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Abstract 
For the last years, Artificial Intelligence (AI)  
approaches have become useful tools in 
environmental engineering. Here, one relevant 
application area is the optimization of wastewater 
treatment plants (WWTP). Besides the 
examination of technical aspects of the different 
environmental systems, their human managers’ 
knowledge and experiences from past events gain 
more and more importance. In this paper, we will 
present several examples for approaches from 
Experience Management (EM) for control tasks 
and Decision Support Systems (DSS), specifically 
based on Case-Based Reasoning (CBR) in the 
field of wastewater treatment.  

1 Introduction 
During recent years, a rising complexity of the 

problems in the area of wastewater treatment can be 
observed. On the one hand, major reasons can be found in 
the increasing requirements for purification and the 
interweaving to a high degree by connections and 
dependencies of sewer system, WWTP, and receiving 
water. On the other hand, the technologies for 
measurements of the quality parameters as well as the 
process control systems have become more powerful and 
less expensive. Nevertheless, such systems are still a cost 
factor. Due to the fact of low public budgets, the use of 
latest technologies or even expensive enhancements in 
the WWTP infrastructure is often impossible. 

Thus, approaches for optimization of existing plants 
attract more and more the attention, which make 
extensive use of the plant-inherent potentials. At this 
stage, methods and technologies from AI have been 
discovered to play an important role. Even though 
measuring and control technologies are improving, the 
problem of incomplete or missing data still exists because 
many parameters are difficult to be determined or cannot 
be determined at all. Furthermore, in specific cases, the 
measured data might not be representative for the overall 

system. Therefore, it often happens that the WWTP 
operator must control the plant rather with his experience 
from past events than with sophisticated machines. When 
it comes to capturing and especially drawing conclusions 
from experiences, AI offers with Case-Based Reasoning a 
powerful technology, which has already proved its 
potentials in different industrial applications (see, e.g., 
[Bergmann et al., 1999]). In this paper, we will present 
several examples for possible applications for CBR in 
wastewater treatment.  

The paper is structured as follows. In Section 2 we will 
describe an architecture for a predictive WWTP 
controller that bases its decisions for the plant control on 
past events and situations captured in cases. The system 
has been tailored to Sequencing Batch Reactors. We will 
also present results of three offline CBR models, which 
have been developed to predict the influent flow rate, the 
sludge settling curves, and the endogenous denitrification 
rate. Section 3 will focus on a DSS based on a CBR 
approach for Identification and Counteraction for 
Harmful Microorganisms in WWTPs. In Section 4 we 
will outline methods for the optimization of the 
prediction accuracy. In Section 5, we take a look at other 
CBR approaches in the field of wastewater treatment. 
Section 6 ends with the conclusions.  

2 Example  – Real Time Control (RTC) 
The following examples will focus on possible 

applications for Case-Based Reasoning for control 
purposes of Sequencing Batch Reactor Plants.  

2.1 Introduction 
One of the several types of wastewater treatment 

technologies, which are commonly used in the world, is 
the SBR technology. In contrast to a continuous flow 
plant, in a SBR all treatment processes take place in one 
single reactor, step after step as illustrated in Figure 1. 
The time between the beginning of the fill and the end of 
the treatment process is called a cycle. The SBR 
technology has a high process flexibility and treatment 
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efficiency, because with the help of modern computer-
aided control devices (CACD) it is possible to adapt the 
duration of a cycle, the duration of the different phases 
(e.g., aerated react, settle) within each cycle and the 
volumetric exchange ratio (the fraction of the reactor 
volume, which is removed during draw, and replaced 
during fill) to the current requirements. This especially 
applies when sensors are used for control purposes. For 
instance, it is possible to vary the duration of the settle 
phase depending on the sludge settling characteristics. 
Unfortunately, most of the SBR plants are still using 
fixed time control strategies; until now, measuring 
devices are predominately only used for monitoring. 

Figure 1: The concept of SBR.   

2.2 Description of SBR-WWTP Messel 
The WWTP Messel (schematically depicted in Fig. 2), 

which was put into operation in 2000, is a modern SBR 
plant with a primary treatment, one influent holding tank, 
two SBRs, one effluent buffer tank, and a final filter. 
Except for the filter, this configuration is often used in 
Germany. The plant was designed according to the 
German guidelines ATV A 131 [1991] and ATV M 210 
[1997] for biological phosphorus removal, nitrification, 
denitrification, and a maximum flow rate of 230 m3/h. 
The plant is equipped with a modern CACD and 
numerous online measurement equipment. According to 
the static dimensioning, the plant is operated with a cycle 
duration of 8 hours (h) during dry weather flow, but 
during combined sewage flow it is necessary to reduce 
the cycle duration to 6 h and thus, to increase the 
hydraulic capacity of the WWTP. The catchment area of 
WWTP Messel, which is typical for many other rural 
areas in Germany, covers 1.5 km2, and a population of 
about 3,750. Most of the inhabitants are connected to a 
combined sewer. The wastewater can be characterised as 
domestic sewage, because there are only few commercial 
dischargers (500 p.e.). The effluent limits of WWTP 
Messel are very low (e.g.: 45 mg/l COD, 3 mg/l NH4-N), 
because the receiving waters are very small and sensitive. 
Figure 3 shows a comparison between the old (trickling 
filter) and new (SBR) WWTP Messel. It becomes clear, 
even though the WWTP Messel is a small plant, it is a 

very complex technical system. Consequently, it is not 
quite easy to run such a system efficiently. This 
particularly applies, because the WWTP is not 
permanently manned and is operated by only one person. 

