similarity measure was already shown
in Figure 3.3. There, the presented similarity table encodes utility knowledge about
computer casings to be used in a product recommendation system, too.

Of course, a clear line between knowledge-poor and knowledge-intensive similarity
measures cannot be drawn. On the one hand, also traditional measures might con-
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sider domain knowledge encoded in attribute weights or special parameters like the
ones introduced by the generalised forms of the simple matching coefficient. On the
other hand, the introduced local similarity measures do not necessarily represent do-
main knowledge. For example, the similarity table and the similarity function shown
in Figure 3.7 can be interpreted as knowledge-poor similarity measures. While the
similarity table only implements an exact-match comparison, the similarity function
represents a simple distance metric.
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Figure 3.7.: Example: Knowledge-Poor Local Similarity Measures

From the cognitive point of view, there are certain evidences that both knowledge-
poor and knowledge-intensive similarity measures play an important role during
human problem-solving processes. Suzuki et al. (1992) investigated the similarity
judgements of human beings when solving the puzzle of Hannoy. Their results
show that similarity judgements of persons are based on very different knowledge
depending on their level of experience in the puzzle of Hannoy. On the one hand,
beginners, who do not have certain experience in solving the puzzle, obviously base
their similarity judgements between different states of the puzzle on syntactical
differences mainly. On the other hand, experienced persons estimate the similarity
by considering much more complex criteria reflecting particular knowledge about
the puzzle.

3.5. Modelling Similarity Measures: State-of-the-Art

After having discussed the foundations on representing similarity measures, this sec-
tion deals with the procedure of how to model similarity measures in practice. When
reviewing the CBR literature, one can observe that no clear methodology how to
define similarity measures efficiently has been developed, yet. One reason might
be, that the representation of similarity measures strongly depends on the kind of
case representation to be used. In order to fit the needs of the different application
fields several different approaches to represent cases (e.g. attribute-value based rep-
resentations, object-oriented representations, graph representation, first order logic,
etc.) are used and so a methodology for each of these representations would be re-
quired. However, one could expect that methodologies for representations used most
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commonly—like the attribute-value based representation—have been developed al-
ready. A first step into this direction is the INRECA-II4 methodology (Bergmann
et al., 1999a, 1998), that can be characterised as a generic “cookbook” for develop-
ing CBR applications. Concerning the process of defining similarity measures for
attribute-value based case representations, this methodology identifies the following
three elementary sub-processes:

1. Similarity Characterisation: Basic characteristics for all required local sim-
ilarity measures have to be determined. For example, it has to be figured out
whether a local similarity function has to be symmetric or asymmetric.

2. Similarity Definition: According to the determined characteristics, accurate
local similarity measures have to be modelled, for example, by combining and
parameterising basic similarity functions.

3. Similarity Integration: Finally, all elements of the similarity representation
have to be integrated in order to obtain a global similarity measure. This
means, accurate attribute weights have to be defined and a suitable amalga-
mation function has to be selected.

However, the INRECA-II methodology states nothing about the concrete proce-
dure how to acquire the necessary domain knowledge efficiently and how to trans-
late it easily into the representation formalisms introduced in the previous sections.
During the development of CBR applications, the definition of knowledge-intensive
similarity measures is still a task that requires a lot of experience. On the one hand,
the particular application domain has to be understood at least partially to be able
to identify aspects influencing the cases’ utility. On the other hand, experience how
to express the acquired knowledge by modelling both, an accurate case representa-
tion and an accurate similarity representation is necessary to be able to implement
a powerful CBR system. Due to the lack of a more detailed methodology, defin-
ing similarity measures is still a challenging task and requires respective skills of a
knowledge engineer.

3.5.1. Employing CBR Tools

Nowadays, the most CBR applications are being developed by employing commercial
CBR shells. These systems provide the basic mechanisms that represent the foun-
dation of every CBR application, for example, efficient case retrieval mechanisms.
Moreover, they provide comfortable graphical user interfaces (GUIs) for modelling,

4Information and Knowledge Re-engineering for Reasoning from Cases ; Esprit contract no.
22196, contract partners are AcknoSoft(France), Daimler Benz AG (Germany), tecInno GmbH
(Germany), Interactive Multimedia Systems (Ireland) and the University of Kaiserslautern
(Germany).
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entering and managing all required domain knowledge (see Section 2.2.3). This
comprehends the modelling of the case structure by defining attributes and corre-
sponding value ranges, as well as the definition of general background knowledge
in form of rules or similarity measures. Basically, the similarity definition process
strongly depends on the employed CBR tool. In this section we shortly introduce
the CBR shell used in the scope of this work. A review of industrial CBR tools is
given by Althoff et al. (1995).

CBR-Works

The CBR shell CBR-Works has been developed in the research projects INRECA5,
WIMO6, and INRECA-II at the University of Kaiserslautern in co-operation with
tecInno GmbH (now empolis knowledge management GmbH). The system is written
in the programming language Smalltalk and has been employed in numerous research
projects and several commercial applications. The main advantage of CBR-Works is
the provision of a large set of different modelling tools with comfortable graphical
user interfaces. This enables a rapid development of powerful CBR applications. In
the following, a short summary of the essential features of CBR-Works is given. A
more detailed description is given by Schulz (1999).

• Cases can be modelled by employing object-oriented representations. In order
to simplify the definition of the case structure comfortable GUIs are provided.

• To define value-ranges for attributes numerous basic data types are provided.
This includes structured data types like ordered symbols or taxonomies in
order to simplify the representation of the required similarity measures.

• The system provides a powerful rule-interpreter and GUIs for defining rules
used to express general domain knowledge. The rule-interpreter can, for ex-
ample, be used to perform case adaptation.

• Flexible representations and GUIs for defining similarity measures simplify
the modelling of knowledge-intensive similarity measures.

• The system includes interfaces for entering queries and browsing retrieval re-
sults delivered by the internal retrieval engine.

• The import of case data from relational databases is supported.

5Induction and Reasoning from Cases; ESPRIT contract no. 6322, project partners were Ac-
knoSoft (France), tecInno GmbH (Germany), Interactive Multimedia Systems (Ireland) and
the University of Kaiserslautern (Germany).

6Modelling and Acquisition of Knowledge for Case-Based Reasoning; founded by the govern-
ment of Rhineland-Palatinate, Germany, project partners were the University of Kaiserslautern,
tec:inno GmbH and INSIDERS GmbH.
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• The system includes a generic HTTP-Server making the development of
WWW7-based applications very easy.

Because this work deals in particular with similarity measures we now focus on
the tools of CBR-Works used for representing this part of the domain knowledge.
Certainly, the CBR-Works tools represent only one possible way to model similarity
measures. However, tools of other established commercial CBR shells provide similar
modelling facilities.

3.5.2. Modelling Similarity Measures in CBR-Works

Basically, the formalisms and GUIs used to model local similarity measures in CBR-
Works strongly depend on the particular data type. First, we describe how similarity
measures for simple numeric types can be represented.

Modelling Similarity Functions

In CBR-Works the similarity measures for numeric types are represented by differ-
ence-based similarity functions according to Definition 3.15. In order to simplify the
modelling of similarity functions, the system provides two kinds of editors. Firstly,
there is the standard editor shown in Figure 3.8 that enables the user to select and
parameterise a base function. The base functions provided are commonly useful in
many application domains.

Figure 3.8.: Standard Editor for Similarity Functions

7World Wide Web
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Secondly, the advanced editor shown in Figure 3.9 allows a more flexible definition
of similarity functions. Here, the user can define several points of the desired function
used to interpolate the entire function linearly. This editor also allows the selection
of a logarithmic difference function instead of the linear difference function used by
default.

Figure 3.9.: Advanced Editor for Similarity Functions

Modelling Similarity Tables

To represent similarity measures for symbolic types, CBR-Works uses similarity ta-
bles (see Definition 3.14). The respective editor is shown in Figure 3.10. When
choosing the “symmetric” option, the values of the upper triangle matrix are copied
to the corresponding fields of the lower triangle matrix automatically. This simplifies
the definition of symmetric similarity tables.

Support for Structured Data-Types

When dealing with structured data types, CBR-Works takes the defined structure
into account to simplify the modelling process. Typical examples of such structured
data types are ordered symbols or taxonomies. Although these types are basically
of a symbolic nature, the additionally defined structure can be used to avoid the
time-consuming definition of similarity tables (see also Section 3.3).

For example, similarity measures for taxonomies can be modelled by using the
editor shown in Figure 3.11. Here, the user must only determine some basic param-
eters used to define the concrete semantics of the particular taxonomy. Internally,
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Figure 3.10.: Editor for Similarity Tables

the similarity representation is actually a similarity table where the entries are com-
puted based on the taxonomy structure and the defined parameters according to the
approach presented by Bergmann (1998).

Figure 3.12 shows the editor for ordered symbols. Here, the similarity representa-
tion is based on a mapping between defined symbols and numbers and an accurate
similarity function.

Because the internal similarity representation for structured data types is still
founded on similarity functions and similarity tables, we abandon a more detailed
description of the provided modelling facilities.

Defining Weights and Global Similarity Measures

Concerning the definition of attribute weights, CBR-Works supports global weights
and user defined weights (see Section 3.3). While global weights have to be defined
together with the attributes, user weights can be entered together with a query.

CBR-Works allows to choose between several amalgamation functions (cf. Sec-
tion 3.3). Moreover, it provides the possibility to consider the structure of an object-
oriented case representation when defining the global similarity. The approach used
here is very similar to the similarity computation of taxonomy types. Concerning
details of this functionality, the reader is referred to Bergmann and Stahl (1998) due
to the restriction on flat attribute-value based representations in this thesis.
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Figure 3.11.: Similarity Editor for Taxonomies

Figure 3.12.: Similarity Editor for Ordered Symbols
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3.5.3. Drawbacks

The similarity definition process commonly applied nowadays can be characterised as
a bottom-up procedure. This means, the entire similarity assessment is based on the
acquisition of numerous single knowledge entities about the influences on the utility
function. These knowledge-entities have to be encoded separately into suitable local
similarity measures, attribute weights, and the global similarity measure. Because
this knowledge is very specific and detailed (e.g. a local similarity measure concerns
only one single aspect of the entire domain), it could also be characterised as low-level
knowledge about the underlying utility function. Of course, to be able to acquire
such general domain knowledge, at least a partial understanding of the domain is
mandatory. The basic assumption of this procedure is that thorough acquisition and
modelling of this low-level knowledge will lead to an accurate approximation of the
complete utility function. However, in certain situations this bottom-up procedure
to defining similarity measures might lead to some crucial drawbacks:

• The procedure is very time-consuming. For example, consider a symbolic
attribute with 10 corresponding values. This will require the definition of a
similarity table with 100 entries, if it is impossible to use a structured data
type!

• In some application domains a sufficient amount of the described low-level
knowledge might be not available. Possible reasons are, for example, a poorly
understood domain, or the fact that an experienced domain expert who could
provide the knowledge is not available or too expensive.

• Even if an experienced domain expert is available, s/he is usually not familiar
with the similarity representation formalisms of the CBR system. So, the
provided knowledge may only be available in natural language. This informal
knowledge then has to be translated into the formal representation formalisms
by an experienced knowledge engineer who possesses the required skills leading
to additional costs.

• Due to the complexity of the representation, even experienced knowledge engi-
neers often make definition failures by mistake. Unfortunately, the recognition
of such failures is very difficult.

• Unfortunately, the bottom-up procedure does not consider the utility of whole
cases directly. Instead, the final utility estimation is completely based on
the ensemble of the individual low-level knowledge entities. Nowadays, the
overall quality of the completely defined similarity measure is mostly even not
validated in a systematic way. Existing approaches (e.g. leave-one-out tests
and measuring classification accuracy) only measure the overall performance
of the CBR system, that is also influenced by other aspects, for example, the
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quality of the case data. So, one often blindly trusts the correctness of the
similarity values computed by the defined measure.

• Due to the complexity of the bottom-up procedure its application is usually
restricted to the development phase of the CBR application. This means, all
similarity knowledge is acquired during the development phase and is assumed
to be valid during the entire lifetime of the application. However, in many do-
mains changing requirements and/or changing environments require not only
maintenance of case knowledge, but also maintenance of general knowledge
(Roth-Berghofer, 2002).

• Knowledge about the actual utility of cases might not be available at all during
the development phase. For example, when applying personalised similarity
measures Stahl (2002b) in an eCommerce or knowledge management scenario,
the knowledge can only be provided by the users themselves during the usage
of the system. However, here the bottom-up procedure is not feasible.

• Sometimes the required knowledge about the cases’ utility might already be
available in a formal but quite different representation form. For example,
when supporting case adaptation the utility of cases strongly depends on the
provided adaptation possibilities. Hence, to obtain an accurate similarity mea-
sure one has to transfer adaptation knowledge into the similarity measure.
When using the bottom-up procedure this is a very time-consuming task. The
adaptation knowledge has to be analysed manually and the knowledge consid-
ered to be relevant has to be encoded into the similarity measure.
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4. Framework for Learning Similarity
Measures

As described in the previous chapter, in CBR similarity measures are used to ap-
proximate the a-priori unknown utility of cases regarding their reuse in a particular
problem situation. In order to obtain similarity measures that ensure accurate re-
trieval results, in many present application fields a consideration of specific domain
knowledge is required. The definition of such knowledge-intensive similarity mea-
sures is certainly one of the most crucial, but unfortunately also one of the most
challenging tasks when developing CBR applications. Since the manual definition of
similarity measures often raises certain problems (cf. Section 3.5.3), in this chapter a
framework for an alternative strategy for modelling similarity measures is presented.
The central idea of this framework is the application of machine learning techniques
in order to facilitate the entire similarity assessment process.

First, a short motivation for the chosen strategy is given and it is shown how
the framework can be integrated into the well-known CBR cycle (cf. Section 2.2.2).
Then an alternative way to acquire the required domain knowledge to be encoded
into similarity measures is introduced, followed by the description of a general ap-
proach that utilises this alternative way for learning similarity measures. In the last
section it is discussed how the presented learning approach can be combined with
the manual similarity assessment process in order to profit from the advantages of
both.

4.1. Aim of the Framework

As discussed in Section 2.4.1, CBR is commonly considered to be a technique to
realise learning systems that improve their problem-solving competence from expe-
riences gained during the usage of the system. According to Definition 2.10, we call
a particular CBR system a learning system if it improves its performance by changes
in the content of one or several of its four knowledge containers (cf. Section 2.2.3).

Although the original interpretation of the traditional CBR cycle (Aamodt and
Plaza, 1994) considers the theoretical possibility to modify not only the case knowl-
edge container, but also general knowledge contained in the three other containers,
this opportunity is almost neglected. In practice general knowledge is usually ac-
quired and formalised once during the development time of the application and
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considered to be fixed during the lifetime of the application. Nevertheless, if an
update of general knowledge is required, the traditional CBR process model does
not specify how to realise it. Instead, in practice such maintenance operations are
commonly performed completely manually by human knowledge engineers.

4.1.1. Motivations

When recalling the motivations of CBR discussed in Section 2.1, it seems to be
obvious to extend the learning capabilities of CBR systems towards learning of
general knowledge, too.

Cognitive Point of View

From the cognitive point of view, it is clear that human beings do not only memorise
situation-specific knowledge but also modify their general knowledge when making
new experiences. This holds in particular also for similarity judgements (Novick,
1988). For example, Suzuki et al. (1992) report about cognitive experiments show-
ing that similarity judgments of human beings depend on their expertise in the
respective domain, here solving the Tower of Hannoy puzzle. It seems that experts
extensively use their domain knowledge when being asked to judge the similarity
between different states of the puzzle. Ohnishi et al. (1994) further present the
hypothesis that two types of similarities should be distinguished:

• A shallow similarity only considering the superficial differences between the
entities to be compared, i.e. objects are considered to be similar if they “look
similar”. This kind of similarity judgement seems to be used mainly by novices
who do not possess a deeper understanding of the domain.

• A goal-related deep similarity based on domain knowledge. This kind of simi-
larity judgement takes the actual problem into account and is used mainly by
domain experts who infer the similarity by applying general rules about the
coherences in the domain. A typical property of deep similarities is that they
are often asymmetric (cf. Section 3.2).

In our terminology, shallow similarities can be characterised as knowledge-poor
similarities and deep similarities can also be called knowledge-intensive similarities
(see Section 3.4). When transferring the described cognitions on CBR research, one
could imagine an “inexperienced” CBR system only provided with an initial case
base and an initial, “shallow” similarity measure (e.g. a simple distance metric).
When solving new problems with such a system, in principle, the system should
be able to profit from the new experiences in two ways. On the one hand, it can
store new cases, and on the other hand, it could obtain a “deeper” understanding of
similarity by encoding more domain knowledge into the initial similarity measure.
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Functional Point of View

Besides the cognitive point of view, also the functional point of view supplies good
motivations to think about the learning of similarity measures in CBR. In Section 2.1
we have outlined three potential functional benefits of CBR compared to other
AI techniques: an increased problem-solving efficiency, the capability to handle
incomplete domain knowledge, and a simplification of knowledge acquisition. All
three aspects also motivate the development of strategies to learn not only case
knowledge but also general knowledge:

• Generally, expertise depends not only on experiences, but also on factors af-
fecting how experience is reused (Leake, 1994). However, CBR systems usually
do not refine the knowledge they use to retrieve or adapt prior cases. By doing
so and not only relying on static pre-defined knowledge, CBR systems might
be enabled to increase their problem-solving efficiency and competence more
effectively.

• When being confronted with poorly understood domains, methods to learn
general domain knowledge might decrease the problem of the necessity to
handle incomplete domain knowledge. Instead of relying only on imperfect
knowledge manually acquired during development time, the system might be
enabled to extend its knowledge during the lifetime of the application.

• Last but not least, the introduction of learning procedures could, of course,
also simplify the knowledge acquisition. On the one hand, machine learning
techniques might facilitate the initial knowledge acquisition and formalisation.
On the other hand, such techniques could also simplify the maintenance of
general knowledge in domains requiring modifications frequently.

These three aspects show that methods for learning general knowledge might
further improve the basic advantages of the CBR approach. In particular, facilities
for learning similarity measures might also help to avoid the drawbacks that arise
when defining similarity measures manually discussed in Section 3.5.3. For example,
learning approaches can help to hide the complex formalisms required to represent
and process similarity measures inside a CBR system from the human knowledge
engineer. Instead of defining these representations directly, they might be tuned
by a learning procedure more or less automatically from data that can be handled
easier by human experts.

Although generally applicable approaches have not been developed yet, in the past
several researches already pointed out the need for more general learning strategies
in CBR. For example, Leake (1994); Leake et al. (1996b, 1997b) emphasise the
need for multistrategy learning in CBR. The desire for a more accurate similarity
assessment based on learning strategies is discussed by Leake et al. (1997a). Aha and

75



4. Framework for Learning Similarity Measures

Wettschereck (1997) demand learning in CBR should go beyond the classification
of feature vectors. Instead, alternative applications scenarios and extended learning
capabilities should be investigated.

4.1.2. Basic Assumptions

Before developing an actual approach to extend the learning capabilities of CBR
on learning similarity measures, it is important to point out some basic assump-
tions. Because nowadays Case-Based Reasoning is a wide research field dealing with
various domains and applications scenarios, basically it is not possible to develop a
general approach applicable in all domains and scenarios. Therefore, in the following
several basic assumptions are being made to circumscribe the application situations
addressed by the framework to be developed in this thesis:

• In this work a flat attribute-value based case representation as introduced in
Section 2.2.4 is presumed. Although the developed approaches can also be
applied easily to object-oriented representations this opportunity will not be
discussed explicitly.

• Further, we restrict the scope of this thesis to the use of similarity measures
based on the local-global principle and the representation formalisms intro-
duced in Section 3.3. We also suppose the existence of an initial default sim-
ilarity measure. This measure might be a knowledge-poor measure such as
illustrated in Figure 3.7.

• When applying the local-global principle, an accurate similarity assessment
strongly depends on the underlying case structure, i.e. the definition of suitable
attributes. In this work it is presumed that an accurate case characterisation
is already available before applying the learning framework.

• The system’s initial case base should contain a reasonable amount of cases.
Generally, it is not possible to determine a specific number of cases represent-
ing a “reasonable amount” for every domain, so in the following we formally
assume the existence of at least two cases.

In summary, we build upon a functional CBR system supporting attribute-value
based case representations at least able to perform a similarity-based retrieval on
an initial set of cases according to an initial similarity measure. Considering the
described assumptions, now we are able to informally define the basic objective of
the learning framework to be developed:

Definition 4.1 (Objective of Learning Framework) The objective of our frame-
work for learning similarity measures in a CBR system is the introduction of a
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process that enables the system to improve its performance, measured by some per-
formance measure P, by modifying its internal similarity measure representation in
order to influence the outcome of the retrieval phase.

4.1.3. Refining the CBR Cycle

When investigating approaches to realise the discussed learning framework, a cen-
tral question is the integration of a potential learning strategy into the well-known
process model of CBR. This is in particular a crucial aspect if learning should not
only be used to support the initial knowledge acquisition process but should also
enable the CBR system to improve its performance during usage. Then the system
must be able to execute the learning task more or less independently from its actual
tasks. Such a learning functionality is often called introspective reasoning (Fox and
Leake, 1995b) or introspective learning (Zhang and Yang, 1999), respectively.

To integrate the desired learning functionality into the traditional CBR cycle
consisting of the four well-known phases—retrieve, reuse, revise, retain—two basic
possibilities can be distinguished:

1. The extension of the existing process model by introducing an additional
phase.

2. The refinement of one or several phases to integrate the new functionality into
the already established phases.

When reviewing the original interpretation of the traditional CBR cycle it becomes
clear that the second possibility seems to be more accurate. Aamodt and Plaza
(1994) have already discussed that the retain phase could be used to update general
knowledge of the CBR system. Concerning the update of similarity measures the
possibility to refine case indexes has been mentioned. This can be interpreted, for
example, as an adjustment of feature weights. However, it does not specify how
this update can be realised concretely. Further, this early model of CBR does not
explicitly consider the use of knowledge-intensive similarity measures as introduced
in Chapter 3.

Basically, the retain phase is not the only phase of the CBR cycle responsible
for the capability to learn new knowledge. Before memorising a new case, the
correctness of this new knowledge item has to be validated during the revise phase.
So, the revise phase has a significant influence when learning new case knowledge,
because it selects cases considered to be candidates for extending the knowledge
base. In the following we show that this holds as well when learning similarity
measures.

Figure 4.1 illustrates how the traditional CBR cycle can be modified to integrate
the possibility to learn similarity measures. These modifications are discussed in
more detail in the following sections.
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Figure 4.1.: Refining the CBR Cycle for Learning Similarity Measures

Extended Use of Retrieved Cases

In the traditional view of CBR, the retrieve phase provides one or several cases
used to generate exactly one solution during the reuse phase. This solution is then
proposed for solving the current problem and has to be evaluated during the revise
phase. However, in many application domains where CBR has been employed suc-
cessfully this traditional view is not always suitable. Here, it is not desired that the
CBR system generates exactly one solution, but several independent alternatives for
solving the given problem. A popular example are product recommendation systems
in eCommerce. Such systems usually generate a collection of solutions, here product
recommendations, that are presented to the user, here the customer.

So, for the development of our learning framework we suppose that the retrieval
phase always provides a list of retrieved cases ordered by the computed similarities
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(cf. Definition 3.4). If case adaptation is supported, this list is processed during the
reuse phase where several solution proposals might be generated by adapting several
retrieved solutions independently from each other. Basically, two ways to generate
solution alternatives can be distinguished:

Ad hoc: If it is feasible with respect to computation time, the reuse phase might
perform adaptation for a fixed number of cases immediately. The resulting
list of solution proposals, still ordered as determined in the retrieval phase, is
then directly passed to the revise phase.

On demand: If case adaptation is computational expensive, only the most similar
case may be adapted first. The generated solution is then passed to the revise
phase where it has to be evaluated. If the evaluation fails, because the solution
cannot be applied to solve the current problem or due to poor solution quality,
two ways for proceeding are possible. On the one hand, the faulty solution
might be repaired during the revise phase. On the other hand, the revise phase
could trigger the adaptation of the next similar case in anew execution of the
reuse phase to obtain an alternative solution proposal.

Both approaches lead to the suggestion of several solution alternatives—when
applying the on demand approach, at least if the most similar case could not be
reused successfully—after the reuse phase. In the following we only assume the
possible existence of such a list of suggested solution alternatives but we do not care
about the approach used to generate it. It is only assumed that solution alternatives
are ordered according to the similarity of the underlying cases.

Refining the Revise Phase

According to the original process model that assumes the existence of only one solved
case after the reuse phase, the revise phase can be subdivided into two subsequent
tasks:

1. Solution Evaluation: In a first step the proposed solution, i.e. the outcome
of the reuse phase has to be evaluated. This evaluation might be based on
feedback from a teacher, on the results obtained through application in the
real world, or on the outcome of a model-based simulation.

2. Fault Repair: When recognising faults in the suggested solution during eval-
uation, the solution has to be repaired to obtain a valid solution. Basically, it
might be repaired manually by the user or it might be repaired by the system
based on additional general knowledge.

To enable a CBR system to learn similarity measures we propose a refinement of
the revise phase as illustrated in Figure 4.1. Besides the two described traditional
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tasks that ensure the generation of a valid solution, we introduce two additional
tasks:

1. Evaluate Retrieval Ranking: This task can be characterised as a superior
control process for the common solution evaluation task. It initiates the eval-
uation of several solution alternatives and processes the obtained evaluation
results. The foundation of the evaluation might be internal general knowledge
or an external performance measure in form of a teacher, the real world, or a
model.

2. Store Case Utility: This task is responsible for storing the results of the
retrieval ranking evaluation for further processing. Basically, these results
represent knowledge about the utility of cases with respect to the given query.

Generally, one could also argue that storing of evaluation results belongs more to
the retain phase of the CBR cycle. However, we decided to assign this task to the
revise phase. On the one hand, the decision whether to store particular results or not
might be influenced by the performance measure, for example, by a human teacher.
On the other hand, the retained knowledge is not directly used by the phases of
the CBR cycle that are relevant for problem-solving. It is more an intermediate
knowledge buffer that collects knowledge to be used only during the retain phase
and thus it does not directly contribute to solving problems.

Basically, the refined revise phase consists of two parallel processes. On the one
hand, the traditional revision process that only evaluates and repairs a single so-
lution. On the other hand, a parallel process that evaluates the outcome of the
retrieval phase based on the results obtained during several solution evaluations.
While the evaluation of the retrieval ranking relies on the solution evaluation pro-
cess, the traditional revision of a single solution can be initiated independently.
This means, the retrieval evaluation can be interpreted as an optional process to be
performed if desired.

Refining the Retain Phase

The aim of the retain phase is to select knowledge entities to be integrated into
the knowledge resources of the CBR system in order to improve its problem-solving
competence and/or efficiency during future usage. Therefore, the traditional retain
phase identifies the following three tasks:

1. Extract: This task is responsible for the extraction of relevant knowledge
entities from the current problem-solving episode to be retained for future us-
age. Such knowledge entities might be represented by found solutions, solution
methods, justifications, etc.
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2. Index: The objective of this task is to determine indexes to be used for retriev-
ing the learned case. This may be interpreted as the selection of an accurate
vocabulary used to characterise the case but it might also be interpreted as
the determination of accurate attribute weights.

3. Integrate: During the final task the extracted knowledge has to be integrated
into the knowledge base of the system. This process might comprehend an
update of the case base, the index structure, and of other general knowledge.

Although this traditional interpretation of the retain phase, in principle, already
considers the modification of general knowledge and even an adjustment of attribute
weights, it seems to be necessary to introduce two additional tasks for realising our
learning framework:

1. Evaluate Similarity Measure: Here, the quality of the currently used sim-
ilarity measure is estimated based on the case utility knowledge acquired in
the previous revise phase.

2. Optimise Similarity Measure: This task can be seen as a specialisation
of the index and integrate task of the traditional retain phase but with fo-
cus on learning similarity measures. During this task, machine learning or
optimisation methods, respectively, are being used to optimise the current
similarity measure regarding the available case utility knowledge. This op-
timisation might be triggered by the outcome of the prior evaluation of the
current similarity measure.

Similar to the refined revise phase, the tasks additionally introduced in the re-
fined retain phase have not necessarily to be executed during every pass of the cycle.
Instead, in certain application scenarios all described extensions of the traditional
CBR cycle might only be relevant during explicit knowledge acquisition or main-
tenance phases. For example, if the performance measure is supplied by a human
domain expert playing the role of a teacher, the refined revision phase can only be
executed in situations where this expert is available. During problem-solving sit-
uations where the system is used by a “standard user” who does not possess the
required expertise, the introduced retrieval ranking evaluation might be skipped.

In the next sections it is shown how the discussed refinement of the CBR cycle
can be implemented. First, it is described how to realise the refined revise phase
in order to obtain the required case utility knowledge. The following section deals
with the implementation of the refined retain phase.

4.2. Assessing Case Utility

When assessing similarity knowledge by applying the bottom-up procedure (see
Section 3.5), one has to identify the factors determining whether a case is useful
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in a particular problem situation or not. However, knowledge about this influences
is very specific and very difficult to acquire because a good understanding of the
underlying domain is mandatory. We already called this type of similarity knowledge
low-level knowledge to be represented in form of attribute weights and accurate local
similarity measures.

In this section it is shown that it is also possible to assess similarity knowledge on
a higher, less detailed level. Instead of identifying general influences on the cases’
utility it is also possible to determine the utility of particular cases for particular
problem situations without giving detailed explanations of the reasons. After dis-
cussing the abstract foundation of this approach, in the following it is described how
to acquire such high-level knowledge about the underlying utility function.

4.2.1. Abstract Point of View

As already discussed in Section 3.1, the aim of a similarity measure is the approx-
imation of a particular utility function. In general, similarity functions and utility
functions are defined over different domains (cf. Definition 3.1 and 3.3). While utility
functions compare case characterisations with complete cases, similarity measures
compare two case characterisations only. This means, the actual utility of a case
might either be determined exclusively or additionally by its lesson part. However,
similarity measures do not consider the lesson part because it is not available in a
new problem situation and therefore it cannot be compared to lesson parts contained
in available cases.

From an abstract point of view, the relation between utility functions and simi-
larity measures can be described like illustrated in Figure 4.2. The left side of the
figure represents a utility function u defined over the case space CC and the case
characterisation space DD. The right side of the figure represents the corresponding
similarity measure sim defined over the case characterisation space DD × DD only.
When dealing with the special situation that the case model C contains an empty
lesson model (see Section 2.2.4), u would be defined over the same space as sim. In
the following we do not discuss this possibility explicitly because it can be seen as
a specialisation of the described, more general case.

Basically, one is interested in the structure of the utility function to be able to
reproduce it with an accurate similarity measure as good as possible. If no general
domain knowledge is available, existing case knowledge only will determine certain
points of the utility function. In our example we consider two cases c1 and c2.
These two cases determine two points of the utility function—u(d1, c1) and u(d2, c2)
illustrated as black dots—that represent the cases’ utility with respect to their own
case characterizations d1 and d2. Usually these utility values will be very high or
even maximal when assuming cases that represent successful experiences. These
points of the utility function have to be mapped to corresponding points of the
similarity measures, here illustrated through dark grey dots. Because similarity
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Figure 4.2.: Relation between Utility Functions and Similarity Measures

measures are commonly reflexive (see Section 3.2.2), for these points it should hold:
sim(d1, d1) = sim(d2, d2) = 1.0.

In a new problem situation to be solved by reusing existing case knowledge, one is
confronted with a query, here denoted as dq. The crucial task of the retrieval phase is
then the determination of the most useful case. This means, in the shown example
the similarity between dq and the two case characterisations d1 and d2 has to be
determined. If no additional knowledge about the utility function is available the
determination of the geometric distances d(d1, d1) and d(d2, d2) is the only possibility
to obtain values for sim(dq, d1) and sim(dq, d2) (black bounded dark grey dots).

However, the actual utility of the cases (u(dq, c1) and u(dq, c2), here illustrated
as black bounded white dots) might be very different. If it would be possible to
determine these utility values, at least after solving the current problem, one could
store this information to obtain a more detailed idea of the utility function’s struc-
ture. Hence, by repeating this procedure for a set of given queries, one could acquire
knowledge about numerous additional points of the utility function (see Figure 4.3).
By mapping these points to the corresponding similarity measure, one would also
obtain more detailed information about its structure required for representing a
good approximation of the utility function.

From the abstract point of view, a similarity measure is a 3-dimensional plane,
where the x- and y-coordinates represent the case characterisations to be compared
and the z-coordinate represents the corresponding similarity value. When acquiring
knowledge about a sufficient number of certain points of this plane, this information
can be used to construct an accurate similarity measure by applying an interpola-
tion process. In Figure 4.3 this idea is illustrated for a 2-dimensional intersection
through the entire similarity measure representing all possible similarity values for
case c2. Here, the desired similarity measure is constructed by performing a non-
linear interpolation between the known points of the measure. The foundation for
the known points is the acquired knowledge about the cases’ utility for a set of given
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queries.
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Figure 4.3.: Constructing Similarity Measures through Interpolation

4.2.2. Utility Feedback

In the previous section a very abstract idea about an alternative method to construct
similarity measures has been presented. The crucial precondition of this method is
the assumption that it is possible to estimate the actual utility of cases for given
problems. However, as discussed in Section 3.1.2, the actual utility of a case can
mostly only be determined after the current problem has been solved. Nevertheless,
in many application scenarios it is possible to acquire certain knowledge about the
cases’ utility for particular problem situations. On the one hand, such knowledge
might be provided by a domain expert during a knowledge acquisition phase. On
the other hand, it might also be acquired during the daily application of a CBR
system.

