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Abstract. In recent studies, electroencephalogram (EEG)-based inter-
faces that enable to infer human intentions and to detect implicit human
evaluation contributed to the development of effective adaptive human-
machine interfaces. In this paper, we propose an approach to allow sys-
tems to adapt based on implicit human evaluation which can be extracted
by using EEGs. In our study, human motion segments are evaluated ac-
cording to an EEG-based interface. The goal of the presented study is
to recognize incorrect motion segments before the motion sequence is
completed. This is relevant for early system adaptation or correction.
To this end, we recorded EEG data of 10 subjects while they observed
human motion sequences. Error-related potentials (ErrPs) are used to
recognize observed erroneous human motion. We trained an EEG classi-
fier (i.e., ErrP decoder) that detects erroneous motion segments as part
of motion sequences. We achieved a high classification performance, i.e.,
a mean balanced accuracy of 91% across all subjects. The results show
that it is feasible to distinguish between correct and incorrect human
motion sequences based on the current intentions of an observer. Fur-
ther, it is feasible to detect incorrect motion segments in human motion
sequences by using ErrPs (i.e., implicit human evaluations) before a mo-
tion sequence is completed. This is possible in real time and especially
before human motion sequences are completed. Therefore, our results are
relevant for human-robot interaction tasks, e.g., in which model adap-
tation of motion prediction is necessary before the motion sequence is
completed.
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1 Introduction

Inference of future human behavior and intentions is essential for an effec-
tive adaptive human-machine interaction. In particular, electroencephalogram
(EEG)-based interfaces, e.g., brain-computer interfaces, enable systems to per-
form such inference and thus to flexibly adapt to human intentions, expectations,
motion planning, or implicit evaluations of behavior [5,11,14–16,18–20]. In recent
years, it could be shown that EEG-based interfaces enable continuous adaptive
learning of systems (e.g., robots). For example, a robot learns and updates a
policy based on human intrinsic evaluation (e.g., EEG-based feedback). The
robot chooses a correct action that corresponds to the current context (human
gesture) according to the EEG-based feedback, where the current context is un-
known to the robot (i.e., the meaning of the human gestures is unknown and may
change depending on the current human intention) [16,18]. Such applications are
mostly shown in robot learning, e.g., adaptation of learning algorithms. There-
fore, EEG-based interfaces are a good choice for human-in-the-loop approaches
such as human-robot interaction, especially when continuous access to human
intrinsic feedback is required.

Human intention can be inferred in various ways, e.g., by analyzing human
motion sequences, human gestures, human EEGs as well as other biosignals such
as electromyogram (EMG), etc. That means, human intention can be inferred
by accessing both explicit (e.g., human motion, gesture) and implicit data (e.g.,
ErrP in the EEG). We propose an approach to allow systems (e.g., robots) to
adapt based on human intention. In our application, we extracted human inten-
tions by analyzing human motion and inferring implicit human evaluations by
EEG analysis. For motion analysis, we trained a motion analyzer that segments
trajectories, classifies segmented trajectories, and predicts the next motion seg-
ments in motion sequences (Fig. 1, blue boxes and lines). For EEG analysis, we
trained an EEG classifier to detect/recognize erroneous motions segments while
observing human motion sequences. Specifically, we used EEG to detect motion
segments (as part of motion sequences) that have been defined as “incorrect” in
the current situation (context). To enable this detection, we used error-related
potentials (ErrPs), which are elicited in the human brain, for example, when
observing erroneous behavior. In this paper, we focus on EEG analysis.