Figure 2: Scheme of WWTP Messel. 

Figure 3: Characteristics of the new WWTP Messel in comparison 
with the previous treatment facility. 

Therefore, a research project has been initiated to 
develop RTC Strategies in simulation as well as in full-
scale and to assess the economic and ecological benefits 
of such approaches [Wiese et. al., 2004a]. The modeling 
procedure is described in detail in Wiese et. al., [2004b]. 

In the first part of the research project, very detailed 
models of the combined sewer system and the WWTP 
have been developed. These models were calibrated and 
validated with monitoring data. With these models, 
several control strategies have been developed. These 
strategies are based on ammonia and nitrate sensors, as 
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well as sludge blanket and suspended solids probes. 
Furthermore, a rain gauge has been integrated in the 
control strategies. The results of the WWTP simulation 
show that it seems to be possible to reduce the cycle 
duration during combined sewage flow in full-scale in 
almost every case to only 4 h without exceeding the low 
effluent limits. This leads to an increase of the hydraulic 
capacity of the plant up to 50 % by using the developed 
control strategies. In several cases, it should be even 
possible to reduce the cycle duration to less than 4 hours. 
I.e., it would be possible to increase the maximum flow 
rate to the WWTP from 230  up to more than 345 m3/h.  

In the second part of this project, the different control 
strategies were realized in full-scale. The results of the 
second phase are very good. With the help of the control 
strategies it was possible to further increase the treatment 
efficiency significantly. E.g., it was possible to reduce 
the average total nitrogen (TN) effluent concentration 
from 6,4 to only 2,9 mg/l TN (0,1 mg/l NH4-N) and thus 
to reduce the nitrogen emissions into the receiving water 
by more than 50 %. But, despite these positive results, 
there are still several problems, e.g.: 

• Due to the discontinuous principle and the limited 
capacity of the buffer tank, it is necessary in case of 
rainfall to reduce as early as possible the cycle duration. 

• The optimization potential depends on several factors, 
e.g., influent load, wastewater temperature and sludge 
settling characteristics, but these parameters can vary 
strongly and sometimes rapidly.  

• Furthermore, according to the German law, it is not 
allowed to exceed the official effluent limits.  

• Depending on the actual operating conditions, it can be 
useful to use different optimization criterions (e.g., 
increase of treatment capacity vs. energy saving).  

That means, the whole potential for optimization can 
only be used when a control strategy is used, which is 
able to act and not only to react. Consequently, we 
developed a method that is serviceable for a controller 
being able to predict as early as possible the duration of a 
cycle, which is necessary to achieve the treatment target. 
Furthermore, the controller also should be able to predict 
other important operating data (e.g., the maximum 
volumetric exchange ratio), and the influent flow rate. 

2.3 A Case-Based Predictive Controller 
From our point of view, it seemed to be promising to 

develop a predictive controller based on a CBR approach 
because of the following reasons: 

• Beginning and end of the treatment process are exactly 
defined. With a few restrictions, this is also valid for the 
different treatment phases of the cycle, which helps to 
easily determine a case structure. 

• It is important that the system works fast because the 
time delay between the beginning of a rainfall event and 
an increase of the inflow rate can be quite short. 

• Numerous of online monitoring data are available. With 
cycle durations between 3 and 8 h the database will grow 

very fast, i.e. case and data acquisition is not a problem. 
In order to ensure efficient retrieval when dealing with 
huge case bases, one may apply different strategies. One 
possibility is to store only actually useful cases while 
throwing away redundant and less useful cases (e.g. see 
[Smyth, 1995]). Another possibility is to employ 
efficient retrieval approaches, for example, case retrieval 
nets [Lenz, 1999] or algorithms that build on top of 
relational databases [Schumacher, 2000].  

2.3.1 Control System Architecture 
Modern SBR plants often have a lot of online measure-

ment equipment. However, as a consequence of higher 
treatment standards, reduced prices for sensors, etc., a 
further increase in online monitoring, especially for 
quality parameters (e.g., NH4, NO3) can be expected. Due 
to this fact, it will be possible to document the curves of 
important processes within each cycle. Later on, it would 
be possible to calculate the duration of each treatment 
phase, which would have been sufficient to reach 
predefined effluent standards. The opportunities for a 
Case-Based predictive SBR controller resulting from 
these circumstances are promising, especially in case of 
an integrated RTC strategy. E.g., at the beginning of a 
rainfall event, the controller could predict the required 
duration and composition of the next cycle, by comparing 
actual process information with historical data. In the 
next step, the maximum hydraulic capacity of the WWTP 
can be calculated. However, due to the enormous amount 
of measurement data, it would not make sense to use only 
one CBR model to predict the required cycle duration and 
composition, because the database would have to be 
extremely large. So, it is promising to work with multiple 
domain models. Figure 4 shows a part of our proposed 
system architecture. The specific process controlling 
units for the WWTP and the sewer system are connected 
via an interface (CACD) that mediates between our 
predictive control system and the controllers for the 
WWTP and the sewer system.  

Figure 4: Principle of the predictive SBR controller. 