In both situations we presume a special similarity teacher (Stahl, 2001) who is able
to give feedback about the utility of cases—in the following called utility feedback—
during the refined revise phase of the CBR cycle introduced in Section 4.1.3. The
similarity teacher must possess some implicit knowledge about the underlying utility
function. For our framework we do not presume a special implementation of this
concept. Depending on the particular application scenario, the similarity teacher
can be represented very differently. This issue will be discussed in more detail in
Chapter 6. Basically, it is possible to distinguish the following kinds of similarity
teachers:

• A human domain expert who is able to estimate the utility of cases due to
her/his background knowledge about the domain.

• The users of the system (e.g. customers in eCommerce) who determine the
cases’ utility due to their own demands and preferences.
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• Some performance measure of the system’s environment. This performance
measure might be, for example, the real world or a simulation environment
where a suggested solution can be evaluated.

• Some additional general knowledge (e.g. a domain model) provided to the
CBR system.

In the previous section we assumed that utility feedback is expressed through
points of the utility function, i.e. through concrete utility values. However, depend-
ing on the kind of similarity teacher, the acquisition of such exact feedback might
not be realistic. For example, a customer in eCommerce is usually not able or willing
to express the utility of a product through a real number. But a customer is usually
able to compare the utility of different products and to express preferences. In this
case, knowledge about the utility of a case is not available absolutely, but relatively
to the utility of other cases. Basically, three different types of utility feedback can be
distinguished. The major difference between these types is the amount of knowledge
provided about the utility function.

Ordinal Utility Feedback

Ordinal utility feedback requires the least knowledge about the utility function.
Here, the similarity teacher must only be able to compare the utility of two cases
c1 and c2 with respect to a given query. This means, the similarity teacher must be
able to convey the outcome of the preference relation introduced in Definition 3.2.
Three statements of the similarity teacher are possible:

• case c1 is more useful than case c2

• case c2 is more useful than case c1

• both cases have the same utility or the utility difference is too small to be
recognised

An illustration of a scenario where ordinal utility feedback can be acquired is given
in the example in Figure 4.4. Here a customer wants to buy a car. When being
confronted with the two alternatives of a Smart and a caravan, the customer would
prefer the caravan. In the example, the bigger car is more useful for the customer due
to her/his desire to buy a family car. Here utility feedback represents the individual
preferences of this particular customer. Richter (2003) characterised such a compar-
ison used to acquire similarity knowledge as a modification of the Turing Test. To
build a personalised product recommendation system (see Section 6.4) one would
need a similarity measure that reflects the individual preferences of the customer or
the corresponding customer class (here, e.g. family fathers), respectively.

By pairwise comparing a set of cases, ordinal utility feedback allows to arrange a
complete set of cases with respect to their utility. The result is a partial order.
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Figure 4.4.: Ordinal Utility Feedback

Quantitative Utility Feedback

While ordinal feedback only provides qualitative information about the relative util-
ity of cases, quantitative feedback also allows an estimation of the degree of the
cases’ utility relatively to other cases. Basically, the following two possibilities can
be distinguished:

Relative Utility: Consider the same situation as described previously, i.e. the simi-
larity teacher is confronted with a query q and two cases c1 and c2. Instead of
only selecting the more useful case, the similarity teacher could also estimate
the utility of case c1 in relation to the utility of case c2. This could be realised,
for example, through a statement like “c1 is about twice as useful as c2”. For-
mally spoken this would lead to the following equation, where x represents an
accurate factor: u(q, c1) ≈ x · u(q, c2).

Relative Utility Differences: A weaker form of such relative quantitative feedback
is the possibility to compare utility differences instead of comparing utilities
directly. Consider a query q and three cases c1, c2, and c3. Then a similarity
teacher could also state: “c1 is the most useful case and the utility differ-
ence between c1 and c3 is about three times bigger than the utility difference
between c1 and c2”. This can be expressed with the following equations:

• u(q, c1) > u(q, c2) > u(q, c3)

• u(q, c1) − u(q, c3) ≈ x · (u(q, c1) − u(q, c2))

Both approaches to express quantitative utility feedback can be illustrated as an
arrangement of cases on a line representing the continuum of utility values like shown
in Figure 4.5. The only difference between both approaches lays in the interpretation
of the cases’ positions on the line. Of course, the illustrated procedure can also be
performed with a larger set of cases. The outcome is again a partial order, however,
with some additional information, for example, represented through the described
equations.
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Figure 4.5.: Quantitative Utility Feedback

Exact Utility Feedback

Instead of estimating case utility only in an ordinal manner by comparing the utility
of different cases relatively, utility feedback can also be expressed in a cardinal
way. This leads to exact utility feedback where the utility of a particular case is
represented absolutely by a real number (e.g. out of the interval [0,1]).

Although exact utility feedback provides definitely more knowledge about the
underlying utility function than the relative types of feedback described previously,
its acquisition is often not feasible in practice. For example, the customer shown in
Figure 4.4 would usually have problems to express the utility of the Smart or the
caravan through real numbers. Nevertheless, in other application scenarios where
the similarity teacher is not represented by a human being, acquisition of exact
utility feedback may be possible.

4.2.3. Acquisition of Utility Feedback

In the previous section we have discussed how feedback about the utility of cases
might look like. Although we also mentioned the possibility to acquire quantitative
feedback by estimating the degree of a case’s utility depending on the utility of other
cases, in following we focus on ordinal feedback and on exact feedback. On the one
hand, quantitative feedback can be transformed into exact feedback by exploiting the
respective equations introduced in the previous section, if it is possible to determine
exact utility values at least for some cases. On the other hand, handling this kind
of feedback is significantly more complicated than handling the other forms.

As already described in Section 4.1.3, utility feedback is acquired when evaluating
a presented retrieval ranking. The first question to be answered when considering
the realisation of this evaluation process, is the choice of an accurate point of time.
Two basic possibilities can be distinguished:

1. The evaluation of retrieval rankings is only performed offline in separate train-
ing phases. In such phases special training queries are used to start the CBR
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cycle in order to acquire utility feedback.

2. Another possibility is the integration of the evaluation process into the daily
use of the CBR system. This means, retrieval rankings for real-world queries
are evaluated online during actual problem-solving.

The offline approach is in particular suited for an initial knowledge acquisition
phase or maintenance operations to be performed from time to time. The online
approach is more suitable to improve the problem-solving competence of the CBR
system continuously or to acquire the required utility knowledge from the system’s
users.

Depending on the implementation of the similarity teacher, utility feedback might
be acquired manually from a human being or automatically through an accurate
evaluation procedure employing general knowledge or an external performance mea-
sure.

Manual Acquisition

If the utility of cases has to be estimated manually by human beings, for example,
domain experts or users, this leads to some crucial questions to be considered when
realising the knowledge acquisition process.

Basically, this process has to fulfill two important but contrary requirements.
Firstly, the effort required to evaluate a sufficient number of retrieval rankings should
be minimised. If it is possible to define an accurate similarity measure by applying
the bottom-up procedure (see Section 3.5) with less effort, the entire learning ap-
proach would be pointless. Secondly, the acquisition process must provide enough
information about the unknown utility function to enable a learning algorithm to
construct an accurate similarity measure. This means, during the manual acquisi-
tion of utility feedback we have to deal with the tradeoff between minimal effort
for the similarity teacher and the assessment of a sufficient amount of feedback.
Regarding this aspect two basic approaches are possible:

Invasive Acquisition: Here, the human similarity teacher is explicitly asked to give
utility feedback for presented retrieval rankings. So, s/he plays an active role
and should know that the corresponding effort is required for improving the
entire system and not only for solving the current problem.

Non-Invasive Acquisition: When acquiring utility feedback online, some applica-
tion scenarios also allow a more passive role of the similarity teacher. A user of
the system might provide some feedback about the cases’ utility during normal
interaction with the system without recognising it. For example, a customer in
an eCommerce scenario may provide ordinal utility feedback implicitly through
his buying patterns (see Section 6.4).
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The invasive approach is particularly suited if utility feedback is acquired offline,
for example, during an initial training phase. Here, the similarity teacher is typically
an expert with reasonable expertise in the underlying domain. The non-invasive
approach can only be applied, if utility feedback is acquired online during the actual
usage of the system. Here, feedback is usually provided by normal users that are
not necessarily familiar with the domain and the underlying utility function.

When acquiring utility feedback manually with an invasive method, one has to
take care about the already mentioned tradeoff between effort and benefit. If the
estimation of the cases’ utility is a very complex task, the effort to acquire even
ordinal feedback might be very high. This situation will typically appear in domains
where a comparison of the utility of two given cases requires a deeper analysis of
the cases’ properties. Then one has to deliberate whether the acquisition of enough
utility feedback is more expensive than defining the similarity measure bottom-up.
Unfortunately, this deliberation process is not easy because generally it is difficult
to foresee how much utility feedback will be required to obtain reasonable learning
results.

However, in some application domains domain experts are able to estimate the
utility of cases without analysing them in detail. A domain expert might be familiar
with the cases stored in the case base because they represent typical situations
appearing in the domain. For example, in a help desk system (see Section 2.3.2) an
expert might easily be able to identify useful or exclude absurd solution suggestions
due to her/his own experiences.

A crucial problem that might occur—at least if utility feedback is acquired manual-
ly—are inconsistencies. When asking a domain expert to rank some cases with re-
spect to their utility for a given problem, the resulting ordinal utility feedback is
often based on some vague and possibly also subjective decisions of the expert. This
can lead to the undesired effect that human similarity teachers tend to determine
different case rankings when asking them to estimate the utility of the same cases
after some time (e.g. the next day). This problem will become even more obvious if
utility feedback is delivered from several domain experts or several users. Then the
collected utility feedback will inevitably contain inconsistencies making it harder to
learn an accurate similarity measure.

Automatic Acquisition

Sometimes it is also possible to automate the acquisition of utility feedback. Then
the utility of given cases is not determined by a human being, but by some pro-
cedure or performance measure. Generally, we distinguish two kinds of automatic
acquisition:

Semi-Automatic: Here, a human user still has to select cases to be evaluated. The
utility of the selected case then has to be measured by some performance
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measure in a more or less automated way. For example, it might be used
as input for a simulation procedure or it might be applied in the real world.
Moreover, the human user might select appropriate training queries.

Fully-Automatic: Here, the evaluation of the entire retrieval ranking is automated.
When acquiring utility feedback offline, this also means that appropriate train-
ing queries have to be selected or generated automatically.

When recalling the refined CBR cycle introduced in Section 4.1.3, the major
difference between the two approaches becomes clear. While the full-automatic
approach automates the entire refined revise phase, the semi-automatic approach
still requires a human user performing the “evaluate retrieval ranking” task. So,
s/he controls the entire evaluation process while the evaluation of single cases is
performed automatically.

Of course, acquiring utility feedback automatically leads to some important ad-
vantages compared to manual acquisition:

• Availability of exact utility feedback: A human similarity teacher has often
difficulties to estimate the cases’ utility absolutely. Instead s/he is often only
able to compare the utility of two cases relatively to each other leading to
ordinal utility feedback only. However, when measuring case utility in an
automated way, the employed performance measure might allow an absolute
estimation leading to exact utility feedback.

• Less inconsistencies: Another important aspect is the occurrence of inconsis-
tencies. While decisions of human similarity teachers might be very subjective,
the feedback provided by a performance measure should be based on objective
criteria. So, the quality of feedback generated automatically should usually be
higher than the quality of feedback provided by human similarity teachers.

• Amount of available feedback: The most important point probably is the effort
required to obtain the feedback. With an automated procedure it might be
possible to acquire much more training data with little effort. While the
procedure might still be expensive with respect to computation time, it will
at least safe costs arising through expensive domain experts. However, an
automatic acquisition is, of course, only feasible, if an appropriate performance
measure is already available or can easily be implemented (see also Section 6.5
and 6.6).

Number of Training Queries vs. Number of Evaluated Cases

When considering a way to acquire enough utility feedback, one must be aware of
the fact that the emphasis of a particular set of utility feedback can be set differently.
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One may base utility feedback on a large set of training queries while the number of
evaluated cases is small for each query. Reasonable amount of utility feedback might
also be obtained with few training queries, provided that many cases are evaluated
for each query. How many queries and cases actually have to be evaluated, of course,
also strongly depends on the complexity of the domain.

Which approach is more suitable, mainly depends on the realisation of the similar-
ity teacher. When acquiring the feedback automatically, experiments indicate that
it seems not be crucial whether the emphasis lays on the number of training queries
or the number of cases to be evaluated (Stahl, 2001). Since an automated similarity
teacher uses objective criteria to estimate the utility of cases, the evaluation of a
huge amount of cases regarding one query is possible. However, when working with
a human similarity teacher, who is mostly only able to provide ordinal utility feed-
back, the evaluation of many cases can lead to problems. Then the difference of the
evaluated cases regarding their utility might be very small, so that the teacher is
not able to recognise them. So, human similarity teachers will mostly provide more
suitable feedback if they are confronted with few cases only. Of course, to obtain
enough feedback then a human similarity teacher has to evaluate more queries.

4.3. Learning Similarity Measures from Utility
Feedback

After the discussion of conceivable forms of utility feedback and how to acquire it,
in this section it is described how the described feedback can be used to evaluate
and learn similarity measures. First, the aim of the learning algorithm is motivated
and some important definitions are introduced.

4.3.1. Top-Down Definition of Similarity Measures

First, we consider the situation that we are dealing with cardinal utility feedback
(cf. Section 4.2.2). In Section 4.2.1 we have seen that from an abstract point of
view, utility values can be interpreted as known points of an unknown function.
The basic task of a learning algorithm can be described as a search for a similarity
measure matching these given points as good as possible. Mathematically, this task
can be seen as an interpolation process.

From a procedural point of view it can be interpreted as a top-down definition of
similarity measures compared to the bottom-up definition described in Section 3.5
(Stahl, 2002a). Figure 4.6 illustrates the difference between these two contrary pro-
cedures. When defining similarity measures bottom-up, a domain expert encodes
general knowledge about the utility of cases directly into the similarity represen-
tation formalism. We have characterised this knowledge as low-level knowledge.
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Figure 4.6.: Defining Similarity Measures: Bottom-Up vs. Top-Down

During case retrieval this knowledge is used to compute the actual utility of partic-
ular cases which we have characterised as high-level knowledge.

When defining similarity measures in a top-down manner, this process runs so
to speak inversely. Now, the similarity teacher provides only high-level knowledge
and it is the task of the learning procedure to construct an appropriate similarity
measure by using the given representation formalism. Such a process might also
be described as goal-driven and can be compared to a declarative programming
language. Instead of defining how to reach a goal (like in procedural programming
languages), here only the goal itself (i.e. the actual utility of cases) is described.
The selection of a way to reach that goal (if possible) is left to the system, here the
learning algorithm.

Dealing with Ordinal Feedback

If the learning algorithm has to deal with ordinal utility feedback (see Section 4.2.2),
then we will be confronted with a slightly different situation. Because ordinal feed-
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back does not provide absolute utility values, this feedback does not represent con-
crete points of the desired similarity measure. However, it provides constraints to
be fulfilled by an adequate similarity measure.

For example, consider again an intersection through the unknown similarity mea-
sure like already illustrated in Figure 4.3. Now, we assume the existence of ordinal
utility feedback leading to constraints like shown in Figure 4.7. Here, the learning
algorithm is not confronted with an interpolation task but more with a constraint
satisfaction problem. From an abstract point of view, it has to find a plane or a
2-dimensional function, respectively, (in the example a line or a linear function, re-
spectively) that fulfills the constraints defined by the given ordinal utility feedback.
Of course, this leads to much more possible similarity measures that are valid with
respect to the feedback. In the example, not only the black line represents a sound
function but also the shadowed lines are alternative functions.
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Figure 4.7.: Learning as a Constraint Satisfaction Problem

However, regarding the soundness criteria for similarity measures discussed in
Section 3.2.2 we are usually only interested in constructing measures matching the
utility preference relation. The construction of a measure that computes exact utility
values usually is not required. This means many different similarity measures might
be sound even if they compute quite different similarity values.

4.3.2. Training Data

In Section 4.2.2 the concept of utility feedback has already been described informally.
In order to employ this concept for the development of an approach to learn similarity
measures some basic definitions have to be introduced.

From the machine learning point of view, utility feedback can be characterised
as training data to be used as input for a learning algorithm. Such training data
implicitly contains knowledge about the utility function. The task of the learning
algorithm is to make this knowledge explicit to be used more easily.
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We now define how utility feedback can be represented formally to be processed
by the learning algorithm. Basically, utility feedback is determined by an unknown
utility function u. The only information available about u are the statements of
a particular similarity teacher who possesses some implicit knowledge about that
function u. Moreover, utility feedback always relies on a particular query because
the utility of cases strongly depends on the current problem situation. So, feedback
with respect to one query q can be seen as a single training example to be represented
as follows:

Definition 4.2 (Training Example) Given a query q, a case base CB, and a util-
ity function u that is implicitly given through some similarity teacher, a training
example

TEu(q) = ( (c1, u(q, c1)), (c2, u(q, c2)), . . . , (cn, u(q, cn)) )

is an ordered set of pairs (ci, u(q, ci)) that fulfills the following conditions:

• ci ∈ CB

• u(q, ci) ≥ 0

• ∀ 1 ≤ i < j ≤ n holds u(q, ci) ≥ u(q, cj)

If u(q, ci) ∈ [0, 1] for all 1 ≤ i ≤ n represents the exact utility of ci w.r.t. q, TE is
called cardinal training example. If u(q, ci) ∈ N+ for all 1 ≤ i ≤ n, the utility values
are only used as an index to express ordinal utility feedback, TE is called ordinal
training example.

For ordinal training examples the values u(q, ci) do not represent actual utility
values, but are only used to represent the corresponding partial order. For example,
if it holds u(q, c1) = 2 and u(q, c2) = u(q, c3) = 1, this means that case c1 is more
useful than c2 and c3. Moreover, the cases c2 and c3 are considered to be equally
useful.

Of course, a single training example is insufficient to obtain useful learning results.
This leads to the following definition:

Definition 4.3 (Training Data) Given a set of training queries Q = {q1, q2, . . . , qm},
a case base CB, and a utility function u, a set

TDu = {TEu(q1), TEu(q2), . . . , TEu(qm)}

is called training data where TEu(qi) is the corresponding training example for
query qi. We distinguish between ordinal training data consisting of ordinal training
examples and cardinal training data consisting of cardinal training examples.
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4.3. Learning Similarity Measures from Utility Feedback

Note, that individual training examples of a particular training data set do not
necessarily have to contain the same cases. Further, training data has not necessarily
to be consistent, i.e. one training example might rank cases differently than another
one in the presence of noise.

4.3.3. Retrieval Error

When comparing Definitions 3.4 and 4.2 one can notice a common property, namely
the determination of a partial order for a set of given cases. Hence, a single training
example can be characterised as the partial definition of an optimal retrieval result,
i.e. cases in the retrieval result should be ordered in the same manner as determined
through the training example. However, a similarity-based retrieval result1 is deter-
mined by a particular similarity measure that not necessarily represents a sufficient
approximation of the underlying utility function. The similarity measure might
determine case orders that differ from the optimal orders defined by the training
data.
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Figure 4.8.: Retrieval Error

To be able to judge the quality of a given similarity measure one is interested in
the degree of the deviation between the computed retrieval results and correspond-
ing training examples. To measure this deviation we introduce the concept of the
retrieval error computed by an error function that compares two case orders like
illustrated in Figure 4.8. The objective of this function is the computation of a value
measuring the differences between a retrieval result determined through a given sim-

1Here, we assume unlimited retrieval results according to Definition 3.4.

95



4. Framework for Learning Similarity Measures

ilarity measure and a training example based on the feedback of a similarity teacher.
Basically, this error function should fulfill the following requirements:

• It should consider cases only that appear in the training example. Cases exclu-
sively contained in the retrieval result are not relevant because no information
about their utility is available.

• If and only if the case order of the retrieval result matches the order of the
cases contained in the training example, the resulting error value should be
zero.

• An error value greater zero should estimate the differences between the two
case orders. This means, more differences should lead to a greater error value.

When dealing with cardinal utility feedback, we do not expect that the computed
similarity values match the given utility values, i.e. we are only interested in correct
case rankings. The idea of exact utility values provided by some similarity teacher
is to facilitate the learning process only by providing more information.

When considering training examples containing ordinal information only, the fol-
lowing definitions can be seen as a first attempt to obtain an error function fulfilling
the requirements enumerated previously:

Definition 4.4 (Ordinal Evaluation Function) Let q be a query, TEu(q) be a cor-
responding training example with (ci, u(q, ci)), (cj, u(q, cj)) ∈ TEu(q) and u(q, ci) ≥
u(q, cj). Further, let Sim be a similarity measure. The function efo defined as

efo(TEu(q), Sim, (ci, cj)) :=




α if
u(q, ci) > u(q, cj) ∧
| Sim(q, ci) − Sim(q, cj) | ≤ ε

β if
u(q, ci) = u(q, cj) ∧
| Sim(q, ci) − Sim(q, cj) | > ε

γ if
u(q, ci) > u(q, cj) ∧
Sim(q, ci) − Sim(q, cj) < −ε

0 otherwise

is called ordinal evaluation function where ε ∈ [0, 1] is called similarity indistin-
guishability threshold. The values α, β, γ ≥ 0 are called error qualifiers.

The objective of this function is the evaluation of a given similarity measure
sim regarding the correct ranking for a particular case pair (ci, cj). The similarity
indistinguishability threshold ε can be used to neglect influences on the ranking
induced by very small similarity differences. The error qualifiers α, β, γ can be used
to define the influence of the three distinguished types of errors, namely the

α-Error: Here, case c1 is considered to be more useful than case c2, but the similarity
measure assigns the same similarity to both cases.
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β-Error: Here, case c1 is considered to be equally useful as case c2, but the similarity
measure computes significantly different similarities.

γ-Error: While case c1 is considered to be more useful than case c2, the similarity
measure computes a greater similarity for c2 than for c1.

Typically, γ should be larger than α and β because it corresponds to the worst
error where the similarity measure ranks the two cases contrary to the training data.
In both remaining situations, either the similarity measure or the training data
does not differentiate between the two presented cases. The introduced evaluation
function can now be used to define a first version of the desired error function:

Definition 4.5 (Index Error) Consider a similarity measure Sim, a query q and a
respective training example TEu(q) = ((c1, u(q, c1)), (c2, u(q, c2)), . . . , (cn, u(q, cn)).
We define the index error induced by Sim w.r.t. to TEu(q) as

EI(TEu(q), Sim) =
n−1∑
i=1

n∑
j=i+1

efo(TEu(q), Sim, (ci, cj)) · i + θ

i

where θ ≥ 0 is called the error-position weight.

The error-position weight allows to increase the influence of wrong case rankings
occurring among more useful cases compared with failures occurring among less use-
ful cases. The greater the parameter θ, the greater is the impact of wrong similarities
computed for more useful cases. If θ = 0, the position within the training example
of a case that has been ranked wrongly by the similarity measure is irrelevant for
the computation of the index error.

The index error can be seen as a measure for the quality of a given similarity
measure regarding a particular query and a particular utility function. However,
one is interested in similarity measures that supply reasonable case rankings for
arbitrary queries or at least for some set of queries. This leads to the following
extension of the index error allowing the evaluation of an entire training data set:

Definition 4.6 (Average Index Error) Consider a set of training queries Q = {q1,
q2, . . . , qm}, corresponding training data TDu = {TEu(q1), TEu(q2), . . . , TEu(qm)}
and a similarity measure Sim. We define the average index error induced by Sim
w.r.t. to Q as

ÊI(TDu(Q), Sim) =
1

m
·

m∑
i=1

EI(TEu(qi), Sim)

In Section 4.1.3 we have introduced a new task called “evaluate similarity mea-
sure” to be carried out during the refined retain phase of the CBR cycle. The average
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index error now provides an instrument to implement this task. It represents a mea-
sure reflecting the quality of a given similarity measure according to a training data
set acquired during the refined revise phase. The higher the average index error, the
lower is the ability of the similarity measure to approximate the unknown utility
function. By introducing some threshold, the average index error might be used
to trigger a maintenance operation with the aim to improve the similarity measure
currently used by the CBR system.

4.3.4. Optimising Similarity Measures

This section presents an approach to improve similarity measures by employing
the kind of training data introduced in the previous section. This approach ap-
plies machine learning strategies to construct a similarity measure that corresponds
to knowledge about the utility function implicitly contained in the training data.
Hence, the learning procedure can also be seen as a compilation process that transfers
knowledge from the training data into the representation of the similarity measure.

The Learning Scenario
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Figure 4.9.: Scenario for Learning Similarity Measures
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The general scenario of this learning approach is illustrated in Figure 4.9. On the
one hand, we have a CBR system consisting of a case base, a similarity measure, and
a retrieval engine. Of course, it might also contain additional elements, for example,
adaptation functionality. However, here these elements can be neglected because
they are not important for our learning framework. The first crucial element of the
learning scenario is the already introduced similarity teacher. After the execution of
a similarity-based retrieval the similarity teacher analyses the retrieval results and
gives feedback about the retrieved cases’ utility. The queries initiating the retrieval
might be provided by the application environment or by the similarity teacher. The
result of the similarity teacher’s feedback is a training data set consisting of one
training example for each query.

The second crucial element of the learning scenario is a concept called similarity
learner. The task of the similarity learner is the modification of the system’s similar-
ity measure in order to increase the retrieval quality measured by an error function
that compares achieved retrieval results with available training data. A possible
implementation of such an error function has been introduced in Definition 4.6. In
the following it is shown that an appropriate error function also provides a powerful
instrument to carry out a successful modification of the similarity measure.

Basically, the modification of the similarity measure can be seen as an optimisation
procedure to be realised by the similarity teacher implemented in form of a software
agent. Therefore, this software agent must be able to initiate and evaluate retrieval
results. Further, the agent must have access to the system’s internal similarity
measure and must be allowed to modify it.

Optimisation Loop

The realisation of the optimisation procedure is illustrated in Figure 4.10. In princi-
ple, this procedure can be characterised as a loop consisting of the following processes
executed sequentially:

1. Initiate Retrievals: This first process initiates a similarity-based retrieval
for all queries stored in the training examples. The result is a set of retrieval
results.

2. Evaluate Measure: The task of this process is the evaluation of the similarity
measure currently used. Therefore, the retrieval results previously achieved
have to be compared with the training data by applying the presumed error
function.

3. Check Stop Criterion: The similarity measure’s quality estimation then
determines whether further modification of the measure seems to be promising
or not. If not, the entire optimisation loop is stopped. This decision might also
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Figure 4.10.: Optimisation Loop

be influenced by other criteria, for example, by the number of modifications
already performed.

4. Modify Measure: If the stop criterion is not reached, the last process of the
optimisation loop has to modify the similarity measure in a way that its qual-
ity will hopefully be increased. Depending on the particular implementation
of this modification process, it might also use the error function to control
the process. After modifying the similarity measure a new iteration of the
optimisation loop is started.

Limitations

If the optimisation procedure has been stopped, the quality of the system’s sim-
ilarity measure should be higher or at least not lower than before optimisation.
Unfortunately, this can only be guaranteed with respect to the queries contained
in the training data. And even with respect to these queries it cannot be ensured
that more accurate case rankings will now be achieved for all of these queries. The
optimised similarity might even lead to more inaccurate rankings for some of these
queries. The reason for this is the nature of the supposed error function that deter-
mines the retrieval quality in average for all available training examples. Therefore,

100



4.3. Learning Similarity Measures from Utility Feedback

it can only be guaranteed that the retrieval quality is not reduced in average regard-
ing all considered queries.

Optimisation Triggers

If optimisation of the similarity measure is part of the initial knowledge acquisition
phase when developing a CBR application, a single optimisation process might be
sufficient. However, the objective of the learning approach might also be to improve
or maintain the quality of the similarity measure continuously during the entire
lifetime of the application. Then one has to consider accurate triggers that initiate
the described optimisation loop. After the optimisation loop has been executed once
two possible reasons can require anew optimisation procedure:

New Training Data: Since the optimisation process is restricted to the available
training data, the availability of new training examples may be a reason for
anew optimisation attempt. On the one hand, additional training examples
increase the foundation of the optimisation. Hence, more training data should
enable the similarity learner to generate more generalised similarity measures
leading to more accurate retrieval results even for queries not contained in the
training data. On the other hand, new training examples might also reflect
changes in the underlying utility function. For example, if a customer in an
eCommerce scenario changes her/his preferences, new utility feedback can be
used to adapt the similarity measure regarding the changed preferences. In
this situation it might also be useful to remove old training examples from
the training data because they probably contain obsolete knowledge about the
utility function.

Changes in the Case Base: Another event that might require anew optimisation
process, is a modification of the case base. On the one hand, adding new
cases is not crucial because the training data only considers a subset of the
cases in the case base anyway. However, removing cases can have significant
effects on the optimisation results. Since the training data represents not
only knowledge about a particular set of queries but also about a particular
set of cases, deleting some of these cases might change the outcome of the
optimisation. In such a case, the training data has to be updated by removing
the obsolete cases. After this update, anew optimisation process might lead
to another, hopefully more accurate similarity measure as the one generated
with the old training data.

Modifying the Similarity Measure

Obviously, the most crucial sub-process of the optimisation loop is the one that
modifies the similarity measure. So far, we have said nothing about the concrete
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implementation of this important process. Basically, a modification of the current
similarity measure can be realised in two different ways:

By Chance: Here, the modification is performed randomly without using knowledge
about the training data. The effect of the modification is then only estimated
in the subsequent evaluation process.

By Knowledge: In order to increase the probability that the modification leads to
an improved similarity measure, knowledge about the training data can be
used to guide the modification. This knowledge might be extracted directly
from the training data or it might be provided by the error function actually
used to evaluate the similarity measure.

While a modification by chance can be realised quite simple, a knowledge driven
modification requires more sophisticated learning algorithms. However, the exploita-
tion of knowledge, of course, increases the performance of the optimisation process,
i.e. probably less iterations of the optimisation loop are required.

Besides the exclusive application of only one of these methods, both approaches
can also be combined. The next chapter deals with concrete possibilities to imple-
ment the modification process. Two particular learning algorithms based on two
common machine learning approaches are introduced in detail.
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5. Learning Algorithms

In Chapter 4 a general framework for learning similarity measures has been intro-
duced. The basic idea of this framework is to exploit feedback about the utility of
cases for particular problem situations provided by some similarity teacher in order
to learn accurate similarity measures. It was shown that the central learning task
can be interpreted as an optimisation procedure. During this procedure an initial
similarity measure has to be modified in order to obtain a more suitable one leading
to better retrieval results. However, so far no concrete approaches to implement
accurate modification operations have been discussed. In this section two different
possibilities for controlling the modification process are presented in detail. Both
approaches are coupled with concrete algorithms realising the central functionality
of the similarity learner introduced in Section 4.3.4. First, we shortly discuss the
formal task to be solved by these learning algorithms.

5.1. The Formal Learning Task

Basically, the introduced optimisation loop (cf. Figure 4.10) can be described as a
search process within the space of representable similarity measures. This means,
it is the goal of the similarity learner to find a similarity measure leading to de-
sired retrieval results and that can be represented with the assumed representation
formalism (see Section 3.3). In order to implement this search we have already in-
troduced a powerful instrument, namely the retrieval error computed by some error
function (cf. Section 4.3.3). From an abstract point of view, this error function can
be defined as follows:

Definition 5.1 (Error Function Induced by Training Data) A given training data
set TD induces an error function ETD : SIM −→ R that measures the retrieval error
produced by a similarity measure Sim ∈ SIM w.r.t. TD where SIM represents
the set of all representable similarity measures.

So, the particular error function ETD assigns an error value to each representable
similarity measure with respect to a training data set TD like illustrated in Fig-
ure 5.1. From this abstract point of view, the issue of the optimisation process can
now be redefined as a minimisation of the error function ETD. In other words, the op-
timal similarity measure Simopt leading to the minimum value emin = ETD(Simopt)
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5. Learning Algorithms

of the error function ETD has to be found. During this minimisation process two
crucial problems have to be considered.
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Figure 5.1.: Minimising the Error Function

On the one hand, the minimal error value emin has not necessarily to be equal
zero—in practice emin is mostly significantly greater zero. This problem is caused by
the hypothesis space SIM . Because this space of representable similarity measures
does only contain a certain subset of all possible measures (regarding Definition 3.3),
the ideal similarity measure that fulfills all constraints defined by the training data
is mostly not included. Hence, in the best case the similarity learner is only able to
find the optimal similarity measure Simopt ∈ SIM minimising ETD.

On the other hand, the similarity learner has usually to deal with several minima
of the error function ETD. Basically, we distinguish between two kinds of minima:

• A local minima is given through a similarity measure Simsubopt ∈ SIMR ⊂
SIM coupled with a minimal error value for some region SIMR of the entire
search space, i.e. ∀x ∈ SIMR ETD(Simsubopt) ≤ ETD(x). Such a similarity
measure is called suboptimal.

• A global minima is given through a similarity measure Simopt so that it holds
∀x ∈ SIM ETD(Simopt) ≤ ETD(x). Such a similarity measure is called opti-
mal.