The ErrP is a well established event-related potential (ERP) component,
which has been applied in several research and application areas (see, review, [5]).
Like other ERP components (P300, MRCP, etc., details, see [13]), ErrPs have
been applied in brain-computer interfaces (BCIs), human-machine interactions
(HMIs), and human-robot interactions (HRIs). In many cases, ErrPs have been
investigated in observation tasks, e.g., observations of motions of an abstract
entity [12, 14, 24, 26] or observations of motion of robots on a monitor [9, 23], or
observations of motion of real robots [8, 10, 16, 17, 23, 29]. Further, ErrPs have
been used not only to correct erroneous actions of the robot [29], but also to
learn or adjust the behavioral strategy of robots [11, 16, 18]. In recent studies,
ErrPs have been applied in HRIs, i.e., a robot learns a behavior strategy through
interactions with humans. Here, the robot learns a behavior strategy not only
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Fig. 1. Concept of our approach

by updating the strategy based on implicit human evaluation (i.e., the correct-
ness of robot’s behavior) via BCIs, but also by interpreting human intentions
e.g., from human gestures [16, 18]. To our knowledge, there are no publications
that investigate the use of ErrPs when observing real human movements or
real human motion sequences. However, there is one study in which ErrPs were
elicited when observing simulated human hand movements [27]. In [27], subjects’
grasping movements were simulated in a virtual reality (VR) environment, and
subjects observed their own hand movements simulated in a VR environment in
which hand movements were simplified.

In our approach, EEG analysis can be applied in two ways (Fig. 1, green
boxes and lines). First, EEG classifications (e.g., the presence of ErrP) can be
used to correct erroneous results of the motion analyzer (e.g., misclassification of
motion segments). Second, EEG classification can be used to control a potential
model adaptation (e.g., retraining) of the motion analyzer. That means, we can
use EEG analysis both for direct correction of erroneous outputs of the motion
analyzer as well as for model adaptation of the motion analyzer.

As mentioned above, in this paper, we focus on EEG analysis and evaluation
of EEG classifiers. For training an EEG classifier, a reasonable amount of training
instances is required to avoid overfitting. Thus, we recorded videos of human
motion sequences to be used as EEG stimuli in various context, i.e., various
stacking orders in our scenario (Fig. 2). In our scenario, a motion sequence of
the stacking process consists of eight motion segments, which can be arranged
into different sequences depending on human intention (Fig. 2). The goal of our
study is to detect erroneous motion segments before the motion sequences are
completed in order to adjust the systems according to the EEG classification even
before the motion is completed. To this end, we recorded EEGs while observing
human motion sequences and trained subject-specific EEG classifiers (i.e., ErrP
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decoders) that detect erroneous motion segments as part of motion sequences,
i.e., before the entire motion sequence is completed.

(A-1) two variants: (a) pink colored or  
(b) orange colored number

(A-2) 
e.g., variant (b) 

(B-2) 
e.g., variant (a) 

(B-1) two variants: (a) pink colored or  
(b) orange colored number

X

rest

yellow

green

blue

red

2

7

3 or 5

4 or 6

5 or 3

6 or 4

odd number: pick 
even number: place

end

1

X

rest

yellow

green

blue

red

2

6
5

3 or 7

4 or 8

7 or 3

8 or 4

odd number: pick 
even number: place

end

1

(B) incorrect stacking order 

(A) correct stacking order 

8

Fig. 2. Concept of motion sequences for correct and incorrect stacking orders (A, B).
We have two variants each to stack in correct and incorrect order (A-1, B-1). For each
condition, an example of the correct and incorrect stacking order is shown (A-2, B-2).

2 Methods

Experimental setup We designed an experiment, in which ten subjects ob-
served video recordings of human motions on a monitor. To this end, we recorded
videos, in which a person stacks four colored bricks (yellow, green, red, and blue)
in different orders (see Fig. 2). The motion sequences of the stacking process con-
sist of eight motion segments (“pick yellow”, “place yellow”, “pick red”, “place
red”, “pick green”, “place green”, “pick blue”, and “place blue”), which can be
arranged into different sequences (Fig. 3) depending on human intention.

We defined two conditions for training an EEG classifier (Fig. 2 A, B). First,
we defined the stacking order as correct, if the blue brick was on top and the
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yellow brick was at the bottom of the resulting stack (e.g., Fig. 2A-2). This
results in two correct stacking variants (Fig. 2A-1). Second, if the blue brick
was placed as the third brick instead of on the top (e.g., Fig. 2B-2), we defined
the stacking order as incorrect. This resulted in two incorrect stacking variants
(Fig. 2B-1).