The interface provides us with all measured data and 
forwards the control data resulting from the predictions 
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depending on the current situation. Our predictive 
controller consists of a CBR system as the core part, 
which operates on multiple case bases and domain 
models, respectively, with respect to the WWTP 
subsystem to which the measured data (situation) 
belongs. Speaking more specifically, almost each process 
stage in the cycle depicted by Figure 1 is represented by 
its own case base. The exceptions are the “settle” and 
“draw” (also known as “decant”) phases that are 
summarized in one case base and “idle/sludge excess” 
phase, which we will not support with respect to time 
optimization due to its very short duration.  

New measured data is taken as an input to our CBR 
system, which generates the adequate problem 
descriptions for querying the different case bases. As we 
are dealing with an independent series of process phases 
in the regarded cycle, i.e. a phase can only be started 
after its predecessor having finished, we can optimize 
(predict) the processing time of each individual phase and 
add the predicted duration times of each single phase in 
order to obtain the overall cycle duration. This fact also 
allows us to query the single case bases simultaneously.  

The cases are problem-solution pairs, where the current 
situation (measured data) represents the problem part and 
the solution is given by the respective control data for 
this situation. Due to the structure of the data, we are 
working with flat domain models.  

The subsequent control data for each single phase is 
derived from the retrieval result of the n most similar 
cases from past situations. Adapting the solutions from 
the respective n cases generates the solution for the 
current situation. However, the adaptation method 
depends on the process phase. The new solutions are 
forwarded to the cycle controller unit, which processes 
them and gives the final solution back to the CACD. 
Depending on the results of the different case bases, the 
cycle controller will estimate the total duration of the 
cycle and create the composition of the cycle. Due to the 
fact, that the hydraulic capacity of the WWTP depends on 
the duration of each cycle and the current exchange 
volume, the maximum flow rate to the WWTP could be 
calculated in the next step. The system has been 
implemented with CBR-Works® (empolis – knowledge 
management, Inc.). Until now, we have only 
implemented a few test components of the described 
overall architecture. So far, our system only simulates the 
control process offline, i.e. the generated solutions are 
not to be returned to the CACD interface. 

2.3.2 Example “Influent Flow Rate” 
For specific tasks (e.g., energy saving) and questions 

(e.g., Which type of cycle (6 h, 8 h, 12 h) should be used 
next?), it is reasonable trying to predict the influent flow 
rate curve of the next few hours. Such an information can 
be useful to control the filling of a equalization basin etc.  
But due to several reasons (e.g., infiltration water), even 
during phase of dry weather flow, the influent curve can 
vary significantly (Figure 5). 

Hence, it is not very helpful to base a control strategy 
on an average inflow rate curve. Consequently, a CBR 

model has been set up to predict the dry weather influent 
flow rate curve of WWTP Messel for the next 24 hours. 
The initial case base of this model were all influent flow 
rates, which have been measured in 2003 during dry 
weather flow conditions (124 curves). The following 5 
attributes have been chosen for the model: 

Minimum of the daily influent flow rate of the past 21 
days (local similarity: polynomial function), because this 
attribute is suitable to estimate the influence of the 
infiltration water flow rate. Weekday, because the 
changing life rhythm of the people during the week has a 
significant impact on the influent rate curve of WWTP 
Messel as well as the different school holidays resp. bank 
holidays. Finally, the attribute summertime/wintertime 
was used. To describe the local similarities of the last 
four attributes, similarity matrices were used. The 
predicted influent flow rate curve is a weighted function 
of 3 historical curves, which have been measured under 
the most similar operation conditions. Even though the 
CBR model is simple, the results are very good (Fig. 6): 
In this figure the measured and the predicted influent 
flow rate curve for a 24 hour interval are almost identical. 

Figure 5: Bandwidth of influent flow rate curves during phases 
of dry weather flow in 2003 (WWTP Messel). 

Figure 6:  Example for a good curve prediction 

Of course, not in every case it is possible to reach such 
good results. Nevertheless, even with this simple model, 
it is possible to predict the flow rate per hour in 80 % 
with a deviation of less than ± 5 m3/h resp. in 95 % with 
less than ± 10 m3/h; the maximum deviation was 33 m3/h.  

Since a few weeks, the organic load in the influent of 
WWTP Messel is measured online with the help of a 
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dissolved organic load probe and a total suspended solids 
probe. So, in the next step, the authors will be trying to 
predict the influent organic load curve, too. 

2.3.3 Example “Settle/Decant” 
One of the results is that there is a huge potential for 

optimization of the settle and decant (draw) phase. 
During this phase, first the water/biomass separation 
takes place and then the treated wastewater will be 
decanted. Due to the fact that even a small sludge 
displacement from the reactor into the effluent of the 
plant can cause an exceeding of the required effluent 
standards, the settle and decant phase was dimensioned 
for unfavorable operational conditions. In order to point 
up the potential for optimization, an example is depicted 
in Figure 7. As a consequence of the static dimensioning, 
the duration of the settle and decant phase in case of 
WWTP Messel takes in total 140 min. In reality, 
however, the operational values are usually much better 
than the comparable design values. Therefore, sludge 
blanket and suspended solid probes were installed at the 
decant devices to investigate the potential for a reduction 
of the settle and draw phase. The results of this 
investigation show that in many cases it would be 
possible to reduce the settle and decant phase up 
to 70 min and thus to increase the hydraulic capacity up 
to almost 20 %. Furthermore, the monitoring shows that 
in most of the cases it would be possible to increase the 
volumetric exchange ratio from 40 % to approx. 50 % 
(+145 m3; see Figure 7); this could further increase the 
hydraulic capacity. Due to the high optimization potential 
of the settle and draw phase, it was decided to develop 
the CBR subsystem “Settle/Decant” first. 