While two different local minima Simsubopt1 and Simsubopt2 might have different
error values, i.e. ETD(Simsubopt1) �= ETD(Simsubopt2), two possible global min-
ima Simopt1 and Simopt2 are always characterised by identical error values, i.e.
ETD(Simopt1) = ETD(Simopt2). Hence, given several local minima one would prefer
the one with the lowest error value, but, in principle, it makes no sense to prefer a
particular global minima provided that the error function contains more than one.

Unfortunately, in general it is not possible to guarantee the determination of an
optimal similarity measure. This would require the total enumeration and evaluation
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of all representable similarity measures. This is usually an infeasible approach due
to its computational complexity. However, depending on the applied learning algo-
rithm at least finding a suboptimal similarity measure can be ensured. Nevertheless,
the return of a suboptimal similarity measure can only be seen as a success, if it
also leads to a decrease of the error value compared to the error value of the initial
similarity measure Siminitial. For example, in Figure 5.1 the local minimum deter-
mined through Simsubopt1 corresponds to a greater error value than the error value
einitial determined through Siminitial. Therefore, the similarity teacher must at least
be able to find the similarity measure Simsubopt2 to perform successful optimisation
of Siminitial.

In Section 4.3.4 we have already mentioned two principle approaches to implement
the described minimisation task. For example, one might repeatedly select similarity
measures randomly in the hope to find one that is coupled with a low error value.
Although such a minimisation by chance sounds infeasible due to its presumably
poor efficiency, a cunning realisation allows the development of a powerful similarity
teacher. In Section 5.3 we describe how this approach can be implemented. Before,
we introduce an alternative approach that exploits knowledge about the shape of the
error function in order to find an accurate similarity measure efficiently. However,
this approach can only be applied to learn one part of the entire similarity measure,
namely attribute weights. In the following we assume a starting situation given
through

• an attribute-value based case model C = (D, L) where the case characterisa-
tion model D consists of n > 0 attributes A1, A2, . . . , An,

• a global similarity measure Sim according to Definition 3.17 consisting of local
similarity measures sim1, . . . , simn represented as difference-based similarity
functions (see Definition 3.15) or similarity tables (see Definition 3.14), a global
attribute weight-vector �w = (w1, . . . , wn), and a weighted average aggregation
function, i.e Sim(q, c) =

∑n
i=1 wi · simi,

• and some training data set TDu(Q) where u is the utility function implicitly
given through some similarity teacher and Q = {q1, q2, . . . , qm} is a set of
training queries.

5.2. Gradient Descent Approach

When having certain information about the shape of the error function, this knowl-
edge can be used to guide the described search for an optimal similarity measure. An
approach that utilises knowledge about error functions in order to implement effi-
cient search strategies is the gradient descent approach. This approach is commonly
used by several machine learning strategies, for example, by the backpropagation
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method used in neural networks (Mitchell, 1997). It is also employed by some ex-
isting approaches to learning attribute weights (Lowe, 1993; Wettschereck and Aha,
1995) (see also Section 9). The basic presumption of this approach is the possibility
to compute the gradient of the error function for a particular point of the search
space. Having this information, it is possible to direct the search into regions of
the search space that seem to be promising regarding the search goal, i.e. finding
minima of the error function.
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Figure 5.2.: Gradient Descent Approach

The basic idea of this approach is illustrated in Figure 5.2. The start point of
the search is again an initial similarity measure Siminitial. If it would be possible
to determine the gradient of the error function in this point, here illustrated as a
tangent, this information could be used to modify Siminitial in a controlled way.
The resulting similarity measure Simim1 can be interpreted as the outcome of one
single iteration of the optimisation loop described in Section 4.3.4, and thus repre-
sents an intermediate result of the entire optimisation process. Because the actual
modification exploits the gradient information, i.e. it “follows” the direction of the
gradient, the intermediate similarity measure Simim hopefully represents a better
solution characterised by a lower error value. By repeating this procedure in a con-
trolled way, it can be ensured that the approach converges to a minimum of the error
function. Unfortunately, in general it cannot be guaranteed that this minimum is
indeed a global minimum. Nevertheless, the gradient approach is a very efficient
approach to find at least suboptimal solutions.

Although the approach seems to be quite simple, in practice some crucial require-
ments must be fulfilled. To be able to compute the gradient of the error function
for a particular point of the search space, the error function must be partially dif-
ferentiable with respect to the parameters to be optimised. In the following, we
introduce a special error function building the foundation for the development of a
gradient descent algorithm for learning global attribute weights.

106



5.2. Gradient Descent Approach

5.2.1. Choosing the Error Function

When recalling the average index error introduced in Definition 4.6, it becomes
clear that this particular error function is not suitable to realise a gradient descent
approach. The problem with this function is that it is not partially differentiable
with respect to some parameter of the similarity measure representation. In order
to overcome this problem, an alternative error function has to be developed.

We consider again the situation that only ordinal information contained in the
training examples is exploited during the learning process. Thus, we choose again
the ordinal evaluation function already introduced in Definition 4.4 to be used as
the foundation of the desired error function:

Definition 5.2 (Similarity Error for a Case Pair) Let q be a query, Sim be a sim-
ilarity measure, and (c1, c2) be a case pair with u(q, c1) ≥ u(q, c2). Further, we
assume that the underlying case characterisation model consists of r attributes with
corresponding local similarity measures sim1, . . . , simr. We define the similarity
error for a case pair (c1, c2) as

ES(TEu(q), Sim, (c1, c2)) =

= | (Sim(q, c1) − Sim(q, c2)) | · efo(TEu(q), Sim, (c1, c2))

= | (

r∑
i=1

wi · simi(q, c1) −
r∑

i=1

wi · simi(q, c2)) | · efo(TEu(q), Sim, (c1, c2))

= | (
r∑

i=1

wi · (simi(q, c1) − simi(q, c2))) · efo(TEu(q), Sim, (c1, c2)) |

This error definition can be seen as an extension of the ordinal evaluation function
(cf. Definition 4.4). Now the error concerning a case pair is not only influenced by
the error qualifiers of the ordinal evaluation function, but it directly depends on
the amalgamation function of the similarity measure. This error for a case pair can
simply be extended to an error computation for an entire training example:

Definition 5.3 (Similarity Error) Let q be a query and TEu(q) = ((c1, u(q, c1)), . . . ,
(cn, u(q, cn))) the corresponding training example. The similarity error for TE
induced by a similarity measure Sim is defined as

ES(TEu(q), Sim) =

n−1∑
k=1

n∑
l=k+1

ES(TEu(q), Sim, (ck, cl)) · k + θ

k

where ES(TEu(q), Sim, (ck, cl)) is the prior defined similarity error for the case pair
(ck, cl) and θ is the error-position weight.
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Here, the error-position weight θ plays the same role as already described for the
index error (see Definition 4.5). As for the index error, the similarity error can be
extended to consider the entire training data set and not only one single training
example:

Definition 5.4 (Average Similarity Error) Consider a set of training queries Q =
{q1, q2, . . . , qm}, respective training data TDu = {TEu(q1), TEu(q2), . . . , TEu(qm)},
and a similarity measure Sim. We define the average similarity error induced by
Sim as

ÊS(TDu(Q), Sim) =
1

m
·

m∑
j=1

ES(TEu(qj), Sim)

=
1

m
·

m∑
j=1

nj−1∑
k=1

nj∑
l=k+1

ES(TEu(qj), Sim, (ck, cl)) · k + θ

k

=
1

m
·

m∑
j=1

nj−1∑
k=1

nj∑
l=k+1

| (
r∑

i=1

wi · (simi(qj, ck) − simi(qj , cl))) ·

efo(TEu(qj), Sim, (ck, cl)) | ·k + θ

k
(5.1)

where nj is the number of cases contained in training example TEu(qj).

As required by the gradient descent approach, this special error function can
be partially differentiated with respect to some important part of the similarity
measure, namely the attribute weights. So, the partial derivation of Equation 5.1
arises as follows:

∂ÊS(TDu(Q), Sim)

∂wi
=

1

m
·

m∑
j=1

nj−1∑
k=1

nj∑
l=k+1

(simi(qj , ck) − simi(qj, cl)) ·

sgn(Sim(q, ck) − Sim(q, cl)) ·
efo(TEu(qj), Sim, (ck, cl)) · k + θ

k

5.2.2. The Gradient Descent Algorithm

After introducing the average similarity error ÊS we now describe an algorithm
that minimises this error function by adjusting the attribute weights wi as part of
the similarity measure Sim. This gradient descent algorithm performs an iterative
search for a local minimum of the error function ÊS according to the following pseudo
code:
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Input: training data TDu(Q), initial similarity measure Sim
Output: optimised similarity measure

procedure gradient descent algorithm(TDu(Q), Sim) {

1. stop-predicate := false;

2. compute average similarity error ÊS(TDu(Q), Sim);

3. initialise learning rate λ;

4. while stop-predicate = false do:

a) generate new Sim′ by updating weights �w contained in Sim:

∀i w′
i := wi − ∂ÊS(TDu(Q),Sim)

∂wi
· λ;

b) normalise �w′: ∀i w′
i := wi∑n

j=1 wj
;

c) compute average similarity error ÊS(TDu(Q), Sim′);

d) if ÊS(TDu(Q), Sim′) < ÊS(TDu(Q), Sim)
then Sim := Sim′

else λ := λ
λ−reduction−rate

e) stop-predicate := evaluate stop-predicate();

5. return optimised similarity measure Sim;

}

Basically, the algorithm can be separated into two phases which are repeated
iteratively until the applied stop-predicate becomes true. These phases correspond
to the evaluation and the modification processes of the optimisation loop introduced
in Section 4.3.4. In the first phase, the algorithm computes the average similarity
error ES for the current similarity measure Sim including the actual weight-vector w
regarding the provided training data set TDu(Q). In the second phase, the derivation
of the error function is used to modify the current weight-vector �w resulting in an
updated weight-vector �w′. If the next iteration shows an improvement in the error, �w′

and so Sim′ is accepted, i.e. Sim := Sim′. Otherwise the learning rate is decreased
by dividing it through the λ−reduction−rate and the process is continued with the
previous similarity measure Sim. In the following section four important parameters
that influence the execution of the algorithm are discussed in more detail.
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5.2.3. Control Parameters

Of course, the outcome of the presented algorithm, i.e. the returned similarity
measure containing the updated weights, strongly relies on the provided training
data set TDu(Q). However, it is also influenced by four additional parameters,
namely

• the initial weight-vector �w,

• the used stop-predicate,

• the initial learning rate λ > 0,

• and the λ-reduction-rate> 1.

Initialisation of Feature Weights

Basically, the determination of the starting point, here given by the initial weights,
is crucial for the success of any gradient descent algorithm. As already discussed
in Section 5.1, in general, it cannot be guaranteed that a global minimum of the
error function will be found. Whether the algorithm actually converges towards a
global minimum or only to a local one strongly depends on the initial similarity
measure chosen. For example, in Figure 5.3 the two initial similarity measures
shown, Siminitial1 and Siminitial2, would lead to different outcomes of the gradient
descent search. While selecting Siminitial1 would enable the algorithm to find the
global minimum Simopt, starting the search at Siminitial2 would cause the algorithm
to be “caught” in the local minimum Simsubopt.
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Figure 5.3.: Impact of the Initial Similarity Measure

The problem with the selection of an accurate starting point is the missing knowl-
edge about the shape of the error function. Although the derivation provides some
knowledge about the shape in a certain small area, the entire shape is not known,
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otherwise the whole search process would be, of course, superfluous. Basically, three
possible approaches to initialise the local similarity measure or the weights, respec-
tively, can be distinguished:

1. the use of a uniform weight-vector, i.e., ∀i wi = 1
n

2. a random initialisation of the weights

3. a domain expert defines the initial weights

The first two approaches obviously do not exploit any knowledge about the domain
or the shape of the error function. Thus, here one can only hope that the initially
chosen weights lead to a satisfying outcome of the gradient descent algorithm. The
third approach is usually the best choice because a domain expert should be able to
initialise the weights in a more ”intelligent“ way due to her/his domain knowledge.
If the domain expert would be able to determine an initial similarity measure close
to the optimal similarity measure Simopt, this would increase the probability that
the algorithm converges towards Simopt.

The Learning Rate

As in other machine learning approaches, the choice of the initial learning rate λ
is also crucial for the outcome of the algorithm. Generally, a tradeoff between a
very small and a too large λ can be noticed. On the one hand, a quite small λ
leads to a poor convergence speed, however, the advantage of a small λ is a higher
probability of finding a local minimum close to the starting point. This might be of
interest if the weights have been initialised by a domain expert because this local
minimum often corresponds to a very accurate similarity measure like described in
the previous section. On the other hand, if λ is too large, the algorithm might
”jump over“ this nearby minimum. This leads to the risk that the algorithm will
”get caught“ in another local minimum corresponding to a much higher error value.

The relation between the initial similarity measure and the initial learning rate
is illustrated in Figure 5.4. Here, the initial similarity measure Siminitial1 is closer
to the global minimum than Siminitial2. When starting at Siminitial1, the smaller
learning rate λ2 leads to the optimum while the greater learning rate λ1 causes
the algorithm to “jump over” the optimum. However, if the search is started at
Siminitial2, the greater learning rate should be preferred. Here, it enables the al-
gorithm to “jump over” the local minimum representing an “obstacle” on the way
towards the global minimum.

Of course, similar to the selection of the initial similarity measure, the selection
of an accurate learning rate is difficult due to missing knowledge about the location
of the error function’s local and global minima. The only possibility is the choice
of a learning rate that has led to good results in some evaluation experiments. To
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Figure 5.4.: Impact of Learning Rate

facilitate the specification of the initial learning rate we propose to define it with
the help of the desired changes in the initial weights during the first iteration of the
optimisation loop. Therefore, one has to define the maximal change in one of the
weights wi represented by the value ∆maxw ∈ [0, 1].

Consider the example of a domain with four attributes and an initial weight-vector
w = (0.25, 0.25, 0.25, 0.25). If the user determines ∆maxw = 0.05, the new weight-
vector computed in the first learning step will at least contain one weight w′

i with
w′

i = 0.2 or w′
i = 0.3. For all other weights w′

j it then holds w′
j ∈ [0.2, 0.3].

Unfortunately, ∆maxw cannot directly be employed as learning rate. To achieve
the described behaviour of the learning algorithm the initial learning rate has to
be computed dynamically prior to the actual search process. Here, it has to be
considered that the required learning rate also depends on the derivation of the
error function. The value of the error function’s derivation for the initial similarity
measure is used to modify the initial weights. Therefore, a “flat” error function in
the area of the starting point requires a greater learning rate compared to a very
“steep” error function. To obtain a learning rate leading to the desired changes in
the weights, it must be computed as follows:

λ =
∆maxw

maxr
i=1{∆wi} where ∆wi =

∂ÊSim

∂wi

The Stop-Predicate

To guarantee the termination of a gradient descent algorithm a stop-predicate has
to be introduced. Generally, various possibilities to realise the stop-predicate exist
(Wilke and Bergmann, 1996):

Minimal Improvement of Similarity Error: When converging to a minimum of the
error function, the achieved improvements concerning the quality of the op-
timised similarity measure will decrease. So, a threshold τ for the difference
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between the computed error values of two subsequent intermediate similarity
measures can be used to break off the learning process, i.e. the algorithm stops
if | ESim − ESim′ |< θ.

Number of failed Optimisation Iterations: Another criterion that can be used to
break off the optimisation process is a repeated failure of optimisation steps.
If the algorithm runs repeatedly into the else-branch of the if-statement in
step 5.d, this might be a hint that no further improvements can be achieved.
To realise this kind of stop-criterion the number of subsequently failed opti-
misation steps has to be recorded. If this number exceeds a previously defined
threshold, the algorithm will return the best similarity measure found so far.

Maximal Number of Optimisation Iterations: A quite simple criterion to guar-
antee the termination of the algorithm is to restrict the number of iterations.
This might simply be realised by exchanging the while-loop in step 5 against
a for-loop that specifies a concrete number of iterations to be executed.

Although the minimal improvement of the similarity error seems to be a very
accurate criterion, it might be difficult to define an appropriate threshold τ . On the
one hand, when choosing a very small value this might lead to a poor efficiency of
the algorithm. On the other hand, a too great value might cause the break off of
the optimisation process although further significant improvements are possible.

Basically, one of the presented stop-criteria might not only be applied exclusively,
but it is also possible to combine them. To avoid the problem of undesired run-
times, an appropriate stop-criterion should always restrict the maximal number of
optimisation iterations. By combining this static criterion with one of the two more
dynamical ones, it is possible to profit of the advantages of both.

5.2.4. Monte Carlo Strategy

As discussed in the previous section, the execution of a gradient descent algorithm
is influenced by several parameters. Unfortunately, the determination of optimal
values for these parameters prior to the execution of the algorithm is mostly impos-
sible. This holds particularly for the selection of an appropriate initial similarity
measure.

To avoid unsatisfactory learning results due to a badly chosen initial similarity
measure, one may employ an approach commonly called Monte Carlo strategy. The
objective of this approach is to ensure stable learning results. Basically, one is not
interested in learning algorithms leading to quite good results in one but bad results
in another execution due to random influences. Instead, learning should always lead
to similar results for the same training data.
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Concerning the described gradient descent algorithm this can be achieved by a
repeated execution of the algorithm with differently chosen initial similarity mea-
sures. Typically, these similarity measures are generated randomly. This leads to
the following algorithm:

Input: training data TDu(Q)
Output: optimised similarity measure

procedure Monte Carlo gradient descent algorithm(TDu(Q)) {
1. Simbest := nil;

2. for i := 1 to n do:

a) initialise similarity measure Sim with random weight vector �w;

b) Simnew := gradient descent algorithm(TDu(Q), Sim)

c) if Simbest = nil or
ÊS(TDu(Q), simnew) < ÊS(TDu(Q), simbest)
then Simbest := Simnew

3. return optimised similarity measure Simbest;

}

For each similarity measure generated, the basic gradient descent algorithm has to
be called, which then returns a new optimised similarity measure Simnew. If Simnew

leads to a lower average similarity error ÊS than the best already generated measure
Simbest, Simnew is memorised. After repeating the gradient descent optimisation for
n different initial similarity measures, finally Simbest is returned as the final outcome
of the optimisation process.

By increasing the parameter n, the probability to find a global minimum or at
least a “good” local minimum of the error function can be increased, too. Moreover,
the variance of achieved learning results should become smaller. Of course, the
drawback of the Monte Carlo approach is the clearly higher computational effort
which increases linearly with n.

5.2.5. Advantages and Drawbacks

After having described how the common gradient descent approach can be employed
to implement the similarity learner of our learning framework, finally a discussion
of this approach regarding its major advantages and drawbacks is given.
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Advantages

The major advantage of the gradient descent approach is the fact that it exploits
knowledge about the error function in order to guide the search process described
formally in Section 5.1. This knowledge, provided in form of the derivation of the
error function, allows to implement a very efficient search process. The computation
time usually required to perform a gradient descent search is relatively low compared
to other search strategies.

Another important property of this approach is the guaranteed convergence of the
gradient descent algorithm. Although it cannot be ensured that it converges towards
a global minimum, the convergence towards a local minimum is for sure. Presum-
ing the usage of an accurate stop-criterion, this property enables the algorithm to
perform a successful optimisation procedure in the majority of its applications. Of
course, a successful optimisation requires accurate training data that induces an
error function allowing minimisation.

Last but not least, the presented algorithm can be implemented very easily. The
major task is the computation of the error function and its derivation. All control
structures (e.g. the stop-criterion) required additionally are quite simple and can
be implemented with few lines of code.

Drawbacks

Although the exploitation of knowledge about the error function is the major ad-
vantage of the algorithm, at the same time it is also connected with the major
drawback of the gradient descent approach. Because the approach absolutely relies
on the derivation of the error function, only functions that are partially differen-
tiable with respect to some parameter of the similarity measure can be used. In
Definition 5.4 we therefore proposed a special error function allowing to apply the
approach for learning attribute weights. An extension to local similarity measures
seems to be infeasible due to their complex and heterogeneous representation (see
Section 3.3) making it much harder to develop an accurate error function.

The introduced error function is also responsible for another, less obvious draw-
back of the presented approach. Unfortunately, this drawback prevents the applica-
tion of the approach if the application domain has some particular characteristics.
In Section 4.3.3 we have described three basic requirements the error function should
fulfill. One of these requirements was that the error value should equal zero if and
only if the case order of the retrieval result matches the order determined by the
training data. Unfortunately, the introduced similarity error violates this require-
ment. When reviewing the definition of the similarity error (cf. Definition 5.4), it
becomes clear that this function results in an error equal zero if a similarity mea-
sure assigns all cases a uniform similarity for each query contained in the training
data. Consequently, such a similarity measure would inevitably correspond to an
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undesired global minimum of the error function. This means, according to the error
function, particular similarity measures seem to be optimal measures, even if this is
not true when evaluating their outcomes regarding the training data.

Fortunately, such critical similarity measures are often not included in the hy-
potheses space because our approach is restricted to learning attribute weights.
However, one crucial property of the application domain allows the definition of a
particular weight-vector leading to a critical similarity measure. If all cases con-
tained in the training data have at least one identical attribute value in common,
a weight-vector leading to uniform similarities can be constructed. Here, the par-
ticular value of the critical attribute is arbitrary—also the special value “unknown”
causes the problem.

Consider the set of cases c1, c2, . . . , cn contained in the training data and suppose
an attribute ai with c1.ai = c2.ai = · · · = cn.ai. Then, the weight-vector �w with wi =
1 and ∀j �= i wj = 0 would lead to uniform similarities Sim(q, c1) = Sim(q, c2) =
· · · = Sim(q, cn) for every arbitrary query q, and hence, to a similarity error ESim =
0.

A final drawback of the gradient descent approach is its strong dependency on the
chosen initial similarity measure. However, this undesired effect can be weakened
by employing the Monte Carlo approach described in Section 5.2.4.

5.3. Genetic Algorithm

In this section, an alternative method to implement the similarity learner is pre-
sented. While the gradient descent approach exploits particular knowledge about
the error function in order to find a minimum, genetic algorithms realise a search
strategy more driven by chance. Genetic algorithms are a commonly applied tech-
nique for solving optimisation and machine learning tasks in numerous application
fields. Basically, the foundation of genetic algorithms is the idea to apply the prin-
ciples of natural evolution to search strategies in computer science. Therefore, the
mechanisms of natural selection, natural genetics, and the principle of the “survival
of the fittest” have to be modelled through accurate data structures and algorithms.

The actual search process of a genetic algorithm is again an iterative procedure. In
each iteration a new set of artificial creatures—called individuals—is created using
pieces—called genes—of the description of individuals—called genome—generated
in the previous iteration. Each iteration corresponds to a particular generation of
individuals. The actual creation of new individuals is based on two major principles,
called crossover and mutation. Crossover means that genes of different individuals
of the previous generation are combined to create new individuals of the current
generation. During this process, occasionally small modifications of the genes are
introduced, leading to individuals with new genes so far not included in the genomes
of the previous generation. Crossover, as well as mutation have to be implemented
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in form of accurate operators, summarised as genetic operators.

Generally, each individual represents one point of the search space, i.e. in our
search scenario a particular similarity measure. Of course, one is not interested in
creating arbitrary individuals, but individuals corresponding to accurate similarity
measures characterised through low error values (see Section 5.1). To increase the
probability that new individuals are also “better” individuals, genetic algorithms
apply the principle of the “survival of the fittest”. This means, only genes of the
“fittest” individuals of the previous generation are reused to create new individuals.
Here, the “fitness” of individuals corresponds to the particular search criterion and
has to be measured by some fitness function.

An illustration of the described procedure is shown in Figure 5.5. For the founda-
tions of and more details on genetic algorithms the reader is referred to Michalewicz
(1996); Holland (1975).

In the following we present an approach employing the idea of genetic algorithms
to implement the similarity learner required by our learning framework (see Chap-
ter 4). While the gradient descent approach was only suitable for learning attribute
weights, this approach allows both, learning weights as well as learning local simi-
larity measures (Stahl and Gabel, 2003). Further, it can easily be extended for opti-
mising the third part of the presumed similarity measure representation, namely the
aggregation function. However, in the scope of this thesis this will not be discussed
in detail.

For the following reasons genetic algorithms are a powerful instrument for opti-
mising similarity measures, and especially for optimising local similarity measures:

• Genetic algorithms have proved to provide flexible, powerful and robust1 mech-
anisms for searching optima in complex search spaces.

• The presumed fitness function, i.e., the actual optimisation criteria has not
necessarily to fulfill some crucial properties. While the gradient descent ap-
proach requires a partially differentiable error function, genetic algorithms
allow optimisation of arbitrary target functions. Since local similarity mea-
sures depict complex entities that are characterised by several quite different
parameters, it is not feasible to construct an adequate error function that can
be derived with respect to these parameters.

• Attribute weights as well as local similarity measures can adequately be rep-
resented as individuals described by genomes.

1The success of robust learning algorithms does not rely on special circumstances of the particular
learning situation, e.g. the starting point of the search process.
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Figure 5.5.: The Idea of Genetic Algorithms

5.3.1. Genetic Algorithms vs. Evolution Programs

In traditional genetic algorithms individuals are commonly represented as bit stri-
ngs—lists of 0s and 1s—to which crossover or mutation operators are applied (Hol-
land, 1975). However, depending on the particular structure of the underlying search
space, this representation sometimes leads to certain problems. One drawback of bit
strings is the difficulty to incorporate constraints on the description of individuals.
When dealing with the bit string representation, every possible bit string ideally
should represent a valid individual, i.e. a point of the addressed search space. How-
ever, the required mapping between a possibly very complex search space and the
set of all bit strings with a particular length can often not easily be defined. In our
scenario constraints are in particular a problem when dealing with local similarity

118



5.3. Genetic Algorithm

measures. Here, restricting the overall search space by introducing constraints might
avoid to generate “strange” similarity measures not expected to appear in real world
applications. For example, we usually suppose to have reflexive similarity measures
(see Section 3.2.2). Another problem occurs, if the description of individuals in-
cludes real-valued numbers, which cannot accurately be described with bit strings.
Because we are dealing with similarity values, i.e. values of the interval [0,1], the
description of individuals, of course, also contains numerous real-valued numbers.

An alternative approach avoiding the described problems of traditional genetic
algorithms, are so-called evolution programs2 (Michalewicz, 1996). The idea of this
approach is the usage of more sophisticated data structures and the application
of appropriate genetic operators, while still exploiting the evolutionary principle of
the traditional genetic algorithm approach. Because evolution programs allow to
optimise the original data structures of the application domain directly, a complex
mapping between these data structures and bit strings is needless. The learning
algorithm presented in the following employs both, a traditional genetic algorithm
and an evolution program.

5.3.2. Choosing the Fitness Function

To guide the optimisation process any optimisation technique, of course, requires
a formalisation of the optimisation goal. As well as other optimisation techniques,
genetic algorithms allow to describe the optimisation goal in form of a mathematical
function. The so-called fitness function enables the genetic algorithm to estimate
the fitness or quality, respectively, of generated individuals. This information is
then exploited by the crossover operator in order to control the evolutionary process
towards the generation of new, hopefully promising individuals.

For our learning task the presumed error function (cf. Section 5.1) already rep-
resents an accurate fitness function to be used by a genetic algorithm. The lower
the retrieval error the fitter is the respective individual, here a particular similarity
measure. Because genetic algorithms do not require a fitness function with certain
properties, this approach allows the usage of our originally introduced error func-
tion, namely the average index error (cf. Definition 4.6). The usage of this error
function avoids undesired effects that may occur when using more artificial error
functions. For example, we saw that the average similarity error (cf. Definition 5.4)
required by the gradient descent algorithm may lead to a failure of the optimisation
process due to the existence of undesired minima of the error function.

2The used terminology is ambiguous. Some researches also speak about evolution algorithms or
evolution strategies.
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5.3.3. Representation of Individuals

Besides an accurate error function, also the representation of individuals by an accu-
rate genome is a very crucial aspect when employing genetic algorithms or evolution
programs, respectively. To be able to learn attribute weights and local similarity
measures we have to settle how to represent the respective individuals. While at-
tribute weights can easily be represented by using bit strings, the representation of
local similarity measures is more difficult to handle. So, we decided to employ the
traditional bit string representation for attribute weights, while employing a more
sophisticated representation for representing local similarity measures.

Representing Weights

To apply a standard genetic algorithm for learning global attribute weights as in-
troduced in Definition 3.16, the following bit string representation can be used:

Definition 5.5 (Attribute Weights Individual) Let C be a case characterisation
model consisting of n attributes A1, . . . , An. An individual I representing a global
weight vector �w for C is coded as a bit string BSI

�w = bs−1bs−2 . . . b2b1b0 with
bi ∈ {0, 1} of fixed size s = n · sw. The entire bit string consists of n sub-strings
bsw1, · · · , bswn where each bswi

= bi·sw−1bi·sw−2 . . . bi·sw−(sw−1)bi·sw−sw represents the

bit string representation for weight wi, i.e. wi =
∑sw−1

j=0 2j · b(i−1)·sw+j.

The parameter sw determines how exact the real valued attribute weights are
represented by the bit string representation, i.e. the greater sw the more exactly the
weights can be expressed.

With this representation it cannot be guaranteed that each individual corresponds
to a normalised weight vector, i.e.

∑n
i=1 wi = 1, like introduced in Definition 3.16.

However, each non-normalised weight vector can easily be transformed to an unam-
biguous normalised one. So, the only disadvantage of the described representation
is the existence of different individuals corresponding to the same normalised weight
vector. However, this actually unnecessary extension of the search space can be
tolerated. The construction of a more accurate representation only allowing nor-
malised weight vectors would require the definition of additional constraints that
are difficult to handle with a genetic algorithm.

Representing Difference-Based Similarity Functions

Concerning local similarity measures we presume the representation formalism in-
troduced in Definition 3.15 and 3.14, i.e. difference-based similarity functions and
similarity tables. Moreover, we assume difference-based similarity functions based
on linear difference because this kind of similarity function is sufficient in most do-
mains (cf. Section 3.3.3). Nevertheless, the algorithm presented here can easily be
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extended to consider also other difference functions by introducing an additional
parameter for selecting the optimal difference function to be determined by the
evolution algorithm.

Consider some difference-based similarity function SimA used as local similarity
measure for a numeric attribute A. Since SimA may be continuous in its value
range [min(Arange) − max(Arange), max(Arange) − min(Arange)] it is generally not
possible to describe it with a fixed set of parameters. In certain cases this may
be possible (e.g. when using a limited set of base functions), but in general it is
not. Thus, we employ an approximation based on a number of sampling points to
describe arbitrary functions:

Definition 5.6 (Similarity Function Individual, Similarity Vector) An individual
I representing a similarity function SimA for the numeric attribute A is coded as a
vector V I

A of fixed size s. The elements of that similarity vector are interpreted as
sampling points of SimA, between which the similarity function is linearly interpo-
lated. Accordingly, it holds for all i ∈ {1, . . . , s}: vI

i = (V I
A)i ∈ [0, 1].

The number of sampling points s may be chosen due to the demands of the
application domain: The more elements V I

A contains, the more accurate the approx-
imation of the corresponding similarity function, but on the other hand, the higher
the computational effort required for optimisation. Depending on the characteris-
tics of the application domain and the particular attribute, different strategies for
distributing sampling points over the value range of the similarity function might
be promising:

Uniform Sampling: The simplest strategy is to distribute sampling points equidis-
tantly over the entire value range (see Figure 5.6a). When applying this strat-
egy, all areas of the underlying similarity function are considered to be equally
important.

Center-Focused Sampling: However, when analysing the structure of difference-
based similarity functions in more detail, it becomes clear that different inputs
of the functions will usually occur with different probabilities. While the max-
imal and minimal inputs, i.e. the values dmin = (min(Arange) − max(Arange))
and dmax = (max(Arange)−min(Arange)), can only occur for one combination
of query and case values, inputs corresponding to small differences can be gen-
erated by various of such combinations. Thus, case data and corresponding
training data usually provides much more information about the influences of
small differences, compared to the information available about extreme differ-
ences. Another aspect is that changes in similarity are usually more impor-
tant for small value differences, since greater differences usually correspond to
very small similarity values. In order to consider these facts during learning,
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it might be useful to use more sampling points around the “center” of the
difference-based similarity function like illustrated in Figure 5.6b.

Dynamic Sampling: While the center-focused approach is more a heuristics, it is
also possible to perform a statistical analysis of the training data in order to
determine an optimal distribution for the sampling points. Then, areas where
a lot of training information is available might be covered with more sampling
points compared to areas for which no respective information is contained in
the training data.
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Figure 5.6.: Representing Similarity Functions as Individuals

Representing Similarity Tables

Similarity tables, as the second type of local similarity measures of concern, are
represented as matrices of floating point numbers within the interval [0, 1]:

Definition 5.7 (Similarity Table Individual, Similarity Matrix) An individual I
representing a similarity table for a symbolic attribute A with a list of allowed values
Arange = (d1, d2, . . . , dn) is a n × n-matrix M I

A with entries mI
ij = (M I

A)ij ∈ [0, 1] for
all i, j ∈ {1, . . . , n}.

This definition corresponds to the representation of similarity tables (cf. Defini-
tion 3.14), i.e. the original representation of this type of local similarity measures
is directly used by the evolution program. So, the definition presented here is only
required for introducing the necessary notation.
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5.3.4. Genetic Operators

Another important issue is the definition of accurate genetic operators used to per-
form crossover and mutation operations. When deciding not to use bit strings,
but other data structures for representing individuals, the genetic operators have
to consider the particularly used genome representation. Therefore, in this section
specialised genetic operators for the previously introduced genome representation
are presented.