We annotated the motion segments (e.g., “pick blue” for reaching for and
picking up the blue brick) in the videos. Based on the annotation, markers at
the start of the motion segments were sent to the EEG recording, when the
corresponding video frame was displayed on the monitor. These markers were
labeled based on the position of the corresponding motion segments in the stack-
ing orders (Fig. 2A-1, Fig. 2B-1). For example for the start of the segment “pick
blue” in the correct condition the marker S7 is used (Fig. 3A). We defined these
markers as EEG markers, which were used to segment the EEG data stream into
epochs for training a classifier (Fig. 4). In this paper, only the markers S5 in the
incorrect condition and S6 and S7 in the correct condition are used (Fig. 3).

Data recording Ten subjects participated in the experiment. We recorded
EEG data while the subjects observed the videos of human motion sequences.
EEGs were recorded at 500 Hz with a 64-channel amplifier (LiveAmp, Brain
Products GmbH) using an extended 10-20 electrode system with the reference
electrode at FCz (actiCapSlim, Brain Products GmbH). EEG markers were sent
to the EEG data stream in real time (Fig. 4).

Ten datasets were recorded in a single session for each subject. Each dataset
contained the EEG data for observing 25 videos, i.e., 20 videos with correct
stacking order and 5 videos with incorrect stacking order. That means, the class
ratio was 1:4 with respect to incorrect and correct stacking order. Due to the class
imbalance a stratified cross validation was used for evaluation and the classes
were differently weighted for classifier training (details, see section 2. Evaluation
and section 2. EEG processing respectively).

EEG processing The EEG processing pipeline consists of three steps: pre-
processing, feature extraction and classification. For EEG processing, we used
pySPACE [21], in which relevant methods are implemented (e.g., xDAWN [28])
or external packages (e.g., libSVM [4], pyriemman [1]) are integrated.

The EEG data stream was segmented into epochs from 0s to 1s and labeled as
“correct” or “incorrect” based on EEG markers (section 2. Experimental setup
and Fig. 3). All epochs were band pass filtered using Fast Fourier Transform
(FFT) with a pass band from 0.1 to 12 Hz4, decimated to 50 Hz, and normalized
to have zero mean for each channel.

For feature extraction, we combined xDAWN and a Riemmanian manifold
approach [6,30]. Using xDAWN, we reduced the 64 physical channels to 5 pseudo
channels, in which the signal-to-noise ratio for the “incorrect” class is maxi-
mized. All epochs were projected into the pseudo channels that consist of 50

4 Potential artifacts due to the Gibbs phenomenon can be neglected here, as only the
classification of the signals and not their shape is of interest.



6 S.K. Kim et al.

pick
yellow

pick 
red 

place
red

pick 
blue 

place
blue

pick 
green 

place
green

pick 
blue 

place  
blue

place
yellow

pick
green

place 
green 

pick 
red 

place 
red 

pick
yellow

pick 
blue 

place
blue

pick 
red 

place
red

pick 
blue 

place
blue

pick 
green 

place  
green

place
yellow

pick
green

place
green

pick  
red

place 
red

pick
yellow

pick 
red 

place
red

pick 
green 

place
green

pick 
blue 

place
blue

pick 
green 

place
green

pick 
red 

place  
red

place
yellow

pick 
blue 

place
blue

S7

time window for epochs

S5

time window for epochs

time window for epochs

S6

onset of incorrect movement segment

(A) time points for markers in correct stacking orders

(B) time points for markers in incorrect stacking orders

(C) time points for markers in incorrect stacking orders

S6 before

Fig. 3. Concepts of EEG markers in both correct and incorrect condition (A, B).
The time points at which markers are sent to the EEG recordings are visualized with
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and B are analogous to Fig. 2. The time point used for classifier transfer (details, see
section 4. Discussion) is depicted in C. EEGs are segmented according to EEG markers
(details, see section 2. EEG processing).