Figure 7: Potential for optimization of settle and decant phase. 

In the first step, more than 120 sludge settling curves, 
which have been measured under different operational 
conditions, were analyzed and evaluated statistically. It 
could be observed that the settling velocity of the sludge 
blanket mainly depends on two factors. As already 
published by other authors (e.g., [Keudel and Dichtl, 
2000]), the initial settling velocity mainly depends on the 
sludge volume at the beginning of the settle phase. For 
instance, the settling velocity in a full SBR is higher than 

in a barely filled tank, because the compression phase of 
the sludge starts later. Furthermore, it could be observed 
that the settling velocity depends on the last phase before 
the settle phase starts. For example, in case of a mixed 
react phase, it takes at least 10 min until the 
sedimentation begins. In case of an aerated react phase, 
the turbulence at the beginning of the sedimentation 
phase is smaller, thus the flocculation process is faster 
and the sedimentation process can start in less than 5 
min. Consequently, the cycle type, the water level in the 
reactor, the sludge volume, and the water temperature 
were chosen as attributes in the respective CBR model 
(see Table 1). In order to create the case base, in the 
second step, 30 representative curves have been selected. 
Then, the calibration and validation process was started. 
The local similarity measures are mainly given by linear 
distance functions (Euclidean distances) between the 
query values and the respective case values. Only the 
cycle type with its two values ‘dry weather’ and ‘rain 
weather’ has been modeled as a simple similarity matrix. 
The global similarity function is a weighted sum of the 
local similarities. The solution part of the cases is given 
by the courses of the respective sludge heights, 
represented by curves (sludge settling curves). We 
simplified the representation of these curves 
approximating them by polynomials of degree six. The 
idea was to be able to easily compare the coefficients a1 
to a6 of these polynomials with each other, in order to 
evaluate the quality of the generated solutions. 

Table 1: Attributes and their value ranges 

Attribute Value Range 
Cycle Type dry weather, rain weather 
Max. Water Level 3.32 m – 5.30 m  
Sludge Volume 241 ml/l – 446 ml/l  
Water Temperature 8.7 °C – 21.4 °C 

Figure 8: Good prediction of the sludge settling curve.  

The results produced by this subsystem are very 
promising. Despite the fact that the database is rather 
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small, the model is able to predict the sludge settling 
curve well. Thereby, the predicted sludge settling curve is 
a weighted function, calculated with the help of 3 
measured curves, which have been measured under the 
most similar operation conditions. Figure 8 shows an 
example for a good prediction of the sludge settling 
curve. The measured and the predicted curve are almost 
identical. Of course, not all predictions are as good as the 
example in Figure 8. Figure 9 shows an example for a 
worse prediction. However, even in this worse case the 
maximum difference between measured and predicted 
curve is only 0.5 m. It has to be taken into consideration 
that the measurement inaccuracy of the sludge blanket 
probe can be up to 0.2 m. Furthermore, in practice such 
worse predictions would not cause serious problems, 
because with the help of a sludge blanket probe-based 
and/or a suspended solids probe-based feedback decant 
controller, which survey the decant phase, it would be 
easily possible to close the decanter immediately, in case 
of a sludge displacement danger. 

Figure 9: Example for a worse prediction. 

2.3.4 Example “Endogenous Denitrif ication” 
During the last years, several attempts were started to 

use online deterministic WWTP models (e.g., ASM 3 
[IWA, 2000]) – which are able to simulate biological 
processes (e.g., nitrification, denitrification) – for control 
tasks. Unfortunately, these models are very complex. 
E.g., the ASM 3 model considered 12 processes, 14 
model compounds and 36 kinetic and stoichiometric 
parameters; many of these parameters are difficult to be 
determined or cannot be measured at all until now. 
Consequently, the implementation and operation of 
deterministic online WWTP models are very costly. 
Therefore, the experiment was started to predict 
biological processes with the help of CBR: The 
endogenous denitrification process during the settle and 
decant phase of a batch cycle was selected as a test 
example. The initial case base consists of 137 settle and 
decant phases, in which all relevant measuring data for 

the calculation of the endogenous denitrification process 
could be determined. The result was, that the endogenous 
denitrification rate amounts between 0,1 and 5,0 kg NO3-
N per cycle (average value: 2,3 kg NO3-N, standard 
deviation: 1,0 kg NO3-N). The following 6 attributes have 
been chosen for the model: 

NO3-N load and NO3-N concentration in the reactor at 
the beginning of the settle and decant phase, because 
these both attributes have a high influence on the 
endogenous denitrification rate. Other important 
attributes are the water level, the total biomass and the 
wastewater temperature in the reactor. Finally, the 
number of the SBR (where the data were measured) was 
chosen as an attribute, because the biological activities in 
the different reactors can be slightly different.  

To describe the local similarities of the attributes, linear 
and polynomial similarity functions were used. The 
predicted endogenous denitrification rate is usually 
calculated as the mean value of 2 rates, which have been 
measured under the most similar operation conditions.  