Genetic operators are responsible for the creation of new individuals and thus
have a significant influence on the way a population develops. By using parts of
the genome of two or more parent individuals, new ones are composed. Further,
random mutations can be applied to recently generated individuals—called adapting
mutation—or to existing individuals in order to form a new one—called reproducing
mutation.

The operators we use for learning local similarity measures are quite different
from classical ones since they operate on a different genome representation. How-
ever, because of underlying similarities, we divide them also into the two standard
groups: mutation and crossover operators. But first, classic genetic operators used
for creating new individuals for representing attribute weights like introduced in
Definition 5.5 are described.

Crossover Operator for Weights

Because we apply the traditional bit string approach for representing attribute
weights, also the traditional genetic operators for implementing crossover and mu-
tation can be employed.

To create a new attribute weights individual Inew for the child generation, two
of the fittest individuals I1 and I2 of the parent generation have to be selected.
Then, a split point sp ∈ {0, 1, . . . , n · s} has to be determined randomly. Finally,
the genome of the new individual Inew is assembled by using the bits bs−1bs−2 . . . bsp

from I1 and the bits bsp−1 . . . b1b0 from I2. The remaining bits bsp−1 . . . b1b0 of I1 and
bs−1bs−2 . . . bsp of I2 might be used directly to create a second new individual or they
might be combined with genome parts of other parent individuals to obtain further
new individuals. In the second case, the parent individuals selected additionally
have to be split at the same split point sp, of course.

Mutation Operator for Weights

For the mutation of attribute weights individuals holds the same as for crossover.
Due to the bit string representation the mutation operator is also realised as in
common genetic algorithms. According to some probability ρ, every bit of the
representation is changed from 0 to 1 or 1 to 0, respectively. So, the number of
single mutations, i.e. changed bits, is not determined a priori but depends in a more
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flexible way on ρ. The larger ρ the more mutations will occur in average. Therefore,
ρ might also be determined with respect to the length of the particular bit string
used. For relative small bit strings it might be more accurate to chose a greater ρ to
increase the probability of mutations. When dealing with larger bit strings, ρ might
be chosen smaller to avoid extensive changes in the genome due to a large number
of mutations.

Crossover Operators for Similarity Vectors and Matrices

By applying crossover operators on the more complex data structures used for rep-
resenting local similarity measures, a new individual in form of a similarity vector
or matrix is created using elements of its parents. Though there are variations of
crossover operators described that exploit arbitrary number of parents (Michalewicz,
1996), we rely on the traditional approach using exactly two parental individuals,
I1 and I2.

• Simple crossover is defined in the traditional way as used for bit string rep-
resentations: First a split point for the particular similarity vector or matrix
is chosen. The new individual is then assembled by using the first part of
parent I1’s similarity vector or matrix and the second part of parent I2’s vec-
tor/matrix.

• Arbitrary crossover represents a kind of multi-split-point crossover with a ran-
dom number of split points. Here, for each component of the offspring individ-
ual it is decided randomly whether to use the corresponding vector or matrix
element from parent I1 or I2.

• Arithmetical crossover is defined as the linear combination of both parent
similarity vectors or matrices. In the case of similarity matrices the offspring
is generated according to: (M Inew

A )ij = mInew
ij with mInew

ij = 1
2
mI1

ij + 1
2
mI2

ij for
all i, j ∈ {1, . . . , d}.

• Line/column crossover is employed for similarity tables, i.e. for symbolic
attributes, only. Lines and columns in a similarity matrix contain coherent
information, because their similarity entries refer to the same query or case
value, respectively. Therefore, cutting a line/column by applying simple or
arbitrary crossover may lead to less valuable lines/columns for the offspring
individual. We define line crossover as follows: For each line i ∈ {1, . . . , n} we
randomly determine individual I1 or I2 to be the parent individual IP for that
line. Then it holds mInew

ij = mIP
ij for all j ∈ {1, . . . , n}. Column crossover is

defined accordingly.

For each of the described operators a particular probability value has to be spec-
ified. When performing crossover, one of the described operators is then selected
according to this probability.
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Mutation Operators for Similarity Vectors and Matrices

Operators of this class are the same for both kinds of local similarity measures we
are dealing with. They change one or more values of a similarity vector V I

A or
matrix M I

A according to the respective mutation rule. Doing so, the constraint that
every new value has to lie within the interval [0, 1] is met. The second constraint
that needs to be considered concerns the reflexivity of local similarity measures (cf.
Section 3.2.2). As a consequence, the medial sampling point of a similarity vector
should be 1.0 as well as the elements mI

ii of a similarity matrix for all i ∈ {1, . . . , n}.
Since any matrix can be understood as a vector, we describe the functionality of our
mutation operators for similarity vectors only:

• Simple mutation: If V I
A = (vI

1, . . . , v
I
s) is a similarity vector individual, then

each element vI
i has the same probability of undergoing a mutation. The

result of a single application of this operator is a changed similarity vector
(vI

1, . . . , v̂
I
j , . . . , vs), with 1 ≤ j ≤ s and v̂I

j chosen randomly from [0, 1].

• Multivariate non-uniform mutation applies the simple mutation to several ele-
ments of V I

a . Moreover, the alterations introduced to an element of that vector
become smaller as the age of the population is increasing. The new value for
vI

j is computed according to v̂I
j = vI

j ± (1− r(1− t
T

)2), where t is the current age
of the population at hand, T its maximal age, and r a random number from
[0, 1]. Hence, this property makes the operator searching the space more uni-
formly at early stages of the evolutional process (when t is small) and rather
locally at later times (when t becomes greater). The sign ± indicates, that the
alteration is either additive or subtractive. The decision about that is made
randomly as well.

• In-/decreasing mutation represents a specialisation of the previous operator.
Sometimes it is helpful to modify a number of neighbouring sampling points
uniformly. The operator for in-/decreasing mutation randomly picks two sam-
pling points vI

j and vI
k and increases or decreases the values for all vI

i with
j ≤ i ≤ k by a fixed increment.

As for crossover operators, mutation operators are applied according to some
probability to be specified a priori.
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5.3.5. Controlling the Genetic Algorithm

In contrast to the gradient descent algorithm described in Section 5.2.2, the control
structure for the genetic algorithm is more sophisticated. While the gradient descent
approach considers attribute weights only, the genetic algorithm is able to optimise
all major elements of the entire similarity measure, i.e. besides the attribute weights
also all specific local similarity measures required for each attribute. In this work we
have neglected optimisation of the aggregation function. Instead, always a weighted
sum is employed because this function is accurate in most domains. However, this
element of the similarity measure might be optimised easily with a genetic algorithm,
too.

Weights and local similarity measures are quite different parts of the similarity
measure. Because the effects of these two parts on the entire similarity computation
interact with each other, one must be aware how to integrate the respective optimi-
sation processes. Basically, the following two approaches for an integration can be
distinguished.

Sequential Processing

One possibility is to separate the actual optimisation of attribute weights and local
similarity measures. One might first optimise the weights while holding the local
similarity measures fixed. The optimisation procedure for the local similarity mea-
sures would be started after having obtained an optimised weight vector. Of course,
the order of processing could also be inverted, i.e. one might optimise attribute
weights after the optimisation of local similarity measures.

The sequential approach can also be applied for processing all involved local sim-
ilarity measures. Because local similarity measures are defined independently from
each other, the optimisation of them can be separated and this separation should
not significantly influence the outcome of the optimisation process. This means, one
could optimise each local similarity measure until some stop criterion (e.g. a reached
maximal number of generations) stops the current optimisation loop and start the
optimisation of the next local similarity measure.

So, the entire optimisation process can be decomposed into several optimisation
loops that are responsible for optimising attribute weights and single local similarity
measures, respectively. The control structure for implementing such a single optimi-
sation loop is similar to a standard genetic algorithm (Holland, 1975) and proceeds
at a high level as follows:
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Input: training data TDu(Q), initial similarity measures Sim,
optimisation entity oe

Output: optimised oe

procedure base genetic algorithm(TDu(Q), Sim, oe) {
1. generate initial population P0 = {I1, I2, . . . , Ipsize

} for oe;

2. for i = 0 to number of generations do:

a) create a set Pchild of psize · reproduction rate new individuals
by applying crossover operators and reproducing mutation to
mating partners randomly selected from Pi;

b) Pi+1 := Pi + Pchild;

c) mutate the individuals in Pi+1 (adaptive mutation);

d) evaluate fitness for each Ir ∈ Pi+1, i.e. compute
EI(TDu(Q), SimIr) where SimIr is the similarity measure as-
sembled from Sim and Ir;

e) remove the psize · reproduction rate most unfit individuals from
Pi+1;

3. return optimised oe according to the fittest individual Ifittest of popu-
lation Pnumber of generations;

}

As input the algorithm is provided with training data, an initial similarity mea-
sure, and an identifier—here, denoted as optimisation entity—that determines which
part of the entire similarity measure has to be optimised. For example, this iden-
tifier might be an attribute name for identifying the corresponding local similarity
measure. According to this identifier the algorithm then selects the appropriate
representation for describing individuals and applies accurate genetic operators.

The major drawback of the sequential approach is the necessity of some initial
similarity measure. When optimising only one part of the entire measure, one al-
ready needs the remaining parts when evaluating the fitness of individuals, i.e. when
computing the retrieval error. So, the remaining parts have to be initialised in some
way, for example, randomly or by a domain expert. However, the chosen attribute
weights or local similarity measures, respectively, have a crucial impact on the op-
timisation process.

First, consider the situation that we start with the optimisation of a particular
local similarity measure simi. Further, we assume that the weight vector chosen
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initially contains a weight wi with a high value, although the actual (but unknown)
utility function requires a significantly lower value for wi. In this case, the op-
timisation might yield an inaccurate corresponding measure simi assigning nearly
identical similarity values for all attribute value combinations. Such a measure might
compensate the retrieval error caused by the wrong weight wi and so the learning
algorithm is not able to find an accurate version of simi as required by the utility
function.

Also the opposite processing order might lead to crucial problems. Assume that
one of the local similarity measures simi chosen initially computes very wrong sim-
ilarities for many or all possible combinations of input values. This might lead to
the determination of a small value for the corresponding weight wi when optimising
attribute weights. The reason is the fact that a small wi might compensate the
retrieval error caused by simi. However, the utility function might require a much
greater value for wi.

Concerning the processing order of the individual local similarity measures such
problems should not occur, because local similarity measures do not depend on each
other due to the local-global principle (cf. Section 3.3.2).

Parallel Processing

To avoid the problems of sequential processing described previously, one could also
optimise weights and all local measures simultaneously. This means, the applied
genetic algorithm has to manage composed individuals consisting of one atomic
individual for the weight vector (according to Definition 5.5) and one atomic in-
dividual for each local similarity measure (according to Definitions 5.6 and 5.7).
The crossover and mutation operators required for composed individuals then have
to apply accurate atomic operators (as described in Section 5.3.4) for the involved
atomic individuals.

The control structure of the parallel processing approach is nearly identical to the
base algorithm presented previously. The only differences are:

• an initial similarity measure is not required because the complete similarity
measure is optimised,

• so, also the identifier for the optimisation entity can be omitted,

• crossover and mutation is not applied directly to the entire composed indi-
viduals, but only to the single atomic individuals contained in the composed
individuals

Unfortunately, the described composed individuals lead to a very huge search
space to be considered by the genetic algorithm. Because parallel processing of
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weights and local measures does not allow to separate the optimisation of the indi-
vidual elements of the entire similarity measure, the complete search space has to
be processed at once.

Pseudo Parallel Processing

Another approach that avoids very large individuals like required by the previous
strategy, is an alternated processing of two independent optimisation loops. The
first optimisation loop is responsible for learning attribute weights, and the second
loop optimises local similarity measures only. Each loop has to be realised by a
corresponding genetic algorithm which can be processed “pseudo parallel”. This
means, algorithm one processes a fixed number of generations for learning weights,
stops, and then the second algorithm processes also a fixed number of generations
for learning local similarity measures. This procedure has to be repeated until the
stop criterion stops both algorithms.

The main idea of the pseudo parallel processing is that the two algorithms profit
from the improvements of each other when computing the fitness of individuals.
The fitness - e.g. the index error - relies on retrieval results which can only be
determined by using weights and local similarity measures. Thus, both algorithms
have to operate on one similarity measure, but each algorithm optimises another
part of this measure.

The main difference to the real parallel processing by using composed individuals
is, that it is possible to assign the learning procedures for both parts of the similarity
measure individual processing times. Since learning of local similarity measures
is connected with larger search spaces, it might useful to allow this algorithm to
process more generations in each iteration. For example, if the weight learning
algorithm is allowed to process 100 generations in total while the local similarity
measure learning algorithm is allowed to process 200 generations, it might be useful
to retain this ration in every iteration, too. Thus, the weight learner might process
5 generations next the local measure learner 10 generations, and so on.

5.3.6. Control Parameters

Similar to the gradient descent algorithm (see Section 5.2.3), also the behavior of the
genetic algorithm presented can be influenced by some control parameters. However,
because genetic algorithms are quite robust, these parameters do not have such a
strong impact on the learning results compared to the parameters of the gradient
descent algorithm. The following parameters have to be specified when applying the
algorithm previously described:

Population Size: This integer number determines the number of individuals con-
tained in one generation of the evolutional process.
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Reproduction Rate: The reproduction rate is a real valued parameter from the
interval [0, 1] and determines the number of generated child individuals against
the population size. For example, a reproduction rate of 0.5 will lead to 10
child individuals when using a population size of 20.

Number of generations: This important parameter specifies a fixed stop criterion
to ensure the termination of the algorithm. This means, the evolution process
is stopped after having proceeded for the specified number of generations. The
more generations have to be generated the longer is the runtime of the algo-
rithm, of course. However, more generations usually lead to fitter individuals
and so to more accurate learning results.

5.3.7. Advantages and Drawbacks

As for the learning algorithm based on the gradient descent approach, also the
genetic algorithm has certain advantages but also a major drawback.

Advantages

The most obvious advantage of the introduced genetic algorithm is the possibility to
learn also local similarity measures and not only attribute weights. Local similarity
measures are a very important aspect of the similarity representation assumed in
this work. So, an implementation of our learning framework has to provide also
learning capability for this part of similarity measures to be relevant in practice.

Another advantage of genetic algorithms is that it does not require crucial proper-
ties on the fitness function to be used to guide the optimisation process. In contrast
to the gradient descent approach genetic algorithms do not require the definition of
an unnecessary sophisticated error function in order to ensure its differentiability.
This allows us to use the error function originally introduced to compare retrieval
results with corresponding training data, namely the index error (cf. Definition 4.6).
This also avoids problems due to undesired minima of the error function caused by
specific properties of the considered case data (cf. Section 5.2.5).

The quality of the achieved learning results mainly depends on the quality of
the provided training data. The outcome of a single optimisation process does not
rely on crucial parameters compared to the gradient descent approach where the
initial similarity measure and the employed learning rate have a major impact. This
means, the presented genetic algorithm represents a very robust learning method
mostly converging to a global minimum of the error function and so to an accurate
similarity measure regarding the representation formalism employed and vocabulary
chosen.
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Drawbacks

Unfortunately, it is not sufficient to know that a learning algorithm, in principle,
converges to an optimum of the considered search space. Another very important
aspect is also the convergence speed. The required computation time is the only
crucial drawback of the presented genetic algorithm for learning similarity measures.
Because the algorithm does not exploit particular knowledge about the shape of
the error function to guide the search process, experiments have shown that the
convergence speed is dramatically lower compared to the gradient descent algorithm
(see Section 8.4.2). Nevertheless, in our experiments carried out in the scope of this
work, the genetic algorithm was able to find accurate similarity measures in tolerable
computation times. The required time for learning, of course, strongly depends also
on the case model, the size of the case base, the amount of available training data
and, last but not least, on the employed computer hardware.

Because the described application scenarios (see Chapter 6) do not necessarily re-
quire fast generation of results, the genetic algorithm seems to be the most promising
approach for realising the optimisation loop. For example, if it is employed to gen-
erate an initial similarity measure during the development phase of a CBR-System,
one might even tolerate computation times of several days. If it is used for main-
tenance operations, it could also be run over night or parallel to the daily use of
the system. Moreover, one might apply techniques to distribute the processing of
the algorithm on several machines in order to speed up the entire learning process
(Moser, 1999).
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After having introduced our approach to learning similarity measures in Chapter 4
and Chapter 5, this chapter now deals with its application in practice. So far it was
assumed that the mandatory training data is provided by some arbitrary similarity
teacher. Although in Section 4.2.2 it was already mentioned that this similarity
teacher might be realised in various ways, particular examples how this might look
like in practice have not been discussed so far. In this chapter several application
scenarios, where the introduced learning approach might facilitate the acquisition of
similarity knowledge, are presented. Before, we briefly recall some general aspects
concerning the application of our learning framework.

6.1. Applying the Framework

When taking into consideration to apply the presented framework, one first should
become aware of the capabilities and the requirements of the framework. In gen-
eral, machine learning approaches should only be applied if the knowledge to be
learned cannot be acquired more efficiently through an alternative way. If the re-
quired knowledge can be provided by an experienced domain expert and if it can
be formalised accurately with reasonable effort, the application of machine learn-
ing approaches is mostly not a good choice. The general problem of any learning
approach is the extraction of knowledge from a finite training data set. So, every
particular aspect not contained in the training data, for example, an exception only
occurring rarely in the underlying domain, will presumably not be considered by the
knowledge learned. Although a human expert might also forget to mention some
rare exceptions, under the mentioned conditions the quality of manually acquired
knowledge is mostly higher than the quality of learned knowledge. Moreover, ma-
chine learning approaches are usually only able to learn meaningful knowledge, if a
rough idea about the content of the expected knowledge is already known. Formally
spoken this means, learning is only feasible, if the hypothesis space can be restricted
appropriately.

However, in real-world applications manual knowledge acquisition is often compli-
cated due to certain problems. Concerning the acquisition of similarity knowledge,
the following principle reasons might complicate or even prevent a manual acquisi-
tion:

• Accessibility of Explicit Utility Knowledge: Sometimes, no expert who is able
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to provide knowledge about the actual utility of cases for particular problem
situations in an explicit form is available. This problem might be caused by a
poorly understood application domain or by economic considerations due to
the high personal costs when employing experienced experts. In this situation
only knowledge-poor similarity measures (see Section 3.4.1) can be defined.
However, this might lead to an insufficient approximation of the underlying
utility function and so to inaccurate retrieval results.

• Difficulties of Knowledge Compilation: If knowledge about the cases’ utility is
only available in an informal form (e.g. natural language), the transformation
of this knowledge into the representation formalisms used by the CBR system
might be very difficult. This holds in particular if no experienced CBR expert
is accessible to do this job.

• Changes of Utility Requirements: Some domains are characterised by rapid
changes that might require regular maintenance operations to ensure the va-
lidity of the used knowledge. If these changes also concern the underlying
utility function to be approximated by the similarity measure (e.g. due to
changed user preferences), repeated manual updates might be infeasible or to
expensive.

Each of the described aspects might be a reason to apply our learning framework.
Nevertheless, also if a certain CBR application might potentially benefit from our
learning approach, the employment of the approach makes only sense, if the following
questions can be confirmed:

• Is the presumed similarity measure representation sufficient to obtain a rea-
sonable approximation of the utility function or is a more sophisticated repre-
sentation required due to the complexity of the domain?

• Is it clear how the mandatory training data can be obtained (i.e., how to realise
the similarity teacher)?

• Is the intended similarity teacher presumably able to provide enough training
data required to achieve reasonable learning results?

• Is the intended similarity teacher presumably able to provide training data
with a tolerable amount of noise, i.e. is the number of included failures and
contradictions low compared to the entire amount of available training data?

• Is the effort for acquiring the training data lower than the effort required when
modelling the similarity measure manually?
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In the following some typical application scenarios where the enumerated condi-
tions are often fulfilled are discussed. As described in Chapter 4, the aim of our
learning approach is to construct a similarity measure that approximates a certain
utility function as good as possible. The application scenarios presented in this
chapter differ, in principle, how this utility function is determined. Basically, the
utility function might be determined by

• the application domain,

• the users (perhaps also by the providers) of the CBR system,

• or some functionality of the CBR system used.

Depending on these criteria, the acquisition of training data, and hence the realisa-
tion of the similarity teacher might be very different. While the first three scenarios
presented in the following are characterised by human similarity teachers, in the last
two scenarios we present approaches for acquiring training data automatically.

6.2. Supporting the Domain Expert

Consider a traditional CBR application, for example, a classification (cf. Sec-
tion 2.3.1) or help desk (cf. Section 2.3.2) scenario. Here, the utility function is
exclusively determined by the underlying application domain. Cases are useful if
and only if they contribute to solving a given problem described by a query. Whether
a case is useful or not, here typically depends on the case’s lesson part representing a
solution, for example, a class identifier or a diagnosis with a corresponding therapy.

When developing such a traditional CBR system, an accurate similarity measure
usually can only be defined by a domain expert1 who possesses some knowledge
about the underlying utility function of the domain. Here, two different types of
knowledge can be distinguished:

Explicit Knowledge: In the ideal case, the expert possesses a deeper understanding
of the application domain and is able to explain relations between the prob-
lem space and the solution space. This means, the expert is able to identify
important problem characteristics and can explain their influence on the cor-
responding solutions. For example, in a medical diagnosis scenario a doctor
might state: ”If the temperature exceeds 40°C, then it is more likely an in-
fluenca than a usual cold.” So, explicit knowledge can also be interpreted as
general domain knowledge.

1An alternative approach that allows to extract similarity knowledge from case knowledge is
presented in Section 6.6.
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Implicit Knowledge: When dealing with poorly understood domains, unfortunately
even domain experts are often not able to explain the relation between prob-
lems and solutions detailed enough to construct an accurate similarity mea-
sure. Nevertheless, due to their experiences experts are often able to estimate
the quality of presented solutions alternatives without being able to justify
their decisions in detail. In a medical diagnosis scenario, for example, a doctor
might state: ”I suppose this is not an influenca, but probably only a hard
cold.” So, implicit knowledge is often expressed in form of intuition.

While explicit knowledge can be employed directly to construct similarity mea-
sures manually in the bottom-up manner (see Section 3.5), implicit knowledge can-
not directly be encoded into the similarity measure representation because it only
represents high-level knowledge about the utility of cases not considering the influ-
ence of individual attributes.

Implicit knowledge typically also occurs in “visual domains” where the similarity
of cases is based on visual criteria. When dealing with cases that can be repre-
sented visually, the strength of human beings to recognise and judge visual objects
and patterns might facilitate the definition of similarity measures significantly. For
example, one aim of the FIORES-II2 project was the case-based classification of
design objects (e.g. cars, bottles, vases) with respect to their aesthetic character
(e.g. sporty, elegant). Here, the similarity measure has to deal with the mathe-
matical descriptions (e.g. CAD models) of the design objects. Due to the complex
formalisation, designers usually have problems to describe the mathematical param-
eters determining a particular aesthetic character explicitly. However, they have no
problems to compare and judge two objects with respect to their aesthetic character
when they are presented visually, for example, in form of a picture.

Such high-level knowledge represents the kind of utility feedback required to ob-
tain training data to be used for learning the similarity measure. So, our learning
framework can support a domain expert during the definition of domain specific
similarity measures. Here, the similarity teacher is realised by domain experts due
to their implicit domain knowledge. In particular, in domains where experts possess
a reasonable amount of implicit knowledge, but only few explicit knowledge, the
learning framework might facilitate the definition of accurate similarity measures
significantly.

Another characteristic of this application scenario is the execution of the learning
procedure only at certain points of time, typically once during the development
phase of the CBR system. Nevertheless, the learning procedure might be repeated
during the lifetime of the system if additional knowledge becomes available.

Because often both, some explicit knowledge and additional implicit knowledge
can be provided by domain experts, the consideration of available background knowl-

2Character Preservation and Modelling in Aesthetic and Engineering Design. Founded by the
European Commission under the GROWTH programme (contract number GRD1-1999-10385).
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edge during the learning procedure might be particularly promising in this applica-
tion scenario.

6.3. Distributed Utility Knowledge

In many application domains the users of knowledge-based systems are often more
or less experienced experts in the domain themselves. Thus, they are principally
able to recognise faulty or suboptimal solutions proposed by the systems in certain
situations. When developing expert systems that give expert users the opportunity
to communicate these deficiencies back to the system, this feedback can obviously
be used to avoid similar errors in future use of the system. If a user disagrees with
the presented case ranking due to his well-founded domain knowledge, one should
give her/him the opportunity to comment the unsatisfactory retrieval result. This
again may lead to utility feedback like required by our learning approach and can
be used to improve the faulty similarity measure.

How to apply our framework in the described situation is illustrated in Figure 6.1.
On the one hand, we have a typical CBR system consisting of a similarity-based
retrieval engine and perhaps also some adaptation functionality. On the other hand,
there are the users of the system who possess, in principle, the knowledge to recognise
suboptimal retrieval results. By giving feedback all users together play the role of
one experienced similarity teacher. The provided feedback is then used by the
system’s similarity learner to optimise the similarity measure that is responsible for
computing case rankings.
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Figure 6.1.: Distributed Utility Knowledge

Consider a CBR application that provides the user with a set of alternative solu-
tions or cases, respectively, ranked by their utility estimated by the system’s internal
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similarity measure. Whether the system performs case adaptation or not is not cru-
cial, however, in the following we suppose that the system does not adapt cases after
retrieval. A typical application scenario where this situation occurs are knowledge
management systems (cf. Section 2.3.3). The idea of these systems is to collect
and store knowledge required to perform the business processes of organisations or
companies. This knowledge is typically distributed over the different departments
and employees of organisations and can be collected in form of case knowledge. To
profit from the collected knowledge its availability at the right time must be ensured.
Therefore, case-based knowledge management systems allow to retrieve knowledge
judged to be useful regarding a given query.

However, during the development of a knowledge management system it is usually
impossible to decide which cases might be useful in which situation. So, a similarity
measure defined initially might represent a poor approximation of the utility func-
tion. In contrast to the scenario discussed in the previous section, here, the utility
function is not strictly determined by the domain. It rather depends on specific
information needs of the knowledge management system’s users. For example, the
employees of a software development company probably will have other information
needs than the employees of a mechanical engineering company. This means, not
only the case knowledge to be managed is distributed, but also the general knowledge
required to retrieve useful cases is distributed within the organisation or company.
To acquire this distributed knowledge all the system’s users together have to play
the role of the similarity teacher.

Distributed knowledge about the utility of cases might also occur in classic ap-
plication scenarios. Consider a CBR system that provides decision support for the
diagnosis of technical systems, for example, aircraft engines3. Suppose that several
experienced technical specialists are using the system during their daily maintenance
operations. Due to their individual experiences, the specialists might occasionally
recognise suboptimal retrieval results of the CBR system. By exploiting the men-
tioned feedback possibility, the system will be enabled to acquire general domain
knowledge from all its experienced users. This means, with gradually usage the
system will encode particular domain knowledge of several domain experts into its
similarity measure. So, the system might obtain respective high expertise leading
to powerful problem solving capabilities. This approach would also allow collabo-
rative maintenance of the similarity knowledge. So far, approaches to collaborative
maintenance have only been proposed concerning case knowledge, for example, by
Ferrario and Smyth (2000).

Nevertheless, it must be considered that feedback from different users may contain
an increased amount of contradictions leading to noisier training data. This problem
might partially be compensated by the opportunity to acquire more training data
depending on the number of the system’s users. The actual impact of noisy training

3In this application domain CBR has already been applied successfully.
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data on our learning algorithms is discussed in Section 8.4.

6.4. Personalised Utility Requirements

Another situation occurs if different users of a CBR system make different demands
on the outcome of the case retrieval. This means, for identical queries, cases may
have different utilities depending on the context of the particular user. That knowl-
edge about the preferences of individual users is essential for intelligent systems, for
example, has already been pointed out by Branting (1999); Göker and Thompson
(2000). In order to enable a CBR system to consider such personalised utility re-
quirements, the architecture presented in the previous section has to be enhanced
like shown in Figure 6.2. The major difference is the availability of several similarity
measures used to perform retrieval regarding queries of different users.

��������	


�	���	��
�����	

��
�������
�	����	��

��

����������
�����	

��
�������
�	���	�

��	���

��	���

��	���

��
��������
�	� !	���

�
�	

��
"�
�	
�#
� 

	

����������
$��%�	��	

�������

�������

����	��


������

���	�	��

��	�
&��#��	���
�������

�	����	��

��
�������
�	����	

��
�������
�	����	��

�
�	
��

�
�

�	
�� ���	���

����	���

������

��	��

�������	��	������������

��
��������
�	� !	���

��
��������
�	� !	���

���

Figure 6.2.: Personalised Utility Knowledge

6.4.1. Product Recommendation Systems

In the last years an increased desire for personalised systems, particular in the field
of eCommerce, could be noticed. A very successful technique to realise personalised
product recommendation systems is collaborative filtering (see Section 2.3.4). Al-
though CBR is already used to build commercial product recommendation systems,
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here, the issue of personalisation is still neglected. However, CBR appears to be a
powerful approach to realise personalised recommendation functionality, too.

Consider a product recommendation system in eCommerce. Here, the users are
customers having individual preferences with respect to the offered products or
services (Branting, 1999; Göker and Thompson, 2000; Smyth and Cotter, 1999). For
example, some customers might focus more on the products’ prices while others are
mainly interested in the technical properties. Such preferences can be represented
in form of specific attributes weights and specific local similarity measures, leading
to personalised similarity measures. While attribute weights can be used to express
individual preferences regarding the general importance of product features (e.g.
“price is more important than colour”), local similarity measures allow the modelling
of preferences w.r.t. to particular attribute values (e.g. “I prefer the colour blue”).

Figure 6.3 illustrates examples of personalised local similarity measures that might
be used in a product recommendation system. The figure shows two similarity
functions for a numeric attribute price and two similarity tables for a symbolic
attribute colour used to represent similarity measures that consider the preferences
of two different customers. Concerning the price of the product, customer1 might
be a business customer that is provided with a fixed budget and therefore every
product with a higher price than demanded will lead to a similarity of zero. Products
with significantly lower prices will also lead to a high decrease of similarity because
the quality of the product is very important, too, and the respective money is
available. Suppose customer2 has a more flexible budget. Here, exceeding the price
demand will still decrease the similarity, but not as strictly as in the previous case,
i.e. the customer will probably also buy a more expensive product if it provides
very good functionality. Further, cheaper products will be preferred as long as
the required functionality is fulfilled, i.e. the local similarity with respect to the
price of cheaper products is always maximal. Further, the two similarity tables
might express individual preferences of the two customers regarding the colour of
the offered product.

6.4.2. Assessing Customer Preferences

Basically, one must distinguish between two kinds of preferences to be expressed
differently:

Explicit Preferences: Explicit preferences are commonly expressed in form of con-
crete demands and wishes concerning the desired product. They are the foun-
dation of the query to be submitted to the recommendation system. For
example, a customer might state: “I want a red car”.

Implicit Preferences: Implicit preferences are of a more subtle nature and concern
mostly the properties of alternative products, if the optimal product is not
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Figure 6.3.: Examples of Personalised Local Similarity Measures

available. They often correspond to individual but general valid preferences
(e.g. favourite colours) or they are influenced by individual experiences of the
customers. For example, a customer might describe implicit preferences as
follows: ”If no red car is available, I would prefer a blue one” or ”I definitely
would not buy a Ford because I had many problems with a car of this company
in the past”.

Of course, often it is not possible to draw a clear line between explicit and implicit
preferences. By asking the customer, implicit preferences can be become obvious and
so can be expressed as explicit preferences to be included in the query. Nevertheless,
in practice it is not feasible to ask the customer for all her/his preferences when
acquiring her/his demands on the desired product. The strength of experienced
human shop assistants is their capability to guess many implicit preferences of a
particular customer due to subtle hints (clothes or language of the customer, etc.)
and their knowledge of human nature. Of course, this capability cannot directly
be modelled when implementing an artificial shop assistant to be employed in an
electronic shop.

6.4.3. Learning Personalised Similarity Measures

Employing personalised similarity measures, of course, increases the knowledge engi-
neering effort when developing a recommendation system based on CBR. Instead of
defining one domain specific similarity measure, one has to define several measures
considering the specific preferences of individual users or user classes, respectively.
When dealing with user classes, a particular user has to be classified before the
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actual recommendation process starts. This can be done through self-classification,
user-profiling or similar techniques. For the realisation of personalised similarity
measures it makes no crucial difference whether the personalisation level considers
individual customers or only customer classes.

Depending on the number of users or user classes, respectively, the system has to
deal with several utility functions and corresponding similarity measures in order
to adapt the retrieval functionality to the individual needs of the current user. But
even if one is willed to put up with this additional effort, it is still an open question
how to acquire the required knowledge. A customer is mostly not willed to describe
all his implicit preferences before obtaining a product recommendation.

We argue that the presented learning approach is able to facilitate both issues.
First, it may reduce the effort to define several similarity measures. Second, it is
probably even the only feasible way to obtain the required knowledge. In order to
apply the approach to the described scenario, one has to define one or several initial
similarity measures that approximate the users’ specific utility functions as good as
possible. During the use of the system one has to acquire utility feedback from the
users to learn more specific measures for each user or user class. Generally, one can
distinguish between two basic possibilities to obtain utility feedback from customers
(Hayes et al., 2001):

Non-Invasive Approach: Here, the feedback is only collected implicitly, e.g. by
observing the buying patterns of customers. If a customer finally does not
buy the product assumed to be the most useful one according to the defined
similarity measure but another product presented alternatively, this might be
a hint that the similarity measure used currently is suboptimal.