data points, i.e., we obtained 250 data points (5 channels × 50 data points) af-
ter applying xDAWN. After applying xDAWN, we used a Riemmanian manifold
approach [6,30]. To this end, we generated extended epochs (cf. [2]) so that we ob-
tained 10 pseudo channels (5·2 = 10 channels). A 10×10-dimensional covariance
matrix was estimated across the 50 data points for each of the extended epochs
using the shrinkage regularized estimator of Ledoit-Wolf [22], which ensures that
the estimated covariance matrices are positively defined. After the estimation of
the covariance matrices, we approximated their Riemannian center of mass5 [3],
which is used as reference point to append a tangent space. All training and test-
ing data (i.e., each epoch) were projected into this tangent space and vectorized
using Mandel notation [25]. Using Mandel notation, we reduced the symmetric

5 The Riemannian center of mass is also called geometric mean in the field of BCI or
Fréchet mean in general.
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10×10-dimensional matrices into 55-dimensional feature vectors. In the end, we
Z-score normalized the feature vectors.

For classification, we used a linear Support Vector Machine (SVM) [7]. The
hyperparameter C of the SVM was selected from {10−6, 10−5, 10−4, 10−3, 10−2,
10−1, 1} using a five-fold stratified cross validation on the current training data
and the classes were weighted as 2:1 ∼ “incorrect”:“correct” in the formulation
of the optimization problem.

Evaluation For evaluation, we used three EEG markers (i.e., three labels, see
Fig. 3). The evaluations were performed for each of the ten subjects individ-
ually. Either S6 or S7 was used as the marker for the correct class (Fig. 3A).
In both cases, S5 was used for the incorrect class (Fig. 3B). As mentioned in
section 2. Data recording, we recorded 10 datasets for each subject. First, we
concatenated the epochs of the 10 datasets, resulting in 200 correct and 50 incor-
rect epochs. A 5× 5 stratified cross validation was applied on the concatenated
datasets. By averaging across the folds and repetitions, we obtained classifica-
tion performances for each of the 10 subjects. For performance metric, we used a
balanced accuracy, i.e.,the arithmetic mean of true positive rate (TRP) and true
negative rate (TNR). Note that the positive class stands for incorrect stacking
order and negative class stands for correct stacking order.

3 Results

Table 1 shows the classification performance for each subject in both label com-
binations (label S6 vs. label S5; label S7 vs. label S5). In addition, we reported
the means and standard errors as well as the medians across all subjects. In
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average, we achieved 91% and 79% for label S6 vs. label S5 and label S7 vs.
label S5 respectively. However, one subject (subject 9) was found to have lower
performance compared to the other subjects. This subject reported after the ex-
periment that he had difficulty concentrating on watching the videos. Further,
the use of S6 yielded a better classification performance than the use of S7 for
the correct class. This result pattern, i.e., the superior performance by using S6
compared to the use of S7, was observed for all subjects.

Table 1. EEG classification performance: mean balanced accuracies
(bACC=(TPR+TNR)/2) of 5 × 5 stratified cross validation for each subject.
Two labels (label S6 and label S7) for correct class were used for comparison. For
incorrect class, only one label (label S5) was used for evaluation. The mean and
standard error of the mean (SEM) are given. In addition, the median is reported.

label S6 vs. label S5 label S7 vs. label S5

subject TPR (%) TNR (%) bACC (%) TPR (%) TNR (%) bACC (%)