With the help of this model, it is possible to predict the 
endogenous denitrification rate quite good: The standard 
error of the estimation is  0,6 kg NO3-N. For comparison: 
The standard error of the estimation with the help of a 
multiple regression model is 0,7 kg NO3-N. 

2.3.5 Future Work 
As a consequence of the good results reached with the 3 

different CBR models, other components of our 
architecture should be developed, i.e. we will create the 
domain models and the respective CBR subsystems. 
Thereby, the monitoring established within the research 
project serves as a data source for the other case bases. 
Furthermore, it is planned , to use the CBR software to 
explore the specific experiences of the operators and to 
use CBR as a training tool. In the next 2 years, our 
overall system should then be verified in full-scale by 
feeding the so generated control data into the modern 
CACD of WWTP Messel. 

3 DSS Harmful Microorganisms 

3.1 Introduction 
Increasing quantities of wastewater made enlargements 

of treatment plants necessary. Then, trying to optimize 
the costs for running the plants by reducing the 
precipitation and minimizing the oxygen supply for the 
biological system in the plant sometimes leads to new 
problems; from the ecological and biological points of 
view, optimization can cause undesired side effects. 
Environmental conditions can appear that favor 
filamentous organisms, which can cause foam effects or 
later even lead to harmful bulking sludge or scum 
formation [Eikelboom, 2000]. We can observe this 
phenomenon in a growing number of WWTPs during 
recent years; especially during spring and autumn time. 
One crucial factor amongst others is the loss of biomass 
needed for the biological purification in the system. The 
responsible harmful microorganisms affect nearly all 
biological processes for WWT. Additionally, the bulking 
sludge problem does not only influence the WWT in a 
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negative way but also the sludge treatment. If sludge 
dominated by filamentous bacteria reenters the anaerobic 
sludge treatment foaming of the digester contents can 
occur. As a consequence, the digester can over boil. 

The managers of WWTPs with bulking sludge problem 
consider this one of the most important problems to be 
solved. Nowadays, various approaches for counteractions 
exist to eliminate the problem-generating microorganisms 
[Eikelboom, 2000], for instance, deployment of lime, 
polymers or pulverized lignite, installation of selectors, 
increasing or decreasing of the oxygen, etc. Usually, 
bulking sludge problems have their individual aspects 
depending on the WWTP where they occur. Therefore, 
the next problem has to be seen in finding the right 
solution. This task is even harder to solve, as different 
harmful types of microorganisms can exist in the sludge. 
The same counteraction that kills one of these types of 
bacteria can help the growth of others.  

We conclude that the only efficient way for suppressing 
the excessive growth of the specifically responsible 
microorganisms is their identification and the closely 
related goal-directed selection of treatment means. Our 
starting points are the positive and negative experiences 
experts made in the treatment of bulking sludge 
problems. Their experiences serve as successful 
suggestions for solutions respectively the knowledge 
about unsuccessful treatments (failures). So, the aim was 
the development of an expert system that supports the 
decision process for the selection of adequate 
counteractions. The system is fed by a query that 
describes parameters of the WWTP. We will have a 
closer look at the technology behind the scenes of our 
expert system and the underlying domain model in 
Sections 3.2 and 3.3. 

3.2 The Case Representation 
It is typical for CBR applications that the case 

representation consists of two major parts: a problem 
description and a solution description, as mentioned 
before. In the following, we give an overview of the 
structure of these two parts that make up the domain 
model for our system. 

The aim of the problem description is to characterize 
the current situation on a WWTP when a problem caused 
by uncontrolled reproduction of harmful microorganisms 
is observed. Unfortunately, even WWTP experts are not 
able to determine the relevant influences exactly. 
Therefore, all information that may have significant 
impact on the microorganism problem is considered in 
the problem description. Basically, the information of the 
problem description is divided into the following four 
parts, represented by particular concepts in an object-
oriented domain model: 

WWTP data: This part contains relevant information 
about the respective WWTP where the problem occurred. 
This kind of information includes attributes that describe 
the structure and operating parameters of the specific 
plant. 

Already performed counteracts: Here, all available 
data about already performed counteracts against the 
sludge problem is stored. These pieces of information are 

also essential because it contains important hints about 
the responsible microorganism species. For example, if a 
counteraction that works usually very well against 
microorganism M has been applied, but the bulking 
sludge problem is still present, this is a clear advice that 
microorganism M is not the responsible species in the 
current situation. 

Environmental data: Due to the fact, that the 
occurrence of microorganism problems crucially depends 
on the current environmental circumstances, this 
information is also a core component of the problem 
description. 

Quality information: Additionally, some attributes 
describing the quality of the particular case data are 
introduced. Because the case base contains currently 
observed problems as well as problems described in 
specific WWT literature, it is useful to assign each case a 
respective confidence level. 

Figure 10: Parts of the case representation. 