Invasive Approach: To obtain more training data with higher quality one can alter-
natively ask the users for explicit feedback about the presented case or product
rankings, respectively. However, this approach is coupled with the risk to an-
noy the user because s/he is mostly not willed to provide information and to
waste time when not directly profiting from this interaction with the system.

While the non-invasive approach is more suitable for B2C4 scenarios, it is likely
that the invasive approach might be accepted by users in B2B5 scenarios. In B2B
scenarios the relationship between the shop provider and the customer is often closer
and one strives for a longer business cooperation. So, the customer might realise
that his active feedback and cooperation enables the system to improve the rec-
ommendation quality in future sales situations. This important trade-off between
customer feedback and cognitive load on the customer is also discussed by Branting
(1999).

4Business-to-Customer
5Business-to-Business
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When applying the non-invasive approach, this is a typical example where the
acquired utility feedback is mainly based on the number of queries (cf. Section 4.2.3).
If feedback is only based on the buying decision of the customer, we only obtain
the information about the most useful product and some information about less
useful products. However, information about utility differences among the less useful
products will not be available. Further, one or several of the products not bought,
i.e. the products assumed to be less useful, might also be equally useful compared
to the actually bought product. Due to this few information, a lot of sales processes
based on certain customer demands (i.e. queries) have to be recorded to obtain
enough training data required to achieve accurate learning results. However, this
should not be a crucial problem as long as the recommendation system is used
frequently by many users.

6.5. Considering Adaptability of Cases

Although most commercial CBR systems still neglect the adaptation phase of the
CBR cycle, many researchers have already remarked that performing adaptation
makes a special demand on the similarity measure to be used in the precedent
retrieval step (Leake et al., 1996a; Smyth and Keane, 1993, 1995a). Instead of
guaranteeing the retrieval of cases that contain a solution that is maximally useful
for solving the current problem directly, the similarity measure rather has to consider
the adaptability of cases. This means, under certain circumstances it might be better
to select a particular case with a solution less useful than solutions contained in other
cases. This situation occurs if this particular solution can be adapted more easily to
solve the given problem compared to alternative solutions contained in other cases.

This relation between adaptability and utility of cases is illustrated in Figure 6.4.
For simplicity, here we assume that cases are not strictly divided into a problem
and a solution part. Black dots represent particular cases available in the case base
and arrows represent valid modifications to be performed during adaptation, for
example, defined by adaptation rules. The result of a particular adaptation pro-
cess is then an adapted case, here, represented as grey dots. One expects that this
adapted case is closer to the query than the original cases. However, it must also
be considered, that an adaptation process might consist of several single adaptation
steps realised, for example, by adaptation rules or adaptation operators. Temporar-
ily, these elementary adaptation steps might also increase the distance to the query.
For example, in the shown figure the adaptation process (a) is realised by three
elementary steps that lead to intermediate cases. Although the final outcome of this
particular adaptation process represents the best case available, the intermediate
cases are far away from the query.

Now consider a query q and two cases c1 and c2. Although c1 is the nearest
neighbour to q, in the shown example the actual utility of c1 is lower than the utility
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Figure 6.4.: Relation between Adaptability and Utility of Cases

of case c2. The reason for this little strange fact is the different adaptability of
the two cases. While the defined adaptation rules do not allow to improve case c1

with respect to the q, adaptation of c2 results in a case that is quite close to the
query although the original case c2 is far away. So, an accurate similarity measure
that takes the adaptation possibilities into consideration should assign c1 a higher
similarity w.r.t. to q than c2. Obviously, a simple distance metric is not sufficient
to ensure this.

6.5.1. Learning to Estimate Case Adaptability

However, the definition of similarity measures that approximate this special kind of
utility function is a really difficult task due to the complex dependencies between
the particular adaptation procedure, the available cases, and the causal relation-
ships in the application domain. The consultation of a domain expert will often
not simplify this task significantly because the expert is also not familiar with the
relationship between adaptation procedure and solution quality. In the following we
show how our learning framework can be applied to facilitate the definition of simi-
larity measures being aware of provided adaptation functionality. In principal, the
task of the learning algorithm is to transfer knowledge from the adaptation knowl-
edge container to the similarity knowledge container (cf. Section 2.2.3). This means,
the required knowledge is already available in form of adaptation knowledge (e.g.
rules), but has to be transformed and to be encoded into the similarity measure,
too. Of course, because the corresponding adaptation knowledge is still required, the
described process does not modify the adaptation knowledge container. Hence, the
same knowledge will be available in form of two different representation formalisms
after the knowledge transfer.

The basic precondition to be fulfilled to apply the learning framework is, of course,
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the availability of the presumed training data (cf. Definition 4.3) consisting of
training examples (cf. Definition 4.2). To obtain a training example representing
utility feedback according to the described semantics, the following steps have to be
executed:

1. Generate Query: First a training query has to be determined. This query
might be generated in some way, for example, randomly, or it might be se-
lected from a given set of queries. The advantage of the second method is the
possibility to consider real-world queries occurring typically instead of artifi-
cial ones resulting in probably more accurate learning results. Therefore, one
might record queries that occur during the application of the CBR system, for
example, already submitted customer demands in a product recommendation
system.

2. Start Retrieval: The training query is then used to start a case retrieval
based on some initial similarity measure. When dealing with large case bases,
the according retrieval result should typically be size-limited (cf. Defini-
tion 3.4).

3. Perform Adaptation: After retrieving the n most similar cases, all these
cases have to be adapted by applying the provided adaptation mechanism. The
parameter n has to be determined accurately depending on the complexity of
the adaptation procedure. If adaptation is computational intensive, of course,
a smaller n must be chosen to guarantee the feasibility of adaptation.

4. Evaluate Adaptation Results: To obtain the required utility feedback,
finally all adapted cases (or solutions, respectively) have to be evaluated.
Therefore, their utility regarding the training query has to be determined.
As described in Section 4.2.3 this evaluation might be performed manually or
automatically. Depending on the applied evaluation method, ordinal or car-
dinal feedback (cf. Section 4.2.2) about the adapted cases’ utility has to be
acquired.

5. Construct Training Example: Because our aim is to optimise the simi-
larity measure used to retrieve the original cases and not the adapted cases,
the finally constructed training example obviously has to contain the original
cases. However, the utility feedback (ordinal or cardinal) is based on the feed-
back about the corresponding adapted cases acquired during the previously
performed evaluation.

By repeating the described procedure with different training queries, it is possible
to obtain the required training data. Because the amount of available training
data strongly influences the quality of learning results, as many training examples
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as possible have to be constructed by executing this procedure. Generally, two
different aspects might restrict the amount of available training data:

• If the evaluation of adapted cases has to be performed manually, this may
lead again to high knowledge acquisition effort. Then, as already described in
Section 6.1, the general usefulness of the learning approach has to be estimated
carefully prior to the application of our framework.

• Depending on the computational complexity of the adaptation procedure,
adaptation of many cases might lead to infeasible computation times. By
providing more computational resources in form of additional or more power-
ful machines, this effect can be weakened. Because different training queries
can be processed independently from each other on different machines, addi-
tional resources allow a linearly increase of the number of available training
examples. Nevertheless, one must always be aware that enough training data
can be generated. If the evaluation procedure is performed automatically, the
described problem holds as well for the complexity of the evaluation procedure.

6.5.2. Automated Evaluation of Adapted Cases

High knowledge acquisition effort can obviously be avoided when automating the
evaluation procedure. At least for one typical application domain such an automa-
tion can be realised easily. Consider a product recommendation system used for
selling products that can be customised in some way, for example, personal comput-
ers, cars, insurance products, vacation trips, etc. In the scope of CBR, adaptation
functionality can be used to parameterise or configure products with respect to the
individual demands of the customers (Stahl and Bergmann, 2000; Stahl et al., 2000).

In this domain, the traditional problem-solution distinction is usually missing.
Instead, queries can be characterised as incomplete or inconsistent solutions, while
cases represent complete and consistent solutions. However, both entities are de-
scribed by the case characterisation part of the case representation and the lesson
part is empty or not really important, for example, if it only contains a product-
number.

In this situation the utility of an adapted case or product, respectively, can be
estimated by employing an additional similarity measure. On the one hand, we
have a query describing the demands of a customer given in form of an incomplete
and maybe also inconsistent product description. On the other hand, we have a
product represented by a case contained in the case base to be customised to fit the
customer’s demands as good as possible. Then, it is possible to define two similarity
measures with the following semantics:

• The similarity measure SimA compares the query with the cases contained in
the case base. The aim of this measure is the selection of products hopefully
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representing suitable products w.r.t. to the particular customer demands after
being customised. This means, SimA considers the adaptability of cases. It
is important to note that the described scenario does not rely on a particular
realisation of the adaptation procedure, it rather works with any adaptation
functionality.

• The similarity measure SimU compares the query with already customised
products. Its aim is to estimate how far the adapted products fulfill the given
demands, i.e. it evaluates the actual utility of the final product. When not
providing adaptation possibilities, this would be the measure to be used to
retrieve the most useful products.

Obviously, the similarity measure SimU can be employed to realise the described
evaluation of adapted cases automatically. Therefore, SimU has to be defined manu-
ally to allow learning of the actually required measure SimA. Mostly, the definition
of SimU should be easier than the manual definition of SimA because complex
consequences of available adaptation opportunities have not to be considered.

In Section 8.2 an experimental evaluation of our learning framework regarding the
described application scenario will be presented.

Meta-Learning

Nevertheless, it is possible to combine the described learning scenario with the ones
that require a human similarity teacher, for example, the one already described in
Section 6.4, in order to learn also SimU . This means, when implementing adapta-
tion functionality in domains without the traditional problem-solution distinction
(e.g. the described eCommerce scenario) our framework might be employed in the
two described ways simultaneously (see Figure 6.5) to ensure retrieval of adaptable
cases. The basic idea is to learn the required evaluation measure SimU through a
similarity learner U that exploits feedback from some human similarity teacher(s).
After having learned an accurate SimU , this measure can be used to evaluate ob-
tained adaptation results automatically to generate a sufficient number of training
example to be able to learn SimA. This approach might be useful, if the amount of
manual feedback is sufficient to learn the similarity measure SimU , but is not suffi-
cient to learn the more complex measure SimA. Otherwise, the available amount of
manual feedback could be used to learn SimA directly, of course. So, the first learn-
ing step can be characterised as a kind of meta learning only required to simplify
the learning step actually of interest.
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Figure 6.5.: Meta Learning

6.6. Introducing Solution Similarity

In this Section, we present another approach that allows the acquisition of the
presumed training data in an automated manner (Stahl and Schmitt, 2002). While
the approach described previously is only feasible in domains without the traditional
problem-solution distinction, this approach addresses particularly these more classic
application domains of CBR (e.g. classification, diagnosis, planning).

In Section 4.2.1 we have already discussed that each case can be seen as a known
point of the actually unknown utility function (see also Figure 4.2). Here, we assume
that the case base contains only optimal cases, i.e. cases where the corresponding
solution is maximally useful with respect to the described problem. When acquiring
training data to apply our learning framework, abstractly spoken we are interested
in getting additional known points of the utility function. These points then are
used for interpolating the similarity measure (see Figure 4.3).

One central element of each training example is obviously the included query (cf.
Definition 4.2). So far, we have assumed that training examples might base on
arbitrary queries. However, in principle, it is also possible to use problem descrip-
tions of cases contained in a given case base as training queries. Training data will
then capture information about the cases’ utility for problems represented by other
available cases. The major advantage when using given cases as training queries, is
the availability of a corresponding solution which might facilitate the acquisition of
utility feedback significantly.
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Therefore, we introduce a concept called solution similarity like illustrated in
Figure 6.6. Basically, it should be possible to introduce an additional similarity
measure which compares the lesson parts of cases instead of comparing case char-
acterisation parts when estimating the problem similarity. Computing similarities
between lessons or solutions, respectively, enables us to estimate the utility of a
given solution, and so the utility of a particular case, regarding the problem repre-
sented by another case. The more similar the solutions, the more useful should be
the case because the contained solution is quite close to the optimal solution of the
considered query case. Of course, this is again only a heuristics and does not hold
in general. Sometimes quite small differences between two solutions might avoid the
applicability of both solutions to the same problem.

If a computable solution similarity measure SimS is available, the following algo-
rithm allows the automated acquisition of training data based on available cases:

Input: solution similarity SimS, case base CB
Output: training data TDu

procedure solution similarity(SimS , CB) {
1. for all ci = (di, li) ∈ CB = {c1, c2, . . . , cn} do:

a) for all cj = (dj, lj) ∈ CB with i �= j do:

i. compute SimS(li, lj);

ii. set u(di, cj) = SimS(li, lj);

b) construct training example
TEu(di) = ((c1, u(di, c1)), . . . , (ci−1, u(di, ci−1)), (ci+1, u(di, ci+1)),
. . . , (cn, u(di, cn));

2. return training data TDu = {TEu(d1), TEu(d2), . . . , TEu(dn)}
}

This procedure leads to n2 − n additional known points of the utility function,
and so supplies a notable amount of training data provided that a reasonable num-
ber of cases is available. Of course, the computed data usually only represents an
approximation because the equation in step 1.a.ii of the presented algorithm is only
a heuristics. However, also manually acquired training data does mostly not provide
absolutely correct utility values.

The basic assumption of the presented idea is the hope that the solution similarity
measure SimS can be defined easily. Of course, the manual definition of SimS must
at least be easier than the manual definition of the problem similarity measure to
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Figure 6.6.: Introducing Solution Similarity

be learned. However, in some application domains this condition is often fulfilled.
Consider a classification scenario where the set of possible classes contains more than
two class identifiers. Here, misclassifications might lead to different consequences, for
example, some misclassifications might be serious, while other might be tolerable.
The consequences of misclassifications can be formalised by a solution similarity
measure. Because the solutions of classification problems are mostly represented in
form of single symbols representing the corresponding class identifiers, a similarity
table (cf. Definition 3.14) can be used.

Figure 6.7 shows such a solution similarity measure for a theoretical scenario where
some objects shall be classified with respect to their colour. The rows represent
the correct classification, i.e. the query value, while the columns represent the
classification suggested by a retrieved case. Here, similarities between colours that
can easily be determined represent the degree of a misclassification. If an object is
indeed “yellow”, we would usually prefer a case suggesting to classify it “orange”
compared to a case suggesting the colour “blue”. This means, the degree of the
misclassification might be used as an approximation of a case’s utility regarding the
particular classification task.

A similar situation might occur in medical diagnosis tasks. Here, on the one
hand, we would tolerate a wrong diagnosis, if the corresponding therapy also works
(at least a little bit) for the actual disease. On the other hand, a wrong diagnosis,
that would lead to a contra-productive therapy perhaps resulting in serious medical
complications, must be avoided and is therefore not tolerable.

Another real-world classification domain where similarities between classes might
be used to express the consequences of classification failures is described by Schmitt
and Stahl (2002). An approach that might be compared to our idea of solution
similarity is described by Wilke and Bergmann (1996). Here, different types of clas-
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Figure 6.7.: Expressing Consequences of Misclassifications through Solution Simi-
larity

sification failures are considered to cause different costs. A more detailed description
of this approach is given in Section 9.2.

However, the approach of solution similarity might be used beyond classification
and diagnosis tasks. It can even be applied in domains where adaptation is mostly
required (e.g. configuration, planning). Then the concept of solution similarity has
to be combined with the approach introduced in the previous section in order to
obtain the described training data.

6.7. Maintaining Utility Knowledge

Another important issue is that the utility function to be approximated by the sim-
ilarity measure may change over time. The change of domain knowledge and the
resulting necessity for maintaining this knowledge is a well-known problem in AI. Es-
pecially rule-based systems are strongly affected by this maintenance problem. One
strength of traditional CBR systems is that a major part of the required knowledge
is represented in form of cases. The maintenance of case knowledge is much easier
and a lot of respective strategies have already been developed (Leake and Wilson,
2000; Reinartz et al., 2000; Smyth and McKenna, 1998).

However, if we employ utility-based similarity measures instead of pure distance-
based measures, we are confronted with an additional maintenance problem. How to
ensure the retrieval of the most useful cases, even if the underlying utility function
is changing with time?

One idea is to check the retrieval quality in fixed periods by evaluating some ex-
ample queries. In order to get a measure for the retrieval quality one may determine
the average index error introduced in Definition 4.6. If the value exceeds a critical
threshold, it is possible to start the optimisation loop (see Section 4.3.4) by using
the retrieval results evaluated previously.

Another idea corresponds to the strategies discussed in the scenarios described in
Sections 6.3 and 6.4. If we enable the user to give feedback on returned retrieval
results computed during the daily use of the system, and if we assume users possess
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implicit knowledge about the changing utility function, it should be possible to
adapt the similarity measure continuously. For example, collecting utility feedback
from customers and optimising similarity measures continuously enables the system
to react to changing customer preferences.
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Part III.

Implementation and Evaluation
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7. Implementing the Framework

In Chapters 4 and 5 concepts and algorithms for learning similarity measures have
been introduced. This chapter describes a prototypical implementation of these
concepts and algorithms. The objective of the implemented prototype is to show
the general feasibility of the learning framework developed in the scope of this thesis.

First, important requirements to such a prototype are discussed. After that, the
basic system architecture of the implemented prototype is presented, followed by
a detailed description of the new software component realising the actual learning
functionality.

7.1. Requirements

Before implementing a new software component, one must be aware of the desired
functionality. Basically, it is important to specify clear requirements to be used as
the foundation of the implementation process. After discussing basic requirements
concerning the implementation of our software component, a short overview of the
desired functionality to be realised is given.

7.1.1. Basic Requirements

The implementation of our prototypical system was driven by two major objectives.
On the one hand, the prototype can be seen as a proof of concept. It shows that
the presented concepts can be realised and represents a kind of design study, in par-
ticular regarding the graphical user interfaces (GUIs) developed. However, to show
that the developed learning framework can be applied in real-world CBR systems,
it is not enough to implement it. So, on the other hand, the second important
objective of our prototype was the availability of a test environment to be used for
an experimental evaluation of the learning algorithms developed. The experimental
evaluation actually performed and the corresponding results will be described in
Chapter 8.

It must be emphasised that it was not our aim to implement a final system for
learning similarity measures in daily usage. Therefore, in particular the GUIs are not
supposed to be used by novices who are not familiar with the learning framework.
Instead, the GUIs provide numerous possibilities to influence the learning algorithms
in order to experiment with them.
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Because the learning functionality strongly relies on basic CBR functionalities
(e.g. similarity-based retrieval) and because it would be infeasible to implement all
this functionality from scratch in the scope of this work, an important requirement to
the prototype was the realisation in form of an additional component for an existing
CBR tool. We selected the commercial CBR shell CBR-Works (Schulz, 1999) already
described in Section 3.5.1 to be used as the foundation of our implementation.
On the one hand, CBR-Works employs the presumed representation of similarity
measures and provides a lot of additional functionality considered to be useful for
our prototype (e.g. adaptation rules). On the other hand, it is written in the
programming language Smalltalk allowing rapid prototyping.

It was our aim to realise the complete learning framework as an additional module
for the CBR-Works system. The module should consist of all data-structures (e.g. for
representing training data), learning algorithms (e.g. the presented gradient descent
algorithm), and GUIs required by the learning framework. To avoid unnecessary
implementation effort, all functionality required additionally should be used from
CBR-Works. To ensure a clear separation between existing and new software, a clear
interface between CBR-Works and our learning module had to be defined.

Finally, to simplify changes or extensions of the prototype in the future, it was
important to pay attention to a well-structured object-oriented design. Such a
software design should, for example, allow to add new learning algorithms without
major changes in existing software code.

7.1.2. Required Functionality

Now, basic functional requirements expected to be fulfilled by the prototype to be
developed are described. These requirements are mainly driven by the concepts
presented in Chapters 4 and 5.

Support for Acquiring Utility Feedback

The foundation of the entire learning framework presented in this work is so-called
utility feedback to be used as training data for the actual learning algorithms. Hence,
the prototype should also support the acquisition of utility feedback in a comfortable
way. Here, one must distinguish between the two basic procedures for acquiring
utility feedback discussed in Section 4.2.3. On the one hand, manual acquisition with
help of a human similarity teacher, and on the other hand, automated acquisition
by using some software agents to evaluate the utility of retrieved cases.

Concerning manual acquisition of utility feedback we expected from the prototype
that it provides comfortable GUIs. They should enable the user, i.e. in this case
some human similarity teacher, to evaluate cases with respect to their utility for a
given query. To facilitate the acquisition of ordinal utility feedback it seemed to be
advantageous to provide some functionality that allows to analyse and compare two
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cases simultaneously. Moreover, the user must be able to arrange cases in form of a
partial order to express ordinal utility feedback for a set of cases. Because we expect
that human similarity teachers will mostly have problems to express exact utility
feedback in form of real numbers, it was also our goal to support the acquisition of
that particular feedback type in a more intuitive manner.

Besides supporting manual acquisition of utility feedback, the prototype should
also provide functionality to acquire training data in an automated fashion. At least
the application scenario described in Section 6.5 should be considered by the proto-
type to allow an experimental evaluation regarding this scenario (see Section 8.2).
Here, the focus did not lie on the development of GUIs, but more on the functionality
required to generate training data by employing existing adaptation procedures.

Finally, the prototype should comprehend functionality to manage several training
data sets, for example, acquired by different similarity teachers.

Comfortable Learning Environment

After the acquisition of training data, the prototype must, of course, also be able to
employ this data to learn accurate similarity measures. In the scope of this work,
we expected from the prototype that it implements at least the learning algorithms
presented in Chapter 5, i.e., a gradient descent algorithm to learn global attribute
weights and a genetic algorithm that allows learning of global attribute weights
as well as learning of local similarity measures. However, to simplify testing of
alternative algorithms, a further requirement was a modular design of the learning
functionality. This means, single learning algorithms should be realised as modules
to be integrated into the prototype easily.

In Chapter 4 and 5 we have discussed several important parameters influencing
the learning process. Some parameters allow modifications of the error function
representing the major foundation of the learning procedure (e.g. see Definition 4.4
or Definition 4.5). Other parameters influence the particular behaviour of the em-
ployed learning algorithms (cf. Section 5.2.3 and 5.3.6). To allow an exhaustive and
flexible experimental evaluation of the implemented learning algorithms, it should
be possible to change these parameters easily in order to measure their impact on
the corresponding learning results.

In order to be able to measure not only the final learning results but also the
progress of the learning procedure, the test environment should support logging of
important parameters (e.g. retrieval errors of intermediate similarity measures) in
order to allow a detailed comparison of different settings of learning algorithms.

Similarity Measure Management

The last requirement to the prototype was the possibility to manage several simi-
larity measures learned, for example, obtained by employing different training data
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sets or by using different settings of learning algorithms. Another advantage of such
a similarity measure management is the possibility to select particular measures as
initial measures for learning. Such initial measures might also be defined manu-
ally within CBR-Works and it should be possible to import them into the learning
module. Then, it would also be possible to evaluate measures defined manually by
employing the implemented error functions. Further, measures defined manually
might be compared with alternative measures learned from some training data.

7.2. System Architecture

The requirements described previously led to the basic system architecture shown in
Figure 7.1. The entire functionality for learning similarity measures is captured in a
new software module—called Similarity-Optimiser—to be integrated into CBR-Works.
Basically, the Similarity-Optimiser consists of three major components:
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Figure 7.1.: System Architecture
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7.2. System Architecture

Training Data Manager: This component is responsible for the acquisition of the
mandatory utility feedback. It supports manual acquisition of ordinal and
exact feedback as well as automated acquisition of feedback based on some
evaluation measure. Further, it allows to manage several acquired training
data sets.

Learning Kernel: The Learning Kernel realises the actual learning functionality. It
includes single modules capturing the functionality of particular learning algo-
rithms and a module for computing different forms of retrieval errors required
by the learning algorithms. In the current version of the Similarity-Optimiser
the algorithms described in Chapter 5 have been implemented.

Similarity Measure Manager: This component allows to manage several similarity
measures. On the one hand, similarity measures defined manually with help
of the modelling tools of CBR-Works can be imported. On the other hand,
learned similarity measures can be exported to CBR-Works to be used by the
retrieval engine. Further, this component allows to select similarity measures
to be used as initial measures by the learning algorithms.

To be able to operate these components of the Similarity-Optimiser, for each com-
ponent a particular GUI is available:

• The Utility Analyser is a sophisticated GUI to support a human similarity
teacher during the acquisition of utility knowledge.

• The Controller allows to configure and parameterise the Learning Kernel in
order to test and evaluate implemented learning algorithms.

• The Similarity Measure Organiser is used to operate with the Similarity Measure
Manager.

These specific GUIs can be accessed via one central graphical user interface of
the Similarity-Optimiser, the Control-Center. To integrate the new functionality for
modelling similarity measures into CBR-Works, four major interfaces are required:

1. The similarity measure import/export interface (1) used to transfer similarity
measures between the Similarity-Optimiser and CBR-Works.

2. The Learning Kernel as well as the Training Data Manager are reliant on retrieval
results generated by the retrieval engine of CBR-Works. Thus, via the retrieval-
result interface (2a,2b) the Similarity-Optimiser receives retrieval results.

3. To perform a retrieval, the retrieval engine of CBR-Works relies on a query.
The query interface (3) is used to transfer a query of a particular training
example to CBR-Works and to start the retrieval engine.
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4. When acquiring utility feedback automatically according to the application
scenario described in Section 6.5, the Training Data Manager must obtain
adapted cases. Hence, the results of the adaptation engine of CBR-Works
are transferred to the Training Data Manager via the adaptation interface (4).

In Sections 6.4 and 6.3 we have discussed the possibility to acquire utility feedback
directly from the system’s users. When applying the invasive acquisition approach
(cf. Section 4.2.3), this would also require the implementation of a specific GUI
enabling users to comment retrieval results. Because for the experimental evaluation
carried out in the scope of this thesis such a GUI was not required, the current
version of the implemented prototype does not comprehend a corresponding interface
between the Similarity-Optimiser and the GUI of CBR-Works (marked as (?) in
Figure 7.1).

7.3. The Similarity-Optimiser

In this section, the three central components of the Similarity-Optimiser together with
their GUIs are described in more detail.

7.3.1. The Training Data Manager

The main GUI of the Training Data Manager is shown in Figure 7.2. It is subdivided
into 3 parts and provides functionality to manage several training data sets and
corresponding training examples.

On the left side the user may create new, duplicate (clone), or remove old training
data sets. Each training data set is identified by a unique name. For example, a
useful name might correspond to the name of a human similarity teacher or the date
of the acquisition of this particular data set.

The middle part of the GUI shows the training examples contained in the training
data set currently selected. The individual training examples are again identified by
unique names that typically provide a hint on the underlying query.

In order to obtain queries to be used as foundation for training examples, the
right part of the GUI supports manual definition by the user or random generation.
In the first case, the current query of the CBR-Works retrieval GUI is taken, in the
second case the user is able to enter the number of required queries to be generated.

Further, the Training Data Manager supports automated acquisition of training
data according to the scenario described in Section 6.5. Therefore, queries are
generated randomly and retrieved cases are adapted by applying adaptation rules
of CBR-Works. Then, adapted cases are evaluated with respect to their utility by
using a special utility measure to be selected by the user. This utility measure is
represented in form of a arbitrary similarity measure of CBR-Works.
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Figure 7.2.: Training Data Manager

The Utility Analyser

In order to acquire utility feedback manually with help of a human similarity teacher,
one has to select a query or training example, respectively. After clicking the ”Eval-
uate Sample” button a new window appears , the so-called Utility Analyser (see
Figure 7.3) which is subdivided into two major parts.

The upper part is used to rank retrieved cases with respect to their utility for
the given query. The list in the left upper corner contains all retrieved cases ranked
by their similarity to the query according to the similarity measure currently used
by CBR-Works. The user is then able to select cases and to move them via drag
and drop into a second list, called “Reordered Retrieval Result”. Moreover, the
selected cases can be brought into a different order representing the actual utility
of the cases. Cases at the top of this list are judged to be more useful by the user
than cases below. Within the list the user is also able to create so-called “clusters”
containing several cases. The semantics of these clusters is that all contained cases
are (nearly) equally useful. In order to visualise clusters, the names of cases are
shown in two different colours (blue and grey). Neighbouring cases with the same
colour are considered to build a cluster. If the colour between neighbouring cases
changes (from blue to grey, or grey to blue), a new cluster starts.

With the described method the user is enabled to express ordinal utility feedback
(cf. Section 4.2.2). Nevertheless, the Utility Analyser also supports the definition
of exact utility feedback. Because most users might have difficulties to define real
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Figure 7.3.: Utility Analyser

valued numbers to express the utility of cases, the GUI provides a slider for each
of the selected cases. The meaning of these sliders is that the very right position
represents a utility of 1.0 and the very left position a utility of 0.0. By positioning a
slider relatively to sliders of other cases, the users may estimate the utility of a case
in a more fine-grained way. However, the system internally interprets the position
of sliders as exact utility values that might be used by learning algorithms. In spite
of that, if the user wants to input exact values, an ad-hoc menu within the utility
list supports also this opportunity.

The lower part of the Utility Analyser is used to analyse the utility of a selected case
in more detail. Therefore, it consists of three tree views, where the tree view on the
very left side shows the attribute values of the query, while the two other tree views
are used to show the attributes of two arbitrary cases. These cases can be selected
by the user from the retrieved cases list or from the reordered list. Further, the
computed similarity values for the two selected cases are shown below the respective
tree views. By using these elements of the utility analyser a human similarity teacher
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is able to analyse and compare cases in detail in order to decide whether some case
is more useful than another one.

After having analysed and ranked an arbitrary number of cases, the utility anal-
yser can be closed with the “Ok” button. The acquired utility feedback is then
stored and saved in the corresponding training example listed in the Training Data
Manager (cf. Figure 7.2). The user then might select another training example to
give further utility feedback regarding another query. Of course, it is also possible
to select an already processed training example in order to change or extend the
corresponding feedback. To clarify which training examples have already been pro-
cessed, the names of training examples are shown in bold (not processed yet) or
normal (already processed) font.

7.3.2. The Learning Kernel

Basically, the implementation of the Learning Kernel consists of a class hierarchy,
where a particular learning algorithm is represented by one class within this hierar-
chy. To facilitate the implementation of new learning algorithm, the class hierarchy
also includes several abstract classes that provide basic functionality required by all
or a subset of learning algorithms. Further, extensions or modifications of existing
learning algorithms may simply be realised by creating a new subclass that inher-
its the major learning functionality from an algorithm already implemented. So,
for example, the Monte Carlo strategy for the gradient descent approach (cf. Sec-
tion 5.2.4) is implemented in form of a class MonteCarloGradientWeightLearner that
inherits the basic learning functionality from its superclass GradientWeightLearner.

To determine important parameters of learning algorithms (e.g. the learning rate
of the gradient descent algorithm, or population size of the genetic algorithm) each
learning algorithm or its corresponding class, respectively, includes a dictionary1,
containing default values for the parameters to be used during learning. However,
by changing the contents of a dictionary also specific parameter values might be
chosen.

Learning

To operate the Learning Kernel, the graphical user interface shown in Figure 7.4 can
be used. The very right part of this GUI is used to select all important parameters
required for learning:

• It provides a menu button2 where the user must select a training data set to
be used as input for the learning algorithm. Therefore, the menu button shows

1a particular data structure provided by Smalltalk
2a menu button provides a list of alternatives where the user is able to select one of these alter-

natives
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Figure 7.4.: The Learning Control Center

all training data sets currently available within the Training Data Manager (cf.
Section 7.2).

• The user can chose between the possibility to optimise the similarity measure
currently used by CBR-Works or the generation of a new measure. In the first
case, the current similarity measure is used as initial measure for the learning
algorithm if some is required (e.g. by the gradient descent algorithm). In
the second case, a typical knowledge-poor measure (cf. Figure 3.7) is used as
initial similarity measure (if required).

• The user has to select a particular learning algorithm. The selection of avail-
able algorithms is provided by a respective menu button.

• Finally, the user might chose particular parameters for controlling the selected
learning algorithm. When clicking the “Learner Options” button, a small
editor is opened which allows to edit the content of the parameter dictionary
of the class implementing the learning algorithm.

When clicking the “Start Learning” button, the learning process is started with
respect to the selected parameters. The progress of the learning process is illustrated
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below. Here, the average index error (cf. Definition 4.6) caused by the currently
learned similarity measure with respect to the used training data is shown.

Evaluation of Similarity Measures

Besides learning, the Learning Control Center also includes functionality to evaluate
an existing similarity measure regarding its quality. The parameters required for
performing this evaluation procedure can be determined in the middle part of the
Control Center. Again the user has to select a particular training data set. This
training data set is then used as test set in order to compute the respective retrieval
error caused by the similarity measure to be evaluated. The following quality mea-
sures used to compute the retrieval error are provided:

• average index error according to Definition 4.6

• average similarity error according to Definition 5.4

• 1-in-m and n-in-m soundness according to Definition 3.12

The results of the evaluation process might be stored internally with the corre-
sponding similarity measure or they might be written to a file. When starting the
evaluation procedure with the “Start Validation” button, the similarity measure
currently used by CBR-Works is evaluated.