1 96.0 99.5 97.8 76.8 89.8 83.3

2 82.0 94.8 88.4 62.8 89.6 76.2

3 84.4 97.1 90.8 74.4 90.3 82.4

4 81.2 96.2 88.7 69.2 89.0 79.1

5 89.6 94.5 92.1 71.6 91.1 81.4

6 97.2 99.5 98.4 74.0 89.8 81.9

7 90.4 97.3 93.9 79.6 96.6 88.1

8 90.4 97.2 93.8 68.4 90.3 79.4

9 55.6 89.6 72.6 42.4 84.6 63.5

10 86.0 97.7 91.9 68.4 89.9 79.2

mean±SEM 85.3±3.7 96.3±0.9 90.8±2.3 68.8±3.3 90.1±0.9 79.4±2.0

median 87.8 97.2 92.0 70.4 89.9 80.4

4 Discussion

In this paper, we evaluated EEG data segmented based on the labels S6 and S7
for the correct class (Fig. 2A-1, Fig. 3A) and the label S5 for the incorrect class
(Fig. 2B-1, Fig. 3B). The classification performance was higher when using the
label S6 than when using the label S7 for the correct class (Table 1). This indi-
cates that, as expected, subjects already recognized the correct stacking orders
when they observed the placement of the red or green brick as the third brick
(Fig. 2B-1, Fig. 3B), i.e., before the blue brick was picked (label S7). If our as-
sumption is correct, the use of the label S6before for the correct class (Fig. 3B)
could also improve the classification performance compared to use of the label S7.
This should be investigated in the future work. Further, the decreased classifi-
cation performance when using label S7 compared to label S6 may be caused
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by subjects paying less attention to the videos after S6. This reduced attention
might have resulted in less relevant features for distinction between the correct
and incorrect class.

In this study, we used only the videos showing that the blue brick was placed
as the third brick for the incorrect stacking order (Fig. 2B-1, B-2). That means,
the stacking orders are different between two variants of incorrect condition, but
the position of the blue bricks (incorrect motion segments) in the stacking order
was the same (Fig. 3B). However, it should in principle be feasible to detect
ErrPs in any other position in the stacking sequence as well (e.g., Fig. 3B vs.
C). Thus, we tested our approach in case of context change, i.e., the position of
incorrect motion segments as part of motion sequences is changed. That means,
we also detected incorrect motion segments, in which the blue brick is placed
as the second brick for the incorrect condition (Fig. 3C). Here, we achieved a
bACC of 98.4%. This classification performance was comparable with the case
of Fig. 3B (Fig. 3B vs. Fig. 3C: 98.4% vs. 97.8% for label S6 vs. label S5).
Further, we tested a classifier transfer approach on one subject, i.e., the classifier
trained on incorrect motion segments in Fig. 3B was applied to the test data
containing incorrect motion segments in Fig. 3C. Our preliminary results suggest
that it is even feasible to transfer an ErrP classifier trained to detect an incorrect
placement of the blue brick as the third (Fig. 3B) to detect motion segments, in
which the blue brick was placed as the second brick for the incorrect condition
(Fig. 3B). Here, we obtained a bACC of 88.7%. In a preliminary study, we
evaluated the classifier transfer on one subject (Subject 1). Future work should
systematically investigate the classifier transfer approach with an appropriate
sample size.

For sending markers at the start of the motion segments, we used manual
annotations of the motion segments in the observed videos. This is infeasible
in real-time applications of ErrP detection when observing human motion. In-
stead, the time points of the start of the motion segments could be estimated by
an online motion analysis. Thus, in future work, we will send markers directly
from the motion analyzer online to the EEG recordings instead of from video
annotations.

Our results show that it is feasible to distinguish between correct and incor-
rect human motion sequences based on the current intentions of an observer.
This is possible in real time and especially before human motion sequences are
completed. Therefore, our results are relevant to human-robot interaction tasks,
since robots can adapt their behavioral strategy or interaction strategy ,,on the
fly”. On the one hand, we can use our approach described in Fig. 1, in which
a motion classifier or a motion predictor can be adapted or not according to
ErrP-based human evaluations. On the other hand, our approach can be applied
to adapt robot behavior. If we detect ErrP-based evaluations of erroneous robot
motion segments before the robot motion trajectories are completed, we can
directly adjust the model underlying the control of the robot trajectories.
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