The aim of the corresponding solution description is the 
qualitative and quantitative identification of the species 
of microorganisms measured in the described bulking 
sludge problem. Therefore, the solution description 
contains one attribute for each major microorganism 
species relevant with respect to the sludge difficulty. The 
value range of these attributes is the interval of real 
values. These values correspond to a particular measure 
used when carrying out a microscopic examination of 
sludge samples. Here, the value 0 states that the 

Case Representation 

aeration: pressure, surface, both, ... 
N-elimination: pre-operate, post-operate, in-
termittant, simultaneous, none 
high fate rate: yes, no 
O2-concentration: real [0.0;6.0] 
sludge index: real [0.0;0.4] 

successful counteractions: fat elimination, O2 
increase, O2 decrease, iron-salt, ... 
failed counteractions: fat elimination, O2 inc-
rease, O2 decrease, iron-salt, ... 

problem occurance: ever, suddenly, creeping 
problem duration: ever, short, long 
problem localization: aerated basin, secondary 
clarifier, digester 
temperature: integer [0;30] 
seasonal occurance: ever, cold sea., warm sea. 

trust level: bad, moderate, good 
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microtrix parvicella: real [0;7] 
nostocoida limicola: real [0;7] 
sphaerotilus natans: real [0;7] 
beggiatoa: real [0;7] 
type 0092: real [0;7] 
... So
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respective microorganism is absent, while high values 
correspond to a high concentration. Though the described 
application can be characterized as a classification task, 
the solution description is not a simple class identifier 
like in common similar applications. Instead, the solution 
itself is again a complex object in form of a 11-
dimensional vector. The consequences of this complexity 
will be discussed in more detail in the next section. 
Figures 10 and 11 partially show the used case 
representation and an exemplary case. The complete 
representation consists of 40 attributes describing the 
problem part and 11 attributes describing the solution 
part. However, many cases contain some unknown 
attributes, especially the cases taken from scientific 
literature. The corresponding uncertainty about the 
quality of this case data is then explicitly remarked in the 
already mentioned additional attributes. 

Figure 11: Parts of an example case. 

3.3 Project Summary 
The approach presented in this example is implemented in 
the research project ZERBERUS. In a preliminary stage of 
the project, the WWTP managers’ experiences had been 
learned using a mail questionnaire. All relevant data was 
extracted from the questionnaires and transformed into 
cases. So, we gathered approximately 70 cases until now. 
Starting from this point, we divided the project into two 
major stages. On the first stage, we concentrated on the 
identification of the harmful microorganisms that caused the 
bulking sludge problem. A WWTP manager can specify a 
current problem and query the system’s experiences to find 
out what might be the responsible bacteria. The second stage 

can generate an individual treatment solution for the queried 
problem situation. The solution will be based on the specific 
WWTP conditions and the retrieved solutions from the most 
similar experiences in the case base. The WWTP manager’s 
feedback on the quality of the generated solution will be 
used to improve our system by a certain learning effect. If 
the generated suggestion – which counteraction to take – 
was successful or unsuccessful this new experience will be 
integrated in the case base. In 2003, the implementation of 
the DSS was completed (see www.zerberus-online.de). 

4 Optimizing Prediction Accuracy 
The success of any CBR application crucially depends 

on the quality of the employed similarity measure used to 
retrieve the most useful cases with respect to the current 
problem situation. Unfortunately, the actual utility of a 
case or its solution part, respectively, is first known, once 
it has been applied to the current problem situation. 
Hence, a similarity measure only represents a heuristics 
to approximate the a priori unknown utility function 
during retrieval. In CBR this heuristic is based on the 
assumption that similar problems have similar solutions, 
where the “similarity” between problems is often 
interpreted as similar appearance measured by simple 
distance metrics. However, as typical for any heuristics, 
its quality usually can be increased significantly if it is 
possible to incorporate meaningful domain knowledge. 
This can be realized in two different ways: 

• One asks a domain expert to provide the required 
knowledge and then encodes it manually into the 
similarity measure, for example, by defining accurate 
local similarity measures and feature weights. 

• One applies machine learning approaches to extract 
knowledge from particular training data, and to generate 
accurate similarity measures automatically. 

In the example applications described previously, up to 
now we have applied the first approach. However, for 
several reasons we plan to optimize the employed 
similarity measures, and therewith also the prediction 
accuracy of our systems, by applying machine learning 
techniques: 

• Depending on the particular application, we have to deal 
with very complex problem descriptions. Here, it is very 
hard to define an optimal similarity measure manually. 

• Often the relationships and influences of the different 
parameters are unknown and hence also domain experts 
are unable to define accurate similarity measures. 

• Even if the impact of the parameters is known in 
principle, the determination of quantitative aspects of 
similarity measures, such as exact feature weights or 
numerical parameters of local similarity measures, is a 
very difficult job that often can only be done intuitively.  

A lot of approaches to learn one important part of the 
similarity measure, namely the feature weights, have 
been developed up to now [Wettschereck and Aha, 1995]. 
Núñez et al. [2002] have presented some statistical-based 
weighting techniques and they have evaluated them also 

 

Case ‘‘WWTP 43‘‘ 

aeration: surface 
N-elimination: pre-operate 
high fate rate: no 
O2-concentration: 4.5 
sludge index: 0.07 

successful counteractions: none 
failed counteractions: iron-salt. 

problem occurance: creeping 
problem duration: long 
problem localization: aerated basin, sec. clarif. 
temperature: 10 
seasonal occurance: cold season 

trust level: good 
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microtrix parvicella: 6.0 
nostocoida limicola: 4.0 
sphaerotilus natans: 0.0 
beggiatoa: 0.0 
type 0092: 6.5 
... So
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using two environmental databases. However, all these 
approaches address classification tasks only. In general, 
they try to find a measure that assigns a higher similarity 
to cases containing a “correct” classification than to cases 
containing an “incorrect” classification. However, this 
approach is only applicable when the occurring classes 
are quite simple (e.g., only described by a simple class 
identifier represented by a string) and disjunctive. 
Nevertheless, as described in the precedent sections our 
“classes” are really complex objects (e.g. influent flow 
rate curves or 11-dimensional vectors). Therefore, a hard 
distinction between “correct” and “incorrect” classes is 
insufficient. In our scenario, cases or solutions, resp. can 
rather be judged as “better” or “worse” predictions of the 
actual solution while an exact match is very unlikely due 
to the complexity of the solution descriptions. 