7.3.3. The Similarity Measure Manager

The Learning Control Center (see Figure 7.4) also includes the GUI of the Similarity
Measure Manager. This component allows to manage several similarity measures
where each available similarity measure is identified by a unique name. It shows
which measure is currently used by CBR-Works. This measure is also called active.
Further, it shows alternative measure that might, for example, have been obtained
by learning from different training data sets. The user is able to copy existing
measures (e.g. to be used as initial similarity measure for a following optimisation
process), to create new measures (new measures are initially always of a knowledge-
poor manner), or to remove obsolete measures. Further, the names of similarity
measures can be modified and corresponding information like data of creation or
results of a evaluation process, can be shown. Last but not least, the user is able
to export a particular similarity measure to CBR-Works to be used for following
similarity-based retrievals. For example, this is required to use a similarity measure
as initial measure for learning or to be evaluated.
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8. Evaluation

In this chapter, a first experimental evaluation of the presented framework and learn-
ing algorithms is presented. This evaluation comprehends two experimental domains
that correspond to two application scenarios already introduced in Chapter 6.

First, the basic goals of the presented experimental evaluation are discussed. After
that, the design of applications domains and particular settings of the learning
algorithms employed are described in detail. Finally, this chapter is concluded with
a summary and discussion of the achieved evaluation results.

8.1. Evaluation Goals

In general, before performing an experimental evaluation it is important that one
is aware about the actual objectives of this evaluation. Only if the evaluation goals
are clear, it is possible to design accurate experiments in order to obtain the desired
data.

Concerning the evaluation of our framework presented in this chapter, we have to
emphasise that the described experiments are not sufficient to investigate all aspects
of our work. Since one of the objectives of this thesis was the development of an
approach that can be applied in various domains and application scenarios, such an
exhaustive evaluation was infeasible in the scope of this thesis. On the one hand, an
detailed investigation of the applicability of our framework regarding all application
scenarios described in Chapter 6 would require extensive and detailed data about
several application domains. Moreover, this data would have to be modelled by
using the employed CBR system. On the other hand, several of the application
scenarios discussed presume human similarity teachers who provide the required
training data. Since accurate human test persons are difficult to acquire in pure
research environments, a realistic evaluation of these scenarios is usually feasible in
real-world applications only. Nevertheless, in order to be able to evaluate also one
of these application scenarios we have simulated the feedback of human similarity
teachers by applying an artificial software agent.

Since we were not able to evaluate all application scenarios due to the mentioned
reasons, we have selected the following two scenarios:

1. learning a similarity measure that considers the adaptability of cases to ensure
the retrieval of adaptable cases (cf. Section 6.5)

167



8. Evaluation

2. learning a personalised similarity measure (cf. Section 6.4)

From our point of view these scenarios represent good examples for demonstrating
the basic capabilities of our framework. On the one hand, they are very relevant
from a practical point of view. The first scenario is very interesting because it
allows to improve the competence and/or performance of a CBR system without
much effort. Concerning the second scenario, one can notice that the desire for
user adaptive systems increases more and more. Personalised similarity measures
are a powerful approach towards the realisation of user adaptive CBR systems. On
the other hand, the two selected scenarios enabled us to generate the mandatory
training data without the help of human similarity teachers.

Besides an investigation of the remaining application scenarios, a complete eval-
uation of our framework would also require an investigation of various conceptual
aspects and parameters discussed in this work. For example, in Chapter 4 we have
introduced different types of utility feedback, and in Chapter 5 we have described
several parameters that influence the behaviour of the presented learning algorithms.
Because an investigation of all these aspects would require an enormous number of
experiments requiring respective hardware ressources, we have restricted our evalu-
ation on some of the most interesting aspects only. In the experiments described in
the following we have focused on the following evaluation goals:

• First of all, one objective of our evaluation is to get a rough impression of the
possible benefit when applying our framework. We want to show which im-
provements of retrieval quality can be achieved when employing a knowledge-
intensive similarity measure that was learned through the application of our
framework instead of using a standard knowledge-poor measure (see Sec-
tion 8.3) or some other initial similarity measure (see Section 8.2).

• Since the amount of available training data is one of the most crucial issues in
machine learning, we have paid much attention to the question of how much
training data is required in order to obtain reasonable learning results. Of
course, since the required amount of training data strongly depends on the
underlying domain, our experiments can only give an impression for domains
with similar characteristics as the domains used here.

• Not only the impact of the amount, but also the quality of training data is an
important question. Therefore, one of the described experiments in particular
aims on the investigation of the impact of noisy training data on our learning
algorithms.

• Since we have presented two alternative algorithms for learning attribute
weights in Chapter 5, another goal of the evaluation was a comparison of
the performance of the gradient descent and the genetic algorithm.
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• The introduced genetic algorithm is certainly the more interesting learning
algorithm due to its capability to learn local similarity measures, too. This
aspect is one of the major novelties of our work (see also Section 10.1.2).
However, it is still not clear how learning of attribute weights has to be com-
bined with learning of local similarity measures in order to achieve optimal
results. Therefore, it was also our goal to experiment with the different strate-
gies for integrating learning of attribute weights and local similarity measures
discussed in Section 5.3.5.

In the following, two experimental scenarios for evaluating the applicability of our
framework are described. Both scenarios have been executed by using the CBR tool
CBR-Works (cf. Section 3.5.1) in connection with our implemented prototype for
learning similarity measures described in Chapter 7.

The first scenario focuses on the basic functionality of our learning algorithms
and aims to demonstrate how the quality of a given similarity measure might be
improved by learning from well-founded training data. The second scenario then
investigates the impact of noisy training data on the achieved learning results.

8.2. Scenario 1: Learning to Retrieve Adaptable
Cases

In Section 6.5 we have described that the utilisation of adaptation functionality
makes special demands on the employed similarity measure. In this situation it is
not sufficient that a similarity measure approximates the utility of cases with re-
spect to a given query directly. Instead, the similarity measure must also take the
provided adaptation functionality into account. It might happen that an appar-
ently less useful case is the most useful one, because it is better adaptable than
other cases. In order to consider the adaptability of cases during retrieval, adapta-
tion knowledge has to be encoded into the similarity measure. When not applying
learning procedures, therefore, a human knowledge engineer must analyse the avail-
able adaptation knowledge in order to extract knowledge that is relevant for the
similarity assessment. Moreover, this knowledge then has to be translated into the
formalisms used for representing similarity measures. Unfortunately, this procedure
is very complicated and requires very experienced knowledge engineers.

With the following experiment, we demonstrate that such a knowledge transfer
between adaptation knowledge and similarity knowledge container (cf. Section 2.2.3)
can be simplified significantly by applying our learning framework.
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8.2.1. The Domain: Recommendation of Personal Computers

We have chosen a typical e-Commerce domain where adaptation increases the per-
formance of a CBR system significantly, namely recommendation of personal com-
puters (PCs). The basic task of our test CBR system is to select and recommend
the most useful PC available with respect to the individual demands and wishes of
a customer.

In principle, it would be possible to store all descriptions of available and techni-
cally valid PC configurations in the case base. Then, the similarity measure would
only have to judge how well a PC fulfills the particular demands given by the query.
The basic assumption of the application scenario evaluated here is the existence of
such a similarity measure.

However, due to numerous customisation possibilities within the PC domain, stor-
ing all possible PCs would lead to an infeasible case base size. Thus, adaptation
functionality is required to customise a limited set of exemplary PC configurations
to the individual customer demands. For example, if a customer wishes a hard disk
(HD) with more capacity, the HD installed in a given example PC can easily be
exchanged against another one. But to profit from such adaptation functionality as
much as possible, the similarity measure used to retrieve suitable example PCs has
to be more sophisticated in order to consider provided adaptation possibilities. For
example, specific types of memory modules can only be installed if the motherboard
supports them.

The case representation used for our experiments consists of 11 attributes (6 sym-
bolic and 5 numeric ones) describing the basic properties of a PC as summarised
in Table 8.1. Each attribute possesses its own specialised value range which de-
fines meaningful values used to describe currently valid computer configurations1.
The corresponding case base used during our experiments contained 15 exemplary
descriptions of personal computers. Here, we have paid attention to diversity, this
means, the cases represent very different configurations covering the search space
sufficiently.

In order to enable the system to perform product customisation, we have defined
15 more and less complex adaptation rules, for example, to adapt the size of the
RAM or to add additional components (CD-Recorder, DVD-Drive, etc.). These rules
consist of preconditions and actions (Wilke and Bergmann, 1998). While actions
are used to modify a given case regarding the demands of the query, preconditions
ensure the technical validity of these modifications. Due to technical constraints
not every action can be applied to each case, of course. For example, an Pentium IV
CPU can only be installed if the motherboard installed supports this type of CPU.

Further, we have defined an initial similarity measure SimU consisting of the
following elements:

1According to the technical standards in 2002. Of course, due to the rapid technical progress in
the computer domain, this case model will be outdated in the near future.
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Name Range Weight Similarity

CD-Recorder ( ”4/4/24”, ”16/12/40”,
”24/10/40”, ”32/12/48”,
”40/12/40” )

0.066 function

RAM-Size { 64, 128, 192, 256, 320, 384, 448,
512, 576, 640, 704, 768, 832, 896,
1024 }

0.105 function

HD-Size { 20, 40, 60, 80, 120, 30 } 0.118 function
Price [0 .. 5000] 0.158 function
Mainboard { ”Asus”, ”Asus A DDR”,

”Asus A”, ”Asus Celeron”, ”Epox”,
”Epox A”, ”Epox A DDR”,
”Epox Celeron”, ”Intel”,
”Intel P4”, ”Microstar”,
”Microstar P4”, ”MSI”,
”MSI A DDR” }

0.013 table

Graphic-Memory { 8, 32, 64, 128 } 0.026 function
RAM-Type { ”SDRAM”, ”SDRAM100”,

”SDRAM133”, ”RAMBUS”,
”DDR”, ”Sync-DIMM” }

0.026 table

CPU-Clock { 800, 900, 1000, 1100, 1200, 1300,
1400, 1500, 1600, 1700, 1800, 1900,
2000, 2100, 2200, 2300, 2400 }

0.132 function

CD-Drive ( ”0/48”, ”0/52”, ”6/24”, ”8/24”,
”12/40”, ”16/40”, ”16/48” )

0.039 function

Casing ( ”Laptop”, ”Mini-Tower”,
”Midi-Tower”, ”Big-Tower” )

0.263 table

CPU-Type { ”AMD”, ”Duron”, ”Athlon”,
”Athon XP”, ”Intel”, ”P-III”,
”P-IV”, ”Celeron”, ”Tualatin” }

0.053 table

Table 8.1.: The PC Domain
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• 11 attribute weights w1 . . . w11 as enumerated in Table 8.1,

• 11 local similarity measures, where 4 of them are represented as similarity
tables (cf. Definition 3.14) and 8 are represented as difference-based similarity
functions based on linear difference (cf. Definition 3.15)2,

• and a standard aggregation function in form of a weighted average aggregation
(cf. Section 3.3.5).

During the definition of SimU , we have encoded knowledge about the meaning of
technical properties for the recommendation process, however, we have ignored the
impact of the provided adaptation rules. This means, SimU aims to approximate
the utility of a given PC regarding a given query as it would be sufficient without
adaptation.

8.2.2. Generation of Training Data

The general procedure of how to acquire training data required for realising a knowl-
edge transfer between adaptation and similarity knowledge was already described in
Section 6.5. Basically, single training examples can be obtained by performing the
following five steps:

1. generation of a training query

2. start of case retrieval by using an initial similarity measure

3. adaptation of the n most similar cases

4. evaluation of adaptation results

5. construction of a training example by re-ranking the cases according to the
outcome of step 4

Of course, the most interesting step is step 4, i.e., the evaluation of the results
obtained during the precedent adaptation steps. This evaluation procedure can
be executed automatically by using a special similarity measure which compares
adapted cases with the query. Here, we are able to exploit the already defined simi-
larity measure SimU because it measures the suitability of a given PC configuration
regarding a particular query.

Figure 8.1 illustrates the procedure for generating training examples. First, a
query is generated randomly and used to initiate the retrieval of all cases according
to the initial similarity measure SimU . Due to the limited number of cases available

2Because some of the 8 symbolic attributes are modelled as ordered symbols (cf. Section 3.3.3),
similarity functions could also be used for these attributes.
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in our example domain, then all 15 cases are adapted by applying the provided
adaptation rules. After that, for all adapted cases the similarity computation is
repeated by using SimU again. This leads to a modified case ranking which has to
be stored in form of a training example.
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Figure 8.1.: Generation of Training Data

8.2.3. Learning

For the actual learning phase we have generated training data by applying the
previously described procedure. For each repetition of the experiments we generated
a new training set Strain consisting of 200 training examples. Further, we generated
one independent test set Stest consisting of 200 training examples, too. While the
training sets were used as actual input for the applied learning algorithms, the test
set was only used for evaluation of all obtained learning results.
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In order to investigate the influence of the training data size, each experiment
was repeated several times by using increasing number of training examples from
Strain. Here, the resulting subsets Straini

with i ∈ {5, 10, 20, 35, 50, 70, 100, 140, 200}
were generated by adding new training examples to the previously used training
set. Hence, for example, Strain10 includes all training examples of Strain5 and 5
additional examples from Strain \ Strain5 . Each Straini

was then used as input for a
particular version and setting of one of our learning algorithms in order to optimise
the initial similarity measure SimU and to obtain a new measure SimAi

which
should also considers adaptation possibilities when determining the utility of cases.
For evaluating the quality of each SimAi

learned, we have used the following three
quality measures:

• the average index error on Stest (cf. Definition 4.6),

• the percentage of 1-in-3 sound retrieval results regarding Stest (cf. Defini-
tion 3.12),

• the percentage of 1-in-1 sound retrieval results regarding Stest (cf. Defini-
tion 3.12).

While the index error represents more an abstract measure for estimating the
entire retrieval quality, i.e. the ranking quality with respect to all cases, the two other
measures are more suitable to show the actual benefit of our learning framework
in the underlying application scenario. Which of the two versions of the n-in-m
soundness is the more accurate one in practice, depends on the complexity of the
applied adaptation functionality. On the one hand, if we suppose that adaptation
of 3 cases immediately after retrieval is feasible, it is sufficient to ensure that the
most useful case is under the 3 most similar ones. On the other hand, if we want to
minimise answer delays and therefore only adapt the most similar case, of course,
this case should also be the most useful one.

With the described procedure we have then evaluated several versions and settings
of our learning algorithms as summarised in table 8.2.

First, we have exclusively optimised the 11 attribute weights by applying the
gradient descent algorithm (GDA) and the genetic algorithm (GA). Here, we have
tested two different values for the error-position weight θ used within the employed
error functions, namely the average similarity error ÊS (cf. Definition 5.4) for the
gradient descent algorithm, and the average index error ÊI (cf. Definition 4.6) for
the genetic algorithm. The resulting four experiments (exp. 1-4) mainly aimed to
compare the two different algorithms. To get an impression of the robustness of the
algorithms we have repeated each experiment 10 times with different training sets.
However, to ensure the comparability of the results, we used the same training sets
for the different learning strategies. This means, for example, that the 10 repetitions
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No. Algorithm Strategy
Error

θ Generations Rep.
Function

1 GDA - ÊS 0 - 10

2 GDA - ÊS 10 - 10

3 GA GAW ÊI 0 60 10

4 GA GAW ÊI 10 60 10

5 GA SeqW−LS ÊI 10 60/400 5

6 GA SeqLS−W ÊI 10 60/400 5

7 GA Parcomposed ÊI 10 4400 5

8 GA Parpseudo ÊI 10 60/400 5

Table 8.2.: Performed Experiments

of experiment 1 were based on the same training and test sets as the 10 repetitions
of experiment 2.

In the second part of the evaluation (exp. 4-8), we have tested different strategies
for combining learning of attribute weights and local similarity measures when ap-
plying the genetic algorithm. These four strategies, which we have already discussed
in Section 5.3.5, are:

SeqW−LS: Here, weights and local similarity measures are processed sequentially,
where the weights are learned first and the local similarity measures are treated
in a second optimisation loop. During this second loop, the 11 local similarity
measures have been optimised by applying the pseudo parallel approach. We
have restricted the experiments to 60 generations for learning weights and 400
generations for learning each local similarity measure.

SeqLS−W : Similar to the previous strategy, here, weights and local similarity mea-
sures are also processed during two subsequent optimisation loops. In contrast
to the SeqW−LS strategy, here, all local similarity measures are learned first
in the pseudo parallel manner. The number of processed generations was the
same as for strategy SeqW−LS.

Parcomposed: Here, weights and all local similarity measures are learned in parallel by
using composed individuals. For this strategy we allowed the genetic algorithm
to process much more generations (4400) due to the much larger search space
to be considered by composed individuals at once.

Parpseudo: Here, twelve independent optimisation loops for learning weights and all
local similarity measures are processed alternated. The total number of gener-
ations was the same as for the sequential strategies to ensure the comparability
of the achieved results.
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Due to the higher computational complexity we have repeated each of these ex-
periments only 5 times using 5 of the training sets already employed during the
experiments 1-4. During the experiments 5-8 we have always used the average index
error with an error-position weight θ = 10 since this value showed the best results
in the experiments performed previously (see Section 8.2.4).

Concerning other important parameters of our learning algorithms we have used
constant values during all experiments. For the gradient descent algorithm we have
used the following parameters discussed in Section 5.2.3:

• As initial weight vector required by the gradient descent algorithm we have
always used the weights of SimU (see Table 8.1).

• For the implementation of the stop-criterion we have applied a combined ap-
proach consisting of a maximal number of optimisation iterations failed (10)
and a maximal number of iterations in total (100).

• ∆maxw = 0.5

• λ-reduction-rate = 2

For the genetic algorithm we have selected the following values for the parameters
discussed in Section 5.3.6:

• population Size = 20

• reproduction Rate = 0.5

8.2.4. Results

In this section, the results of the previously described experiments are presented.
First, we compare the results of the gradient descent algorithm and the version of
the genetic algorithm that optimises attribute weights only, i.e. the results of the
experiments 1-4. After that, we present the results of the different versions of our
genetic algorithm that optimise both, weights and local similarity measures, i.e. the
results of the experiments 5-8. In this section we focus on the presentation of the
results only. A detailed discussion of all results is given in Section 8.4.

Gradient Descent Algorithm Vs. Genetic Algorithm

The objective of the first four experiments was a comparison between the gradient
descent approach and the genetic algorithm when learning attribute weights only.
Figure 8.2 illustrates the results achieved with the gradient descent algorithm when
using error-position weights θ = 0 (exp. 1, left chart) and θ = 10 (exp. 2, right
chart). Here, the x-axis corresponds to the number of training examples used, the
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8.2. Scenario 1: Learning to Retrieve Adaptable Cases

left y-axis denotes percentage values for 1-in-3 and 1-in-1 sound retrieval results on
the 200 test examples of Stest, and the right y-axis denotes values of the average
index error on Stest.

���
�

�����	
�	

��
��
��
��
��
��
��
��
��
��
��

� � �� �� �� �� �� ��� ��� ���

�	�������	��������

�

��

��	��

��	�

��	��

��

��	��

��	�

�
	��

��

���
�

�����	��	

��
��
��
��
��
��
��
��
��
��
��

� � �� �� �� �� �� ��� ��� ���

�	�������	��������

�

��

��	��

��	�

��	��

��

��	��

��	�

�
	��

��

�����

�����

����������

Figure 8.2.: Experiments 1 and 2: Dependency on Training Data Size

It is important to note that the x-axis is not scaled linearly. Due to the chosen
scale, the learning curves are actually steeper for small training data sets as they
appear in the charts. Further, the different characteristics of the three quality criteria
must be considered. On the one hand, because the two versions of the n-in-m
soundness of retrieval results (cf. Definition 3.12) represent quality measures, the
corresponding values typically increase after learning, resulting in acceding curves.
On the other hand, because the average index error measures retrieval failures,
here improvements in retrieval quality lead to decreasing values, and therefore to
descending curves.
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Figure 8.3.: Experiments 1 and 2: Variations of Results

All three curves shown correspond to average values obtained during 10 indepen-
dent repetitions of the experiments. They show, that the quality of retrieval results
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clearly could be improved by applying the described learning procedure. For exam-
ple, the right chart states that the percentage of 1-in-3 sound retrieval results could
be increased from around 55% prior to learning up to around 70% in average when
exploiting the training set Strain200 , i.e. 200 training examples.

In order to get an impression of the variance of the learning results achieved during
the 10 repetitions, in Figure 8.3 we have illustrated exemplarily also the best-case
and worst-case values for the 1-in-3 soundness criterion. Since for the two other
quality measures the curves are quite similar, we have restricted the charts on this
meaningful measure. Again, the left chart shows the results for θ = 0, and the right
chart shows the results for θ = 10.

Since the experimental settings were the same for the gradient descent and the
genetic algorithm, the results of the genetic algorithm are illustrated in the same
way as previously described for the gradient descent algorithm. The resulting charts
are shown in Figure 8.4 and Figure 8.5.
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Figure 8.4.: Experiments 3 and 4: Dependency on Training Data Size
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Figure 8.5.: Experiments 3 and 4: Variations of Results
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Learning Weights and Local Similarity Measures

In the second part of this evaluation scenario we have investigated the performance
of the four discussed strategies used to combine attribute weight learning and local
similarity measure learning when applying the genetic algorithm. Figure 8.6 shows
the average performance of these four strategies in dependency on the number of
training examples exploited. The two charts at the top show the achieved results
when applying the two sequential approaches SeqW−LS (exp. 5, left chart) and
SeqLS−W (exp. 6, right chart). The two charts below show the outcome of the
two parallel approaches Parcomposed (exp. 7, left chart) and Parpseudo (exp. 8, right
chart). The results are illustrated in the same way as already described for the
experiments 1-4 with the exception that the curves correspond to average values
obtained during 5 repetitions of the experiments.
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Figure 8.6.: Experiments 5-6: Dependency on Training Data Size

In order to get an impression how the results vary over the 5 independent rep-
etitions of the experiments, in Figure 8.7 we have illustrated again the worst, the
average and the best values for the 1-in-3 soundness criterion.

In general, when applying a genetic algorithm, the number of processed genera-
tions is a very important parameter. On the one hand, if it is chosen to small, the
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Figure 8.7.: Experiments 5-6: Variations of Results

optimisation process will be stopped before it could converge to an optimum. On the
other hand, if using a very large value, one will probably obtain good learning results,
but one will possibly also waste a lot of computation time, because the algorithm
actually converges much earlier. Figure 8.8 illustrates the improvements concerning
the three introduced quality measures (when exploiting Strain200) depending on the
number of generated generations for two exemplary strategies, namely the SeqW−SL

and the Parcomposed strategy. The shown results again represent average values for
the 5 repetitions of experiments 5 and 7. While the learning procedure of the par-
allel strategy Parcomposed is a continuous process, the procedure of the sequential
strategy SeqW−LS can be divided into two parts, namely learning of weights and
subsequent learning of local similarity measures. The two charts indicate that we
have chosen the number of generations appropriately since a clear convergence for
the final generations can be noticed.
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Figure 8.8.: Experiments 5 and 7: Dependency on the Number of Generations

Computation Times

Another interesting issue when comparing learning algorithms is, of course, their
performance with respect to computation time. In Figure 8.9, a summary of the
average computation times of all six3 discussed algorithms is given. All measured
times were obtained by using a PC with an 1800MHz Athlon CPU provided with
512MB DDR-RAM. All times represent the number of minutes required for the
entire learning procedure when exploiting Strain200 .

3Since θ does not influence the computation times, neither for the gradient descent nor for the
genetic algorithm, we have neglected a separation of the corresponding experiments.
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Figure 8.9.: Computation Times for Processing 200 Training Examples

8.3. Scenario 2: Learning Customer Preferences

As discussed in Section 6.4, our framework might be applied in order to learn pref-
erences of individual customers or customer classes, respectively, in an eCommerce
scenario. According to customer feedback about preferred products, the learning
algorithms then have to generate a similarity measure which reflects these prefer-
ences as good as possible. However, one crucial issue of this application scenario is
the kind of utility feedback that can be expected to be given by customers. On the
one hand, customers usually will not be willed to rerank a large set of presented
products. Thus, every single training example will contain information about less
cases only. On the other hand, customers—as most human similarity teachers—will
not always be consistent in their statements. One time they might prefer another
product as to another point of time, though the demands are the same. This aspect
plays a very important role if personalisation aims on customer classes and not on
individual customers. Although if one supposes that all customers of a particu-
lar class have quite similar preferences, utility feedback of different customers will
mostly also include contrary statements leading to noisy training data.

While little amount of information in single training examples might be compen-
sated by a large number of training examples, noisy training data makes learning
much more difficult. Thus, the experiment described in the following aims on a first
investigation of the impact of noisy training data when applying our framework.
Here, we have focused the evaluation on the genetic algorithm only.
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8.3. Scenario 2: Learning Customer Preferences

Name Range Weight Similarity

Erstzulassung [1997.0 .. 2003.0] 0.156 function
Marke { ”AUDI”, ”BMW”, ”CHRYSLER”,

”FIAT”, ”FORD”,
”MERCEDES-BENZ”, ”OPEL”,
”VW” }

0.067 table

Preis [3000 .. 50000] 0.222 function
Km [5000 .. 155000] 0.156 function
Variante { ”Cabriolet”, ”Coupe”,

”Kastenwagen”, ”Kombi”,
”Limousine”, ”Pritsche”, ”Roadster” }

0.178 table

Farbe { ”blau”, ”gelb”, ”grau”, ”grün”,
”rot”, ”schwarz”, ”silber”, ”weiß” }

0.089 table

KW [33 .. 225] 0.111 function
PLZ ( ”0”, ”1”, ”2”, ”3”, ”4”, ”5”, ”6”,

”7”, ”8”, ”9” )
0.022 table

Table 8.3.: The Used Cars Domain

8.3.1. The Domain: Recommendation of Used Cars

As domain we have chosen another typical eCommerce domain, namely recommen-
dation of used cars. Since used cars usually cannot be customised regarding customer
requirements, here, case adaptation is not required. When selling used cars, it can
be noticed that one is mostly confronted with different customer classes that show
very different behaviour in selecting preferred cars. On the one hand, there might
be a class “family fathers” who search bigger, functional, but economical cars. For
example, they would probably prefer a caravan instead of a limousine. On the other
hand, there might be a class “fun drivers” who are rather looking for sports cars
and who are characterised by a bigger budget. While a family father might rule out
a car that costs 2500 EUR more than the demanded price, a fun driver might be
willed to pay 10000 EUR more if the presented car represents her/his “dream car”.
Such different preferences can be encoded into accurate similarity measures.

Our domain model consists of 8 attributes (4 symbolic and 4 numeric) that de-
scribe the most important properties of a car as summarised in Table 8.3. As in
the PC domain described in Section 8.3.1, each attribute is connected with its own
specialised value range and local similarity measure. The corresponding case data
was extracted from one of the numerous internet sites offering used cars4. Our ex-
emplary case base contained descriptions of 100 used cars covering a wide spectrum

4http://www.e-sixt.de/apps/auto/boerse/geb erw suche.jsp

183



8. Evaluation

of different alternatives.
For evaluation purposes we have defined two different similarity measures SimI

and SimU , each consisting of

• 8 attribute weights w1 . . . w9 with ∀iwi = 1
8

for SimI and 8 different weights
for SimU as enumerated in Table 8.3,

• 8 local similarity measures (4 difference-based similarity functions and 4 sim-
ilarity tables),

• and a standard aggregation function in form of a weighted average aggregation.

SimI was used as initial similarity measure to be optimised during learning. Here,
we used a standard knowledge-poor similarity measure as already illustrated in Fig-
ure 3.7. SimU was used to generate training data as described in the following
section.

8.3.2. Generation of Training Data

Since for our evaluation it was infeasible to acquire human similarity teachers that
would be able to deliver the required training data, we have employed a simulation
procedure. The idea of this simulation was to model the behaviour of a customer
or customer class, respectively, by using the similarity measure SimU . During the
definition of SimU we have encoded imaginable preferences of some customer class
into the similarity measure. Then, SimU could be used to provide utility feedback
that corresponds to the encoded customer preferences.

The resulting procedure for generating single training examples is shown in Fig-
ure 8.10. First, a randomly created query is used to start retrieval which returns a
size limited retrieval result (cf. Definition 3.4) consisting of the 10 most similar cases
according to similarity measure SimI . After that, the similarity measure SimU is
used to select and rank the 3 most useful cases from the retrieval result (in our
example the cases C3, C6, C1). The idea here was to simulate a scenario where cus-
tomers are able to comment retrieval results by selecting their 3 favourite products
out of the 10 presented products in order to provide the system with information
about their individual preferences. However, because the behaviour of customers is
often unpredictable, we have also implemented a mechanism for introducing noise
which relies on three different probability values:

• ρ1 denotes the probability that one of the 3 selected cases is not chosen accord-
ing to SimU , but randomly from the retrieval result. Whether this “failure”
within the utility feedback is located at the first, the second, or the third case
is determined randomly with a unique probability.
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Figure 8.10.: Generation of Training Data

• ρ2 denotes the probability that the entire utility feedback for the current query
is inconsistent with the presumed utility function and thus meaningless. In
this situation all three cases are selected randomly from the retrieval result.

• ρ3 = 1−(ρ1+ρ2) denotes the probability that optimal utility feedback without
inconsistencies with respect to SimU is provided. In this case, all three cases
are selected and ranked according to SimU .

In order to investigate the impact of this kind of noise on the outcome of our
learning algorithms, we have generated samples of training data with the following
characteristics:

• Each sample consisted of three independent training data sets Strain 0/0/100,
Strain 2.5/7.5/90 and Strain 7.5/22.5/70 where the three numbers ρ1/ρ2/ρ3 corre-
sponded to the percentage of introduced noise. This means, one training set
was free of noise, another one contained around5 10% noisy training examples

5Since noise was introduced using probabilities, the exact amount of noise might differ slightly.
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(2.5% random examples and 7.5% examples with minor errors), and the final
one contained around 30% noisy training examples (7.5% random examples
and 22.5% examples with minor errors).

• Each Strain ρ1/ρ2/ρ3
consisted of 1000 training examples, where the queries used

were identical for each set. Here, we have chosen such large training sets
since each training example contains utility feedback for 3 cases only. Hence,
we can expect that much more training examples will be required to achieve
good learning results compared to the experimental scenario described in Sec-
tion 8.2.

• Further, each sample included one independent test set Stest consisting of 250
noise-free training examples. In contrast to the training sets, where each
training example contained feedback about 3 cases only, the examples of Stest

included feedback about all 100 cases. This enabled us to measure the achieved
retrieval quality more exactly.

8.3.3. Learning

In this experimental scenario it was not our aim to investigate different settings of our
learning algorithms, because this was already the objective of scenario 1 described
in Section 8.3. Therefore, we only used one version of the genetic algorithm that
showed good results in the first experiment, namely SeqW−SL. Concerning the
employed error function we have used the average index error with an error-position
weight θ = 10.

For measuring the quality of the achieved learning results, we used the same
quality measures as already introduced in Section 8.2.3, namely the average index
error, and the percentage of 1-in-1 and 1-in-3 sound retrieval results. Additionally,
we have measured the percentage of 1-in-10 sound retrieval results. This soundness
criterion seems to be more meaningful since we simulate an eCommerce scenario
where the 10 most similar products are presented to the customer. Hence, it is at
least our aim that this return set contains the preferred product. In order to obtain
average values, we have repeated the experiment 3 times with newly generated
samples of training data. Each of these 3 experiments consisted of 3 sub-experiments,
each using one of the training sets Strain 0/0/100, Strain 2.5/7.5/90 or Strain 7.5/22.5/70.

In order to investigate the influence of the amount of available training data, we
have again applied an iterative procedure that used an increasing number of training
examples, leading to actual training sets Strain ρ1/ρ2/ρ3 i with i ∈ {50, 100, 250, 500,
1000}, where i denotes the number of training examples used.
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8.3. Scenario 2: Learning Customer Preferences

8.3.4. Results

Figure 8.11 shows an overview of the achieved learning results in dependency on
the number of training examples used. The charts can be interpreted in the same
way as already described in Section 8.2.4. The only differences are the additional
1-in-10 quality criterion, and the different scale of the x-axis and the second y-axis
required for the average index error. Here, the values of the index error are much
larger compared to the first scenario since the corresponding test set Stest consisted
of more cases. Again, it is important to notice that the x-axis is not scaled linearly,
which leads to an alienated appearance of the actual shape of the learning curves.
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Figure 8.11.: Learning Weights and Local Similarity Measures: Overview

The experiment led to three similar charts for the different training sets corre-
sponding to different amounts of introduced noise. Again, all curves correspond to
average values obtained during the 3 repetitions of the experiments.
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Figure 8.12.: Learning Weights and Local Similarity Measures: Impact of Noise
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In order to enable a better investigation of the actual impact of noisy training
data, in Figure 8.12 we have summarised the curves for the 1-in-1 and the 1-in-10
soundness criteria in a single chart.
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Figure 8.13.: Learning Weights Only: Summary

Since we have applied the SeqW−LS strategy for combining weight and local sim-
ilarity measure learning, we were able to extract the results of pure weight learning
from the obtained data, too. Therefore, we included an additional evaluation step
which measured the achieved retrieval quality after optimising weights only. Fig-
ure 8.13 and Figure 8.14 show the corresponding results in the same manner as
previously described for the final outcome of the learning algorithm .
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Figure 8.14.: Learning Weights Only: Impact of Noise
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no learning weights only weights and local measures
criterion SimU Sim50 Sim100 Sim200 Sim50 Sim100 Sim200

1-in-1 30% 40% 44% 44% 34-43% 39-47% 45-47%
1-in-3 55% 67% 71% 72% 68-75% 73-77% 77-80%

Table 8.4.: Summary of Retrieval Improvements achieved in Scenario 1

8.4. Discussion of Evaluation Results

In this section we discuss the experimental results presented in Section 8.2.4 and 8.3.4.
First we summarise the most important observations that show the fundamental ca-
pability of our learning approach. After that, we discuss some interesting aspects in
more detail.

8.4.1. Summary

When applying our learning technique, the first question is, of course, which im-
provements in retrieval quality can be achieved.

Basic Conclusions for Scenario 1

For our first evaluation scenario (cf. Section 8.2), Table 8.4 gives an overview of the
average retrieval quality measured before learning, after learning attribute weights
only, and after learning both, local similarity measures and weights. In the last case,
we have also considered the variance between the different versions of our genetic
algorithm. Moreover, we have shown the corresponding values for three different
amounts of exploited training examples. Here, Simi denotes the similarity measure
learned when using i training examples. All values shown here were obtained by em-
ploying the genetic algorithm. A discussion of the differences between the gradient
descent and the genetic algorithm is given in Section 8.4.2

These values indicate clearly that our learning algorithms were able to find simi-
larity measures leading to significant better retrieval results compared to the initial
similarity measure used. Here, the special characteristics of the addressed applica-
tion scenario must be pointed out. Since this application scenario allows to generate
training data automatically, the achieved improvements require computation time
only. Additional manual effort for acquiring training data is not required, and there-
fore, the measured improvements might be obtained just by “a mouse click”. The
only requirement is the existence of an initial similarity measure SimU which ap-
proximates the utility of a given case (here, a PC) w.r.t. the given user demands
without considering the adaptability of cases. However, this requirement is not really
a problem, because such a similarity measure is required in any case. Our approach
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no learning weights only weights & local measures
criterion SimI Sim100 Sim500 Sim1000 Sim100 Sim500 Sim1000

0% noise
1-in-1 18% 22% 25% 25% 18% 28% 34%
1-in-3 32% 39% 57% 42% 37% 53% 62%
1-in-10 53% 65% 74% 73% 60% 79% 87%

10% noise
1-in-1 18% 25% 26% 24% 12% 29% 30%
1-in-3 32% 40% 44% 44% 27% 52% 56%
1-in-10 53% 65% 72% 76% 53% 83% 84%

30% noise
1-in-1 18% 23% 24% 25% 8% 25% 28%
1-in-3 32% 38% 42% 43% 18% 48% 54%
1-in-10 53% 67% 68% 72% 36% 76% 82%

Table 8.5.: Summary of Retrieval Improvements Achieved in Scenario 2

then allows a self-optimisation of this initial similarity measure by the CBR system
itself, in order to consider the adaptability of cases during retrieval, too.

When judging the presented improvements in retrieval quality, one must also be
aware that optimal retrieval results probably cannot be achieved with the presumed
vocabulary and similarity measure representation of our experimental domain. To
estimate the adaptability of cases exactly, also dependencies between attributes are
important. For example, an alternative hard disk cannot be installed if someone
asks for a laptop. So, the underlying hypotheses space does not include the optimal
similarity measure, and hence, it is impossible to reach the 100% values of the in-
troduced quality measures at all. Therefore, an increase of the percentage of correct
retrievals from 55% up to 80%, when demanding that the most useful case should
appear during the 3 most similar cases, represents a quite good result. Concern-
ing both quality measures relative improvements of about 50% can be recognised.
Thus, finally one may conclude that the application of our learning framework brings
obvious benefits in the assumed application scenario (cf. Section 6.5).

Basic Conclusions for Scenario 2

Similar to scenario 1, also in the experimental scenario 2 clear improvements in
retrieval quality by applying our learning algorithms can be recognised. Table 8.5
again gives an overview of the average retrieval quality measured before learning,
after weight learning, and after learning weights and local similarity measures.

Here, relative improvements in all quality measures about 65% up to nearly 100%
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have been achieved. For example, when dealing with 1000 noise-free training exam-
ples, the values for the 1-in-3 soundness criterion could be increased from 32% to
62%, i.e. the value could be nearly doubled.

Due to the differences to the first experimental scenario, here, the reported im-
provements in retrieval quality must be seen from a different point of view. At least
for the noise-free training data one might expect better retrieval results because the
optimal similarity measure should lay in the considered hypothesis space. This op-
timal similarity measure is obviously the similarity measure SimU used to simulate
customer feedback. Hence, one might be surprised that the achieved quality values
are still far away from the optimum.

This observation can be explained in two ways. Firstly, one must consider that
local similarity functions are only represented with a limited set of sampling points
during learning. Hence, the optimal similarity measure can only be approximated
but cannot be represented exactly. Secondly, when comparing the charts of Fig-
ure 8.6 and Figure 8.11, one can observe an important difference. While the learning
curves for the first experimental scenario show a clear convergence for the maximal
number of used training examples, such a convergence is missing in Figure 8.11.
This might be an evidence that the investigated number of training examples was
not sufficient to obtain the results that are feasible, in principle.

Although 1000 training examples seem to be an unrealistic number for practical
usage on the first look, it must be noticed that this experimental scenario, of course,
relies on much more training examples compared to scenario 1. Since here single
training examples contain utility information about 3 cases only, significantly more
training examples are required to obtain satisfactory learning results. Nevertheless,
in our point of view this requirement should not prevent the application of our
approach in this application scenario. At least when learning the preferences of a
certain customer class and not of a single customer, it should be feasible to acquire
the required amount of training examples. Nowadays, successful eCommerce appli-
cations (e.g., www.amazon.de) are used very frequently by many customers so that
enough utility feedback may be obtained.

8.4.2. Gradient Descent vs. Genetic Algorithm

In our first experimental scenario we have compared the gradient descent algorithm
with the version of the genetic algorithm that learns attribute weights only. The
corresponding results presented in Section 8.2.4 indicate that both algorithms are
able to achieve approximately the same learning results with respect to the 1-in-
3 quality criterion. Surprisingly, regarding the two other quality measures slight
differences between both algorithms can be noticed. On the one hand, the gradient
descent algorithm was able to achieve better results for the index error, i.e. a
criterion that measures the quality of the entire retrieval result. On the other hand,
the genetic algorithm performed better with respect to the 1-in-1 quality criterion
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which focuses on the retrieval of the most useful case only. Up to now we have
no idea of how these differences can be explained. Here, further experiments are
necessary to investigate this phenomenon in detail.

A crucial difference between both algorithms can be recognised in Figures 8.3
and 8.5, which illustrate the variance of the achieved results over the 10 repetitions of
the experiments. Here, it becomes clear that the gradient descent algorithm is much
more stable concerning the achieved improvements in retrieval quality compared to
the genetic algorithm. When using the gradient descent algorithm, the exploitation
of more training examples leads to better learning results continuously. In contrast,
the genetic algorithm shows significantly more variations. This property becomes
a crucial problem when dealing with few training examples only. Here, it can be
observed that 5 training examples were always sufficient to achieve improvements
in the retrieval quality when applying the gradient descent algorithm (see the worst
values measured for the 1-in-3 criterion shown in Figure 8.3). In contrast, here the
genetic algorithm required 35 (for θ = 10) or over 140 (for θ = 0) training examples
in the worst case.

This undesired behaviour of the genetic algorithm might be explained by the
particular search strategy used. Naturally, the genetic algorithm relies on much more
random effects compared with the gradient descent algorithm, which become also
obvious in the results finally achieved. This effect might be decreased by allowing
the genetic algorithm to process more generations.

Another crucial difference between both algorithms is the performance with re-
spect to computation time. Since the gradient descent search is much more goal
directed compared to the search strategy genetic algorithms are based on, the entire
learning process is much faster. Figure 8.9 illustrates that the gradient descent algo-
rithm is about 5-6 times faster compared with the genetic algorithm when learning
weights only.

8.4.3. Influence of θ

In Definitions 4.5 and 5.3 we have introduced a so-called error-position weight θ.
The basic idea of this parameter was to “penalise” retrieval failures that concern the
more useful cases additionally, since we are mostly interested in a correct retrieval
concerning these cases.

In order to validate whether this error-position weight helps to influence the learn-
ing process so that it focuses on finding a similarity measure that retrieves the most
useful cases correctly, in our first experimental scenario we have tested two different
values for θ. In fact, the corresponding results shown in Figures 8.3 and 8.5 indicate
that a value of θ = 10 significantly increased the achieved values for the quality
criteria that measure the success in retrieving the most similar case. As expected,
the achieved values for the criterion that measures the quality of the entire retrieval
result, i.e. the index error which also considers retrieval failures concerning very
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useless cases, simultaneously decreased slightly.
Hence, the error-position weight seems to be appropriate to learn similarity mea-

sures that in particular ensure correct retrieval of the most useful cases. In future
experiments it has to be investigated which concrete values of θ lead to optimal
results.

8.4.4. Required Amount of Training Data

One of the most important aspects when applying learning procedures is, of course,
the amount of training data required to obtain reasonable learning results. Basically,
we can distinguish two important thresholds concerning the number of training
examples required:

temin: When using only few training examples, learning procedures often tend to
overfitt the presented examples. The learning algorithms may find a similarity
measure that works quite well for the training examples presented. However,
for other queries and corresponding cases, this similarity measure might led to
very poor retrieval results. To ensure learning of similarity measures that are
general enough to improve retrieval results for arbitrary queries and cases, a
minimal amount of training data is required. Hence, we investigate the number
of training examples temin that are at least necessary in order to ensure that
the learning procedure brings a benefit.

tesuf : As typically for learning curves, they become more flat for increasing number
of training examples. This means, after using a certain amount of training
data, more training examples do not improve the results significantly any more.
Therefore, we also investigate the number of training examples tesuf that are
sufficient to achieve approximately the optimum of the learning process.

Table 8.6 gives an overview of the average values of temin and tesuf for our two
experimental domains that can be determined by analysing the presented learning
curves (cf. Sections 8.2.4 and 8.3.4). Here, we have not distinguished between
different versions of our learning algorithms, but have selected the values achieved
with the most accurate version with respect to the particular scenario. For the
second experimental scenario tesuf could not be determined appropriately, since the
maximally number of training examples used was not sufficient.

The presented values show clearly, that learning of attribute weights requires
much less training examples than learning of local similarity measures. This is
not surprising since local similarity measures represent a much larger search space
compared with a weight vector. Due to the various number of possibilities for tuning
local similarity measures by changing table entries and sampling points, here, the
risk of overfitting the training data is much higher as when learning weights only.
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weights only weights and local measures
scenario temin tesuf temin tesuf

1 <5 70-100 ∼20 140-200

2
0% noise <50 ∼500 50-100 ?
10% noise <50 ∼500 ∼100 ∼1000(?)
30% noise <50 ∼250 100-250 ∼1000(?)

Table 8.6.: Required Number of Training Examples

8.4.5. Impact of Noisy Training Data

The impact of noise investigated in our second experimental scenario was very sur-
prising. On the one hand, noise influences the learning procedure clearly when
learning both, attribute weights and local similarity measures. However, when look-
ing at Figure 8.12 it can be seen, that the amounts of noise investigated in our
experiments only seem to impede the learning process significantly when exploiting
less than 250-500 training examples. If the algorithm is provided with 500 or more
examples, noise seems to have only a minor impact on the results achieved.

On the other hand, when analysing the results obtained for pure weight learning,
the situation is different. Here, the amount of noise investigated in our experiments,
seems to have no clear impact on the learning procedure at all (cf. Figure 8.14).
In order to be able to explain this surprising observation, more experiments, for
example, with a higher percentage of noisy training examples are necessary.

8.4.6. Sequential vs. Parallel Processing

Finally, we want to compare the differences between the strategies applied to com-
bine learning of attribute weights and learning of local similarity measures. In our
first experimental scenario we have evaluated four different strategies, namely the
two sequential approaches SeqW−LS and SeqLS−W , and the two approaches towards
parallel processing Parpseudo and Parcomposed.

When comparing the results achieved with these approaches, major differences
cannot be recognised. All strategies achieve approximately the same results when
exploiting the maximal number of available training examples. However, several mi-
nor differences can be observed between the sequential and the parallel strategies.
For example, it seems that the parallel strategies lead to steeper learning curves.
Therefore slightly less training examples are required in order to avoid a negative
outcome of the learning procedure caused by overfitting the training data (cf. Fig-
ure 8.6). Hence, the temin values of the parallel strategies (cf. Section 8.4.4) are a
little bit smaller (10-20) compared to the temin values of the sequential strategies
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(20-35).
Although, both approaches finally reach approximately the same values for the

introduced quality measures, the sequential approaches show no clear convergence,
even for the maximal number of training examples investigated. This might be an
evidence that further improvements in the retrieval quality might be possible here,
if more training examples are presented. In contrast, the parallel approaches seem
to converge to an optimum when being provided with about 140 and more training
examples.

Another minor difference between the parallel and the sequential approaches can
be observed when analysing the variance of the results achieved during the 5 rep-
etitions of the experiments (cf. Figure 8.7). It seems that the parallel approaches
produce more stable results compared to the sequential approaches. At least for
training data sets consisting of more than 70-100 training examples, the variance of
the values of the 1-in-3 quality measure are significantly lower when applying the
parallel strategies. However, for smaller training data sets such a difference cannot
be noticed.

The computation times of the different learning strategies when exploiting all
200 training examples (cf. Figure 8.9) show, that the parallel approaches are more
expensive (with a factor about 1.2-2). However, the comparison and interpretation of
these differences is difficult, since the strategy Parcomposed requires a totally different
number of generations due to the properties of this strategy. Although it requires
much more generations as the three other strategies, the required computation time
is quite similar. This can be explained by the similar number of needed procedures
for evaluating individuals which represents the most costly steep during learning
(each evaluation requires a case retrieval!). During the sequential approaches 20
individuals (population size) have to be evaluated 400·12 times6. In contrast, the
real parallel approach Parcomposed requires 4400·1 evaluation procedures since all 12
elements of the similarity measure are treated simultaneously.

6number of generations · number of elements of the similarity measure to be optimised separately
(11 local measures + 1 weight vector)
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9. Related Work

Although learning of similarity measures was not in focus of CBR research yet,
numerous publications that can be seen as first steps into this direction have been
published in the last years. In this chapter a short overview on existing work that
is related to the topic of learning similarity measures is given.

9.1. Classic Attribute Weight Learning

The first approaches to improve the similarity assessment in CBR by using machine
learning techniques all focused on the definition of accurate attribute weights. The
major reason for this restriction is the structure of the similarity measures tradi-
tionally used in CBR systems (cf. Section 3.3.1) and foregoing Nearest-Neighbour
classifiers (cf. Section 2.3.1). Here, attribute weights represent the only possibility
to encode meaningful domain knowledge into the similarity measure.

So, the most early publications that deal with learning of attribute weights1, can
be found in the instance-based learning and classification community. An excellent
overview on approaches to attribute weighting is given by Wettschereck and Aha
(1995). The authors also present a framework for categorising such approaches based
on the following five criteria:

1. Feedback: This criterion distinguishes between so-called feedback and igno-
rant approaches2. While weight modifications of feedback methods are based
on feedback from the used classification algorithm, ignorant methods only
perform a statistical analysis of the available case data in order to identify
correlations between the distribution of attribute values and corresponding
classes.

2. Weight Space: The weight space represents the values allowed to be assigned
to attribute weights. For example, it is possible to distinguish between binary
weights (i.e., a weight can only be 0 or 1) and more fine-grained weight models.
Which weight models are more accurate is a controversially discussed issue.
For example, experiments reported by Kohavi et al. (1997) indicate that very
fine-grained models often lead to overfitting the training data during learning.

1Often also denoted as feature weights.
2Other researchers also denote them as wrapper and filter approaches.
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3. Representation: Concerning the underlying case representation, some weight-
ing approaches assume a binary attribute-value based representation. This
means, only attributes with a binary value type are allowed. To apply these
approaches on more flexible case representations with arbitrary symbolic and
numeric attributes, a pre-processing step in order to binarise the attributes is
necessary.

4. Generality: This criterion distinguishes between global weight models, where
one single weight vector is used for the entire case space and more local mod-
els where weights may differ for different regions of the case space (cf. Sec-
tion 3.3.4).

5. Knowledge: This final criterion has been introduced to distinguish between
methods that exploit domain-specific knowledge when determining accurate
weights and more knowledge-poor methods.

Concerning the weighting approaches that receive feedback from the used classifi-
cation algorithm, the authors further distinguish between incremental hill-climbers
and continuous optimizers.

9.1.1. Incremental Hill-Climbers

These types of learning algorithms modify weights incrementally after each train-
ing example is presented in order to correct occurring classification failures and
to improve the classification accuracy in the future. Here, it is possible to distin-
guish failure-driven and success-driven strategies. While failure-driven strategies
only modify weights as a result of a retrieval failure, success-driven strategies seek
to update weights as a result of a retrieval success. Bonzano et al. (1997) enumerate
four corresponding learning policies:

1. There has been a retrieval success and the weights of matching attributes are
incremented.

2. There has been a retrieval success and the weights of mismatching attributes
are decremented.

3. There has been a retrieval failure and the weights of mismatching attributes
are incremented.

4. There has been a retrieval failure and the weights of matching attributes are
decremented.

In principle, a learning algorithm might apply arbitrary combinations of these
policies, however, the most common method is to employ all four strategies. Besides
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pure failure-driven or pure success-driven strategies, respectively, sometimes also
very specific combinations might be used. For example, Muñoz-Avila and Hüllen
(1996) describe an algorithm that only modifies mismatching attributes, i.e. it
applies only the policies 2 and 3.

The basic idea of incremental hill-climbers is to push wrongly retrieved cases away
from the current target case T, and to pull useful cases closer to T (Bonzano et al.,
1997; Zhang and Yang, 1999). For determining the magnitude of these pushing and
pulling operations, different methods have been developed. Salzberg (1991) uses
a quite simple method in EACH, where all four learning policies are applied with
a fixed in/decrement ∆f . The author reported that the selection of an accurate
∆f depends on the domain and so has to be determined experimentally. The IB4
algorithm described by Aha (1991); Wettschereck and Aha (1995) and the algorithm
RELIEF (Kira and Rendell, 1992; Kononenko, 1994) employ more sophisticated
update rules that also consider the difference of mismatching feature values. Other
strategies are, for example, decaying update rules that decrease the weight changes
over time in order to guarantee convergence of the learning procedure (Muñoz-Avila
and Hüllen, 1996; Bonzano et al., 1997).

As typical for incremental learning techniques, all these incremental hill-climbing
approaches are sensitive to the presentation ordering of the training examples.

9.1.2. Continuous Optimisers

In contrast to the previously described incremental methods, continuous optimisers
process a selected number of training examples at once during a batch process,
instead to update weights on the basis of a single retrieval result. Therefore, a leave-
one-out cross-validation (LOOVC) with the available training examples is typically
performed in order to measure the average classification accuracy obtained by using
a particular weight vector. A continuous optimiser than tries to modify the currently
used weight vector in order to improve the measured average accuracy.

To guide this modification process different strategies can be applied. We have
already discussed this issue in Section 4.3.4. On the one hand, modifications might
be driven by chance or they might be driven by some knowledge about expected
changes in the classification accuracy. In both cases, the classification accuracy is
modelled as an error function of the weights and the available training data. On
the one hand, if modifications are based on random operations, this function is only
used to evaluate the outcome of a modification. On the other hand, such a function
can also provide some knowledge to select promising modifications.

Typically, continuous optimisers represent more robust learning algorithms than
incremental hill-climbers because they are not sensitive to the presentation ordering
of training examples.

Lowe (1993) pointed out that the accuracy of a k -Nearest-Neighbour classifier
strongly depends on the quality of the used distance metric when dealing with case
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models that include irrelevant attributes. Therefore, the author presents a learn-
ing strategy—called variable-kernel similarity metric (VSM)—that is inspired by
learning techniques of neural networks. The particular technique used is a conjugate
gradient algorithm that exploits knowledge about the gradient of the error function.
Therefore, the LOOCV error E is defined as the sum over all training examples
t, and all possible class labels i, where sti is the known probability that the train-
ing example t belongs to class i (i.e., usually it holds sti ∈ {0, 1}), and pti is the
corresponding probability determined by the classification algorithm:

E =
∑

t

∑
i

(sti − pti)
2

While the algorithm presented by Lowe (1993) also optimises a parameter of the
classification algorithm, Wettschereck and Aha (1995) introduced a variant of VSM,
namely k − NNV SM that only focuses on attribute weights. However, it employs a
similar error function based on LOOCV training error.

Other continuous optimisers that do not exploit knowledge about the error func-
tion rely on random search strategies. For example, Kelly and Davis (1991) have
presented an approach that applies a genetic algorithm or a evolution program,
respectively3, in order to learn accurate attribute weights (cf. also Section 5.3).
Therefore, the authors introduce five genetic operators used to create new individ-
uals. Since they also address classification domains, their GA-WKNN algorithm
employs a fitness function that is based on LOOCV again. A similar algorithm
is presented by Demiröz and Güvenir (1996). However, here the search process is
exclusively based on a single, very specific crossover operator—called continuous
uniform crossover—that avoids the need of a normalisation of the weights after
applying crossover. Experiments with another random search strategy called ran-
dom mutation hill climbing are reported by Skalak (1994). This algorithm might be
characterised as a genetic algorithm that operates with one individual only to which
only random mutation is applied.

The approach presented by Jarmulak et al. (2000a,b) also applies a genetic algo-
rithm in order to optimise CBR retrieval in the tablet formulation domain. Here, the
underlying CBR system performs a two-step retrieval consisting of a case selection
phase realised by a decision-tree, and the actual similarity computation phase for
selected cases. Therefore, the GA does not exclusively optimise attribute weights
used to compute similarities, but also other parameters required for the decision tree
generation and the parameter k of the finally applied k-Nearest-Neighbour voting.
The fitness function used to evaluate generated individuals is based on a variant of
the LOOCV, namely leave-n-out crossvalidation on existing case data. Because of
the usage of a binary weight model, the entire approach is rather a feature selection
task, than an actual weight learning task. Nevertheless, the authors report about

3Here, attribute weights are not represented as bit strings but as real-valued numbers.
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very promising results of an experimental evaluation in their tablet formulation do-
main. This evaluation also includes an interesting investigation of effects concerning
overfitting the training data.

9.2. Extensions of Classic Weight Learning
Algorithms

In the previous section a rough overview on classic attribute weight learning al-
gorithms was given. In this section some further approaches to learning attribute
weights that introduce some very specific aspects are discussed.

9.2.1. Learning of Asymmetric Similarity Metrics

Ricci and Avesani (1995) have introduced a novel approach to compute similarities
called asymmetric anisotropic similarity metric (AASM). On the one hand, this
similarity metric uses case specific weights (cf. Section 3.3.4). On the other hand,
it also introduces two separate weights for numeric attributes in order to enable the
definition of asymmetric similarity measures (cf. Definition 3.7). The first weight is
used, if the query value of the respective attribute is larger than the corresponding
case value. The second weight is used in the remaining situations, if the query value
is smaller than the case value.

Moreover, the authors present an LOOCV-based incremental hill-climbing algo-
rithm in order to learn the different weights of AASM. Therefore, they apply all four
variants of the failure-driven and success-driven learning policies already mentioned
in Section 9.1.1. For updating the weights they introduce sophisticated update
magnitudes that are based on the difference of numeric attributes as well as on so-
called reinforcement and punishment rates that are represented by two parameters
α, β ∈ [0, 1]. To show the power of AASM and the corresponding learning algorithm
the authors also report about results of an experimental evaluation on four popular
data sets. These results indicate that the use of AASM may improve the accuracy
of Nearest-Neighbour classifiers significantly.

9.2.2. Considering Decision Cost

All learning approaches discussed so far aim to increase the pure classification accu-
racy of a classification system. Motivated by two real-world applications, Wilke and
Bergmann (1996) have presented an alternative learning goal. Instead to consider
only the pure correctness of classifications, they argue that also decision costs play
a major role in several domains. For example, in a credit scoring domain, different
classification failures are coupled with very different costs for a bank. If the CBR
systems classifies a creditworthy customer as not creditworthy, the bank looses only
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the possible income. However, if a not creditworthy customer is classified as cred-
itworthy, the bank probably looses the whole credit sum, i.e. a considerably higher
amount.

To consider such decision costs during learning of attribute weights, the authors
present the following specific error function to be used by a continuous optimiser:

Ecost =
∑

q∈CB

∑
t∈T

sgn(Ctq,t) · C2
tq,t · p2

q,t

Here, pq,t denotes the probability that the query q is classified as class t (T denotes
the set of all occurring classes), and Ctq ,t denotes the corresponding cost. If q is
classified correctly the value Ctq ,t represents rather a profit than a cost, and therefore
Ctq,t will be negative. Since this function is partially differentiable with respect to
attribute weights—they occur in the formula for computing the probability pq,t—it
can be minimised by employing a conjugate gradient algorithm. The authors also
present an experimental evaluation for the credit scoring domain that indicates that
this algorithm allows to improve the decision cost of a CBR system significantly,
compared to a learning algorithm that focuses on classification accuracy only.

9.2.3. Exploiting a Declarative Domain Model

Fox and Leake (1995a,b) have presented an incremental approach towards the se-
lection of attributes—this situation can be interpreted as a binary weight space—
by using introspective reasoning. Since the addressed application domain is route
planning (cf. Section 2.3.6), here, the training data is not obtained by exploiting
pre-classified data. The presented planning system ROBBIE contains a declarative
model of the ideal reasoning behaviour of the system that provides the feedback
whether a retrieved case is suitable or not. If it becomes clear that an inaccu-
rate case was retrieved, ROBBIE’s introspective reasoner identifies attributes which
would lead to retrieval of more adaptable cases, and refines the indexing criteria in
order to include the needed features to avoid similar failures in the future.

9.2.4. Exploiting User Feedback

An interesting variant of an incremental hill-climber is presented by Zhang and Yang
(1999). Here, a two-layer network architecture composed from attribute-value pairs,
attribute weights and cases is used to model a case base. Due to this structure
it is then possible to resemble the learning process of a back-propagation neural
network (Mitchell, 1997). A special feature of the applied update policy is that
it exploits feedback of the user about the desired similarity of cases. The update
magnitude is then determined based on the difference between the actually computed
similarity and the desired similarity. This approach is a novelty compared to the
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other traditional learning techniques where the required feedback is obtained from
pre-classified data. Therefore, the approach presented by Zhang and Yang (1999) is
not restricted to classification domains only. It rather might be applied in different
application scenarios like Knowledge Management (cf. Section 2.3.3) or eCommerce
(cf. Section 2.3.4).

9.3. Learning of User Preferences

Recently, the development of user adaptive systems becomes more and more popular
(Göker and Thompson, 2000). In CBR, user adaptive functionality can be realised
by considering particular user preferences during case retrieval (cf. also Section 6.4).
Branting (1999) has already pointed out the importance to consider individual user
preferences. Here, the author presents an approach to learning preference criteria
through active exploration when using an instance-based ranking algorithm (1ARC).
However, up to now less publications concerning learning of user preferences in the
CBR context have been published.

An approach in particular addressing learning customer preferences in case-based
product recommendation systems is presented by Branting (2001). Here, an incre-
mental hill-climber is used to learn the mean customer preferences of some customer
population by exploiting return-set selections of the individual customers. A return-
set selection represents a case selected by a customer among a set of retrieved cases
considered to be most similar to the customer’s requirement specification. In order
to improve the retrieval quality, the incremental hill-climber then adjusts the weights
based on attribute differences between the query and the cases that wrongly have
been considered to be more similar than the return-set selection. This means, the
algorithm realises a failure-driven update policy (cf. Section 9.1.1). The actual mag-
nitude for updating the weights, however, does not consider attribute differences,
but only depends on a fixed learning rate to be defined prior learning. In order to
demonstrate the relevance for real-world applications, the author also presents an
excellent experimental evaluation where several important influences on the learning
procedure are investigated. For example, it is assumed that return-set selections are
based on individual preferences of the particular customer that are normally dis-
tributed around some mean preferences with some standard deviation. Changes in
this standard deviation as well as influences of the size of the return-set are investi-
gated in detail. The results of the experiments indicate that the learning approach
brings clear benefits, in particular if customers tend to assign a minority of attributes
high importance and the majority of attributes low importance.

An approach that focuses on personalised recommendation service and learning
of user preferences represented by personalised similarity measures is described by
Coyle and Cunningham (2003). Here, the authors discuss how existing learning
algorithms like introduced by Branting (2001); Stahl (2001, 2002a); Stahl and Gabel
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(2003) might be employed to exploit re-ranking information in a case-based personal
travel assistant. In this domain several requirements motivate learning strategies in
order to optimise case retrieval. On the one hand, each retrieval is connected with a
considerably network delay, so that repeated retrievals will probably not be tolerated
by the users. On the other hand, the application is targeted at mobile web users, e.g.
WAP enabled phones and mobile-PDAs users. Due to the constrained screen-size
of these devices, only small return-sets can be displayed. Thus, the utility of the
limited number of retrieved and displayed cases has to be maximised.

The application of a genetic algorithm for learning user preferences in case-based
software reuse is described by Gomes and Bento (2000). The authors argue that the
utility of software components to be reused is also influenced by individual prefer-
ences of the users, for example, the programming style of a particular programmer or
designer. In order to estimate the utility of software components in their CREATOR
II system, they present a sophisticated similarity measure that can be parameterised
using several special weights. To optimise these weights a genetic algorithm is ap-
plied where the fitness of particular weight settings is determined by an evaluation
function which compares achieved retrieval results with case re-ranking information
provided by the user.

9.4. Learning of User Context in Information
Retrieval

As already discussed in Section 3.1.1, Information Retrieval is another research field
that is interested in retrieving useful documents. Here, relevance feedback acquired
from the system users is used to improve the retrieval capabilities of the system.
Usually relevance feedback only signs retrieved documents either as relevant or not
relevant. A finer estimation of the utility, e.g. by comparing different items (cf.
Section 4.2.2), is mostly not considered. The major difference to learning approaches
applied in CBR is that the IR systems usually do not learn a general representation
(comparable with a similarity measure). They rather try to extend given queries
with additional key terms in order to obtain a more specific query. This approach
in called query expansion.

The core assumption is that a user has some information need that is associated
with some context. To get answers for this information need, a user then repeat-
edly submits queries to an IR system which hopefully returns relevant documents.
However, the majority of users tend to provide queries that contain only few search
terms. Therefore, such queries are not sufficient to capture the current context of
the user, and thus, retrieval results are often not satisfying.

In order to learn the actual user context from subsequent queries, Göker (1999)
has presented a so-called Context Learner. The basic idea of this approach is to
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extract key terms from documents that the user has judged as relevant, or partially
relevant. These key terms then represent the actual user context and can be used to
extend new queries in order to retrieve more relevant documents. In principle, the
actual user context, in our terminology, can be characterised as an individual and
temporarily valid utility function.

Another approach, called collaborative information retrieval, that exploits rele-
vance feedback in order to improve retrieval performance is presented by Hust et al.
(1993). Here, feedback is used to change the weights of query- and document terms,
used to compute document similarities in the common vector space model of IR.
Therefore, the authors present a mathematical model that is mainly based on ma-
trices operations.
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This last chapter discusses the results presented in this thesis and points out some
open questions that could not be answered in the scope of this work. These open
questions can be seen as interesting issues for future research.

10.1. Objectives and Achieved Results

In this thesis we have presented a novel approach to learning knowledge-intensive
similarity measures (cf. Section 3.4.1) in Case-Based Reasoning. In contrast to tra-
ditional knowledge-poor similarity measures, this interpretation of similarity leads
to the well-known knowledge acquisition problem in AI. Thus, the main objective of
this work was the development of a framework that helps to reduce the knowledge
acquisition effort when employing knowledge-intensive similarity measures. Our
framework is founded on machine learning techniques that allow to extract the nec-
essary domain knowledge from training data that may often be acquired more easily
than the actual knowledge itself. Employing learning techniques leads to several
major advantages:

• The definition of similarity measures does not require the skill to deal with
complex mathematical representation formalisms anymore. Instead, only the
natural knowledge chunks of the domain, namely cases and queries, have to
be handled by human experts.

• A deep analysis of the domain and, in particular, of the influences on similarity
is not mandatory anymore. High level knowledge about the cases’ utility for
given queries is sufficient to obtain accurate similarity measures.

• Additional similarity knowledge may be acquired during the daily usage of the
CBR system. Knowledge that is not available at all during the development
phase of the system can be employed in order to improve the competence of
the system continuously (cf. application scenarios described in Section 6.3
and 6.4).

• Similarity knowledge may be extracted from existing knowledge resources au-
tomatically (cf. Section 6.5 and 6.6).
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• The maintenance of similarity knowledge can be performed during usage of
the system automatically (cf. Section 6.7).

The idea to learn domain knowledge required for defining knowledge-intensive
similarity measures seems to be straight forward because CBR systems are already
popular for their capability to improve their competence by learning. However, most
approaches to learning in CBR research focus on situation-specific case knowledge,
and not on general knowledge as required by similarity measures. In Section 4.1.1,
we have described that also learning of general knowledge, and particularly similarity
knowledge, can be motivated from the cognitive point of a view as well as from the
functional point of view.