Another problem is that existing learning approaches 
are not suited to learn local similarity measures, which 
are usually represented as similarity functions or 
similarity tables. However, in particular local similarity 
measures can be used to encode a lot of domain 
knowledge in order to obtain a good approximation of the 
cases utility. 

4.1 Learning from Util ity-Feedback 
To avoid this problem, we plan to apply a novel 

learning approach for optimizing the prediction accuracy 
of the described CBR applications in the field of 
wastewater treatment. The advantage of this alternative 
learning approach (see [Stahl, 2003] for a detailed 
description) is that it allows flexible learning of both, 
feature weights and local similarity measures and that it 
is not restricted to traditional classification tasks. 

The basic assumption of this approach is the existence 
of some similarity teacher who is able to estimate the 
relative utility of retrieved cases with respect to a given 
set of training queries. This means the teacher has not to 
decide absolutely whether a given case is useful or not, 
but must only be able to compare given cases with 
respect to their utility resulting in statements like “case x 
is more useful than case y”. Such a kind of utility 
feedback leads to partially ordered lists of cases 
representing the desired outcome of a similarity-based 
retrieval for given training queries. The task of the 
learning algorithm is then to find a similarity measure 
leading to these optimal retrieval results as close as 
possible. Here, genetic algorithms have been applied 
successfully [Stahl and Gabel, 2003]. 

4.2 Exploiting Solution Similarity 
To apply the described learning approach in the 

previously described application scenarios we need some 
similarity teacher who is able to provide the required 
utility feedback. Basically, such a similarity teacher has 
not necessarily to be represented by a human expert but 
can also be realized by some evaluation procedure. For 
our applications we plan to apply an approach based on a 
leave-one-out test and a novel concept, that we call 
solution similarity [Stahl and Schmitt, 2002] represented 
by an additional similarity measure that compares 

solution parts of cases instead of problem parts (see 
Figure 12). This concept allows us to exploit utility 
knowledge implicitly contained in the huge amount of 
available case data by measuring the utility of retrieved 
cases during a leave-one-out test. This approach assumes 
that it is much easier to define a reasonable solution 
similarity measure than a problem similarity measure. In 
fact, if we recall the structure of the solution parts 
occurring in our applications, we see that it is easy to 
define meaningful solution similarity measures. For 
comparing influent flow rate curves one could use, for 
example, the integral of the difference between two 
curves. Since we know the correct solution (here a curve) 
of a given problem during a leave-one-out test, such a 
measure allows us to estimate the prediction quality of 
retrieved curves and hence the utility of the 
corresponding cases. This allows us to generate utility 
feedback automatically to be used as input for the 
learning algorithm. 

Figure 12: The concept of solution similarity. 

5 Related Work 
Recently, an increasing number of publications can be 

found that deal with WWTP control and optimization 
respectively, using knowledge-based techniques, 
sometimes also Case-Based Reasoning, e.g.: 

 Sànchez-Marrè [1996] presents the DAI-DEPUR 
system. The system is based on an integrated multi-level 
architecture for WWTP supervision in real-time. Like the 
SBR controller approach to use multiple case bases for 
the different control tasks, DAI-DEPUR maintains 
several knowledge bases that are connected for solving 
the global control task. In contrast to the SBR controller, 
DAI-DEPUR is kept more general with respect to the 
supported WWTPs. Furthermore, different knowledge-
based approaches besides CBR are deployed.  

Cortés et al. [2000] presents an approach to put forward 
a Knowledge Management Methodology for EDSS.  

Fenner and Saward [2002] describe a methodology to 
produce a performance assessment model. They identify 
changes in the internal conditions of sewer pipes. 
Amongst other data, they build up a case base of 
performance histories. The past performances are used to 
predict suitable management strategies in the current 
situation. 

Utility 

Solution Similarity 

Problem Similarity 
Actual Problem 

Solution 

? 

Actual Situation 

Case Base 

Old Problem 

Solution 

Case 

known      utility 
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6 Conclusions 
Despite the fact, that CBR is a powerful technology, 

which has already proved its potentials in different 
industrial applications, CBR is not widely used in the 
field of wastewater treatment until now. Although 
approaches for optimization of existing plants attract 
more and more the attention, they are still based in almost 
all cases on Fuzzy Logic, Neuro Fuzzy, Genetic 
Algorithms, and Neural Networks. Nevertheless, there are 
some examples that the use of CBR in the field of 
wastewater treatment could be very promising, especially 
in case of Decision Support Systems and Real Time 
Control. Consequently, there is a good chance, that CBR 
will be far more common in environmental engineering 
during coming years.  

Acknowledgments 
The Project “ZERBERUS“ was funded by the Ministerium 
für Umwelt und Forsten, Rheinland-Pfalz, Germany. The 
Project “Messel” is being undertaken with financial support 
from the Deutsche Bundesstiftung Umwelt, Germany. The 
authors are also greatly indebted to all persons, partners, and 
institutions, which made both projects possible. 

References 

 [ATV, 1991, 2000] German Association of Water, 
Wastewater, and Waste (ATV). ATV-Arbeitsblatt A 131 
“Bemessung von einstufigen Belebungsanlagen” 
(Guideline ATV-A 131 for the Design of Aeration Plants), 
Hennef, Germany, 1991 and 2000 (new version). 

[ATV, 1997] German Association of Water, 
Wastewater and Waste (ATV). ATV-Merkblatt M 210 
Belebungsanlagen mit Aufstaubetrieb (Guideline ATV-M 
210 for the Design of SBR Plants), Germany, 1997. 

[Bergmann et al., 1999] R. Bergmann, S. Breen, M. 
Göker, M. Manago, and S. Wess. Developing Industrial 
Case-Based Reasoning Applications. The INRECA-
Methodology. LNAI 1612, Springer, 1999.  

[Cortés et al., 2000] U. Cortés, M. Sànchez-Marrè, J. 
Comas, I. R-Roda, and M. Poch. Knowledge Management 
in Environmental Decision Support Systems. Workshop 
Papers, ECAI workshop on Binding Environmental 
Sciences and Artificial Intelligence (BESAI2000), 2000. 

[Eikelboom, 2000] D.H. Eikelboom, Process Control of 
Activated Sludge Plants by Microscopic Investigation. 
IWA Publishing, 2000. 

[Fenner and Saward, 2002] R.A. Fenner and G. Saward. 
Towards Assessing Sewer Performance and Service-
ability using Knowledge Based Systems. Proc., 9TH Intern. 
Conference on Urban Drainage, Portland, 2002. 

[IWA, 2000] N.N., Activated Sludge Models ASM 1, 
ASM 2, ASM 2d and ASM 3. IWA Publishing, 2000. 

[Keudel and Dichtl, 2000] L.O. Keudel and N. Dichtl. 
Settling Characteristics of Activated Sludge in 
Sequencing Batch Reactors obtained from Full-scale 
Experiences, Proc. 2nd International Symposium on 

Sequencing Batch Reactor Technology, Narbonne, 
France, Vol. 1, pp. 75-83 

[Lenz, 1999] M. Lenz. Case Retrieval Nets as a Model 
for Building Flexible Information Systems. Ph.D. Thesis, 
Humbolt University Berlin, 1999.  

[Núñez et al., 2002] H. Núñez, M. Sànchez-Marrè, U. 
Cortés, J. Comas, I. Rodríguez-Roda, M.Poch. Feature 
Weighting Techniques for Prediction Tasks in 
Environmental Processes. ECAI Workshop on Binding 
Environmental Sciences and Artificial Intelligence 
(BESAI’2002). Lyon, France, July 2002. 

[Sànchez-Marrè, 1996] M. Sànchez-Marrè. DAI-
DEPUR – An integrated Supervisory Multi-level 
Architecture. PhD thesis. Universitat Politècnica de 
Catalunya, 1996. 

[Schumacher, 2000] J. Schumacher and R. Bergmann. 
An Efficient Approach to Similarity-Based Retrieval on 
Top of Relational Databases. In : Proceedings of the 5th 
European Workshop on Case-Based Reasoning EWCBR 
2000. Springer Verlag, 2000.  

[Smyth, 1995] B. Smyth and M.T. Keane. Remembering 
to Forget : A Competence Preserving Case Deletion 
Policy for CBR Systems. In : Proceedings of the 14th 
International Joint Conference on Artificial Intelligence 
IJCAI-95. Morgan Kaufmann Publishers, 1995. 

[Stahl, 2003] A. Stahl. Learning Knowledge-Intensive 
Similarity Measures in Case-Based Reasoning. Ph.D. 
Thesis, Technical University of Kaiserslautern, 2003. 

[Stahl and Gabel, 2003] A. Stahl and T. Gabel, Using 
Evolution Programs to Learn Local Similarity Measures. 
In: Proceedings of the 5th International Conference on 
Case-Based Reasoning ICCBR-03. Springer Verlag, 2003 

[Stahl and Schmitt, 2002] A. Stahl and S. Schmitt. 
Optimizing Retrieval in CBR by Introducing Solution 
Similarity. In: Proc. of the International Conference on 
Artificial Intelligence IC-AI’02. CSREA Press. 

[Wiese et al., 2004a] J. Wiese, J. Simon, and T.G. 
Schmitt. Integrated Real-Time Control for a Sequencing 
Batch Reactor Plant and a Combined Sewer System. In: 
Proc. of the 6th International Conference on Urban 
Drainage Modeling, Dresden, FRG, 2004. 

 [Wiese et al., 2004b] J. Wiese and J. Simon. Dynamic 
simulation of a SBR plant and a Combined Sewer System 
– Description of the modeling procedure. A practical 
application for the HSG simulation guidelines 
(publication planned) 

[Wettschereck and Aha, 1995] D. Wettschereck and 
D.W. Aha. Weighting features. In: Proceedings of the 1st 
International Conference on Case-Based Reasoning, 
ICCBR-95. Springer Verlag, 1995. 