10.1.1. Summary

The main idea of our framework presented in Chapter 4 is to acquire similarity
knowledge on a different level of detail compared to the common method to defining
similarity measures discussed in Section 3.5. Instead of analysing all influences on
the utility of cases in detail, and modelling them with help of specific parameters
of the similarity measure, our approach only relies on the estimation of the utility
of cases on a high level for some given queries. We called this kind of similarity
knowledge utility feedback. This approach can be described as a top-down procedure
since only the desired outcome of the similarity assessment has to be defined. The
definition of a particular similarity measure to achieve this outcome is then left to
the employed learning algorithm. The advantage of this approach is that it allows to
hide the formal and difficult to handle representation of similarity measures and that
a detailed analysis of the domain is not necessarily required. Instead, our approach
relies on some similarity teacher, e.g. a domain expert, who is able to estimate the
utility of cases for particular queries in a relative manner. This means, the utility
of a case has not to be expressed absolutely, but only relatively to other cases.

In order to exploit utility feedback for the definition of similarity measures, we
introduced the concept of the retrieval error (cf. Section 4.3.3). This error computed
by a particular error function (e.g. the index error introduced in Definition 4.6)
can be seen as a measure for estimating the quality of a given similarity measure.
Therefore, the retrieval result, i.e. a case ranking determined by the similarity
measure has to be compared to given utility feedback of some similarity teacher.
The retrieval error is then a measure for the deviation of the computed case ranking
from the ideal ranking defined by the teacher.

Besides estimating the quality of similarity measures, such an error function also
represents a powerful instrument to realise learning functionality. It can be seen as
an objective function for evaluating the quality of arbitrary similarity measures and
hence, it can be used to guide a search or optimisation process (cf. Section 4.3.4),
respectively, within the space of all representable measures. How this search process
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Algorithm Pro Contra

GDA very fast, quite stable
only suited for learning weights,
problems with particular case
data

GA
suited for entire similarity
measure, flexible applicability

poor computational perfor-
mance, less stable

Table 10.1.: Comparison of Learning Algorithms

is then actually realised depends on the employed learning algorithm. In Chapter 5
we have presented two respective learning algorithms, namely a gradient descent al-
gorithm (GDA) and a genetic algorithm (GA). While the gradient descent algorithm
is only suited to learn attribute weights, the genetic algorithm, in principle, allows
to learn the complete similarity measure representation, i.e. the attribute weights,
the local similarity measures and the aggregation function. However, in this work we
have focused on learning weights and local measures because they usually contain
the major portions of similarity knowledge.

Table 10.1 shows an overview of the characteristics of the two learning algorithms
presented in this work. On the one hand, the GDA is a very fast algorithm because
it exploits knowledge about the shape of the error function. Further, in our experi-
ments it has turned out to be a more stable algorithm compared to the GA since the
variations in the achieved results were smaller. However, the GDA has also some
crucial drawbacks. Besides that it is only suited for learning weights, in certain
situations it also delivers bad results due to the characteristics of the required error
function (cf. Section 5.2.5). Thus, it can only be applied, if the distribution of
attribute values within the case data does not lead to undesired minima in the error
function. However, this drawback of the GDA might be compensated if it would be
possible to define an alternative error function which avoids such undesired minima.
Whether this is principally possible or not, is still an open question.

In contrast, the genetic algorithm can be applied very flexibly without such prob-
lems and in our experiments it achieved similar improvements in retrieval quality as
the GDA. Further, it can be employed to learn the entire similarity measure, and not
only the attribute weights. However, the GA showed to be the less stable learning
algorithm resulting in more variations in the learning results. Moreover, compared
to the GDA, the requirements with respect to computation time are much higher
when applying the GA. But this is not a crucial problem since exclusively learning
of weights can be performed quite fast anyway.

Of course, similar to other learning approaches, the acquisition of enough training
data with reasonable quality is one of the most crucial problems when applying our
framework. Here, training data is represented by utility feedback and has to be
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provided by some similarity teacher. To illustrate how this similarity teacher might
be realised in practice, in Chapter 6 we have described several different scenarios for
applying our framework. We have shown that the similarity teacher has not neces-
sarily to be represented by a human being. Depending on the particular scenario,
the similarity teacher might also be realised in form of an automated procedure.

In order to be able to perform an experimental evaluation of our framework and
the developed learning algorithms, a prototypical implementation was required. In
Chapter 7, we have described such an implementation developed in form of an
additional software module for the commercial CBR tool CBR-Works.

In order to demonstrate the capabilities of our framework, in Chapter 8 we have
described an experimental evaluation for two of the application scenarios described
in Chapter 6. The objective of this evaluation was mainly a demonstration of the
principle capabilities and properties of the developed learning algorithms. For two
exemplary application domains we evaluated how much training data is required
to achieve reasonable learning results. Further, we investigated the impact of some
important parameters to the learning algorithms employed. Basically, the results of
the experimental evaluation led to the following important conclusions:

• Assumed that enough training data is available, our framework and algorithms
are able to improve the retrieval quality of a CBR system significantly.

• Learning of weights is much easier than learning of local similarity measures
due to the smaller search space. Because local similarity measures provide
various tuning possibilities, here, the risk to overfitt the training data is much
higher resulting in much more training examples required to obtain reason-
able learning results. In contrast, optimisation of attribute weights led to
clear improvements of the retrieval quality by exploiting few training exam-
ples. Nevertheless, if enough training examples are available, learning of local
similarity measures will represent a powerful approach to improve the retrieval
quality of a CBR system beyond learning of attribute weights.

• In order to focus on the correct retrieval of the most useful cases, the error-
position weight θ used by our error functions seems to be a powerful instru-
ment.

• In our experiments, the genetic algorithm showed to be quite robust against
noisy training data.

10.1.2. Novelty of this Work

Compared with already existing work towards the learning of similarity measures
described in Chapter 9, in essence, this thesis includes the following important new
contributions.
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Broad Applicability

One novelty of our learning framework is that it is not restricted on classification
domains as the most existing approaches to learning similarity measures or attribute
weights, respectively. As already described in Chapter 9, these approaches usually
rely on pre-classified cases. Training data is then obtained by performing a leave-
one-out-test with such available pre-classified case data. Hence, the application sce-
nario of existing approaches can be characterised as a specialisation of our solution
similarity scenario introduced in Section 6.6. However, here “similarity” between
solutions is only an exact match between the correct classification and the classi-
fications proposed by the most similar cases. This means, cases that propose the
correct classification are considered to be maximal useful, while cases corresponding
to an incorrect classification are considered to be maximal useless. A more detailed
differentiation of the cases’ utility is mostly not performed.

In contrast, our framework is based on the concept of utility feedback that allows
to validate achieved retrieval results much more detailed. Further, it does not pre-
sume a certain procedure to obtain utility feedback, but it can be acquired in very
different ways like described in Chapter 6. Thus, our framework is not restricted
to classification domains. Moreover, it even addresses in particular application do-
mains that have come into focus of CBR research and application just recently. For
example, the eCommerce and knowledge management domains clearly differ from
the traditional classification and diagnosis domains. Here, a distinction between a
problem and a solution part of cases is mostly not obvious. So, the utility of a case
cannot be derived from the degree of correctness of some solution. Instead the cases’
utility is often determined by—maybe subjective—judgements of the users.

The idea to estimate the utility of cases very detailedly also distinguishes our
framework form the most existing learning approaches developed in the research
field of Information Retrieval (cf. Section 6.6). Here, relevance feedback usually
only distinguishes between relevant and irrelevant documents.

The core functionality of CBR is, of course, a similarity-based retrieval and the
quality of this retrieval, i.e. the capability to select useful cases, strongly influences
the competence of the entire CBR system. Our approach tries to improve the
retrieval quality by employing feedback about retrieval failures. But the structure of
cases and the processing of retrieved cases is not a crucial aspect for the applicability
of our framework. Hence, in summary, one strength of our framework is, in principle,
that it might be applied in all application domains addressed by CBR. However, in
which domains our framework is able to improve the definition of similarity measures
significantly, can only be validated during practical usage.
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Suited for Complex Similarity Measures

Another important novelty of our work is that it addresses complex similarity mea-
sures, namely those defined according the local-global principle. Here, particularly
local similarity measures encode a lot of knowledge about the utility of cases. In con-
trast, existing approaches commonly are only suited to adjust attribute weights and
local similarity is only interpreted as exact match or is modelled in form of a fixed,
quite simple distance metric. However, such similarity measures where particular
domain knowledge can only be encoded in form of attribute weights, are not suited
to approximate the cases’ utility sufficiently in many domains. Unfortunately, when
introducing more sophisticated local similarity measures in form of distance-based
similarity functions and similarity tables (cf. Section 3.3.3), the effort for modelling
an adequate similarity measure increases dramatically.

Here, our framework in combination with the presented genetic learning algo-
rithm represents a novel and powerful approach to facilitate this modelling proce-
dure. Through the general flexibility of genetic algorithms or evolution programs,
respectively, not only learning of attribute weights, but also learning of local simi-
larity measures is possible. Therefore, in this thesis we have presented approaches
to represent local similarity measures in a way that an evolution program is able to
optimise them. Further, we have introduced accurate genetic operators for realising
the respective evolutional search process.

By considering the entire representation of the assumed similarity measures, our
approach allows to learn measures that represent a much better approximation of
the unknown utility function compared to existing approaches. However, due to
the significantly larger search space, this also requires more training data of reason-
able quality. Whether this training data can be acquired in real world application
scenarios has to be considered before applying our framework.

Methodology for Evaluating Similarity Measures

Today, a detailed validation of the similarity measure employed in a particular CBR
system is still neglected. Mostly, only a leave-one-out-test is performed to evaluate
the competence of a CBR system previously developed. However, a leave-one-out-
test does not focus on the quality of the similarity measure employed, but measures
the quality of the entire system that is also influenced, for example, by the quality
of the available case data or the effectiveness of adaptation procedures. While a lot
of approaches have been developed to estimate and improve the quality of case data,
today nearly no research work addresses the evaluation of similarity measures.

By introducing the concept of retrieval error and a respective function to measure
this error, our framework brings a further benefit. The retrieval error represents a
well-founded and powerful instrument to measure the quality of a defined similarity
measure in a systematic way. Here, it is not important whether this similarity
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measure was defined manually or whether it was learned by some learning procedure.
If it was defined manually, the training data required to compute the retrieval error

can be characterised as independent test data. It defines the desired outcome of the
similarity assessment for some exemplary queries. This desired outcome is then
compared with the outcome achieved with the similarity measure defined manually.
A significant difference between the desired and the achieved results, then might
be an evidence for an insufficiently modelled similarity measure. In this case, the
actually redundant training data, of course, can also be used as the foundation
of a subsequent learning procedure in order to optimise the suboptimal similarity
measure.

10.2. Open Questions and Future Research Directions

As already mentioned, the work presented in this thesis represents only a first step
towards a general approach to learning complex knowledge-intensive similarity mea-
sures. It introduced a basic framework and methodology, and two concrete learning
algorithms. However, there are still several open aspects that represent interesting
research issues for future work.

10.2.1. Improved Acquisition of Training Data

As typical for machine learning approaches, the success of our learning framework
strongly depends on the quality of the available training data. In Chapter 4 we have
discussed several principle techniques to acquire training data and in Chapter 6
we have shown how training data might be obtained in real world applications.
However, concerning the acquisition of accurate training data the following ideas
might improve the actual learning process.

Selecting Accurate Training Data

In this work we have only assumed that some similarity teacher provides feedback
about the relative utility of some arbitrary cases previously retrieved. However,
we have not discussed how to select cases within the retrieval result for which an
evaluation seems to be promising in order to obtain “good” training data. Instead
we assumed that some human similarity teacher selects accurate cases her/himself
due to her/his experiences in the domain. Of course, when employing an artificial
similarity teacher, for example, as discussed in Section 6.5, this is more difficult.
Here, we have supposed that the n most similar cases (according to the initial
similarity measure) will be evaluated automatically.

The same problem arises with respect to the selection of appropriate queries to
be used as the foundation of training examples. Here, we have assumed again that
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“good” training queries are provided by a human similarity teacher, or that they
are generated randomly when dealing with an artificial similarity teacher. Another
possibility might be to use queries that occur during the daily application of the
underlying CBR system. On the one hand, this approach might be infeasible when
learning the similarity measure during the development phase of the CBR system.
On the other hand, if the system is used very frequently, perhaps by many different
users, one has to deal with the problem to select some cases from the large set of
available “real world” queries.

When thinking about “good” training examples one important aspect is, of course,
the coverage of the case space. If training data only contains training examples that
are based on queries clustered in some region of the case space, this will probably
lead to unsatisfactory learning results. The same problem holds if the evaluated
cases are clustered. To solve this problem, one might propose to generate a set of
training queries automatically that cover the case space uniformly. However, this
might also be suboptimal because of significant differences between the theoretical
case space and the space relevant in practice. Often, large areas of the theoretical
case space are irrelevant since real world queries and cases typically do not fall into
these areas. Thus, in the future this issue might be examined in more detail in order
to develop better strategies for selecting accurate training queries and training cases.

Developing Comfortable And Intelligent User Interfaces

In Section 7.3.1 we have already presented a first design proposal for the implemen-
tation of a graphical user interface for acquiring utility feedback. Nevertheless, the
development of comfortable and more intelligent user interfaces is still an important
and interesting research issue. The interface presented in this work is only suited
for the application scenario described in Section 6.2, i.e. for supporting a domain
expert during the definition of similarity measures. For all other presented scenarios
that deal with human similarity teachers, the introduced interface structure is not
appropriate. In these scenarios, the actual users of the CBR system play the role of
the similarity teacher and utility feedback has to be acquired when using the system.

In this situation it is very important to develop comfortable interfaces that allow
to obtain utility feedback during the normal operation of the CBR system with
minimal additional effort for the user. For example, in the described eCommerce
scenario (cf. Section 6.4) a customer usually will not be willed to operate a complex
interface in order to provide feedback about the utility of recommended products.
Instead, customers will be interested to get good recommendations very quickly with
minimal effort.

How much interaction between the system and the user will be tolerated strongly
depends on the domain and the respective application scenario. To minimise the
effort for the user one may use the non-invasive approach already discussed in Sec-
tion 4.2.3. However, to get enough high quality training data, this approach might
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require more intelligent user interfaces that acquire utility feedback by observing
the users’ behaviour. For example, in a knowledge management scenario the time
that a user spends with analysing a case might be a hint for the case’s utility. Other
possibilities are the evaluation of the clicking behaviour or an analysis of the process
how a user modifies and repeats her/his query in order to find a more useful case.

Probably, it will be difficult to develop general approaches for realising accurate
interfaces used to acquire utility feedback from the systems’ users. Special versions
of such interfaces rather have to be developed for each application scenario in order
to fit the particular requirements. For example, a particular knowledge management
system probably might require another interface than a product recommendation
system.

10.2.2. More “Intelligent” Learning Algorithms

The two learning algorithms presented in Chapter 5 can be characterised as rela-
tively “stupid” algorithms. In principle, they are founded on a statistical analysis
of the training data by the determination of retrieval errors caused by the simi-
larity measure currently used. Although the gradient descent approach employs
some knowledge about the “shape” of the error function, the search process of both
algorithms is not based on a deeper analysis of the available training data.

To obtain high quality similarity measures from small training data sets, one
could imagine learning algorithms that try to extract the influences on the actual
utility of cases in a more “intelligent” way. For example, a learning algorithm might
analyse very useful cases in order to find common properties of these cases. Such
properties then might be employed to define accurate similarity measures in a more
goal directed manner.

Dealing with Cardinal Utility Feedback

In Chapter 4, we have distinguished the principle possibility to acquire ordinal and
cardinal utility feedback. However, in this work we have only introduced error func-
tions that exploit ordinal utility information (cf. Definition 4.4). Nevertheless, it
would also be interesting to investigate how cardinal information can facilitate the
learning process. At least when applying the genetic algorithm, the definition of a
corresponding error function should be simple because arbitrary functions can be
used here .

Adaptation to Training Data

The versions of learning algorithms presented in this thesis treat all regions of the
search space in the same way. For example, the genetic algorithm tries to optimise
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every entry of similarity tables and every sampling point of difference-based similar-
ity functions. However, particular training data often provides different amount of
information about different areas of the search space. It might happen, that it does
not contain certain combinations of query and cases values for some attributes, and
therefore learning of corresponding table entries or sampling points will be viewless.
In order to avoid the waste of computation time, training data might be analysed
prior to the actual learning process in order to optimise the representation of the
search space. We have already discussed this possibility in Section 5.3.3 where we
mentioned the possibility to distribute sampling points for representing similarity
functions dynamically. However, other possibilities to adapt the learning procedure
on the available training data are thinkable, for example:

• In particular when dealing with symbolic attributes that allow many different
values, similarity tables become huge, resulting in a large search space to be
considered by the learning algorithm. This search space can be reduced, if
table cells, for which no training information is available, are not considered
during learning. This can be realised by a respective individual representation
that has to be determined according to the available training data.

• Another problem is the influence of attribute weights on learning local similar-
ity measures. For attributes with very small weights, computational intensive
learning of corresponding local similarity measures might be needless, because
possible improvements might have a minimal influence on the retrieval be-
haviour. If a rough estimation of the attributes’ weights is given prior to
learning of local similarity measures, the learning process might be improved
by focusing the search on the most important attributes. Here, it is think-
able to assign computation time dynamically by processing different number
of generations during learning of different local similarity measures.

Handling of Noisy Training Data

Another important issue is the treatment of noise in the training data. In particular,
when acquiring utility feedback from several different users, the probability that the
training data includes inconsistencies and contradictions is very high. Because utility
feedback is often founded on more or less subjective decisions, even when asking one
individual similarity teacher to repeat the evaluation of some cases, s/he might come
to different results as in previous evaluation process.

So, it would be very helpful if a learning algorithm is able to detect obvious
inconsistencies in the provided data. Information about such inconsistencies then,
for example, might be used to ask the similarity teacher again, or to remove certain
cases from training examples.
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Avoiding of Overfitting

Another import aspect in machine learning is the well-known problem of overfitting
the training data (Domingos, 1999; Cohen and Jensen, 1997). In particular, when
dealing with small training data sets, the risk to learn a similarity measure that
works very well for queries and cases contained in the training examples, but that
produces insufficient results for new queries, is very high. Here, improvements in
the presented learning algorithms or alternative algorithms might help to reduce
this risk. For example, sometimes it might be useful to stop the learning process
before the error function’s actual minimum is found to avoid overfitting.

10.2.3. Consideration of Available Background Knowledge

Concerning the problem of overfitting, another approach seems to be promising, too.
In Section 4.3.1 we have characterised a manual definition of similarity measures as
a bottom-up procedure and our learning approach as a top-down procedure. This
means, both approaches to modelling similarity measures follow a complementary
strategy. While the bottom-up procedure relies on low-level knowledge about the
influences on the utility of cases, the top-down approach exploits available high-level
knowledge.

In spite of the complementary character of both strategies, it might be useful
to combine both approaches in practice (Stahl, 2002a) in order to profit from the
advantages of both. On the one hand, a manual definition of similarity measures
based on well-founded domain knowledge usually will provide a good approximation
of the unknown utility function. On the other hand, the learning approach might
help to exploit domain knowledge difficult to acquire or to formalise.

In a first step, a knowledge engineer might encode some well-founded background
knowledge into the similarity measure by following the bottom-up procedure. This
means, any causal relationships of the application domain that are obvious to the
expert should be encoded directly in particular local similarity measures and feature
weights. For all other representation elements one may use standard similarity
functions based on the geometrical distance of the values to be compared. Such
standard functions are even used by common commercial CBR shells as an initial
similarity measure.

In a second step, one can apply the top-down approach to encode additional,
but perhaps difficult to acquire background knowledge into the similarity measure.
Therefore, the knowledge engineer has to determine typical example queries that
are used for a test retrieval based on the similarity measure defined before. By
giving respective utility feedback, i.e. high-level knowledge about the utility of cases,
the resulting training data then can be used to optimise the predefined similarity
measure.

In order to combine the bottom-up with the top-down approach in order to op-
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timise the definition of knowledge-intensive similarity measures, one might use the
strategies described in the following.

Using Well-Founded Initial Similarity Measure

Depending on the applied learning algorithm, the definition of an initial similarity
measure may have a crucial impact on the outcome of the entire learning procedure.
A typical example of such a learning algorithm is the gradient descent approach (cf.
Section 5.2). In order to obtain an accurate initial similarity measure hopefully lead-
ing to good learning results, one might exploit well-founded background knowledge.
Therefore a similarity measure defined by a domain expert—maybe only partially—
can be used as starting point. Such a well-founded initial similarity measure should
increase the probability that the learning algorithm converges to an accurate sim-
ilarity measure. Of course, under certain circumstances, the algorithm might also
change the initial setting completely. Then, one has to answer the question whether
there are significant inconsistencies between the defined similarity measure and the
training data exploited by the learning algorithm. When working with relative small
training data sets, such an effect might also be a hint, that the learned similarity
measure significantly overfitts the training data.

Using Constraints

The previously described possibility for considering background knowledge during
learning obviously does not ensure that the defined background knowledge still can
be found in the final learning results. Further, this approach is also difficult to apply
when employing learning algorithm that do not strongly rely on a good starting point
represented by an initial similarity measure. For example, a genetic algorithm uses
several starting points because each individual of the initial population can be seen as
a different starting point. Although one might employ background knowledge when
defining the initial population, this seems not to be very promising to influence the
outcome of a genetic algorithm due to the very flexible search process.

In order to exploit available well-founded background knowledge, therefore, one
might follow an alternative strategy. A domain knowledge might again define a
similarity measure partially due to her/his expertise in the underlying domain. The
parts (e.g. certain local similarity measures, or parts of them) of the entire similarity
measure representation that have been defined by the expert have to be marked.
The learning algorithm is then allowed to modify only the remaining representation
elements in order to optimise the entire measure. This leads to a limitation of the
search space and thus fewer training data should be required for learning.

Instead to predefine some parts of the similarity measure exactly, one may also
apply a more flexible approach. One could enable the domain expert to express
constraints on the entire similarity measure representation in order to incorporate
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background knowledge. For example, the expert might express certain knowledge
about the importance of attributes by ranking them. This information then can
be interpreted as a constraint to be considered when learning attribute weights.
Therefore, the learning algorithm has to determine concrete values for the weights
that have to be consistent with the attribute ranking of the expert. e.g. it must hold
wi > wj if attribute ai is considered to be more important than attribute aj . Similar
constraints might be used to express knowledge about the entries of similarity tables
or the basic structure of similarity functions.

10.2.4. Extension for Handling other Case Representations

In this work we have assumed a flat attribute-value based case representation like
introduced in Section 2.2.4. This particular representation leads to the assumed
structure of similarity measures defined in Section 3.3.2. However, depending on
the application domain sometimes other case representations are more suitable. In
particular, object-oriented case representations that can be seen as an extension of
flat attribute-value based representation also play an important role in commercial
CBR applications. The advantage of this formalism is the possibility to represent
case knowledge in a more structured way.

However, this also increases the effort and complexity when defining correspond-
ing similarity measures. Although similarity measures commonly used for object-
oriented representations are based on the same principles as the measures introduced
in this work, the learning algorithms presented in Chapter 5 cannot directly be ap-
plied to learn such measures. On the one hand, also the structure of the entire
similarity measure becomes more complex because the global similarity measure (cf.
Definition 3.17) is extended in a recursive manner. The reason for this is, that local
similarity measures may be represented again by global similarity measures instead
of a simple similarity function or similarity table. On the other hand, the object-
oriented structure provides some information that might be used to define more
accurate similarity measures. How to employ this information for the similarity
assessment is presented by Bergmann and Stahl (1998).

These differences in the similarity representation complicate or even prevent the
direct application of our learning algorithms. On the one hand, concerning the
gradient descent algorithm the more sophisticated structure of the global similarity
measure leads to a much more complex function for computing the similarity error
(cf. Definition 5.4) required for learning. Due to this complexity the partial deriva-
tion of the function cannot easily be derived. On the other hand, the application of
our genetic approach would not lead to such fundamental problems. Nevertheless,
this algorithm ought be extended to consider also the object-oriented structure in
order to learn more powerful similarity measures.

When dealing with other case representations that are not based on attribute-
value pairs (e.g. representations based on first order logic, graph representations,
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etc.), our learning algorithms cannot be applied at all. For example, the application
of a genetic algorithm then would require a completely new formalism for represent-
ing respective similarity measures in form of individuals. Although, the presented
learning algorithms are not suited to be applied on other case representations di-
rectly, our general learning framework presented in Chapter 4 abstracts from the
case representation, and thus, it is also valid for other representation formalisms.

10.2.5. More Detailed Evaluation

The experimental evaluation carried out in the scope of this work is only suited
to demonstrate the principle functionality of our framework and the implemented
learning algorithms. A more detailed evaluation would have been advisable, but
was not feasible in the scope of this work. On the one hand, a statistical significant
evaluation would require to repeat the experiments numerous times. However, con-
cerning the application of the genetic algorithm a large number of single runs of the
algorithm requires considerable CPU time. The computational complexity becomes
a really crucial problem if the algorithm should also be evaluated concerning dif-
ferent parameters (e.g., different version of the error function). On the other hand,
in particular the application scenarios that base on one or several human similarity
teachers are difficult to evaluate, because such realistic similarity teachers are not
easily available in the research field.

Because of these difficulties we have focused the evaluation on few experiments
only. Although, these experiments are sufficient to demonstrate the principal ap-
plicability of our framework and algorithms, a more detailed evaluation is an inter-
esting issue for future research. The following aspects might be examined in future
evaluation experiments:

• In our experiments we have not employed training data of human similarity
teachers. Since such training data probably contains much noise and therefore
makes learning more difficult, a respective evaluation would be interesting.

• In our evaluation we have only considered two of the application scenarios
discussed in Chapter 6. In the future it has to be validated if our framework
is also suited for the other described scenarios in real world domains.

• Another interesting issue is the relationship between the complexity of the
underlying domain size and the required amount of training data. The more
attributes a case representation includes, the more weights and local similar-
ity measures are required. This obviously leads to an increased search space
and therefore more training data is necessary to learn an accurate similarity
measure.
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• The functionality of the presented learning algorithms can be influenced by
several parameters like discussed in Section 5.2.3 and 5.3.6. Moreover, also
the introduced error functions can be modified, for example, by the error-
position weight introduced in Definition 4.5. A more detailed analysis of these
parameter’s impact on the quality of learning results would be interesting and
helpful in order to optimise our learning algorithms. However, as already
mentioned above, such an evaluation will be very time consuming due to the
computational complexity of the genetic algorithm.

• In Section 5.3.3 we have discussed three possible approaches for distribut-
ing sampling points when representing difference-based similarity functions to
be optimised by the described genetic algorithm. However, in the presented
evaluation we have only used the simplest of these approaches, namely an
equidistant distribution. Thus, further experiments in order to evaluate the
power of the two more sophisticated strategies would be interesting.

• When developing learning algorithms one always has to consider the well-
known problem of overfitting the training data. Although our experiments
provide first evidences about the risk of overfitting when applying our frame-
work, a more detailed analysis of this aspect would be interesting.
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Entscheidungsunterstützung und Diagnostik. Ph.D. Thesis, University of Kaiser-
slautern.

Wettschereck, D. and Aha, D. W. (1995). Weighting Features. In Proceeding of the
1st International Conference on Case-Based Reasoning (ICCBR’95). Springer.

Wilke, W. (1999). Knowledge Management for Intelligent Sales Support in Electronic
Commerce. Ph.D. thesis, University of Kaiserslautern.

Wilke, W. and Bergmann, R. (1996). Considering Decision Cost During Learning
of Feature Weights. In Proceedings of the 3rd European Workshop on Case-Based
Reasoning (EWCBR’96). Springer.

Wilke, W. and Bergmann, R. (1998). Techniques and Knowledge Used for Adapta-
tion During Case-Based Problem Solving. In Proceedings of the 11th International
Conference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems (IEA’98).

Wilke, W., Bergmann, R., and Vollrath, I. (1996). Using Knowledge Containers to
Model a Framework for Learning Adaptation Knowledge. In A Workshop at the
12th European Conference on Artificial Intelligence (ECAI’96). Springer.

Wilke, W., Lenz, M., and Wess, S. (1998). Case-Based Reasoning Technology: From
Foundations to Applications, chapter Case-Based Reasoning and Electronic Com-
merce. Lecture Notes on AI: State of the Art. Springer.

Zhang, Z. and Yang, Q. (1999). Dynamic Refinement of Feature Weights Using
Quantitative Introspective Learning. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI’99).

234



List of Figures

2.1. Case-Based Problem-Solving . . . . . . . . . . . . . . . . . . . . . . . 15
2.2. The Case-Based Reasoning Cycle by Aamodt & Plaza . . . . . . . . . 16
2.3. Knowledge Containers . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4. Example: Attribute-Value based Case Representation . . . . . . . . . 27
2.5. Nearest-Neighbour Classification . . . . . . . . . . . . . . . . . . . . . 28
2.6. Product Recommendation based on Collaborative Filtering . . . . . . 32

3.1. Similarity-Based Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2. The best-n List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3. Similarity Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4. Difference-Based Similarity Function . . . . . . . . . . . . . . . . . . 55
3.5. Base Functions for Difference-Based Similarity Functions . . . . . . . 56
3.6. Example: Knowledge-Intensive Local Similarity Measure . . . . . . . 61
3.7. Example: Knowledge-Poor Local Similarity Measures . . . . . . . . . 62
3.8. Standard Editor for Similarity Functions . . . . . . . . . . . . . . . . 65
3.9. Advanced Editor for Similarity Functions . . . . . . . . . . . . . . . . 66
3.10. Editor for Similarity Tables . . . . . . . . . . . . . . . . . . . . . . . 67
3.11. Similarity Editor for Taxonomies . . . . . . . . . . . . . . . . . . . . 68
3.12. Similarity Editor for Ordered Symbols . . . . . . . . . . . . . . . . . 68

4.1. Refining the CBR Cycle for Learning Similarity Measures . . . . . . . 78
4.2. Relation between Utility Functions and Similarity Measures . . . . . 83
4.3. Constructing Similarity Measures through Interpolation . . . . . . . . 84
4.4. Ordinal Utility Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5. Quantitative Utility Feedback . . . . . . . . . . . . . . . . . . . . . . 87
4.6. Defining Similarity Measures: Bottom-Up vs. Top-Down . . . . . . . 92
4.7. Learning as a Constraint Satisfaction Problem . . . . . . . . . . . . . 93
4.8. Retrieval Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.9. Scenario for Learning Similarity Measures . . . . . . . . . . . . . . . 98
4.10. Optimisation Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1. Minimising the Error Function . . . . . . . . . . . . . . . . . . . . . . 104
5.2. Gradient Descent Approach . . . . . . . . . . . . . . . . . . . . . . . 106

235



List of Figures

5.3. Impact of the Initial Similarity Measure . . . . . . . . . . . . . . . . 110
5.4. Impact of Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5. The Idea of Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . 118
5.6. Representing Similarity Functions as Individuals . . . . . . . . . . . . 122

6.1. Distributed Utility Knowledge . . . . . . . . . . . . . . . . . . . . . . 137
6.2. Personalised Utility Knowledge . . . . . . . . . . . . . . . . . . . . . 139
6.3. Examples of Personalised Local Similarity Measures . . . . . . . . . . 141
6.4. Relation between Adaptability and Utility of Cases . . . . . . . . . . 144
6.5. Meta Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.6. Introducing Solution Similarity . . . . . . . . . . . . . . . . . . . . . 150
6.7. Expressing Consequences of Misclassifications through Solution Sim-

ilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1. System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2. Training Data Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3. Utility Analyser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.4. The Learning Control Center . . . . . . . . . . . . . . . . . . . . . . 164

8.1. Generation of Training Data . . . . . . . . . . . . . . . . . . . . . . . 173
8.2. Experiments 1 and 2: Dependency on Training Data Size . . . . . . . 177
8.3. Experiments 1 and 2: Variations of Results . . . . . . . . . . . . . . . 177
8.4. Experiments 3 and 4: Dependency on Training Data Size . . . . . . . 178
8.5. Experiments 3 and 4: Variations of Results . . . . . . . . . . . . . . . 178
8.6. Experiments 5-6: Dependency on Training Data Size . . . . . . . . . 179
8.7. Experiments 5-6: Variations of Results . . . . . . . . . . . . . . . . . 180
8.8. Experiments 5 and 7: Dependency on the Number of Generations . . 181
8.9. Computation Times for Processing 200 Training Examples . . . . . . 182
8.10. Generation of Training Data . . . . . . . . . . . . . . . . . . . . . . . 185
8.11. Learning Weights and Local Similarity Measures: Overview . . . . . . 187
8.12. Learning Weights and Local Similarity Measures: Impact of Noise . . 187
8.13. Learning Weights Only: Summary . . . . . . . . . . . . . . . . . . . . 188
8.14. Learning Weights Only: Impact of Noise . . . . . . . . . . . . . . . . 188

236



Curriculum Vitae

Name: Armin Stahl

Address: Davenportplatz 9

67663 Kaiserslautern

Born: April 7, 1974, in Kaiserslautern

Family Status: unmarried

Nationality: german

1980 – 1984 Attendance at Elementary School, Kaiserslautern

1984 – 1993 Attendance at Gymnasium am Rittersberg, Kaiserslautern

1993 Abitur

1993 – 2000 Study of Computer Science, University of Kaiserslautern

1998 – 2000 Student Assistant in the Research Group ”Artificial In-
telligence – Knowledge-based Systems”, University of
Kaiserslautern

04/2000 Diplom

05/2000 – 12/2003 Member of the Research Group ”Artificial Intelligence –
Knowledge-based Systems”, University of Kaiserslautern

10/2003 Oktober 10: Thesis defense at the University of Kaiserslautern

237


